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ABSTRACT: Advancing beyond Li-ion batteries requires
translating the beneficial characteristics of Li* electrodes
to attractive, yet incipient, candidates such as those based
on K’ intercalation. Here, we use ultrathin few-layer
graphene (FLG) electrodes as a model interface to show a
dramatic enhancement of K intercalation performance
through a simple conditioning of the solid-electrolyte
interphase (SEI) in a Li* containing electrolyte. Unlike the
substantial plating occurring in K* containing electrolytes,
we found that a Li" based SEI enabled efficient K
intercalation with discrete staging-type phase transitions
observed via cyclic voltammetry at scan rates up to 100
mVs™' and confirmed as ion-intercalation processes
through in situ Raman spectroscopy. The resulting
interface yielded fast charge—discharge rates up to
~360C (1C is fully discharge in 1 h) and remarkable
long-term cycling stability at 10C for 1000 cycles. This
SEI promoted the transport of K as verified via mass
spectrometric depth profiling. This work introduces a
convenient strategy for improving the performance of ion
intercalation electrodes toward a practical K-ion battery
and FLG electrodes as a powerful analytical platform for
evaluating fundamental aspects of ion intercalation.

he technologies beyond Li-ion are gaining momentum by

diversifying the energy storage landscape, but strategies
are required to improve the performance of electrodes for new
types of batteries. Among them, the K-ion battery (KIB) is an
emerging candidate compared to Li-ion battery (LIB) due to
the reduced cost,' the availability of high performance
cathodes,”® and the more negative anode intercalation
potential of K* on carbon.”” K' storage in various carbon
based anode materials has been reported, including graph-
ite, " hard carbon spheres,'”'" highly oriented pyrolytic
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gralphite,12 graphene foam,"*'* and reduced graphene oxide.’
Despite the variety, many of these carbon materials exhibit
limited cycling stability, in part due to K plating.”'*"*"> The
few reports that demonstrate clear evidence of a staging type
intercalation behavior, show sluggish kinetics.*” Therefore, to
improve the performance of KIB anodes, it is necessary to
better understand K* intercalation and to develop straightfor-
ward strategies for improving their interfacial properties.

During the early stages of LIB cycling, a layer of
decomposition products of solvent and electrolyte known as
the solid-electrolyte interphase (SEI) forms on the anode
surface.'”'” While this SEI layer is electronically passivating,
preventing further solvent decomposition and Li plating, it
remains ionically conductive, allowing for fast Li* mobility."®
Therefore, this interfacial layer is crucial for stable intercalation
in LIBs. As a comparison, pure K* containing electrolyte leads
to incomplete SEI coverage on KIB anodes,” and the use of K*
additives in LIB anodes suppresses SEI growth.'” Poor SEI
formation allows K metal plating on the electrode, leading to
low cycling rates, capacity losses due to electrode exfoliation,
and low cycling efficiency.” To solve this problem, a high-
performance K* conductive SEI layer is required. In this study,
we turn to ultrathin nanostructured electrodes of few-layer
graphene (FLG)”’ as model interfaces to elucidate and expand
the possibilities of K intercalation. We show that a
preconditioned SEI layer in Li* containing electrolytes creates
a beneficial environment for stable, reversible, and fast K
intercalation in FLG with dramatic improvements in rate and
cyclability.

The FLG samples we used were grown using atmospheric
pressure CVD and wet-transferred to SiO, chips to yield large-
area electrodes.”’ > As shown in Figure la, the sample

Received: August 27, 2018
Published: October 9, 2018

DOI: 10.1021/jacs 8b08907
J. Am. Chem. Soc. 2018, 140, 13599-13603


pubs.acs.org/JACS
http://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.8b08907
http://dx.doi.org/10.1021/jacs.8b08907

Journal of the American Chemical Society

Communication

Figure 1. Characterization of FLG. (a) The calculated graphene layer
number distribution (color bar) based on optical transmittance image
(Figure Sla). (b) SEM image of FLG.

consists of graphene islands ranging from 15 to 18 layers and a
base of ~3 layers of graphene. The SEM image (Figure 1b)
reveals a 1.7 + 0.9 um? grain size of FLG crystals. This height
distribution was confirmed by mapping of the G peak (1585
cm™') of the FLG Raman spectra (Figure S1b). Increased layer
number lead to increased G peak intensity (Figure Slc and
Table $1).** The micron-sized dimension and the distribution
of thick FLG islands ensures fast alkali ion transport within
each domain.”

We evaluated K* intercalation into FLG via cyclic
voltammetry (CV) in 0.1 M KPF; in PC-EC (1:1 vol./vol.)
solution to analyze the peaks corresponding to the progressive
filling of graphene interlayers, i.e. icm-staging,m’zs’ 7 and the
identification of metal plating. Reported potentials are
referenced to 0.1 M Li*/Li hereafter. When sweeping the
potential of FLG negative in K containing electrolyte at 1
mVs~' (Figure 2a trace-1), no K' intercalation peaks were
found. Instead, an irreversible reductive deposition process was
observed (0.7 to 0.2 V) as indicated by the crossing of forward
and backward traces.” In contrast, when the solution was
replaced with 0.1 M LiBF, in PC-EC, the FLG displayed clear
staging-type Li" intercalation behavior (Figure 2a trace-2).”
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Figure 3. Postexperimental SEM and TOF-SIMS analysis. (a) SEM
image of FLG with stable K" intercalation performance. Inset: cross
sectional image of same sample. (b) SEM image of FLG which exhibit
K plating. (c) TOF-SIMS depth profiling results of FLG with full Li*
based SEI conditioning and exposure to few cycles in K* containing
electrolyte. Inset: K/Li counts ratio for FLG samples under different
conditions.

Direct K" intercalation is not readily accessible in pristine FLG
at the rates and conditions under which Li* intercalation
occurs. Since Li" intercalation creates structural changes on
graphitic anode,”® we expected that testing the previous
electrode in K* containing electrolyte would exhibit also K*
intercalation. However, further polarizing the FLG in 0.1 M
KPF (Figure 2b trace-3) yielded only K plating and stripping.
After this, Li* no longer intercalated into FLG (Figure S2b),
with the electrode displaying Li plating and stripping as well
(Figure 2b trace-4). Therefore, an SEI inherently formed in K"
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Figure 2. Effect of SEI conditioning in Li* and K" electrolytes. Panels a and b: sequential tests of pristine FLG with SEI initially formed in K*
containing solution at different degree of coverage. Panels ¢ and d: same as panels a and b, but with SEI formed in Li* containing solution. Number
labels on CV traces correspond to chronological order of experimental procedure. (e) Raman G peak position change during Li* or K" intercalation
and its comparison with theoretical ab initio calculations. All experiments were tested in 0.1 M LiBE, or 0.1 M KPF, in PC-EC, on 4.9 mm” FLG

working electrode at 1 mV sL
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Figure 4. Long-term cycling and fast scan properties. (a) Long-term cycling study of K* intercalation on FLG for 1000 cycles at 1 mVs™". (b)
Charge—discharge capacities under all (de)intercalation peaks and Coulombic efficiencies. The theoretical capacity is indicated by the dashed line.
(c) Li* and K* charge capacities at various scan rates up to 100 mV s™". Each scan rate condition was tested for 20 cycles. All experiments were
tested in 0.1 M LiBE, or 0.1 M KPF in PC-EC, on 4.9 mm® FLG working electrode at 1 mV s~ (panel a) or varies scan rates listed in figure legend

(panel c).

containing electrolyte does not favor reversible intercalation
behavior.

Given our observation and recent reports that SEIs formed
in K containing electrolytes lead to deficient intercalation
properties,”'” we hypothesized that a preformed Li* based SEI
layer would benefit K* intercalation. To accomplish this, the
FLGs were preconditioned in LiBF, solution to form a fully
passivated SEI layer (Figure S3). Following this pretreatment,
K" intercalation peaks were now well-defined (Figure 2d). The
similarities between Li* and K* intercalation signatures on
preconditioned FLG suggests a comparable staging-type
intercalation process. Comparing the Li* and K" signals, four
groups of (de)intercalation peaks were identified (Table S2),
which we attribute to phase transitions between the different
intercalation stages.5’29 Galvanostatic charge—discharge at 10C
(equivalent to 1 mV s~ scan rate in CV) revealed similar ion
storage properties for both Li* and K* (Figure S4). We define
1C-rate as the full use of the FLG capacity during lithiation or
potassiation in 1 h. Integrating the charge in Figure 2d, we
found a Li*/K* ratio of 1.33 and 1.32 for intercalation and
deintercalation peaks, respectively (Table S2). This trend
agrees with the stoichiometric changes between LiC4 and
KCy,*® which yields a theoretical ratio of 1.33. To confirm that
Li* and K* were involved in distinct intercalation processes, in
situ Raman measurements were obtained during each ion
insertion (Figure 2e-top). Ab initio calculations were also used
to compute Raman active frequencies at different intercalation
stages of Li* or K* on a four-layer graphene (4LG) model
system (Figure 2e-bottom). Both methods agree well; a
gradual displacement of the G peak was observed upon
intercalation. The observable red shift can be explained by the
intercalated ions inducing strain in the graphene.”’

We attribute the reversible K* intercalation behavior to the
preconditioned Li* based SEI layer on the FLG. As a
comparison, insufficient conditioning with fewer cycles leads
to incomplete coverage of the SEI and subsequent inhibition of
K* intercalation (Figure 2c). These experiments support the
crucial role of the Li* based SEI coverage for K* intercalation
and highlight the importance of forming a suitable layer from
the beginning. The choice of the reference electrode does not
affect the electrode behavior (Figure S5). Furthermore, the
lack of noticeable intercalation response when using the bulky
tetrabutylammonium cation (Figure S6) validates that the
origin of observed staging-type peaks come from K uptake
and not from the remaining Li* in the preformed SEIL

To further elucidate the role of the SEI layer on enabling
facile K intercalation, we performed postexperimental SEM

and TOF-SIMS analysis. The entire surface of preconditioned
FLG capable of intercalating K* is covered by submicron sized
SEI clusters (Figure 3a) with more than 200 nm thickness
(Figure 3a inset), comparable to the binder free graphite SEI
morphology.”” In contrast, FLG displaying a patchy surface as
a result of insufficient SEI conditioning (Figure 3b) was prone
to metal plating and instabilities at large negative electrode
polarization (Figure 2c). In TOF-SIMS depth profiling, the
coexistence of elemental Li and K was verified in
preconditioned FLG that had undergone few K intercalation
cycles (Figure 3c). The presence of both alkali ions decreases
at a similar fashion as the SEI was removed. An FLG sample
cycled exclusively in LiBF, showed near to zero K/Li ratio
throughout. In contrast, FLG cycled 200 times in KPFzled to a
dramatic increase of atomic K, marked by a 23-fold rise in the
K/Li ratio (Figure 3c inset). These observations support the
idea that K* diffused through the preformed Li" based SEL We
hypothesize that the progressive substitution of Li* with K* in
the SEI results in a favorable interface for K* transport and
provides a framework that supports reversible electrochemical
intercalation of K.

A preconditioned SEI layer also promotes long-term K*
intercalation with a fully reversible behavior at the fast charge—
discharge rate of 10C for at least 1000 cycles (Figure 4).
Continuous K* transport through the SEI likely leads to a
gradual cationic substitution between Li* and K* during the
first ~100 cycles, resulting in a lower overpotential to
intercalate K" (Figure 4a, Figure S7). We postulate the
decrease in (dis)charge capacities around the 800th cycle arises
from changes in the electrolyte composition and accessible
FLG area on the open electrochemical cell used in this study
over the 8 days of testing. The theoretical capacity of K
uptake was estimated at 83.5 uC based on Li* capacity (Figure
§8). The majority of the charge—discharge cycles display
capacities around the theoretical limit (Figure 4b). The
capacity was also retained at 90.6% toward the 1000th cycle,
with a Coulombic efficiency of 99.2 + 0.8% throughout all
cycles (Figure 4b). The CV features observed at 1 mV s™" for
the long-term cycling experiments compare positively against
the best reported K* intercalation CVs,” performed at a scan
rate 100 times slower than our work. Full capacity retention
with discernible staging profile were further maintained at even
faster scan rates up to 100 mV s™' for both Li* and K* (Figure
4c and Figure S9), equivalent to charge—discharge C-rates of
360. Galvanostatic charge—discharge results revealed similar
fast cycling behavior (Figure S10). To the best of our
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knowledge, this is the fastest charge—discharge reported for K
intercalation on a graphitic material.

In summary, we explored the role of SEI preconditioning on
FLG electrodes for K" intercalation. Conditioning the FLG
with a Li* based SEI with full electrode coverage enabled well
resolved staging-type K intercalation. This simple strategy
enables the intercalation of K* on graphitic materials at least 2
orders of magnitude faster than any published work, and with a
near theoretical K* storage. The preformed SEI layer further
protects the FLG electrode for at least 1000 CV cycles, with
distinctly observable intercalation stages and high capacity
retention. Ion intercalation was confirmed via in siftu Raman
spectroscopy, while the K* penetration through the SEI and
Li/K ion exchange during cycling was confirmed by TOEF-
SIMS analysis. This work highlights the functionality of the SEI
on controlling alkali ion intercalation mechanisms and the
versatility of large-area FLG electrodes for exploring
fundamental aspects of intercalation chemistry. We speculate
that the SEI plays a prominent role in the electrochemical
intercalation signatures and stability of a wide variety of mono
or multivalent ions into carbon based anodes. This work shows
a simple and attractive pathway toward electrode design for
high-performance beyond Li-ion technologies.
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