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Abstract— Gaze provides subtle informative cues to aid fluent
interactions among people. Incorporating human gaze predic-
tions can signify how engaged a person is while interacting with
a robot and allow the robot to predict a human’s intentions
or goals. We propose a novel approach to predict human
gaze fixations relevant for human-robot interaction tasks—
both referential and mutual gaze—in real time on a robot.
We use a deep learning approach which tracks a human’s
gaze from a robot’s perspective in real time. The approach
builds on prior work which uses a deep network to predict the
referential gaze of a person from a single 2D image. Our work
uses an interpretable part of the network, a gaze heat map,
and incorporates contextual task knowledge such as location of
relevant objects, to predict referential gaze. We find that the
gaze heat map statistics also capture differences between mutual
and referential gaze conditions, which we use to predict whether
a person is facing the robot’s camera or not. We highlight
the challenges of following a person’s gaze on a robot in real
time and show improved performance for referential gaze and
mutual gaze prediction.

[. INTRODUCTION

Eye gaze is an indicator of engagement, interest and
attention when people interact face-to-face with one another
[1], [2]. Nonverbal behaviors such as eye gaze, can convey
intentions and augment verbal communication [3], [4], [5].
Take the example of people communicating with one another
as a team on a collaborative task of assembling furniture
together; they may look at parts of the workspace farther
away from them to communicate intentions about a nail or
hammer they want to be passed by a teammate. Social gaze
is also used by humans to regulate turn-taking in two-party
[6], [7] and multi-party conversations [8], [9].

In a teacher-learner setup, parents can scaffold a child’s
learning process by directing their attention using gaze,
thereby providing structure to the task [10], [9]. Human
gaze fixations can similarly help a robot learner segment
a teaching demonstration into steps (e.g. pausing to look
at the lid of a jar, then picking it up and screwing it
in), and determine the right aspects of the state to pay
attention to during the demonstration [11]. For seamless
interactions between humans and personal robots of the
future, interpreting and reacting to this human social cue
will be of significant importance.

1 Akanksha Saran and Scott Niekum are with the Department of Com-
puter Science, University of Texas at Austin, Austin, TX 78712, USA.
{asaran, sniekum}@cs.utexas.edu

2Srinjoy Majumdar, Elaine Short and Andrea Thomaz are
with the Department of Electrical and Computer Engineering,
University of Texas at Austin, Austin, TX 78712, USA.

{srinjoy.majumdar,elaine.short}QRutexas.edu,
athomaz@ece.utexas.edu

We present a real-time approach to predict referential and
mutual gaze of a human (gaze directed at an object and gaze
directed towards the robot’s camera/face respectively) from
a robot’s perspective embodied in the real world, and show
improvement over an existing baseline. Our approach works
with a monocular camera attached to a robot without the use
of bulky or invasive devices like eye-trackers which can make
a user uncomfortable during the interaction. Human gaze has
been estimated without the use of eye trackers in images and
videos [12], [13], but such approaches are not designed for
embodied robots and their human partners interacting with
objects in the real world. Prior works for gaze prediction
on robots either generate eye gaze vectors when the person
faces the camera [14] or use simple head pose estimators [15]
which predict a large space as part of the human’s attention
versus specific objects. These prior works do not address the
problem of a robot reliably predicting the object of a human
partner’s gaze while interacting with real-world objects, but
rather focus on either predicting where on a computer screen
a person might be focusing or estimating coarsely (large
margin of error) a general direction in which the person is
facing. By contrast, our approach aims to accurately predict
the object of a human partner’s attention in the real-world,
which can more specifically inform a robot’s next action in
an interaction scenario. We extend the deep learning pipeline
proposed by Recasens et al. [16] to incorporate knowledge
about relevant task objects with interpretable parts of the
network. We bring together different components such as
a state-of-the-art face detector, object detector, and a gaze
following algorithm in our system’s code, to obtain real-
time predictions about which objects a human might be
attending to. We also show how this architecture can predict
mutual gaze, i.e. when a person is facing the robot versus
not, an important aspect of gaze prediction for human-robot
interaction.

II. RELATED WORK

In this section we review two areas of prior work—
computer vision algorithms for human gaze prediction and
use of gaze in human robot interaction tasks.

A. Gaze Prediction with Computer Vision

Recasens et al. [16] developed a deep network architecture
for monocular images to predict human gaze fixations. They
use manually-labeled data to learn where the person is
focusing their attention, given that both the person’s head
and the object of attention are visible in the image. It is
meant to work primarily for a single 2D image, and does not
use specific contextual task information such as knowledge
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about objects relevant to the task, which might be available
apriori in a human-robot interaction scenario. It also does
not resolve prediction of mutual gaze (the person looking
towards the camera). We extend this work to address these
shortcomings, create a real-time gaze tracking system and
evaluate it on a robot designed for interacting with humans.

Baltrusaitis et al. [14] developed an open-source toolkit
for facial behavior analysis including gaze vector prediction,
head pose prediction, facial landmark detection and facial
action unit recognition. They show state-of-the-art results in
all these domains. However, their gaze prediction algorithm
does not give referential and mutual gaze estimations. Rather,
they train their models on facial data where subjects look at
different parts of a computer screen. Prior work has used
head pose as a simple and coarse indicator of gaze [15],
but we also incorporate task relevant information into our
predictions.

Other prior work has modeled gaze prediction for egocen-
tric videos by leveraging the camera wearer’s head motion
and hand location from the video and combining them to
estimate where the eyes look [17]. This requires the user to
wear a camera rather than interact with a robot that has a
camera. Gaze following has been shown to work in videos
where a person in one frame is looking at objects in a
different frame [12]. Estimates of saliency, gaze pose, and
geometric relationships between views are computed with a
deep network using gaze as supervision. This requires the
video to be post-processed (access to frames before and
after the current frame) and hence is not suitable for real-
time evaluation. Krafka et al. [18] developed an eye tracking
software for commodity hardware such as mobile phones
and tablets, without the need for additional sensors or devices
using a convolutional neural network in real time (10-15 fps).
However, this can only predict what part of the mobile screen
the person is looking at and does not follow the gaze of the
person while attending to other objects in the real world.
Vasudevan et al. [13] incorporate the approach of Krafka
et al. [18] in their work for estimating human gaze along
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with using appearance and motion cues for localizing objects
referred to in natural language. This work is also restricted
to using gaze estimates only when people stare at a computer
screen (while watching a video to describe an object), and
not when humans interact with objects in the real world.

B. Use of Gaze for Human-Robot Interaction

There is a rich body of work on eye gaze for human-
robot interaction. The survey paper by Admoni et al. [5]
outlines previous work which used gaze for human-robot
interaction. Gaze information enables the establishment of
joint attention between the human and robot partner, the
recognition of human behavior [19] and the execution of
anticipatory actions [20]. These prior works focus on gaze
cues generated by the robot, however, in our work, we intend
to interpret ‘human’ gaze cues during an interaction with
the robot. This can enhance future applications with a robot
responding in accordance with the human partner’s intentions
[21], [22].

Prior work incorporating human gaze cues for Human-
Robot Interaction have used specialized hardware like eye-
trackers [21], [23], [24]. Even though use of such hardware
provides robust estimates of human gaze, they deviate from
a natural interaction between humans and robots in the
real world, where such hardware might not be available
or make the user uncomfortable during the interaction.
Recently, Penkov et al. [24] used demonstrations from a
person wearing specialized eye tracking hardware along with
an egocentric camera to simultaneously ground symbols to
their instances in the environment and learn the appearance
of such object instances.

Most closely related to our work is that of Lemaignan et
al. [15], which uses head orientation and the visual focus of
attention of humans to estimate gaze in real-time. Human
gaze estimation is used to evaluate the human’s focus of
attention with the concept of “with-meness* (to what extent
the user is “with” the robot). Similar to our work, it makes
use of contextual task information, such as attentional targets



that are expected by the robot a priori. However, they use a
very wide field of visual attention around a vector for head
pose direction (a cone spanning 40 degrees). Everything that
lies in that span of attention and on the planar task surface
is used as the outcome of the referential gaze predictor. Our
approach is comparatively fine-grained in the sense that it
selects a single object as the focus of the human partner’s
attention at a given point of time.

III. APPROACH

Our approach uses a deep neural network to follow the
gaze of a human from a 2D image, provided both the person
and object of attention are visible in the image. In our
experiments, we use a Kinect at the location of the robot’s
eyes/face, as both the person and objects are in the field
of view from that mounting point. However, the camera
could be placed anywhere on the robot as long as both the
person’s face and the objects of attention are visible in the
image frame. We build on the work by Recasens et al. [16],
who propose a deep network with two pathways: one for
estimating the head direction and another for salient objects
in the image. The face pathway for head direction takes as
input the location of the head and the image of the person’s
face coming from any face detection algorithm to estimate
which part of the image the person might be looking at.
The saliency pathway takes as input the entire image to
detect salient objects visible in the image, irrespective of
the person’s location. Combining these two pathways, they
predict the most likely point in the image where the person
might be fixating.

At the end of these pathways, fully connected layers
output a 169-dimensional feature which can be visualized
as a 13 x 13 heatmap overlaid with the image as shown
by Recasens et al. [16]. Visualizing heatmaps in both these
pathways for a video, we found that the saliency pathway
had insignificant variance and the distribution of the heatmap
values do not change over time when the person fixates at
different objects, if the camera position is fixed. Most of the
changes happen in the face pathway as the person moves
around in a video. To improve gaze predictions, we utilize
the face pathway’s heatmap from this network and combine
it with the knowledge of objects available in the workspace
that a human is likely to be fixating at (Section III-B). Also,
Recasens et al. [16] do not deal with cases when a person
looks straight at the camera/robot (mutual gaze), but works
only with referential gaze. We again use the face pathway
heatmap to estimate whether a person is facing the robot
or not (Section III-C). The entire pipeline for the proposed
approach is shown in Fig. 1.

A. System Integration

To build a real-time system for gaze following, we in-
corporated several different components. The face pathway
in the deep network requires the face location as input. We
make use of a dlib based face detector [25]. We found this
deep learning based face detector to be the most robust
in terms of variation with head pose, compared to other

Fig. 2. Gaze heat map from the face pathway of the gaze following deep
network by Recasens et al. [16].

Mutual Gaze: False

Fig. 3. Gaze prediction in terms of object of a person’s attention, working
in conjunction with object detection and face detection.

open source face detection implementations. We smooth
over the face location in the real-time video using a 1D
Gaussian filter on the past three image frames. We also
use Yolo [26], a state-of-the-art deep learning approach for
object detection to incorporate contextual task knowledge
into our method. We fine-tune this detector for 4 objects
from the YCB dataset [27] under different configurations,
lighting conditions, and environments. At test time, it outputs
bounding box coordinates for each of the detected objects.

The gaze predictor, face detector and Yolo object detector
all run in parallel, and we use the last update from each
component on each frame (Fig. 3). We developed a web-
based GUI for real-time visualization of the output of the
system, and to annotate ground truth during data collection.
Using a GTX 1070 NVIDIA GPU, we obtain an image pro-
cessing rate between 7—15 FPS for the overall system. Such
a rate might not detect very fast eye movements or saccades,
but is sufficient to track eye fixations. All components of this
system rely on the use of a GPU. Apart from gaze prediction
with convolutional neural networks, state of the art face
detectors and object detectors also typically use deep learning
and hence require GPUs to run at real-time. For low-compute
platforms, options such as cloud-based GPU computation, a
modular GPU component externally used with a robot or
compressed networks meant to reduce computation demands
can be used as alternatives.

B. Referential Gaze

We use the intermediate output of the face pathway from
[16] in our approach (Fig. 2), i.e. the output of the 4th
fully connected layer, a 13x13 map (p;;). This gaze map



when overlayed on the image, helps visualize what parts
of the image the network is giving more weight to for
the gaze following prediction. We observe this map updates
significantly as the person looks in different directions and
at different objects. Recasens et al. [16] combine it with the
saliency map from the saliency pathway with element-wise
product followed by fully connected layers to get coordinates
of the gaze fixation point in the image. However, when we
visualized the saliency maps for different users, we found
that it did not show significant variation as the person moved
their head/gaze in the same scene. We expected the hot spots
in the saliency heat map to focus on different objects as the
person looked in different directions, but the hot spots were
found to be concentrated on specific regions in the scene
throughout. We even replaced the saliency map with a custom
map at the end of the saliency pathway, placing more weight
on the objects detected by yolo compared to the rest of the
image, and found it did not improve gaze following accuracy
compared to the default pipeline. This is plausible because
the network internally learns weights from the training data
to focus on specific parts of the image, which the authors
visualized and called saliency, but it may not be suitable to
interpret that exactly as task relevant saliency in the scene.
Instead, we process the gaze map and obtain a likelihood
score for each of the objects being the target of the person’s
gaze. We compute the sum of the upsampled gaze map’s
values inside the object bounding boxes, normalized by the
area of the bounding boxes. This gives a score for each
bounding box proportional to how likely it is to be the object
of fixation. The object oj with the highest score is chosen
to be the object of human’s attention (obj):

Z(i,j)eokpij
area,,

(1)

obj = arg max

To compare against baseline methods, we snap the pre-
diction of the default network by Recasens et al. [16] to an
object which is the closest to the predicted gaze coordinates.
Although the baseline gives a coordinate on the image frame,
it rarely falls inside the bounding box. Hence, we make their
approach snap to a bounding box for which any one of the
four corners are closest to the predicted coordinates. This
provides a simple, fast, way of calculating this snapping, but
other methods could be used in this framework. Both the
baseline version and the proposed approach then predict the
outcome of referential gaze as one of the pre-determined
objects known ahead of time. We also compare against
another baseline, Open Face [14], which predicts 3D eye
gaze vectors from the camera image. It provides 3D vectors
for both the eyes. We take their average to get a single gaze
direction vector which we project to the image plane. We
then compute this projected vector’s normal distance to the
Yolo [26] bounding boxes. The bounding box of the object
with the shortest distance is chosen as the object of attention.

C. Mutual Gaze

We process the face pathway’s output to determine
whether the person is looking at the robot using a random

forest classifier. We found that the gaze heat map is concen-
trated with most of its weight in one region of the image in
cases where the user is fixating on an object (referential gaze)
and the heat map is more evenly distributed throughout the
image when the user is facing the camera (mutual gaze) as
shown in Fig. 4. The random forest is trained to distinguish
between these two patterns with data collected in our lab.
Since we only use intermediate gaze heat maps from the
network as input to the random forest, we hypothesize that
it will generalize well to other users that are not part of the
training data. We use a random forest classifier as opposed
to a deep network which requires large amounts of data to
train well, because of the limited amount of training data
collected with users.

We also compare our method against the Open Face eye
gaze vectors [14]. Open Face provides a 3D vector with
respect to each eye of the user. We compute the angle
between each eye gaze vector and the eye to camera vector.
We average the angles for the left and right eye and use a
threshold on it to estimate whether the person is looking
towards the robot’s camera or away from it (towards an
object).

(a) Mutual Gaze (b) Referential Gaze

Fig. 4. Heat map from Recasens et al. [16] for (a) mutual gaze condition
being true (b) mutual gaze condition being false. The hotspots in the heatmap
are more spread out when the user is looking at the robot compared to the
case when fixating at an object.

IV. EVALUATION

To evaluate our proposed referential and mutual gaze
algorithms, we capture data of users gazing at different
objects in front of a robot. We collected data from 10
participants: 5 males, 5 females. The task set up includes
a robot with a Kinect mounted on its head, across the
table from a human subject (Fig. 5). Each subject is given
instructions to stare at specific objects or at the robot for
a fixed duration of 5 seconds as prompted by an observer
on the side (out of the Kinect’s field of view). The order
of object placement and order of staring at different things
is randomized for each subject. Ground truth on where the
subject is instructed to look is annotated as a bounding box
on a graphical user interface, by the observer on the side.
The images are streamed for annotation via ethernet from
the robot. We use a set of 4 objects (Fig. 5) from the YCB
dataset [27] placed roughly 15 inches apart from one another.

Evaluation for referential gaze computation is done under
5 different conditions (as shown in Fig. 6): (1) the user is
sitting across the table and objects are in a straight line, (2)
the user is standing across the table and objects are placed



Fig. 5. Experimental setup with 4 YCB objects placed on a table between
a person and a robot.

in a straight line, (3) the user is sitting across the table and
a couple of distraction objects (magazines) are placed on the
table to add clutter, (4) the user is sitting and the objects are
scattered on the table and not placed in a straight line, (5)
the user is sitting and the objects are stacked on top of one
another (object stacking). Mutual gaze computation is done
under two conditions where the user changes configuration,
i.e. standing versus sitting. These varied conditions were
chosen to test the limits of the system under a range of user
and object configurations that are plausible while interacting
with a robot. The subjects were not asked to stand or sit
at a specific distance from the robot, rather whatever the
users felt comfortable with. Also, the objects were roughly
placed at uniform distances based on the conditions, and not
at exactly the same marked locations.

(a) Users sitting with objects in a (b) Users standing with objects in a
straight line straight line

(c) Distraction objects (magazines)
placed on table

(d) Objects varied in 2D

(e) Objects varied in 3D

Fig. 6. Different experimental conditions under which gaze following is
evaluated.

A. Referential Gaze

To evaluate referential gaze predictions, we compare our
proposed method against modified versions of the Open
Face eye gaze vectors [14] and the approach of Recasens
et al. [16] on all conditions as described in Section III-B.
These methods are modified to snap to a single object of
interest to compare against our work. By themselves, these
baselines do not directly aim to snap at a relevant object,
but rather provide a general gaze direction or unconstrained
gaze fixation coordinates.

11Nk
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Fig. 7. Average F1 score (across 10 users) of referential gaze computation
for 4 YCB objects placed in a straight line when users are sitting across a
table from the robot.

For the first condition where the users are sitting across a
table from the robot when objects are placed in a straight line,
the average F1 scores of detecting each object of attention
are shown in Fig. 7 (higher numbers are better). We find
that across all objects, we get an overall improvement of
20% in the average F1 score, and an improvement in each
object category as well. Particularly, our approach improves
performance on the ‘pringles’ and ‘pitcher’ objects, which
are the two largest objects among the set. This highlights
the strength of our approach which constrains the system to
only focus on objects of relevance. We also find an overall
improvement of about 16% (from 37.7% to 53.7%) in the
average F1 score of the 4 horizontal locations (regardless of
the object placed there) for this condition.

For all the five experimental conditions, the average F1
scores of object prediction across all users and all objects
are shown in Table I (higher numbers are better). We find
that for four of the five conditions, our approach outperforms
the baseline methods. When the users are standing and
objects are placed in a straight line, the ‘mug’ and ‘pringles’
objects get the maximum boost in performance with our
approach. When distraction objects like magazines are placed
in between the objects in a straight line, the ‘mug’, ‘pitcher’
and ‘pringles’ gain in prediction accuracy. For the case when
objects are scattered on the table, the baseline from Recasens
et al. [16] does slightly better, particularly for the ‘pitcher’
and ‘bowl’ whereas we perform better for the ‘pringles’.
For when objects are stacked on top of each other, we find
that only one of the objects in the stack is predicted more
commonly, which highlights a specific area of improvement
for any gaze prediction algorithm. In general, we find that



our algorithm fails more often for smaller objects and favors
the ‘pringles’ and ‘pitcher’ more which cover a larger area in
the heat map. It is important to note that there is a possibility
of error in object detection to get propagated to our approach
and the Open Face baseline. We found that the Open Face
implementation [28] failed to detect one of our user’s face
reliably for a couple of conditions. This user was discarded
from the evaluation for Open Face.

TABLE I
AVERAGE F1 SCORES FOR REFERENTIAL GAZE PREDICTION ACROSS
ALL USERS AND ALL OBJECTS UNDER DIFFERENT CONDITIONS

Condition Open Recasens Ours
Face [14] et al. [16]

Users 0.301 0.372 0.533

Sitting

Users 0.266 0.369 0.474

Standing

Distraction 0.298 0.382 0.530

Objects

Objects 0.311 0.605 0.577

Scattered

Objects 0.356 0.302 0.345

Stacked

The average distance error in prediction, in terms of the
number of hops of misclassified object from the ground
truth is shown in Table II (lower numbers are better). If the
misclassified object is adjacent to the ground truth object,
the hop would be 1. The number of hops are averaged
over all image frames and all users. Our proposed approach
outperforms the baselines in three of the five conditions.
However, there is scope for improvement in performance
even with the proposed approach. The two conditions where
we do worse are when the user is standing, and when the
objects are scattered. When the user is standing, potentially
a wider field of view can be covered by the hot spots in
the heatmap. This can lead to more variation in the error
of prediction. When objects are scattered, hot spots in the
heat map are not able to capture the variation in distance of
the object from the person, causing our approach to provide
larger distance error in misclassification. This demonstrates
the challenges of following human gaze accurately without
specialized eye tracking hardware and we hope this encour-
ages other researchers to work towards this problem.

B. Mutual Gaze

We evaluate our mutual gaze random forest with 5-fold
cross validation over 10 users (i.e. use data from 8 users
to train the random forest and test on the remaining 2 for
each fold). Our random forest has 20 trees each with a
maximum depth of 10. The classifier is evaluated under the
two conditions where the user changes their configuration
(standing versus sitting). Comparisons against the Open Face
eye gaze vectors [14] are shown in Table III (higher numbers
are better). We find that our approach obtains an F1 score
of 72.3% over the two classes (mutual versus non-mutual)
for the sitting user condition and 74.2% for the standing
user condition. There is an improvement of more than 20%

TABLE I
AVERAGE LOCATION ERROR IN REFERENTIAL GAZE PREDICTIONS
ACROSS ALL USERS AND ALL OBJECTS UNDER DIFFERENT
EXPERIMENTAL CONDITIONS

Condition Open Recasens Ours
Face [14] et al. [16]

Users 0.778 0.656 0.430

Sitting

Users 0.726 0.465 0.579

Standing

Distraction 0.598 0.666 0.432

Objects

Objects 0.710 0.313 0.459

Scattered

Objects 0.635 0.687 0.587

Stacked

over the baseline for both conditions. The high variance (up
to 105.88 degrees across both conditions and labels) of the
angles between the eye gaze vector and the head to camera
vector generated by Open Face , lower it’s overall F1 scores.
This shows that our approach is able to generalize well to
new users because the gaze heat maps from the deep network
are used to train the classifier instead of the original image.
We expect a user-specific classifier would further improve
performance.

TABLE III
AVERAGE F1 SCORES FOR MUTUAL GAZE PREDICTION ACROSS ALL
USERS UNDER DIFFERENT EXPERIMENTAL CONDITIONS

Condition Open Ours
Face [14]

Users Sitting 0.504 0.723

Users Standing | 0.534 0.742

V. CONCLUSION

In this work, we present an integrated system for the
challenging problem of a robot following a human partner’s
gaze, i.e. object of their attention in real-time. We focus on
the idea of predicting human gaze without the use of any
specialized eye trackers, which either make the interaction
uncomfortable or cannot estimate the gaze when the user
is not fixating on a fixed resolution screen. Our approach
assumes that both the person’s face and the object of attention
are visible in the image frame. We evaluated our system with
4 objects on a table, and the person sitting or standing at
an approximate fixed distance from the objects, along the
orthogonal axis of a static camera on a robot. We propose a
method that builds on top of a state-of-the-art gaze prediction
algorithm to predict both referential and mutual gaze. We
show improved performance for fixating on an object over
baseline algorithms. It is important to note that while the
baseline algorithms provide a smooth trajectory as the person
moves their head, they perform poorly when snapping to
the closest object. Our work specifically looks at the case
where we care about the specific object being fixated upon,
instead of a general direction or coordinate for gaze fixation
on the image frame. We find that objects bigger in size gain



prediction performance with our approach. This warrants the
need for algorithms which focus on smaller objects which
might be of importance in a human-robot collaboration task.
Our work highlights the challenges of capturing gaze outputs
accurately in real time.

We automated the evaluation process by recording video
data and annotating the objects on a user interface. Manually
annotating would be more accurate but also more time con-
suming. The unconstrained environment of the experiment,
with just a general instruction for participants to stare at
objects, can lead to errors during the evaluation including
inconsistency in following the experimenter’s instruction,
errors in face detection and object detection, and slowing of
the system due to data being written to disk. We work under
the constraints of these possible errors, which potentially
provide a lower performance during evaluation.

Further evaluations of this integrated system on a moving
robot platform would reveal its robustness to disturbance in
the image and change of viewpoints, which makes the gaze-
following problem more complex. Furthermore, predicting
gaze when users are not fixating on an object but rather
quickly glancing at objects during a task, will be more
challenging. Future work also entails extending this system
to multiple people for teams of humans or robots to work to-
gether. Our work highlights the challenge of predicting gaze
without specialized hardware for natural interactions, as there
is scope for improvement in prediction performance and
particularly when objects are stacked on top of each other.
In all our conditions, none of the objects were occluded,
which could add further challenges to following human gaze.
This work is a first step towards integrating embodied task
knowledge with gaze tracking to enable robots to engage in
more seamless collaborations with humans by understanding
their gaze behavior.
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