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Abstract— Gaze provides subtle informative cues to aid fluent
interactions among people. Incorporating human gaze predic-
tions can signify how engaged a person is while interacting with
a robot and allow the robot to predict a human’s intentions
or goals. We propose a novel approach to predict human
gaze fixations relevant for human-robot interaction tasks—
both referential and mutual gaze—in real time on a robot.
We use a deep learning approach which tracks a human’s
gaze from a robot’s perspective in real time. The approach
builds on prior work which uses a deep network to predict the
referential gaze of a person from a single 2D image. Our work
uses an interpretable part of the network, a gaze heat map,
and incorporates contextual task knowledge such as location of
relevant objects, to predict referential gaze. We find that the
gaze heat map statistics also capture differences between mutual
and referential gaze conditions, which we use to predict whether
a person is facing the robot’s camera or not. We highlight
the challenges of following a person’s gaze on a robot in real
time and show improved performance for referential gaze and
mutual gaze prediction.

I. INTRODUCTION

Eye gaze is an indicator of engagement, interest and

attention when people interact face-to-face with one another

[1], [2]. Nonverbal behaviors such as eye gaze, can convey

intentions and augment verbal communication [3], [4], [5].

Take the example of people communicating with one another

as a team on a collaborative task of assembling furniture

together; they may look at parts of the workspace farther

away from them to communicate intentions about a nail or

hammer they want to be passed by a teammate. Social gaze

is also used by humans to regulate turn-taking in two-party

[6], [7] and multi-party conversations [8], [9].

In a teacher-learner setup, parents can scaffold a child’s

learning process by directing their attention using gaze,

thereby providing structure to the task [10], [9]. Human

gaze fixations can similarly help a robot learner segment

a teaching demonstration into steps (e.g. pausing to look

at the lid of a jar, then picking it up and screwing it

in), and determine the right aspects of the state to pay

attention to during the demonstration [11]. For seamless

interactions between humans and personal robots of the

future, interpreting and reacting to this human social cue

will be of significant importance.
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We present a real-time approach to predict referential and

mutual gaze of a human (gaze directed at an object and gaze

directed towards the robot’s camera/face respectively) from

a robot’s perspective embodied in the real world, and show

improvement over an existing baseline. Our approach works

with a monocular camera attached to a robot without the use

of bulky or invasive devices like eye-trackers which can make

a user uncomfortable during the interaction. Human gaze has

been estimated without the use of eye trackers in images and

videos [12], [13], but such approaches are not designed for

embodied robots and their human partners interacting with

objects in the real world. Prior works for gaze prediction

on robots either generate eye gaze vectors when the person

faces the camera [14] or use simple head pose estimators [15]

which predict a large space as part of the human’s attention

versus specific objects. These prior works do not address the

problem of a robot reliably predicting the object of a human

partner’s gaze while interacting with real-world objects, but

rather focus on either predicting where on a computer screen

a person might be focusing or estimating coarsely (large

margin of error) a general direction in which the person is

facing. By contrast, our approach aims to accurately predict

the object of a human partner’s attention in the real-world,

which can more specifically inform a robot’s next action in

an interaction scenario. We extend the deep learning pipeline

proposed by Recasens et al. [16] to incorporate knowledge

about relevant task objects with interpretable parts of the

network. We bring together different components such as

a state-of-the-art face detector, object detector, and a gaze

following algorithm in our system’s code, to obtain real-

time predictions about which objects a human might be

attending to. We also show how this architecture can predict

mutual gaze, i.e. when a person is facing the robot versus

not, an important aspect of gaze prediction for human-robot

interaction.

II. RELATED WORK

In this section we review two areas of prior work–

computer vision algorithms for human gaze prediction and

use of gaze in human robot interaction tasks.

A. Gaze Prediction with Computer Vision

Recasens et al. [16] developed a deep network architecture

for monocular images to predict human gaze fixations. They

use manually-labeled data to learn where the person is

focusing their attention, given that both the person’s head

and the object of attention are visible in the image. It is

meant to work primarily for a single 2D image, and does not

use specific contextual task information such as knowledge





that are expected by the robot a priori. However, they use a

very wide field of visual attention around a vector for head

pose direction (a cone spanning 40 degrees). Everything that

lies in that span of attention and on the planar task surface

is used as the outcome of the referential gaze predictor. Our

approach is comparatively fine-grained in the sense that it

selects a single object as the focus of the human partner’s

attention at a given point of time.

III. APPROACH

Our approach uses a deep neural network to follow the

gaze of a human from a 2D image, provided both the person

and object of attention are visible in the image. In our

experiments, we use a Kinect at the location of the robot’s

eyes/face, as both the person and objects are in the field

of view from that mounting point. However, the camera

could be placed anywhere on the robot as long as both the

person’s face and the objects of attention are visible in the

image frame. We build on the work by Recasens et al. [16],

who propose a deep network with two pathways: one for

estimating the head direction and another for salient objects

in the image. The face pathway for head direction takes as

input the location of the head and the image of the person’s

face coming from any face detection algorithm to estimate

which part of the image the person might be looking at.

The saliency pathway takes as input the entire image to

detect salient objects visible in the image, irrespective of

the person’s location. Combining these two pathways, they

predict the most likely point in the image where the person

might be fixating.

At the end of these pathways, fully connected layers

output a 169-dimensional feature which can be visualized

as a 13 × 13 heatmap overlaid with the image as shown

by Recasens et al. [16]. Visualizing heatmaps in both these

pathways for a video, we found that the saliency pathway

had insignificant variance and the distribution of the heatmap

values do not change over time when the person fixates at

different objects, if the camera position is fixed. Most of the

changes happen in the face pathway as the person moves

around in a video. To improve gaze predictions, we utilize

the face pathway’s heatmap from this network and combine

it with the knowledge of objects available in the workspace

that a human is likely to be fixating at (Section III-B). Also,

Recasens et al. [16] do not deal with cases when a person

looks straight at the camera/robot (mutual gaze), but works

only with referential gaze. We again use the face pathway

heatmap to estimate whether a person is facing the robot

or not (Section III-C). The entire pipeline for the proposed

approach is shown in Fig. 1.

A. System Integration

To build a real-time system for gaze following, we in-

corporated several different components. The face pathway

in the deep network requires the face location as input. We

make use of a dlib based face detector [25]. We found this

deep learning based face detector to be the most robust

in terms of variation with head pose, compared to other

Fig. 2. Gaze heat map from the face pathway of the gaze following deep
network by Recasens et al. [16].

Fig. 3. Gaze prediction in terms of object of a person’s attention, working
in conjunction with object detection and face detection.

open source face detection implementations. We smooth

over the face location in the real-time video using a 1D

Gaussian filter on the past three image frames. We also

use Yolo [26], a state-of-the-art deep learning approach for

object detection to incorporate contextual task knowledge

into our method. We fine-tune this detector for 4 objects

from the YCB dataset [27] under different configurations,

lighting conditions, and environments. At test time, it outputs

bounding box coordinates for each of the detected objects.

The gaze predictor, face detector and Yolo object detector

all run in parallel, and we use the last update from each

component on each frame (Fig. 3). We developed a web-

based GUI for real-time visualization of the output of the

system, and to annotate ground truth during data collection.

Using a GTX 1070 NVIDIA GPU, we obtain an image pro-

cessing rate between 7–15 FPS for the overall system. Such

a rate might not detect very fast eye movements or saccades,

but is sufficient to track eye fixations. All components of this

system rely on the use of a GPU. Apart from gaze prediction

with convolutional neural networks, state of the art face

detectors and object detectors also typically use deep learning

and hence require GPUs to run at real-time. For low-compute

platforms, options such as cloud-based GPU computation, a

modular GPU component externally used with a robot or

compressed networks meant to reduce computation demands

can be used as alternatives.

B. Referential Gaze

We use the intermediate output of the face pathway from

[16] in our approach (Fig. 2), i.e. the output of the 4th

fully connected layer, a 13x13 map (pij). This gaze map



when overlayed on the image, helps visualize what parts

of the image the network is giving more weight to for

the gaze following prediction. We observe this map updates

significantly as the person looks in different directions and

at different objects. Recasens et al. [16] combine it with the

saliency map from the saliency pathway with element-wise

product followed by fully connected layers to get coordinates

of the gaze fixation point in the image. However, when we

visualized the saliency maps for different users, we found

that it did not show significant variation as the person moved

their head/gaze in the same scene. We expected the hot spots

in the saliency heat map to focus on different objects as the

person looked in different directions, but the hot spots were

found to be concentrated on specific regions in the scene

throughout. We even replaced the saliency map with a custom

map at the end of the saliency pathway, placing more weight

on the objects detected by yolo compared to the rest of the

image, and found it did not improve gaze following accuracy

compared to the default pipeline. This is plausible because

the network internally learns weights from the training data

to focus on specific parts of the image, which the authors

visualized and called saliency, but it may not be suitable to

interpret that exactly as task relevant saliency in the scene.

Instead, we process the gaze map and obtain a likelihood

score for each of the objects being the target of the person’s

gaze. We compute the sum of the upsampled gaze map’s

values inside the object bounding boxes, normalized by the

area of the bounding boxes. This gives a score for each

bounding box proportional to how likely it is to be the object

of fixation. The object ok with the highest score is chosen

to be the object of human’s attention (obj):

obj = argmax
k

∑
(i,j)∈ok

pij

areaok
. (1)

To compare against baseline methods, we snap the pre-

diction of the default network by Recasens et al. [16] to an

object which is the closest to the predicted gaze coordinates.

Although the baseline gives a coordinate on the image frame,

it rarely falls inside the bounding box. Hence, we make their

approach snap to a bounding box for which any one of the

four corners are closest to the predicted coordinates. This

provides a simple, fast, way of calculating this snapping, but

other methods could be used in this framework. Both the

baseline version and the proposed approach then predict the

outcome of referential gaze as one of the pre-determined

objects known ahead of time. We also compare against

another baseline, Open Face [14], which predicts 3D eye

gaze vectors from the camera image. It provides 3D vectors

for both the eyes. We take their average to get a single gaze

direction vector which we project to the image plane. We

then compute this projected vector’s normal distance to the

Yolo [26] bounding boxes. The bounding box of the object

with the shortest distance is chosen as the object of attention.

C. Mutual Gaze

We process the face pathway’s output to determine

whether the person is looking at the robot using a random

forest classifier. We found that the gaze heat map is concen-

trated with most of its weight in one region of the image in

cases where the user is fixating on an object (referential gaze)

and the heat map is more evenly distributed throughout the

image when the user is facing the camera (mutual gaze) as

shown in Fig. 4. The random forest is trained to distinguish

between these two patterns with data collected in our lab.

Since we only use intermediate gaze heat maps from the

network as input to the random forest, we hypothesize that

it will generalize well to other users that are not part of the

training data. We use a random forest classifier as opposed

to a deep network which requires large amounts of data to

train well, because of the limited amount of training data

collected with users.

We also compare our method against the Open Face eye

gaze vectors [14]. Open Face provides a 3D vector with

respect to each eye of the user. We compute the angle

between each eye gaze vector and the eye to camera vector.

We average the angles for the left and right eye and use a

threshold on it to estimate whether the person is looking

towards the robot’s camera or away from it (towards an

object).

(a) Mutual Gaze (b) Referential Gaze

Fig. 4. Heat map from Recasens et al. [16] for (a) mutual gaze condition
being true (b) mutual gaze condition being false. The hotspots in the heatmap
are more spread out when the user is looking at the robot compared to the
case when fixating at an object.

IV. EVALUATION

To evaluate our proposed referential and mutual gaze

algorithms, we capture data of users gazing at different

objects in front of a robot. We collected data from 10

participants: 5 males, 5 females. The task set up includes

a robot with a Kinect mounted on its head, across the

table from a human subject (Fig. 5). Each subject is given

instructions to stare at specific objects or at the robot for

a fixed duration of 5 seconds as prompted by an observer

on the side (out of the Kinect’s field of view). The order

of object placement and order of staring at different things

is randomized for each subject. Ground truth on where the

subject is instructed to look is annotated as a bounding box

on a graphical user interface, by the observer on the side.

The images are streamed for annotation via ethernet from

the robot. We use a set of 4 objects (Fig. 5) from the YCB

dataset [27] placed roughly 15 inches apart from one another.

Evaluation for referential gaze computation is done under

5 different conditions (as shown in Fig. 6): (1) the user is

sitting across the table and objects are in a straight line, (2)

the user is standing across the table and objects are placed



Fig. 5. Experimental setup with 4 YCB objects placed on a table between
a person and a robot.

in a straight line, (3) the user is sitting across the table and

a couple of distraction objects (magazines) are placed on the

table to add clutter, (4) the user is sitting and the objects are

scattered on the table and not placed in a straight line, (5)

the user is sitting and the objects are stacked on top of one

another (object stacking). Mutual gaze computation is done

under two conditions where the user changes configuration,

i.e. standing versus sitting. These varied conditions were

chosen to test the limits of the system under a range of user

and object configurations that are plausible while interacting

with a robot. The subjects were not asked to stand or sit

at a specific distance from the robot, rather whatever the

users felt comfortable with. Also, the objects were roughly

placed at uniform distances based on the conditions, and not

at exactly the same marked locations.

(a) Users sitting with objects in a
straight line

(b) Users standing with objects in a
straight line

(c) Distraction objects (magazines)
placed on table

(d) Objects varied in 2D

(e) Objects varied in 3D

Fig. 6. Different experimental conditions under which gaze following is
evaluated.

A. Referential Gaze

To evaluate referential gaze predictions, we compare our

proposed method against modified versions of the Open

Face eye gaze vectors [14] and the approach of Recasens

et al. [16] on all conditions as described in Section III-B.

These methods are modified to snap to a single object of

interest to compare against our work. By themselves, these

baselines do not directly aim to snap at a relevant object,

but rather provide a general gaze direction or unconstrained

gaze fixation coordinates.

Fig. 7. Average F1 score (across 10 users) of referential gaze computation
for 4 YCB objects placed in a straight line when users are sitting across a
table from the robot.

For the first condition where the users are sitting across a

table from the robot when objects are placed in a straight line,

the average F1 scores of detecting each object of attention

are shown in Fig. 7 (higher numbers are better). We find

that across all objects, we get an overall improvement of

20% in the average F1 score, and an improvement in each

object category as well. Particularly, our approach improves

performance on the ‘pringles’ and ‘pitcher’ objects, which

are the two largest objects among the set. This highlights

the strength of our approach which constrains the system to

only focus on objects of relevance. We also find an overall

improvement of about 16% (from 37.7% to 53.7%) in the

average F1 score of the 4 horizontal locations (regardless of

the object placed there) for this condition.

For all the five experimental conditions, the average F1

scores of object prediction across all users and all objects

are shown in Table I (higher numbers are better). We find

that for four of the five conditions, our approach outperforms

the baseline methods. When the users are standing and

objects are placed in a straight line, the ‘mug’ and ‘pringles’

objects get the maximum boost in performance with our

approach. When distraction objects like magazines are placed

in between the objects in a straight line, the ‘mug’, ‘pitcher’

and ‘pringles’ gain in prediction accuracy. For the case when

objects are scattered on the table, the baseline from Recasens

et al. [16] does slightly better, particularly for the ‘pitcher’

and ‘bowl’ whereas we perform better for the ‘pringles’.

For when objects are stacked on top of each other, we find

that only one of the objects in the stack is predicted more

commonly, which highlights a specific area of improvement

for any gaze prediction algorithm. In general, we find that



our algorithm fails more often for smaller objects and favors

the ‘pringles’ and ‘pitcher’ more which cover a larger area in

the heat map. It is important to note that there is a possibility

of error in object detection to get propagated to our approach

and the Open Face baseline. We found that the Open Face

implementation [28] failed to detect one of our user’s face

reliably for a couple of conditions. This user was discarded

from the evaluation for Open Face.

TABLE I

AVERAGE F1 SCORES FOR REFERENTIAL GAZE PREDICTION ACROSS

ALL USERS AND ALL OBJECTS UNDER DIFFERENT CONDITIONS

Condition Open
Face [14]

Recasens
et al. [16]

Ours

Users
Sitting

0.301 0.372 0.533

Users
Standing

0.266 0.369 0.474

Distraction
Objects

0.298 0.382 0.530

Objects
Scattered

0.311 0.605 0.577

Objects
Stacked

0.356 0.302 0.345

The average distance error in prediction, in terms of the

number of hops of misclassified object from the ground

truth is shown in Table II (lower numbers are better). If the

misclassified object is adjacent to the ground truth object,

the hop would be 1. The number of hops are averaged

over all image frames and all users. Our proposed approach

outperforms the baselines in three of the five conditions.

However, there is scope for improvement in performance

even with the proposed approach. The two conditions where

we do worse are when the user is standing, and when the

objects are scattered. When the user is standing, potentially

a wider field of view can be covered by the hot spots in

the heatmap. This can lead to more variation in the error

of prediction. When objects are scattered, hot spots in the

heat map are not able to capture the variation in distance of

the object from the person, causing our approach to provide

larger distance error in misclassification. This demonstrates

the challenges of following human gaze accurately without

specialized eye tracking hardware and we hope this encour-

ages other researchers to work towards this problem.

B. Mutual Gaze

We evaluate our mutual gaze random forest with 5-fold

cross validation over 10 users (i.e. use data from 8 users

to train the random forest and test on the remaining 2 for

each fold). Our random forest has 20 trees each with a

maximum depth of 10. The classifier is evaluated under the

two conditions where the user changes their configuration

(standing versus sitting). Comparisons against the Open Face

eye gaze vectors [14] are shown in Table III (higher numbers

are better). We find that our approach obtains an F1 score

of 72.3% over the two classes (mutual versus non-mutual)

for the sitting user condition and 74.2% for the standing

user condition. There is an improvement of more than 20%

TABLE II

AVERAGE LOCATION ERROR IN REFERENTIAL GAZE PREDICTIONS

ACROSS ALL USERS AND ALL OBJECTS UNDER DIFFERENT

EXPERIMENTAL CONDITIONS

Condition Open
Face [14]

Recasens
et al. [16]

Ours

Users
Sitting

0.778 0.656 0.430

Users
Standing

0.726 0.465 0.579

Distraction
Objects

0.598 0.666 0.432

Objects
Scattered

0.710 0.313 0.459

Objects
Stacked

0.635 0.687 0.587

over the baseline for both conditions. The high variance (up

to 105.88 degrees across both conditions and labels) of the

angles between the eye gaze vector and the head to camera

vector generated by Open Face , lower it’s overall F1 scores.

This shows that our approach is able to generalize well to

new users because the gaze heat maps from the deep network

are used to train the classifier instead of the original image.

We expect a user-specific classifier would further improve

performance.

TABLE III

AVERAGE F1 SCORES FOR MUTUAL GAZE PREDICTION ACROSS ALL

USERS UNDER DIFFERENT EXPERIMENTAL CONDITIONS

Condition Open
Face [14]

Ours

Users Sitting 0.504 0.723

Users Standing 0.534 0.742

V. CONCLUSION

In this work, we present an integrated system for the

challenging problem of a robot following a human partner’s

gaze, i.e. object of their attention in real-time. We focus on

the idea of predicting human gaze without the use of any

specialized eye trackers, which either make the interaction

uncomfortable or cannot estimate the gaze when the user

is not fixating on a fixed resolution screen. Our approach

assumes that both the person’s face and the object of attention

are visible in the image frame. We evaluated our system with

4 objects on a table, and the person sitting or standing at

an approximate fixed distance from the objects, along the

orthogonal axis of a static camera on a robot. We propose a

method that builds on top of a state-of-the-art gaze prediction

algorithm to predict both referential and mutual gaze. We

show improved performance for fixating on an object over

baseline algorithms. It is important to note that while the

baseline algorithms provide a smooth trajectory as the person

moves their head, they perform poorly when snapping to

the closest object. Our work specifically looks at the case

where we care about the specific object being fixated upon,

instead of a general direction or coordinate for gaze fixation

on the image frame. We find that objects bigger in size gain



prediction performance with our approach. This warrants the

need for algorithms which focus on smaller objects which

might be of importance in a human-robot collaboration task.

Our work highlights the challenges of capturing gaze outputs

accurately in real time.

We automated the evaluation process by recording video

data and annotating the objects on a user interface. Manually

annotating would be more accurate but also more time con-

suming. The unconstrained environment of the experiment,

with just a general instruction for participants to stare at

objects, can lead to errors during the evaluation including

inconsistency in following the experimenter’s instruction,

errors in face detection and object detection, and slowing of

the system due to data being written to disk. We work under

the constraints of these possible errors, which potentially

provide a lower performance during evaluation.

Further evaluations of this integrated system on a moving

robot platform would reveal its robustness to disturbance in

the image and change of viewpoints, which makes the gaze-

following problem more complex. Furthermore, predicting

gaze when users are not fixating on an object but rather

quickly glancing at objects during a task, will be more

challenging. Future work also entails extending this system

to multiple people for teams of humans or robots to work to-

gether. Our work highlights the challenge of predicting gaze

without specialized hardware for natural interactions, as there

is scope for improvement in prediction performance and

particularly when objects are stacked on top of each other.

In all our conditions, none of the objects were occluded,

which could add further challenges to following human gaze.

This work is a first step towards integrating embodied task

knowledge with gaze tracking to enable robots to engage in

more seamless collaborations with humans by understanding

their gaze behavior.
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