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Abstract—This paper proposes to enable deep learning for
generic machine learning tasks. Our goal is to allow deep learning
to be applied to data which are already represented in instance-
feature tabular format for a better classification accuracy. Be-
cause deep learning relies on spatial/temporal correlation to
learn new feature representation, our theme is to convert each
instance of the original dataset into a synthetic matrix format
to take the full advantage of the feature learning power of deep
learning methods. To maximize the correlation of the matrix ,
we use 0/1 optimization to reorder features such that the ones
with strong correlations are adjacent to each other. By using
a two dimensional feature reordering, we are able to create
a synthetic matrix, as an image, to represent each instance.
Because the synthetic image preserves the original feature values
and data correlation, existing deep learning algorithms, such as
convolutional neural networks (CNN), can be applied to learn
effective features for classification. Our experiments on 20 generic
datasets, using CNN as the deep learning classifier, confirm that
enabling deep learning to generic datasets has clear performance
gain, compared to generic machine learning methods. In addition,
the proposed method consistently outperforms simple baselines
of using CNN for generic dataset. As a result, our research
allows deep learning to be broadly applied to generic datasets for
learning and classification (Algorithm source code is available at
http://github.com/hhmzwc/EDLT).

Index Terms—Deep learning; feature learning; convolutional
neural networks; classification

I. INTRODUCTION

Deep learning represents a series of layered neural network

structures with tuneable weight values learned from training

data [1], [2]. Due to its superb accuracy and feature learn-

ing capability, deep learning has been successfully used in

many real-world applications, especially in image/video/audio

recognition, time series, and financial data analysis [3],[4].

For all these domains, the temporal and/or spatial correlation

of the data allow deep learning methods to learn effective

feature to represent data for better classification. Methods,

such as convolution neural networks (CNN) or long-short term

memory units (LSTM), all utilize data correlation to learn

better feature representation for deep learning [5], [6], [7],

[8], [9]. Take CNN as an example, when applying CNN to an

image, the convolution procedure is equivalent to a spatial

filtering process to learn new features, such as corners or

edges, for image recognition [10], [11], [12]. Similarly, one

dimensional CNN has also been used to data with temporal

correlations, such as stock index [13], [14], with convolution

being applied to learn meaningful patterns in the data.

Indeed, deep learning differs from traditional learning in

the sense that it can learn good feature representation from

the data. Existing deep learning methods largely benefit from

the feature learning to find meaningful features with clear

temporal/spatial correlations, as shown in Fig. 1.
In reality, traditional machine learning considers a much d-

ifferent setting where instances are assumed to be independent

and identically (i.i.d.) distributed and features used to represent

data are assumed to have weak or no correlation. Because

of this assumption, machine learning methods typically do

not consider feature/data correlation in the learning process.

Nearly all traditional machine learning methods do not ex-

plicitly consider feature interactions for learning, and leave

feature correlations to be handled by the data processing pro-

cess to create independent features before applying machine

learning methods. For example, feature extraction, such as

principle component analysis or manifold learning [15], [16],

[17], learns a low dimensional feature representation of the

original data better fit to the underlying learning algorithms.

Such feature extraction does not consider temporal or spatial

correlation of the data, but reply on arithmetic decomposition

of features for learning, as shown in Fig. 2.
The above dilemma raises simple questions on (1) whether

deep learning is still effective for generic data, and (2) how

to apply deep learning to generic data for effective learning

and classification. For generic machine learning tasks, data

provided for learning are in an instance-feature tabular format,

as shown in Fig. 2. Applying deep learning, such as CNN, to

such data is feasible but wound’t be reasonable. For example,

one can consider each instance as a one dimensional vector

and apply 1-D CNN to learn a new feature representation. This

simple approach, however, leaves big concerns on what exactly

the CNN is learning from the data, and what are the meaning

of the feature learned from this process. More fundamentally,

enabling deep learning to generic data classification has the

following three major challenges:

←Higher Order Feature Correlation and Ordering:
Given a generic data set represented in instance-feature

format, features in the data have mutual or higher or-

der correlation. Some features are strongly correlated,

whereas others are independent of each other. Finding

correlations between features and use such correlations

to create a new representation of the features is critical

for deep learning to learn effective features.



Fig. 1. Typical routines of applying deep learning to image or data with
temporal correlations for classification.

Fig. 2. Typical routine of machine learning for generic data classification,
where input data are represented in instance-feature tabular format.

Fig. 3. The routine of the proposed EDLT which enables deep learning for
generic data, which are represented in instance-feature tabular format.

←Deep Learning Compatible Instance Representation:
Assume features are suitably ordered, we need a new

instance representation to ensure that feature values of

the original data are accurately preserved and the feature

correlations are also maximally presented for deep learn-

ing modules to learn effective features for classification.

← Theoretical Modeling: We need to find theoretical basis

to ensure that each instance in the original dataset is rep-

resented by a new representation with strong correlations

for deep learning.

The above observations motivate our research to enable deep

learning for generic classification tasks as shown in Fig. 3,

where learning is not limited to audio/visual data, like most

deep learning methods have been commonly applied to.

In order to handle higher order feature correlation, we

propose to utilize Pearson correlation to obtain feature-feature

and feature-label correlations to reorder features and create

local spatial data correlation. To tackle the second challenge

(deep learning compatible instance representation), we create a

synthetic matrix to represent each instance where the synthetic

matrix contains all of the original features and their values (but

in different orders). As a result, the deep learning methods can

be applied to the synthetic matrix to learn meaningful features

for classification. For the third challenge (the theoretical

modeling), we propose to use 0/1 optimization to ensure that

instance representation is created to not only maintain maxim

local correlation, but also have maximum global correlation.

The remainder of the paper is organized as follows. Section

II introduces the problem definition and system overview. The

details of the EDLT algorithm are elaborated in Section III.

The experiments and conclusion are given in Section IV and

Section V, respectively.

II. PROBLEM DEFINITION AND SYSTEM OVERVIEW

A. Problem Defination

Given a generic dataset D, which contains n instances and

m features represented in tabular format, we represent the

tth instance as xt = }xt,1, ..., xt,m; yt| , where xt,i and yt
denote the ith feature and label of the instance, respectively.

The aim of EDLT is to find a new representation for xt,

denoted by F(xi), such that deep learning methods can

be directly applied to M(xt) to learn features for better

classification accuracy, compared to classifiers trained from

the original feature domains. In this paper, we use CNN as the

deep learning methods, and will compare CNN with generic

machine learning classifiers, including k-NN, support vector

machines (SVM), decision trees (DT), and multi-layer neural

networks (NN).

Because deep learning uses temporal and/or spatial correla-

tion of the data to learn effective feature for classification, our

motivation is to create “artificial correlation” and represent

each instance xt as a synthetic matrix where features with

strong correlations are adjacent to each other. By doing so,

the new synthetic matrix serves as a “synthetic image” for a

deep learning module, such as CNN model, to further learn

effective features for classification.

B. Overall Framework of EDLT

Fig. 4 lists the overall framework of the proposed EDLT

which includes three major steps:

← Building feature-feature correlation matrix and
feature-label correlation vector: In order to explore

feature correlations, we use Pearson correlation to build

a pairwise feature correlation matrix M. In addition, we

also create a feature-label correlation vector L to evaluate

the relevance of each feature to the class label.

← Constructing a feature reordering matrix: In order to

obtain deep learning compatible instance representation

and preserve original feature values of each instances, we

use M and L to construct an m≤m feature reordering

matrix O ∅ V m• m, where V denotes the set of all real

numbers.

← Generating new presentation of instances: After ob-

taining feature reordering matrix O, we reorder original

feature values of instance xt and convert instance xt as

a synthetic matrix format F(xt).

After converting each instance of the original dataset into

a synthetic matrix, where all values are normalized to [0,1],

EDLT applies deep learning methods to the matrix representa-

tion of each instance xt to learn new features for classification.

III. EDLT: ENABLING DEEP LEARNING FOR GENERIC

CLASSIFICATION TASKS

The main procedures of the proposed EDLT algorithm

are briefly introduced in Algorithm 1. In this section, we



Fig. 4. A conceptual view of EDLT for classification. Given a generic dataset represented in instance-feature tabular format in 1©, EDLT first calculates
feature-feature correlation matrix and feature-label correlation vector 2©. After that, EDLT constructs a feature reordering matrix 3©, and converts each instance
into a synthetic matrix 4© which is fed into deep learning module, such as CNN, to learn features for classification.

Algorithm 1 EDLT: Enabling Deep Learning for Generic Classi-
fication Tasks
Input:

D: A generic data set;
k • k: The size of convolution filter;

Output:
The synthetic matrix format of the original dataset F(D) ;

1: M ∈ Feature-feature correlation matrix using Eq. (1);
2: L ∈ Feature-label correlation vector;
3: Constructing feature reordering matrix O:

1) O = F;
2) V ∈ Sorting features in a descending order according to their correlation to

class label L;
3) V 1,l = ∪l, l = 1, 2, ...,m: Determine the first row in O;
4) for each i � [1, 2,×××, (m k + 1)] do

a) for each j � [1, 2,×××, (m k + 1)] do
i) Ij

i ∈ Find the set of known feature indexes in Δj
i ;

ii) αj
i(α

0
i = F) ∈ Find the set of coordinates of unknown elements

in Δj
i ;

iii) Mj
i ∈ Set the sth row and column in M to 0 }s �

[O
α1

i
, ...,O

α
j−1
i

] & s /� Ij
i †;

iv) u = [u1,×××, um] ∈ Apply Mj
i and Ij

i to obtain the elements

in Δj
i using Eq. (8).

v) U = F;
vi) for each ur � u do

U = U { r (ur = 1&r /� Ij
i );

vii) end
viii) O

α
j
i

= U ;

b) end
5) end

4: for all xt � D do
5: F(xt) ∈ Algorithm 2 (xt,O)
6: end for
7: return F(D)

first discuss technical details about feature-feature correlation

matrix M, feature-label correlation vector L, and feature

reordering matrix O construction. An example will be used to

explain the conversion of each instance in the original dataset

into synthetic matrix format, by utilizing the proposed EDLT

method.

Algorithm 2 Generating synthetic matrix F(xt) for instance xt

Input:
O: The feature reordering matrix;
xt: The tth instance in the original dataset;

Output:
The synthetic image format F(xt) ;

1: i = 1, j = 1;
2: while i ∅= m do
3: while j ∅= m do
4: O(xt)i,j = xt,Oi,j

5: i = i + 1
6: end while
7: j = j + 1
8: end while

A. Feature-feature Correlation Matrix M and Feature-label
Correlation Vector L

To handle higher order feature correlation, EDLT first

constructs a feature-feature correlation matrix M ∅ V m• m

and a feature-label vector L ∅ V 1• m. To capture pair-wise

correlation between features, we utilize Pearson correlation

coefficient, a common metric to measure correlation between

random variables [18], to compute the matrix M and vector

L as follows.

O i,j =

N∑
c=1

(xc,i f̄i)(xc,j f̄j)√
N∑
c=1

(xc,i f̄i)
2

√
N∑
c=1

(xc,j f̄j)
2

, (1)

where f̄i and f̄j are the sample means of feature i and j
respectively, which can be written as

f̄i =
N∑
c=1

xc,i, f̄j =
N∑
c=1

xc,j . (2)

Similarity, we can use Pearson correlation or other mea-

sures, such as Chi-Square or Information Gain, to calculate

correlation between each feature and the class label as a

correlation vector L.



The absolute values in M and L vary from 0 to 1. The

larger the value, the stronger the correlation is. Because we

only focus on the magnitude of the correlation, we use absolve

values of M and L throughout the paper.

Fig. 5. A conceptual view of feature reordering matrix O ∈ Rm×m.
Features are reordered such that their correlation in each k × k adjacent
area is maximized, and global correlation in O is also maximized. The size
of the adjacent area is determined by the convolution filter size.

B. Feature Reordering Matrix O Construction
Given features correlation matrix M and feature-label

correlation vector L, feature reordering matrix O is created to

bring correlated features close to each other for deep learning

methods to utilize correlation for learning.
Fig. 5 shows the structure of the feature reordering matrix

O , where each element Ri,j in the matrix denotes the index

of the original feature used to construct the synthetic matrix

(using Algorithm 2). For each small adjacent area in O, we

expect features in the area to have a strong correlation. This

correlation will eventually help build a synthetic matrix F(xt)
for each instance, where feature values in any small area of

F(xt) will have a strong correlation.
Formally, we define the area in synthetic image F(xt) that

will be multiplied by the entries of the convolution filter as

a adjacent area. Based on Algorithm 2, the adjacent area in

F(xt) is that in O, which is shown in Fig. 5 where Δj
i

denote the adjacent area when operating the ith multiplication

with convolution filter along the horizontal axis and the jth

multiplication with convolution filter along vertical axis. Con-

sidering a k≤ k convolution filter and setting the convolution

stride to 1, the number of adjacent areas is (m k + 1)2.

Our aim is to maximize the sum of the features correlation in

adjacent area, which can be formulated as

argmax
O

m k+1∑
i=1

m k+1∑
j=1

C(Δj
i ), (3)

where C(Δj
i ) is features correlation in adjacent area Δj

i , can

be written as

C(Δj
i ) =

j+k 1∑
s=j

i+k 1∑
t=i

j+k 1∑
r=j

i+k 1∑
q=i

O V s,t,V r,q
. (4)

(4) can be represented by the matrix format as follows

C(Δj
i ) = (uij)TMuij .

s.t. uij
r = dr(r ∅ Ij

i ), u
ij
r ∅ }0, 1, ..., k

2| .
(5)

where (×)T stands for the transposition operation, uij =

[ uij
1 ,×××, u

ij
m] is an m-dimensional column vector, Ij

i denotes

the set of known feature indexes in the adjacent area Δj
i when

starting to compute the elements in Δj
i , and dr is the number

of r in set Δj
i .

Substituting Eq. (5) into Eq. (3), we have

argmax
[u11,u12,···,u(m−k+1)(m−k+1)]

m k+1∑
i=1

m k+1∑
j=1

(uij)TMuij

s.t. uij
r = dr(r ∅ Ij

i ), u
ij
r ∅ }0, 1, ..., k

2| .
(6)

Finding feature reordering matrix O satisfying Eq. (6) is

equivalent to finding feature indexes in each Δj
i such that

argmax
u

uTMu

s.t. ur = dr(r ∅ Ij
i ), ur ∅ }0, 1, ..., k

2| .

(7)

For simplify, we omit the superscript of u in Eq. (7).

Apparently, the solutions of Eq. (7) can only be obtained

through brute-force search, which is very expensive and hard

to implement.

To reduce the computation complexity to solve Eq. (7),

we use feature-label correlation vector L to determine the

first row in O such that the O is a label-targeting feature

reordering matrix. Specifically, we first order the values in L
in descending order to obtain a vector L′ . It is easy to obtain

the feature indexes order V corresponding to L′ . The feature

ordering in the first row of O is V = [{1, {2,×××, {m] as

shown in Fig. 5, i.e., R1,j = { j(1 ∈ j ∈ m). By doing

so, only a part of elements in Δj
1(1 ∈ j ∈ (m k + 1)) is

required to be solved, such that the computation complexity

is reduced. Then, we derive each adjacent area in O from

top to bottom, left to right, i.e., we first compute the feature

indexes in Δ1
1, then Δ2

1 and so on, which is consistent with

the convolution process. Furthermore, to ensure the fairness

between features, we make each row of the matrix O contain

indexes of all features by adding the constrain on
∑

ur and

M. As a result, the original feature-selection problem in

Eq. (7) is transformed into a 0/1 integer programming problem

as follows.

argmax
u

uTMj
iu

s.t.
∑

r,ur � u
ur = Ij

i + αj
i , ur ∅ }0, 1| ;

R1,l = { l, l = 1, 2, ...,m;

ur = 1 (r ∅ Ij
i ),

(8)

where αj
i is the set of coordinates of unknown elements in Δj

i ,

× denotes the cardinality of a set, and Mj
i is the modified

feature correlation matrix which is derived by setting the sth

row and column in M to 0 (s ∅ [Oα1
i
,×××,O

α
j−1
i

] & s /∅

Ij
i ).



TABLE I
A TOY MACHINE LEARNING DATASET

Instances f1 f2 f3 f4 f5 Label

x1 0.2 0.3 0.6 0.4 0.1 1

x2 0.4 0.72 0.3 0.2 0.7 1

x3 0.13 0.55 0.3 0.1 0.33 0

x4 0.22 0.42 0.14 0.44 0.11 1

x5 0.34 0.51 0.48 0.35 0.52 0

x6 0.28 0.37 0.59 0.27 0.47 0

In Eq. (8), the constraint on
∑

ur = Ij
i + αj

i and Mj
i

jointly ensure that the elements in each row of O contains

the indexes of all features to ensure the fairness between

all features, i.e., the feature indexes in Oαj
i

are not only

different with each other but also different from the fea-

ture index in [Oα1
i
,×××,O

α
j−1
i

], j = 1, ..., (m k + 1).

Specifically, we divide the elements in [Oα1
i
,×××,O

α
j−1
i

]

into two subsets E1 and E2. E1 contains the same elements

in [Oα1
i
,×××,O

α
j−1
i

] and Ij
i , E2 contains the remaining

elements in [Oα1
i
,×××,O

α
j−1
i

]. Mj
i is obtained by setting

the sth row and column in M to 0 (s ∅ [Oα1
i
,×××,O

α
j−1
i

]

& s /∅ Ij
i , i.e., s ∅ E2) to make the elements in Ij

i are belong

to the solutions of Eq. (8), which can only ensure that the

feature indexes in Oαj
i

are different from the feature indexes

in E2. Another constrain, i.e.,
∑

ur = Ij
i + αj

i , ensures

that the feature indexes in Oαj
i

are not only different with

each other but also different with the feature indexes in E1.

Eq. (8) is a standard 0/1 optimization problem, which can

solved by using SDP [19] to find approximate solutions. In our

experiments, we use branch-and-bound algorithm (BMIBN-

B) [20], which is based on a simple spatial branch-and-bound

strategy, to find solutions for Eq. (8). The solution ur = 1
(r /∅ Ij

i ) denotes that index r is one of the αj
i unknown

elements in Δj
i , which is shown in Algorithm 1.

The time complexity to solve Eq. (8) is O(m22m). In

comparison, solving original optimization problem defined in

Eq. (7), using brute-force search, requires O(m22m) time

complexity. Therefore, EDLT (i.e. Eq. (8)) can dramatically

reduce the time complexity.

C. Example: Synthetic Matrix Generation

We use an example to explain the conversion of a generic

dataset into synthetic matrix format for deep learning.

1) The generic dataset: Table I lists a dataset with 6

instances, 5 features, and 2 class labels.

2) Feature-feature correlation matrix M and feature-label
correlation vector L: EDLT first creates feature-feature cor-

relation matrix M, as shown in Fig. 6, and feature-label cor-

relation vector L = [0.1298, 0.0122, 0.3267, 0.4542, 0.3144].
3) The feature reordering matrix O construction: EDLT

first orders values in L in a descending order to obtain a vector

L′ = [0.4542, 0.3267, 0.3144, 0.1298, 0.0122]. Then, it is easy

to obtain the feature indexes order vector V = [4, 3, 5, 1, 2]

corresponding to L′ . The feature ordering in the first row of

O is V = [4, 3, 5, 1, 2], as shown in Fig. 6.

TABLE II
THE CONVERTED SYNTHETIC MATRIX FOR INSTANCE x1 : F(x1)

0.4 0.6 0.1 0.2 0.3

0.3 0.11 0.4 0.6 0.2

0.2 0.4 0.3 0.1 0.6

0.3 0.1 0.6 0.4 0.2

0.2 0.4 0.3 0.1 0.6

Assume that the size of the CNN convolution filter is 2≤2,

there are 16 adjacent areas of 2≤2 in O. Then, EDLT derives

each adjacent area in O from top to bottom, left to right.

In other words, EDLT derives feature indexes in Δ1
1,Δ2

1,Δ3
1,

Δ4
1,Δ1

2,×××, Δ4
4 in turn. Fig. 6 shows the details of obtaining

feature indexes in Δ1
1 and Δ2

1, and the elements in other

adjacent areas can be derived in the same way.

For Δ1
1, the known feature indexes in Δ1

1 is I1
1 = [4, 3],

and the set of coordinates of unknown elements in Δ1
1

is α1
1 = [(2, 1), (2, 2)]. Because there is no s satisfying

s ∅ (α0
i = F)&s /∅ (I1

1 = [4, 3]), we have M1
1 = M.

Substituting I1
1 , M1

1, and α1
1 into (8), EDLT derives the

solution u = [4, 3, 2, 5]. Because I1
1 is [4, 3], the feature

reordering Oα1
1
= [2, 5], i.e., R2,1 = 2 and R2,2 = 5.

For Δ2
1, the known feature indexes in Δ2

1 is I2
1 = [3, 5], and

the set of coordinates of unknown elements in Δ2
1 is α2

1 =
[(2, 3)]. Because s = 2 satisfies s ∅ (Oα1

1
= [2, 5]) & s /∅

(I1
1 = [3, 5]), M2

1 is obtained by setting the 2th row and

column of M to 0 as in Fig. 6. Substituting I1
1 , M2

1, and

α2
1 into (8), we derive the solution u = [3, 5, 4]. Because I1

1

is [3, 5], the feature reordering Oα2
1
= [4], i.e., R2,3 = 4.

Using similar logics , EDLT can derive feature indexes in

other 7 adjacent areas, and the final feature reordering matrix

O is shown in Fig. 6.

4) Synthetic matrix generation: Table II shows the synthetic

matrix of instance x1, i.e., F(x1), constructed using Algo-

rithm 2.

IV. EXPERIMENTS

To validate whether EDLT can indeed enable deep learning

for generic datasets, we use CNN as the deep learning module

and implement a number of baseline using Tensorflow [21]

configured with one GPU card. The feature reordering matrix

O in EDLT is calculated using MATLAB R2016b, running on

a 64-bit Windows 10 workstation with a 3.5-GHz Intel Core

CPU and 128G memory.

We compare the algorithm performance on 20 benchmark

datasets from UCI data repository [22]. In order to interpret

features learned from EDLT created synthetic matrix, we

utilize natural images from CIFAR-10 dataset [23] for a case

study. A brief description of the 20 benchmark datasets is

summarized in Table III. All reported results are based on 10

times 5-fold cross validation with classification accuracy being

used as the performance metrics.

A. Experimental Settings

In our experiments, we utilize CNN as the deep learning

method. For fair comparisons, each CNN model contains two
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Fig. 6. Example: The process of constructing the feature reordering matrix.

TABLE III
A SUMMARY OF THE BENCHMARK DATASETS

ID Dataset Instances Features Classes

1 wall-following 5456 24 4
2 vehicle 946 18 4
3 breast tissue 106 9 6
4 vowel 990 9 6
5 ecoli 336 7 8
6 wine quality-red 1599 11 11
7 breast cancer wisconsin (Diagnostic) 569 30 2
8 wine 178 13 3
9 banknote authentication 1372 4 2
10 vertebral column 310 6 2

11 yeast 1484 8 10
12 seeds 210 7 3
13 climate model simulation crashes 540 18 2
14 glass identification 214 9 6
15 leaf 340 14 30
16 plrx 182 12 2
17 pima 768 9 2
18 iris 150 4 3
19 wireless indoor localization 2000 7 4
20 sonar 208 60 2

convolutional layers with same filter size and each convolu-

tional layer is followed by a max pooling layer. We utilize the

leaky Relu as the activation function [24], and use the Adam

optimizer [25] with a learning rate of 0.001. Features extracted

by the CNN model are used to train a single hidden layer dense

neural network and a two hidden layer dense neural network

to classify test data.

B. Baseline Methods

Because no method currently exists to enable deep learning

for generic datasets, we implement two baseline approaches,

Random Feature Reordering (RFR) and Label-Feature Cor-

relation reordering (LFC), to compare the efficiency of the

feature reordering module in EDLT. Similar to EDLT, both

RFR and LFC enable deep learning for generic datasets by

converting each instance into a synthetic matrix format. The

difference between the two baselines and EDLT is the way of

constructing feature reordering matrix O.

RFR constructs the feature reordering matrix O by random

ordering. Specifically, each row of the feature reordering

matrix O contains all feature, placed in a random order.

The feature index order in each row of O is also obtained

by ordering the feature indexes randomly. Because PFR uses

random order to create a synthetic matrix for each instance,

there is no local correlation compared to EDLT. If EDLT

outperforms PFR, it will indicate that reordering features and

their values to create local correlation, like EDLT does, is

preferable for deep learning.

LFC constructs the feature reordering matrix O based on

the features correlation matrix and feature-label correlation

vector without considering global correlation maximization.

Specifically, each row of the feature reordering matrix O
contains all feature indexes. The first column of O are feature

indexes order vector V . Then, the other feature indexes in the

ith row are obtained by ordering the correlation with the first

feature in descending order, i.e., the second element in the ith
row is the index of the feature with the largest correlation with

the first feature in the ith row, and so on. Obviously LFC only

considers a local correlation between the first selected feature

and the remaining features, where EDLT considers both global

and local correlation maximization.

For comparison purposes, we also implement a number of

machine learning methods (i.e., k-nearest neighbors algorithm

(k-NN), support vector machine (SVM), Decision tree learning

(DT), dense neural network (NN)) by utilizing the sklearn

module in tensorflow [26].

In the following sections, we first compare feature re-

ordering methods w.r.t. different parameter settings, including

different convolution filter sizes, the number of convolution

filter, and number of hidden layers in the dense neural network.

Then, we compare EDLT with generic machine learning

algorithms on all benchmark datasets. Finally, we study a

case to show effectiveness of EDLT in creating new instance

representation for CNN to learn features for generic data.
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TABLE IV
ALGORITHM PERFORMANCE COMPARISONS w.r.t. DIFFERENT CONVOLUTION FILTER SIZES (# OF CONVOLUTION FILTER IS 32 AND 4, AND # OF HIDDEN

LAYER OF NN IS 1)

Dataset
RFR LFC EDLT

2 • 2 3 • 3 2 • 2 3 • 3 2 • 2 3 • 3
wall-following 85.16 87.72 84.538 87.11 88.6 88.25

vehicle 63.15 73.68 65.96 71.048 73.68 78.94
breast tissue 72.72 72.72 74.995 75.45 77.27 77.27

vowel 86.36 93.93 86.559 93.881 86.44 92.67
ecoli 88.23 85.29 85.2903 86.172 85.29 85.29

wine quality-red 61.7 61.29 61.56 61.5 61.25 61.56
breast cancer wisconsin (Diagnostic) 95.6 98.24 96.38 98.15732 97.3684 98.24

wine 97.2 100 96.85 100 100 100
banknote authentication 100 98.9 97.2 99.52 100 100

vertebral column 77.41 75.8 78.84 78.7 78.22 79.03
yeast 59.745 59.59 60.861 61.6 59.59 62.43
seeds 90.47 92.85 92.15 94.27 92.85 92.85

climate model simulation crashes 94.4 95.37 95.17 94.44 95.37 97.22
glass identification 58.1 58.1 56.31 61.85 53.48 58.13

leaf 73.52 74.9 75.729 75.79 77.94 76.47
plrx 56.75 56.75 55.55 54.31 56.75 59.45
pima 80.51 77.27 79.4 79.66 79.87 79.2
iris 100 100 98.3 98.3 100 100

wireless indoor localization 96.75 98.5 96.5 98.4 96 98.75
sonar 90.47 90.47 89.41 90.47 90.47 83.33

Average 81.34 83.05 81.4 82.579 82.47 83.36

TABLE V
ALGORITHM PERFORMANCE COMPARISONS w.r.t. DIFFERENT CONVOLUTION FILTER SIZES (# OF CONVOLUTION FILTER IS 32 AND 16, AND # OF HIDDEN

LAYER OF NN IS 1)

Dataset
RFR LFC EDLT

2 • 2 3 • 3 2 • 2 3 • 3 2 • 2 3 • 3
wall-following 90.03 90.42 90.07 90.256 92.65 91.75

vehicle 73.68 73.68 73.88 73.18 73.68 84.21
breast tissue 77.27 77.27 75.75 77.27 77.27 77.27

vowel 95.45 96.46 95.57 96 95.3 97.06
ecoli 81.93 82.35 85.1 83.33 85.29 85.29

wine quality-red 61.02 60.31 60 60.53 61.83 60.98
breast cancer wisconsin (Diagnostic) 97.36 97.36 97.43 98.76 97.3684 98.24

wine 100 100 99.12 100 100 100
banknote authentication 100 100 100 100 100 100

vertebral column 79.03 75.8 78.72 78.56 80.51 81.84
yeast 60.64 60.6 60.68 59.97 61.27 60.04
seeds 90.47 92.85 91.65 91.69 90.47 90.47

climate model simulation crashes 95.76 96.29 93.3 95.54 94.44 97.22
glass identification 58.1 62.32 60.75 59.95 59.12 63.95

leaf 76.89 73.52 75.97 72.79 76.47 74.7
plrx 54.82 56.75 53.27 59.06 52.35 60.53
pima 79.87 79.22 78.78 78.56 79.79 78.83
iris 100 100 100 100 100 100

wireless indoor localization 96.75 98.5 96.81 98.16 97.25 98.5
sonar 88.09 88.09 90.17 90.16 95.23 90.47

Average 82.9 83.17 82.8 83.1 83.51 84.57

C. Different Feature Reordering Method Comparisons

For all experiments, unless specified otherwise, the parame-

ter settings are as follows. The size of the convolution filter is

set to 2≤ 2 and 3≤ 3, and the number of convolution filter is

set to (32,4) and (32,16). For dense neural networks (NN), we

consider two structures, i.e., an NN with one hidden layer and

an NN with two hidden layers. We set the number of nodes in

the hidden layer of the two NN structures to 100 and (100,50).

Tables IV-VII report detailed comparisons of different

feature reordering methods, where the results are based on

different number of convolution filters and different number of

hidden layers in the NN. Specifically, in Tables IV and V, we

report the accuracy performance of different feature reordering

methods on 20 benchmark datasets using one hidden layer

dense NN for final classification. The results of two hidden

layer dense NN are reported in Tables VI and VII.

The results from Tables IV-VII show that EDLT has the

best performance gain across different parameter settings,

confirming that reordering features and their values to create

local and global correlations, like EDLT does, will result in

good performance for deep learning to be used for generic

data. While LFC only considers local correlation, RFR does

not consider any correlation in the synthetic matrix. The local

correlation is the key for the CNN to learn meaning features.

In Table IV, compared to RFR and LFC, the average

performance gains of EDLT are 1.13% and 1.07% for 2 ≤ 2
filter, and 0.31% and 0.78% for 3 ≤ 3 filter, respectively. In

Table V, compared to RFR and LFC, the average performance



TABLE VI
ALGORITHM PERFORMANCE COMPARISONS w.r.t. DIFFERENT CONVOLUTION FILTER SIZES (# OF CONVOLUTION FILTER IS 32 AND 4, AND # OF HIDDEN

LAYER OF NN IS 2)

Dataset
RFR LFC EDLT

2 • 2 3 • 3 2 • 2 3 • 3 2 • 2 3 • 3
wall-following 87.74 88.1 87.27 89.56 90.65 89.03

vehicle 71.04 77.1 73.68 78.94 73.68 89.47
breast tissue 75.32 75.32 72.72 77.27 77.27 77.27

vowel 88.54 94.75 92.42 95.95 85.1 92.79
ecoli 82.71 83.98 85.29 82.35 79.41 83.82

wine quality-red 61.09 61.96 58.35 60.1 60.56 61.48
breast cancer wisconsin (Diagnostic) 97.1 98.06 96.49 97.36 97.36 98.24

wine 97.6 100 97.2 100 100 100
banknote authentication 100 100 100 100 100 100

vertebral column 78.79 79.83 77.41 80.64 75.8 82.25
yeast 60.88 60.6 61.44 61.72 60.6 61.06
seeds 90.17 91.95 88.09 90.47 90.47 90.47

climate model simulation crashes 95.24 95.82 97.2 95.37 94.44 97.22
glass identification 61.45 61.33 65.11 65.11 66.5 60.46

leaf 70.79 71.68 64.7 70.58 73.52 74.1
plrx 53.27 56.75 56.75 59.45 51.35 62.16
pima 79.12 78.78 79.87 78.24 81.81 79.04
iris 100 100 100 100 100 100

wireless indoor localization 97.03 98.16 98 98.5 96.125 98.5
sonar 89.87 89.11 92.85 85.71 92.85 90.47

Average 81.8875 83.16 82.242 83.36 82.37475 84.39

TABLE VII
ALGORITHM PERFORMANCE COMPARISONS w.r.t. DIFFERENT CONVOLUTION FILTER SIZES (# OF CONVOLUTION FILTER IS 32 AND 4, AND # OF HIDDEN

LAYER OF NN IS 2)

Dataset
RFR LFC EDLT

2 • 2 3 • 3 2 • 2 3 • 3 2 • 2 3 • 3
wall-following 90.67 90.398 90.67 90.361 92.1 91.13

vehicle 70.17 71.92 74.73 78.94 73.68 84.21
breast tissue 76.74 75.32 72.72 72.72 77.27 77.27

vowel 94.79 95.99 94.35 96.96 92.72 96.96
ecoli 83.65 81.72 77.52 83.82 85.29 83.08

wine quality-red 61.71 61.6 63.75 63.43 62.5 62
breast cancer wisconsin (Diagnostic) 97.5 98.42 98.24 97.63 97.36 98.24

wine 100 100 100 100 100 100
banknote authentication 100 100 100 100 100 100

vertebral column 80.84 79.55 80.28 80.17 83.87 82.25
yeast 60.48 59.46 60.74 59.93 58.86 59.81
seeds 91.95 92.85 90.47 90.47 90.47 90.47

climate model simulation crashes 95.26 95.83 95.6 94.44 95.6 97.22
glass identification 57.55 58.59 63.66 60.46 59.79 62.78

leaf 74.75 71.68 72.78 72.05 80.88 72.3
plrx 55.98 58.29 53.27 59.45 55.4 56.75
pima 78.67 79.21 80.51 79.54 80.27 78.69
iris 100 100 100 100 100 100

wireless indoor localization 97.6 98 97.43 97.5 96.625 97.5
sonar 90.47 90.94 88.09 88.09 88.09 88.09

Average 82.939 82.98 82.7405 83.29805 83.53875 83.94

gains of EDLT 0.61% and 0.71 % for 2≤2 filter, and 1.4% and

1.47% for 3 ≤ 3 filter. In Table VI, the average performance

gains of EDLT are 0.49% and 0.13% for 2≤2 filter, and 1.23%

and 1.03% for 3 ≤ 3 filter, and in Table VII, the the average

performance gains of EDLT are 0.59% and 0.79 % for 2≤ 2
filter, and 0.96% and 0.64% for 3≤ 3 filter.

Furthermore, the best performance gain of EDLT is higher

than that of RFR and LFC. To be specific, the best performance

gain of EDLT , RFR and LFC are 84.57% in Table V, 83.17%

in Table V, and 83.36% in Table VI, respectively.

The results in Tables IV-VII assert that the feature reorder-

ing matrix in EDLT does play an effective role for CNN to

leverage local and global correlation to learn effective features.

The experiments show that, for a fixed NN structure, the best

CNN learning results for EDLT are obtained by setting the size

of the convolution filter to 3 ≤ 3, the number of convolution

filter to (32,16). Therefore, in the following subsections, we

utilize this CNN structure settings in the experiments.

D. Detailed Comparisons for Machine Learning Methods

In Table VIII, we report detailed comparisons between

EDLT and generic machine learning methods (i.e., k-NN,

SVM, DT, and NN) on 20 generic benchmark datasets, where

NN-i means that the number of hidden layer in the dense NN

is i. EDLT-i mean that the trained dense layer neural network

(using features extracted from CNN) has i hidden layer(s).

In our experiments, we set the number of nearest neighbors

to 5 for k-NN. For SVM, we use linear kennels and use one-vs-

all to deal with multi-class tasks. We use CART (Classification



TABLE VIII
COMPARISONS BETWEEN EDLT AND DIFFERENT MACHINE LEARNING METHODS ON BENCHMARK DATASETS

Dataset k-NN SVM DT NN-1 NN-2 EDLT-1 EDLT-2

wall-following 85.1 78.8 99.7 67.94 83.42 91.75 91.13
vehicle 52.63 63.1 57.89 52.63 63.15 84.21 84.21

breast tissue 45.45 68 72.72 77.27 77.27 77.27 77.27
vowel 93.43 96.96 75.75 65.65 83.3 97.06 96.96
ecoli 85.29 80.8 82.35 89.7 88.23 85.29 83.08

wine quality-red 58.125 62.8 67.5 62.5 64.06 60.98 62
breast cancer wisconsin (Diagnostic) 95.6 97.36 91.22 97.36 97.36 98.24 98.24

wine 80.5 100 97.2 100 100 100 100
banknote authentication 100 97.8 99.27 94.54 100 100 100

vertebral column 77.41 74.19 77.41 74.19 79.03 81.84 82.25
yeast 54.2 58.24 49.83 58.24 60.94 60.04 59.81
seeds 85.7 85.7 95.23 95.23 95.23 90.47 90.47

climate model simulation crashes 96.29 95.37 88.8 94.4 98.1 97.22 97.22
glass identification 58.13 58.13 51.16 53.48 60.46 63.95 62.78

leaf 38.23 32.35 41.17 72.05 76.47 74.7 72.3
plrx 54.05 54.05 54.05 54.05 54.05 60.53 56.75
pima 77.9 82.46 78.57 79.87 80.51 78.83 78.69
iris 100 100 100 90 96.67 100 100

wireless indoor localization 97.5 96.75 96.25 96.25 97.25 98.5 97.5
sonar 83.3 83.3 64.28 88.09 85.71 90.47 88.09

Average 75.94 78.3 77.01 78.172 82.06 84.57 83.94

And Regression Tree) algorithm to generate a decision tree

for DT, and employ NN-i as the NN module in EDLT-i. We

also consider two kinds of NN with one and two hidden

layers, respectively, and we set the number of nodes in the

hidden layer of these two NN module to 100 and (100,50),

respectively. It is worth noting that for all traditional machine

learning methods, including k-NN, SVM, DT, and NN, we

use original features as their input. So we can justify whether

EDLT can indeed help boost learning for generic classification

tasks, by enabling deep learning.

The results from Table VIII show that among all methods,

EDLT achieves the best performance gain. Compared to k-NN,

SVM, DT, NN-1, and NN-2, the performance gains of EDLT-

1 are 8.63%, 6.27%, 7.56%, 6.4% and 2.51%, respectively.

Interestingly, the performance gain of EDLT-i is higher than

that of NN-i, confirming that the features learned by utilizing

the CNN are more effective than the original features in the

generic dataset for classification. This further implies that

converting each instance in the generic dataset into a synthetic

matrix/image, like EDLT does, and further applying CNN to

the converted data, and indeed enable deep learning for better

classification accuracy for generic classification tasks.

E. Case Study of EDLT Converted Matrix/Image and Features

In this subsection, we carry out a case study to compare

features in the original space vs. features learned from EDLT

converted matrix/image. Our goal is to under what the deep

learning is learning from the synthetic matrix, compared to

the original features.

In our experiments, we utilize the natural images collected

from CIFAR-10 dataset, a common benchmark task for object

recognition, and extract 64-dimensional Hue-Saturation-Value

(HSV) features [27] as the original feature to represent each

image. We use image as the test bed, because we can com-

pare images, against their features, to validate the algorithm

performance. It’s worth noting that we are not trying to find

best features to represent an image, but to understand how

dog

t-SNE

deer

HSV Features

EDLT

EDLT

Synthetic imageImage

t-SNE

NN

CNN Features

Classification

CNN

Fig. 7. Comparisons between original HSV features and CNN features learned
from EDLT converted matrix/image (“Dog” vs. “Deer”).

EDLT converts the original features to support deep learning.

Therefore, we only use HSV features in our case study.

As shown in Fig. 7, we first extract the HSV features from

each image. After that, the HSV features are used to generate

a synthetic image by using EDLT. After that, the synthetic

images are fed to a CNN model to learn new features, which

are used to train a dense NN for classification. Finally, we

use t-SNE tool [28] to compare the difference between the

HSV features and the features learned by CNN to observe

what exactly the CNN is learning from the synthetic image

(In the CNN model, we use 3 convolutional layers with filter

size 3≤3. The number of converlution filter are 16,32 and 1).

Fig. 7 shows the feature comparisons between a “Dog” vs. a

“Deer”. It shows that the HSV features in the original feature

space are not discriminative to differentiate “Dog” vs. “Deer”

(noticing high spike overlapping between two HSV maps).

By applying EDLT to convert each HSV represented instance,

the synthetic image shows a better separation between two

categories. This difference is further captured by the CNN to

learn distinct features to better classify “Dog” vs. “Deer”.

In Figs. 8 and 9, we further report the t SNE feature

representation results between original HSV features and the
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EDLT converted features. Fig. 8 shows that the CNN feature

has better discrimination than the HSV feature for the two

categories. Meanwhile, the results from Fig. 9 show that the

three categories almost completely overlap with each other in

the HSV feature space, but are roughly distinguishable in the

CNN feature space. This asserts that EDLT converted features

provide better feature representation for classification.

Fig. 8. Comparisons between original features (HSV) vs. EDLT converted
CNN features(“Cat” vs. “Ship”)

Fig. 9. Comparisons between original features (HSV) vs. EDLT converted
CNN features(“Deer”, “Cat”, and “Ship”)

V. CONCLUSION

In this paper, we proposed to enable deep learning for

generic data classification where data used for learning are

not images/videos, but are already represented instance-feature

tabular format. Our goal is to convert each instance into

suitable format for deep learning method to be directly applied

for learning and classification. To achieve the goal, we propose

to reorder each instance’s features and their values as a

matrix format with maximum local and global correlations.

The proposed method, EDLT, first builds the feature-feature

correlation matrix and feature-label correlation vector, and

uses 0/1 optimization to obtain a feature reordering matrix

such that features with strong correlations are adjacent to

each other. After each instance is converted from its instance-

feature tabular format into a synthetic matrix format, deep

learning methods are applied to learn meaningful features for

classification. Experiments and comparisons on 20 generic

datasets confirm that enabling deep learning to generic datasets

has clear performance gain, compared to classifiers learned

from the original feature space.
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