2018 IEEE International Conference on Data Mining

Deep Structure Learning for Fraud Detection

Haibo Wang*m, Chuan Zhou', Jia Wu¥, Weizhen Dang*i§, Xingquan Zhull, Jilong WangfF§
*Department of Computer Science and Technology, Tsinghua University
tInstitute of Information Engineering, Chinese Academy of Sciences, Beijing, China
Ynstitute for Network Sciences and Cyberspace, Tsinghua University

§Tsinghua National Laboratory for Information Science and Technology
ﬂDepal’tment of Computing Faculty of Science and Engineering, Macquarie University, Sydney, Australia
I Dept. of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, USA

Email: {wang-hbl5, dangwzl6} @mails.tsinghua.edu.cn, zhouchuan@iie.ac.cn, jia.wu@mgq.edu.au,
xzhu3 @fau.edu, wjl@cernet.edu.cn

Abstract—Fraud detection is of great importance because
fraudulent behaviors may mislead consumers or bring huge
losses to enterprises. Due to the lockstep feature of fraudulent
behaviors, fraud detection problem can be viewed as finding
suspicious dense blocks in the attributed bipartite graph. In
reality, existing attribute-based methods are not adversarially
robust, because fraudsters can take some camouflage actions to
cover their behavior attributes as normal. More importantly,
existing structural information based methods only consider
shallow topology structure, making their effectiveness sensitive
to the density of suspicious blocks. In this paper, we propose
a novel deep structure learning model named DeepFD to
differentiate normal users and suspicious users. DeepFD can
preserve the non-linear graph structure and user behavior
information simultaneously. Experimental results on different
types of datasets demonstrate that DeepFD outperforms the
state-of-the-art baselines.

Keywords-Fraud Detection, Density Block, Graph Structure
Learning, Behavior Similarity

I. INTRODUCTION

Fraudulent behaviors, such as shilling attacks and network
attacks, have become widespread because they can bring
huge profit to fraudsters [1]. A typical fraudulent behavior
pattern is that fraudsters manipulate a large number of ac-
counts or IP addresses to rate or click some given items (e.g.,
products, websites). For example, fake reviews on ecom-
merce websites could mislead consumers to buy defective
products, and network attacks could reduce the processing
capacity of the servers in enterprises. Therefore, it is of
great significance for shopping websites and enterprises to
detect the fraudulent behaviors effectively for improving
their service.

The interaction between users and items can be modeled
as a bipartite graph with users being source nodes and items
being sink nodes. Due to the lockstep feature of fraudulent
behaviors, the fraud detection problem can be treated as
finding suspicious dense blocks in the attributed bipartite
graph. Most previous works [2]-[4] aim at finding these
dense blocks by exploiting the attribute information like
timestamp and review. They assume that fraudulent activities
tend to be concentrated in time and reviews for items given
by fraudsters are similar.

Embedding |e

® >Zm

/
|
|
|

S198()

|
} [l Normal Items
\

Items

Figure 1. Deep Structure Learning for Fraud Detection. Blue circles and
squares represent normal users and items. Yellow/Green ones represent
fraudsters and corresponding fraudulent items in one/another fraud block.

In reality, these attribute-based methods for fraud detec-
tion are not adversarially robust, because deliberate fraud-
sters can take some camouflage actions to evade the detec-
tion. For instance, suspicious users may intentionally make
differential rating scores or reviews on the targeted items,
and network attackers could conduct long-term and low-
rate distributed denial-of-service (DDos) attacks to make
themselves look normal [5]. What’s more, the attribute
information in bipartite graphs is partially missing or even
unavailable in many application scenarios, which makes it
difficult for these attribute-based methods to be widely used.

In contrast, the structure information of bipartite graphs
can be easily accessible with low statistical noise, and cannot
be easily camouflaged. Each fraudulent behavior inevitably
generates an edge in the corresponding bipartite graph,
which is unable to be cleared away and hidden from view.
In other words, the topology of the bipartite graph contains
a complete set of structure information of suspicious behav-
iors. Hence, an important open problem is: whether and to
what extent we can address the fraud detection problem if
only structure information of the bipartite graph is available.

Existing approaches that directly work on structure in-
formation, such as maximizing the arithmetic or geometric

978-1-5386-9159-5/18/$31.00 ©2018 IEEE 567

_ IEEE
@computer
DOI 10.1109/ICDM.2018.00072 - psoaety

degree [6]-[9], only consider shallow topology structure,
making them sensitive to the density of suspicious blocks.
Despite of existing research efforts in the field, we are still
missing effective and robust approaches that can make deep
structure learning of the bipartite graph for fraud detection
problem.

In this paper, we propose a novel fraud detection method,
DeepFD, which embeds all user nodes into a latent space
by a deep structure learning method. Our goal is to make
the representations of the suspicious users in the same fraud
block as close as possible, while the representations of the
normal users distribute uniformly in the remaining latent
space, so fraud blocks can be detected accurately by density-
based detection methods. The intuitive idea is shown in
Fig. 1. DeepFD can simultaneously preserve the global non-
linear graph structure and behavior differences between di-
verse users. After obtaining embedding results, fraud blocks
can be easily detected by the position distribution of user
nodes in the latent space. Our method only makes use of
graph topology information without attribute information.
Additionally, DeepFD is featured to automatically find mul-
tiple fraud blocks without predefining the block number. We
conduct the experiments on three semi-real synthetic datasets
and one real-world DDos attack dataset. The results show
that our method outperforms the state-of-the-art competitors.

The main contributions can be summarized as follows:

(1) To the best of our knowledge, we are among the first to
detect fraudulent behaviors based on deep structure learning
with the intuitive comprehensibility.

(2) We propose a novel deep network embedded fraud
detection model, DeepFD, where the graph topology in-
formation is well exploited. The model can simultaneously
preserve global non-linear graph structure and user behavior
information. As a result, the embedding results are applica-
ble to differentiate normal users and suspicious users.

(3) Experimental results on three semi-real synthetic
datasets and one real-world network attack dataset demon-
strate the effectiveness of the proposed DeepFD model.
Moreover, the model is robust in automatically detecting
multiple fraud blocks without predefining the block number,
which cannot be achieved by the state-of-the-art baselines.

II. PROBLEM DEFINITION

In this section, we formally define deep network embed-
ded fraud detection in an interaction information graph.

Definition 1: (Interaction Information Graph) An interac-
tion information graph is a special form of a bipartite graph,
which is defined as G = (X, Y, E), where X = {z1, ..., T, }
represents m user nodes, Y = {y1, ..., yn } represents n item
nodes and E = {e;; })=} o, represents directed edges from
X to Y. If there exits an edge from z; to yj, e;; = L.
Otherwise, e;; = 0. Note that X and Y are two disjoint

sets.

568

For example, when users purchase products or visit web-
sites, the user-item relationships can form an interaction in-
formation graph. In order to detect the fraudulent behaviors
in the interaction information graph accurately, we expect
that the deep network embedded fraud detection method
can embed all user nodes into a low-dimensional latent
space, and further differentiate normal and suspicious users
by their position relationship in the latent space. Because
fraudsters inevitably generate more suspicious edges in
the interaction information graph, the topology structure is
the most straightforward signal that reflects the fraudulent
behaviors. However, due to the camouflage actions of fraud-
sters (e.g., fraudsters buy some popular normal products),
shallow and local topology structure may be not sufficient.
We need to further capture the different behaviors of user
nodes. As we have explained above, the embedding of user
nodes in the interaction information graph should preserve
graph structure information and users’ behavioral differences
simultaneously.

The graph structure information can be defined as the
connections between user nodes and item nodes, and the
differences of behavior across user nodes can be described
by the following similarity metric.

Definition 2: (Similarity Metric) Given two different user
nodes z; and z; in the interaction information graph, the
similarity metric between them can be defined as sim;; =
}%ij}, where N; = {yj. €Y : ey = 1} represents the
item node set associated with the user node z;.

Intuitively, if two user nodes share a lot of item nodes,
they tend to have a large similarity metric. In practice, for the
purpose of fraud, suspicious user nodes inevitably associate
with more of the same item nodes so that the similarity
between them is relatively higher, while the behaviors of
normal user nodes are independent, which leads to low
similarity in general. Therefore, the similarity metric is
effective to capture the differences of behavior across diverse
user nodes.

For two user nodes x; and x;, there may exist two extreme
cases: (1) the sets IV; and N; do not share any common
element (i.e., |N; N N;| = 0); (2) the set V; is identical to
N;, which implies that |[N; N N;| = |N; U N;|. In order to
make the similarity metric more robust, we add a smoothing
term into it. The improved similarity metric is shown as

follows:
| NN, [+1

|NiLJN]- +n |N7ﬂN]|:®a
. |[N;NN;j|+(n—1) } 0))
simg; = RAYAAE= |N; N N;| = |N; UN;)),
INaON | otherwise
[N;UN;|)

Here n is the total number of the item nodes.
With the above definitions, we further formally define the
problem of deep network embedded fraud detection.

Definition 3: (Deep Network Embedded Fraud Detection)
Given an interaction information graph G = (X, Y, F), deep

Graph Structure Joint Optimization Graph Structure
Autoencoder Parameter Sharing Autoencoder
Reconstructed l xxx xx ’ (x xxxx)
Vector 1 ﬂ i
. O O O O User Behavior O O O . O
Decoder T Preservation T
A A
1 ‘ Vect ‘ ‘
| o i Job |
1 }) Minim !
Encoder T i Ditl\?c‘rmc:xzce T
| Similarit
0000 || e]| COO®O
[————
ol Jeioie])
P =
Users.It ltem 1 || Item4 | Item 6 Item | | Item
sers-1tems
Mapping \ T/)| Set for | | Set for [C— \ /
ST s} {Userj) (| (Uei]
Figure 2. The deep embedding framework of DeepFD model

network embedded fraud detection first learns a mapping
function f : X — R?, where d < |Y|. The mapping
function should simultaneously preserve the graph structure
information and differences of behavior across diverse user
nodes. After that, all fraud blocks in the graph can be
detected automatically based on the position distribution of
user nodes in a low-dimensional latent space.

III. OUR SOLUTION: DEEPFD MODEL

In order to detect fraudulent behaviors, DeepFD proposes
to model user behaviors in a latent space, and classifies users
based on their latent space feature distributions. The deep
structure learning framework of DeepFD is shown in Fig.
2, which mainly consists of two components. The first com-
ponent aims to reconstruct the original graph structure by
vector representations of user nodes. The second component
preserves different behaviors among diverse users. By jointly
optimizing both two components, the embedding results
can preserve global graph structure information and user
behavior characteristics simultaneously, which will be used
for the fraud detection by density-based detection methods.
In the following parts, we will introduce how to realize and
optimize the model in details.

A. Graph Structure Reconstruction

The structure of the interaction information graph refers
to the connections between user nodes and item nodes. As
shown in Fig. 2, to preserve the global non-linear graph
structure information, we introduce a deep auto-encoder to
model the relationship between user nodes and item nodes.
The encoder part consists of multiple non-linear transforma-
tion layers to map the connections for each user node into
a low-dimensional space. The decoder part also composes
of several non-linear functions to reconstruct original graph
structure by vector representations of user nodes.

Given an interaction information graph G = (X,Y, E),
the graph structure can be expressed as S = {1, S2, ..., Sm },
where s; = {s;;}}_y, s;j = 1 if there exists a directed
edge from z; to y;, m is the number of user nodes and
n is the number of item nodes. Taking s; as input of the
auto-encoder, we can get the hidden vector representations

569

for the corresponding non-linear transformation layers in the
encoder part, which are shown as follows:

gE1> =o(WWs, + b))

gEl) = U(W(l)gflfl) +0),1=2,... K
where K is the number of layers in the encoder, and o is
the activation function. Similarly, feeding user node repre-
sentation ng) into the decoder will produce reconstructed
vector output §; by another K non-linear mappings. In
this work, we use the RelLu activation function in both
encoder and decoder parts. Our goal is to minimize the
reconstruction error, ¢.e., minimize the distance between the
original input s; and the reconstructed output s;. Therefore,
the reconstructed loss function is designed as follows:

m
Ltmp = Z ||<§Z - 82”%
=1

However, there may exist some issues with the reconstruc-
tion based loss function. In practice, both suspicious and
normal user nodes tend to be associated with a small portion
of item nodes, leading to the fact that the interaction infor-
mation graph is extremely sparse. Because the reconstructed
loss function in Eq. (2) treats all elements of the input vector
s; equally and the number of zero elements in s; is far
more than that of non-zero elements, the auto-encoder is
more likely to reconstruct zero elements. For fraud detection,
the item nodes that are associated with a given user node
are more effective to reflect the suspicious behaviors, but
this information is not considered in Eq. (2). To solve the
problem, we revise the loss function by setting larger weights
to non-zero elements, which is shown as follows:

L"recon = Z ||(§1 - SZ) © th%
=1

=/(S—) ® HIf3

D

(@)

3

where @ is the Hadamard product, $ = {s1,55, ..., },
H = {h1,ha,....,hm} and h; is the weight vector for the
input vector s;. For h; = {hij}?:l, if ;5 =0, hij = 1;
otherwise, h;; = § > 1.

By minimizing the loss function of the revised model,
the vector representations generated by the Ky, layer of the
encoder for all user nodes preserve the global non-linear
graph structure information. The deep auto-encoder mainly
describes the relationship between user nodes and item
nodes. In order to detect fraudulent behaviors accurately, we
need to further capture the different behaviors across diverse
user nodes, which will be introduced in the following part.

B. User Behavior Preservation

As we have explained, the behaviors of suspicious user
nodes in the same fraud block tend to be similar while the
behaviors of normal user nodes tend to be independent. We
expect that the vector representations of user nodes can
preserve the traits, which will be useful to detect fraud

blocks. In the low-dimensional latent space, the behavioral
differences between two user nodes can be described by the
distance of their vector representations.

For user node z; and user node x;, the distance measure
of their vector representations is defined as follows:

) K K
disij = II(a™ — g" I3 *
where gEK) is the vector representations of user node z;,

which is defined in Section III-A. In order to convert the
distance measure into the similarity measure of vector rep-
resentations, we further employ a mapping function, which
is shown as follows:

g’f\ni]‘ = exp (—)\ . d?S”) (5)
where A > 0. When the giitance of the two user nodes is
close to 0, the value of sim,; is close to 1, which means
that their vector representations are very similar. While
when the distance is large enough, the value of sim;; is
close to 0, which means that their vector representations are
quite different. In Section II, we have defined an empirical
similarity metric sim;; to characterize the differences of
behavior. To preserve the different behaviors across diverse
user nodes, we treat the empirical similarity metric as prior
information, and approximate it by the similarity of the
vector representations. The objective function is shown as
follows:

Z ||szm” szngHz 6)

4,j=1
We aim to detect the fraud blocks by the distribution of

user nodes in the latent space, which requires the model to
aggregate suspicious user nodes in the same fraud block and
spread out normal user nodes. Moreover, similar behaviors
for a group of users are likely to be fraudulent signals
in general. Therefore, capturing similar behaviors is more
crucial. To make the objective function more robust, we
impose larger weights to user node pairs that are more
similar. The revised objective function is shown as follows:

9777’7

m
Lsim = Z simyj - ||simgj — simi;||3 @)
ij=1

C. Model Summary and Optimization

As shown in Fig. 2, in order to simultaneously preserve
the global graph structure information and behavior char-
acteristics of different users, we jointly optimize both two
components. The overall objective function is the combina-
tion of Eq. (3) and Eq. (7), which is shown as follows:

L= Erecon + Oéﬁsim + ’Vﬁreg (8)
where o and are two hyper-parameters, and L., is the

L2-norm regularizer term to prevent overfitting, which is
defined as follows:

K
1 . .
Lreg = 5Z(IIW(”II§+HW“)|I§+|Ib(”||§+llb(”H§) ©

=1
In order to minimize the overall objective function, we
need to calculate the partial derivatives of 8£/8W(l),

570

oL/ob®, oL/oW® and 0L/0bD. The detail forms of

them are shown as follows:

a£ aﬁ'recon a‘c'reg

= = - = 10
oo ~ awo oo (10
a£ _ aﬁrecon 8‘Creg (11)
b 9b) PO

oL o 8‘67"60071 a»Cszm aﬁreg 12
av®m ~ awn T wm Pawn U2
oL aﬁrecon 8£91m a‘creg
0~ 60 o0 T a0 (13)

where [= 1,2, ..., K.

We first focus on the calculation of Eq. (10) and Eq. (11).
The first terms of Eq. (10) and Eq. (11) can be represented
as follows:

aLC(jCO/IL — a[:T'CACO/IL . aAS (14)
ow® 25 oww

OLrecon _ Lrecon 08 (15)
9b o5 ob)

The partial derivative of 9L ccon/ 95 can be easily cal-
culated based on Eq. (3), which is shown as follows:

aﬁrecon

n —2(8-S)oH (16)

95 ()
Because S = o(WEGE-D 4 b(K)),G(If’l)A =
{g7" ", g5 ", ...k}, the partial derivatives of 9S /OW (")

and 85/81)(”(1 = 1,2,...,K) can be obtained iteratively
by back-propagation. Similarly, the partial derivatives of
L recon/OW D and 0L econ/ODW (1 = 1,2, ..., K) can also
be obtained during this process, which are the first terms of
Eq. (12) and Eq. (13).

The second terms of Eq. (10) and Eq. (11) can be
represented as 7y - W® and v - b respectively according
to Eq. (9). Based on the above analysis, we can calculate
Eq. (10) and Eq. (11) successfully.

Then we focus on the calculation of Eq. (12) and Eq. (13).
Since the first terms (DL ccon/OW Y and L ,ccon/ObM)
have been calculated before, we only need to consider the
second and the third terms.

The partial derivatives of 9L, /OW " and L, /ODY
can be rephrased as follows:

aﬁsim e aEsim ag'r\nm 8dzs”
= —— . - . a7)
ow®n — Osimy; Odisi; ow
8[,51'77, o i 8£g1m) 88’”77/1]) 8dzsw (18)
ob) GSZmU (9dzsij b
where Oﬁézm/aszm” = ZSimz‘j(%zj — sim;;) and

3szm”/6dzs” = —Xexp (—A-disi;). Odis;;/OW D and
Odis;; JObD (1 = 1,2, ..., K) can be easily obtained by back-
propagation.

The third terms of Eq. (12) and Eq. (13) are - w® and
7 - b respectively.

However, optimizing the overall objective function (Eq.
(8)) is computationally expensive because all pairwise user
node similarities are used when preserving the different
user behavior information in the second component of the
deep embedding framework. To address this problem, we
adopt the idea of negative sampling [10] to optimize the
computational cost of pairwise user similarities. The basic
idea is that for one user node, we do not need to calculate
its similarities with all other user nodes, but only a subset
of representative user nodes. In this problem, an assumption
is that two user nodes are likely similar if they share many
item nodes. Therefore, in order to preserve the similarities
in the low-dimensional latent space, for a given user node
x;, we first need to choose the user nodes that share at
least one of the same item nodes with x; to calculate the
similarities. Besides, we hope to distinguish user nodes with
different behavior characteristics. Therefore, we also choose
L negative user nodes that share no common items with x;
randomly based on the idea of negative sampling. By this
way, we can greatly reduce the computational overhead.

D. Deep Structure Learning for Fraud Detection

The deep structure learning introduced in Section III-C
makes a deep mining of the topological information of corre-
sponding bipartite graph, and embeds the excavated structure
knowledge into a low-dimensional space. After obtaining
embedding results, we expect that the vector representations
of suspicious users in the same fraud block will distribute
as closely as possible, while the vector representations of
normal users distribute uniformly in the remaining latent
space. Therefore, the fraud detection problem in the bi-
partite graph is ingeniously transformed to a dense region
detection problem in the latent vector space. The dense
region detection problem can be achieved easily by many
existing density-based detection methods. In this paper, we
adopt DBSCAN algorithm [16], which is one of the most
common density-based clustering algorithms. User nodes
that are close in distance and satisfy a certain number will
be clustered together, and the algorithm will further label
them as fraudsters in a fraud block. Specifically, the trait that
normal users distribute uniformly by deep structure learning
will make DBSCAN algorithm work more effectively and
efficiently.

Because DeepFD is highly nonlinear, before optimizing
the model, we employ Deep Belief Network to initialize the

Table I
TIME COMPLEXITY COMPARISON FOR FRAUD DETECTION METHODS
Methods Time Complexity Parameters
M-Zoom [2] O(|E|log W) | E|: Number of edges
D-Cube [3] O(|E|W) m: Number of user nodes

HoloScope [4] | Subquadratic ©(m?) n: Number of item nodes

FRAUDAR [6] | O(|E[log (m + n))

W: max (m,n)

Other Parameters are shown

DeepFD
P in Section III-C

O([(dldg + L)mh)

parameters, which has been widely used in deep learning
to find the optimal solution [11], [12]. Finally, we adopt
stochastic gradient descent algorithm to minimize the overall
loss function. The pseudocode of the DeepFD model is

presented in Algorithm 1.

Based on the above analysis, we can conclude that the

time complexity of the DeepFD model is O(I(dids +
L)mh), where m is the number of user nodes, & is the max-

imum dimension of the hidden layers in the first component
of the deep embedding framework, d; is the average degree
of the user nodes, ds is the average degree of the item nodes,
L is the number of the negative samples and I is the number
of the iterations. In the interaction information graph, the
values of d; and dy are very small in general. Therefore,
the time complexity of the DeepFD model is linear to the
number of user nodes approximately. Table I shows the
comparison of time complexity between our method and four
state-of-the-art methods that will be described in Section
IV-B. The results show that the time complexity of our

method is comparable with the state-of-the-art baselines.

IV. EXPERIMENTS

In this section, we empirically evaluate the effectiveness
and robustness of DeepFD on fraud detection. We com-
pare our method with four state-of-the-art fraud detection
methods on three semi-real synthetic datasets and one real-
world DDos attack dataset. To show the superiority of our
deep structure learning, we also design three new network

embedded fraud detection methods for comparisons.

Algorithm 1 DeepFD model

Input: The interaction information graph G = (X,Y, E),

The hyper-parameters « and -, Batch size p, Embedding

size d, Number of iterations [
Output: Fraudsters for all fraud blocks fraudblock
1: Initialize the parameter set {IW), W® 50 p(}E by
Deep Belief Network;
stm = GetSimliariyByNegativeSampling(G);
: for i =0to I do
sim’ = Shuffle(sim);
while True do
minibatch = Sample(sim/, p);
nodeset = ConstructUserNodes(minibatch);,
loss = Optimize(a, 7, nodeset, minibatch);
if Batch sampling is end then
break;
end if
end while
: end for
: f = GetEmbeddingResults(X);
: fraudblock = FindFraudblockByDBSCAN(f);
: return fraudblock;

R A A

e e e e

571

A. Datasets

To validate the effectiveness and robustness of DeepFD,
we collect different types of datasets to evaluate the proposed
method, which include business reviews, product rating and
real-world flow records of DDos attack in a university of
China.

In these datasets, Yelp [3], Amazon Instrument [4] and
Amazon Movie [4] are semi-real datasets where synthetic
fraud blocks are injected. The descriptions of them are listed
as follows:

o Yelp [3]: It is a subset of the business reviews of
Yelp, including restaurant reviews, hotel reviews, etc.
In this dataset, user nodes are consumers, item nodes
are businesses and edges represent the user reviews on
businesses.

Amazon Instrument and Amazon Movie [4]: They
are purchase records of products in Amazon. In the
two datasets, user nodes are consumers, item nodes are
products and edges represent rating scores for products.

The DDos attack dataset are real-world flow records in a
network, which consist of the labeled anomaly flow records
to be detected. The dataset are described as follows:

« DDos attack: It is a subset of real-world DDos attack
on the hosts in T University. This dataset records all
network flow records during the attack. The format
of a flow record is (source IP address, source port,
destination IP address, destination port, protocol). All
anomaly flow records have been labeled by DPI (Deep
Packet Inspection) device and further checked by net-
work administrators. In this dataset, user nodes refer to
source IP addresses and item nodes refer to IP addresses
of hosts in T University.

The detail statistics of datasets are shown in Table II.
B. Baseline Algorithms

In order to evaluate the performance of DeepFD model,
we first employ the following four state-of-the-art fraud
detection methods as baselines.

e M-Zoom [2]: It employs a greedy search algorithm
to detect suspicious dense blocks by a given density
measure in the attributed bipartite graph. It can support
various density measures.

o D-Cube [3]: It extends M-Zoom by searching attributes
sequentially in the attributed bipartite graph to improve

accuracy.
Table 11
DATASET STATISTICS
Dataset #(User nodes) | #(Item nodes) | #(Edges)
Yelp 686K 85.3K 2.68M
Amazon Instrument 339K 83K 0.5M
Amazon Movie 2090K 201K 4.61M
DDos attack 130K 70K 32.1M

572

« HoloScope [4]: It designs a systematic metric to de-
tect the fraud blocks. The metric combines several
suspicious signals, namely graph topology information,
temporal bursts and drops and rating deviation.

FRAUDAR [6]: It is a graph-based fraud detection
algorithm. The proposed metric can detect fraudsters
under camouflage by weighting edges’ suspiciousness.

DeepFD is a network embedded fraud detection method.
In order to demonstrate the superiority of our deep structure
learning, in addition to the above four fraud detection meth-
ods, we also replace the embedding algorithm of DeepFD
with three state-of-the-art embedding methods, including
DeepWalk [13], node2vec [14] and LINE [15], to compare
with DeepFD.

Note that these three network embedding methods are
not designed for bipartite graphs. In order to employ them,
we need to convert bipartite graph into homogenous graph.
Since our goals are to learn the vector representations of user
nodes and further detect fraudsters, we here construct user
topological graph from the user behavior data. Considering
that if two users share some common items, they are likely
similar. We define that if two user nodes share at least
one common item, there exists an edge between them.
Otherwise, there is no edge between them. In this way, we
can construct a user topological graph. For DeepWalk, the
edges in the graph are binary, while for node2vec and LINE,
each edge is associated with a weight, which indicates the
similarity between the two user nodes. The similarity metric
can be defined like that in Section II.

Based on the constructed graph, the three network em-
bedding methods can map user nodes into low-dimensional
vector space. After getting the vector representations, we
can detect the fraud blocks by the position distribution of
user nodes in the latent space. Without loss of generality, in
this paper, we uniformly adopt DBSCAN algorithm [16] to
detect fraud blocks, which is similar to DeepFD. Note that
the embedding results obtained by different methods are not
within the same value range. For fair comparisons, we map
the embedding results into the same value range between 0
and 1 before applying DBSCAN algorithm.

The three network embedded comparison methods can be
summarized as follows:

o« WalkFD1: It is a combination of DeepWalk and

DBSCAN. We first use DeepWalk to learn the low-
dimensional latent vector representations for user nodes
in constructed user topological graph by local informa-
tion obtained from uniform random walks, and then
employ DBSCAN to detect fraud blocks.
WalkFD2: It is a combination of node2vec and DB-
SCAN. node2vec employs a flexible biased random
walk to learn the vector representations of user nodes
in the weighted user topological graph constructed as
above. After that, DBSCAN detects fraud blocks by the
distribution of user nodes.

Zoom _—
: —+—D-Cube
I HoloScope
” ——FRAUDAR
LineFD | |
—— WalkFD1
——WalkFD2
—o—DeepFD

F-measure
F-measure

e ENNE————_—_——————

Wuzxi*‘;

~—-M-Zoom
—&—D-Cube
HoloScope
——FRAUDAR | |
LineFD

—— WalkFD1
—+— WalkFD2
—o— DeepFD

——-M-Zoom
—&—D-Cube
HoloScope
——FRAUDAR
LineFD i
—— WalkFD1
——WalkrD2 | |
—o—DeepFD

F-measure

N

———— 1

0.15 025 03 035 0.1 015 0.2

Fraud Block Density

(a) Yelp

04 045 05

Figure 3.

0.25
Fraud Block Density

0.3

(b) Amazon Instrument
Experimental results for the performance (F-measure) comparison between DeepFD and different baseline methods (four state-of-the-art fraud

0.25 0.3 0.35 0.4 0.45
Fraud Block Density

035 04 045 05 015 0.2 0.5

(c) Amazon Movie

detection methods and three network embedded fraud detection methods) on three semi-real synthetic datasets

o LineFD: It is a combination of LINE and DBSCAN.
The user topological graph constructed here is also
weighted and LINE can preserve the first-order proxim-
ity and the second-order proximity between user nodes.

C. Parameter settings

In this part, we will introduce the parameter settings for
the DeepFD model and baseline algorithms respectively.

The parameter settings for the four state-of-the-art fraud
detection methods are described as follows: For M-Zoom,
we set the density measure to arithmetic average mass, and
dimension of attributions to 2, which represents that we
only consider the user nodes and item nodes without other
extra attributions. For D-cube, a specific parameter is the
policy for choosing an attribute from which attribute values
are removed. We set this parameter to maximum cardinality
policy, which means the attribute with the largest cardinality
is chosen. The other parameters are the same with M-Zoom.
For FRAUDAR, the most important parameter is edges’ sus-
piciousness, the form of which is set to 1/log(d+ ¢), where
d is the degree of item node in a given edge and c is a small
constant (set to 5 in the experiments). For HoloScope, we
only consider the graph topology information as suspicious
signal, and adopt the default settings for other parameters.

The parameter settings for the three network embedded
fraud detection baseline methods are described as follows:
For WalkFD1, we set window size to 10, walk length to
40, the number of walks per vertex to 40. For WalkFD2,
parameter p is set to 1, parameter g is set to 2, and the other
parameters are the same with WalkFD1. For LineFD, we
consider both first-order and second-order proximity. The
number of negative samples is set to 5, the learning rate is
set to 0.025, and the number of iterations is set to 5.

For DeepFD model, the hyper-parameters o and [are
selected by grid search, which get the best performance
on the validation set. In the experiments, we set « to
10, B to 20, the regularizer term weight v to 0.001 and
the learning rate to 0.025. We apply a three layers auto-
encoder for all datasets. The dimension of the first layer
depends on the number of item nodes in different datasets,
the dimension of the second layer is set to 128 and the
dimension of the third layer represents the dimension of the

573

embedding results. In Section I'V-F, we will show that the
performance of the algorithm is insensitive to the dimension
of the learnt vector representations. Therefore, for better
understanding and visualization, we set the dimension of
vector representations to 2.

D. Evaluation on Synthetic Datasets

In order to demonstrate the effectiveness of our method,
we mimic fraudsters to generate fraudulent behaviors, and
inject synthetic fraud blocks with different desity settings
into Yelp, Amazon Instrument and Amazon Movie respec-
tively. We adopt the fraud blocks injection method used
typically in previous works [4], [6]. First, we choose some
unpopular item nodes that are rarely associated with user
nodes as fraudulent items. We then add a certain percent-
age of fraudsters and generate edges from fraudsters to
fraudulent items based on various block density settings
varying from 0.1 to 0.5. The generated fraud block is
in a uniform manner. Finally, we add some camouflage
actions for fraudsters, which means that each fraudster will
select some normal items to review or rate for evading the
detection.

We first compare DeepFD with the four state-of-the-art
fraud detection methods (¢.e., M-Zoom, D-Cube, HoloScope
and FRAUDAR) on the three synthetic datasets. The exper-
imental results are shown in Fig. 3. We can observe that
the overall trends of F-measure for different datasets are
consistent. When the fraud block density is larger than 0.4,
almost all algorithms can achieve a high performance. How-
ever, when the density is reduced, the performance of these
baselines has an obvious drop, while DeepFD can keep a
high F-measure and is consistently better than other baseline
algorithms. The reason behind is that these baseline methods
are based on different kinds of density measures, which are
prone to be sensitive to the density of fraud block. However,
DeepFD makes the best use of deep graph structure and takes
full consideration of user behavior differences, which make
it more robust to distinguish normal users and fraudsters.
The experiments demonstrate the effectiveness of DeepFD.

In order to further demonstrate the superiority of our
deep structure learning (Algorithm 1) in fraud detection, we
also compare DeepFD with three other network embedded

F-measure: 0.335 F-measure: 0.341 m F-measure: 0.531 F-measure: 0.974

i > e — — “
(a) WalkFD1 (b) WalkFD2 (¢) LineFD (d) DeepFD

Figure 4. F-measure comparison for different fraud detection methods and visualization for embedding results (2 fraud blocks injected). Blue color
represents normal users, and other colors represent different fraud blocks.

F-measure: 0.345 F-measure: 0.344 F-measure: 0.518 . F-measure: 0,942
e T . — v
P = \ e
P A . - ST %
s i HM \ - .
(a) WalkFD1 (b) WalkFD2 (c) LineFD (d) DeepFD

Figure 5. F-measure comparison for different fraud detection methods and visualization for embedding results (3 fraud blocks injected). Blue color
represents normal users, and other colors represent different fraud blocks.

F-measure: 0.342 F-measure: 0.339 F-measure: 0.476 e . F-measure: 0.940
e "‘\
: - b 2 &
(a) WalkFD1 (b) WalkFD2 (c) LineFD (d) DeepFD

Figure 6. F-measure comparison for different fraud detection methods and visualization for embedding results (4 fraud blocks injected). Blue color
represents normal users, and other colors represent different fraud blocks.

. F-measure: 0.341 F-measure: 0.337 ’ F-measure: 0.373 F-measure: 0.922

(a) WalkFD1 (b) WalkFD2 (c) LineFD (d) DeepFD
Figure 7. F-measure comparison for different fraud detection methods and visualization for embedding results (5 fraud blocks injected). Blue color
represents normal users, and other colors represent different fraud blocks.

1 T T T T T T T T

mon item nodes, while WalkFD1 and WalkFD2 extract the
graph structure information by random walk, which makes
them difficult to distinguish normal users and fraudsters.

In practice, there may exist multiple uncorrelated fraud
blocks in an interaction information graph. It is very difficult
for previous fraud detection algorithms to accurately detect
all fraud blocks without predefining the number of the
blocks. However, DeepFD is robust to solve the problem
well. The vector representations of user nodes learnt by the
embedding model of DeepFD preserve the different user
fraud detection methods introduced in Section IV-B. For behavior characteristics, which brings two favorable traits
fair comparison, all these baseline methods apply DBSCAN to the position distribution of user nodes. On the one hand,
algorithm with the same settings to detect fraud block after all normal users are distributed uniformly in the latent space.
getting the vector representations of user nodes. The results On the other hand, suspicious users in the same fraud block
can also be found in Fig. 3. We can observe that the F- tend to form a cluster. To demonstrate the robustness of
measure of DeepFD is much higher than that of the three DeepFD, we inject a different number of fraud blocks into
baseline methods for different fraud block density settings. It Amazon Instrument dataset, and evaluate the effectiveness
indicates that the embedding results learnt from DeepFD are of DeepFD and the three netwrok embedded fraud detection
more effective to capture the suspicious information in the methods (i.e., WalkFD1, WalkFD2 and LineFD). Fig. 4,
graph, which is because that these baseline methods cannot Fig. 5, Fig. 6 and Fig. 7 respectively show the F-measure
preserve the independent relationship among normal user of fraud detection and distribution of embedding results
nodes and lose the partial topological relationship between for DeepFD and the three baselines when different number
user nodes and item nodes. Besides, we can find that LineFD of fraud blocks are injected. We can see that DeepFD is
outperforms WalkFD1 and WalkFD2. It is because that robust in automatically detecting multiple fraud blocks in the
LineFD captures the similarity of user nodes that share com- interaction information graph. The F-measure is always high

08

F-measure
o
>

o
=

02

M-Zoom D-Cube HoloScope FRAUDAR WalkFD1 WalkFD2 LineFD DeepFD
Algorithm

Figure 8. Experimental results on real-world DDos attack dataset

574

F-measure
153
© =

F-measure
1)
o

I
3

F-measure
o
©

o
>

0 20 40 60 0
beta 10

(@) B

100

10" apha 102
(b)

3 2 3 5 6 7
10 Dimension

(c) Dimension

Figure 9. Parameter sensitivity

and stable with the change of the number of fraud blocks.
While the other three netwrok embedded methods perform
poorly when the number of fraud blocks increases. Besides,
the distribution of embedding results for DeepFD show that
fraudsters belonging to the same fraud block are clustered
together. We can clearly distinguish between normal users
and different fraud blocks. For WalkFD1 and WalkFD2, the
characteristics of random walk mix fraud blocks with normal
users, which leads to a high false-positive rate. For LineFD,
in addition to fraudsters, normal users are also clustered
easily, which makes it difficult to accurately detect fraud
blocks. Therefore, the visualization results demonstrate that
DeepFD preserves favorable traits in embedding results and
has intuitive comprehensibility.

E. Effectiveness on Real-world Dataset

In this section, we evaluate the effectiveness of DeepFD
on real-world DDos attack dataset described in Section IV-A.
A typical form of DDos attack is that a large number of
zombie hosts initiate requests to target hosts, resulting in a
decrease in service capability of target hosts, which can also
be seen as a type of fraudulent behavior.

Here we employ above 7 fraud detection baseline algo-
rithms for comparison to detect zombie hosts. It should be
pointed that M-Zoom and D-Cube have shown their ability
to detect suspicious hosts in previous works [2], [3]. Our
experimental results are shown in Fig. 8. We can see that
our method achieves significant improvement on F-measure
compared with other baseline methods, including M-Zoom
and D-Cube. DeepFD outperforms the best baseline D-Cube
by around 10%, which demonstrates that our method is also
effective on real-world dataset.

F. Parameter Sensitivity

In this section, we investigate the effect of the two key
hyper-parameters (5 and «) and the dimension of network
embedding on the performance of DeepFD. We respectively
study the trend of F-measure with the change of the three
parameters on the Amazon Movie dataset.

The hyper-parameter (3 is used to control the reconstruc-
tion weight of non-zero elements in auto-encoder. Increasing
the value of 8 means that auto-encoder will be more prone
to reconstruct non-zero elements in training. Fig. 9(a) shows
the trend of F-measure under different values of 5. We
can observe that the performance of DeepFD is stable and
F-measure is consistently higher than 0.95 when 8 > 5.

575

However, when (3 is small (e.g., 5 = 1), the performance
becomes poor, which is because auto-encoder tends to re-
construct zero elements in s;. As we have explained before,
non-zero elements are more crucial than zero elements in
fraud detection.

The hyper-parameter « balances the weight between the
two components of embedding framework for DeepFD in
(8). Fig. 9(b) shows the trend of F-measure when « takes
values under different orders of magnitude. We can see
that the performance of DeepFD is insensitive to «. The
insensitivity to hyper-parameters implies that our model can
be easily trained.

Fig. 9(c) shows the trend of F-measure with the change
of embedding dimension. We can see that the F-measure
is always high under different dimension settings, which
means embedding dimension has no significant effect on the
performance of DeepFD. In this paper, we set the dimension
to 2 for better visualization.

V. RELATED WORK

Fraud detection: Most of the popular methods identify
fraudulent behavior with the help of attributes in the bipartite
graph. M-Zoom [2], D-Cude [3] and CROSSPOT [17] model
attribute information as a tensor, and further search for dense
blocks by different density measures. Shah et al. detect
the anomaly by the distribution of rating scores [18], while
Jindal et al. find fraud activities by review text [19]. Besides,
some works assume that the temporal burst is a signal of the
suspicious behaviors, and use the bursty patterns to detect
review spam [20], [21]. In order to make the detection
method more effective, Liu et al. systematically use multiple
signals to form a suspiciousness metric, which include
graph topology information, temporal bursts and drops and
rating deviation [4]. However, fraudsters tend to take some
camouflage actions, which make the attributes information
hard to be distinguished. Therefore, it is difficult for the
attribute-based methods to be widely used. In contrast,
since the fraudsters inevitably generate fraudulent edges in
the bipartite graph, the graph topology structure cannot be
easily camouflaged. It provides us an idea that whether
we can detect the fraud blocks only by graph structure
information. However, most of the existing topology based
detection methods [6]-[9] only consider shallow structure
information. They are sensitive to the density of fraud
blocks. Moreover, almost all of them cannot automatically

detect all fraud blocks without predefining the number of the
blocks. Our deep network embedded detection method fills
the gap. After getting the embedding results for user nodes
in the interaction information graph, all fraud blocks can be
detected automatically by density-based detection methods.

Network embedding: Network embedding aims to learn
low-dimensional vector representations for nodes of the
network. DeepWalk [13], node2vec [14] and LINE [15]
try to learn representations from local network structure,
while GraRep [22] tends to preserve global network topol-
ogy structure information. In order to capture highly non-
linear network structure, SDNE [11] designs an embedding
model that contains multiple layers of non-linear functions.
Besides, network embedding can also be applied to many
specific tasks, such as finding structurally inconsistent nodes
in the graph [23], [24]. Our work is inspired by these
methods. In this paper, we propose a novel deep network
embedded fraud detection model named DeepFD to detect
the fraudulent behaviors in the interaction information graph.

VI. CONCLUSION

In this paper, we propose a novel deep structure learning
method DeepFD for fraud detection. DeepFD can simulta-
neously capture global graph structure information and local
user behavior characteristics. For this goal, we design a deep
auto-encoder to reconstruct original bipartite graph topology
and approximate the empirical similarity of user behavior by
the similarity of vector representations. The deep embedding
results could then be used for effective fraud block detection
by the position distribution of user vector representations.
Experimental results on three semi-real synthetic datasets
and one real-world DDos attack dataset demonstrate that
DeepFD not only significantly outperforms other baseline
methods, but is also more robust for automatic detection of
multiple fraud blocks.

ACKNOWLEDGMENT

This work was supported by the National Key Research
and Development Program of China (No. 2016YFB0801301
and 2016QY1272103), the NSFC (No. 61502479 and
61872360), the MQNS (No. 9201701203), the MQ EPS (No.
9201701455), the US National Science Foundation (NSF)
through Grant 11S-1763452, the Youth Innovation Promotion
Association CAS (No. 2017210), and the Collaborative
Research Project (CRP) between Macquarie University and
Data6l on dynamic graph mining. Chuan Zhou is the
corresponding author.

REFERENCES

[1] X.Zhu, H. Tao, Z. Wu, J. Cao, K. Kalish, and J. Kayne, “Fraud
Prevention in Online Digital Advertising,” Springer, 2017.

[2] K. Shin, B. Hooi, and C. Faloutsos, “M-zoom: Fast dense-
block detection in tensors with quality guarantees,” in Joint
European Conference on Machine Learning and Knowledge
Discovery in Databases. 2016.

576

[3] K. Shin, B. Hooi, J. Kim, and C. Faloutsos, “D-cube: Dense-

block detection in terabyte-scale tensors,” in WSDM 2017.

S. Liu, B. Hooi, and C. Faloutsos, “Holoscope: Topology-and-

spike aware fraud detection,” arXiv preprint arXiv:1705.02505,

2017.

Y. Xiang, K. Li, and W. Zhou, “Low-rate ddos attacks detection

and traceback by using new information metrics,” TIF'S, vol. 6,

no. 2, pp. 426-437, 2011.

B. Hooi, H. A. Song, A. Beutel, N. Shah, K. Shin, and

C. Faloutsos, “Fraudar: Bounding graph fraud in the face of

camouflage,” in KDD 2016.

M. Jiang, P. Cui, A. Beutel, C. Faloutsos, and S. Yang,

“Inferring strange behavior from connectivity pattern in social

networks,” in PAKDD 2014.

A. Beutel, W. Xu, V. Guruswami, C. Palow, and C. Falout-

sos, “Copycatch: stopping group attacks by spotting lockstep

behavior in social networks,” in WWW 2013.

B. Perozzi, L. Akoglu, P. Iglesias Sanchez, and E. Miiller,

“Focused clustering and outlier detection in large attributed

graphs,” in KDD 2014.

[10] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in NIPS 2013.

[11] D. Wang, P. Cui, and W. Zhu, “Structural deep network
embedding,” in KDD 2016.

[12] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vin-
cent, and S. Bengio, “Why does unsupervised pre-training
help deep learning?” Journal of Machine Learning Research,
vol. 11, no. Feb, pp. 625-660, 2010.

[13] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online
learning of social representations,” in KDD 2014.

(4]

(3]

(6]

(7]

(8]

(9]

[14] A. Grover and J. Leskovec, “node2vec: Scalable feature
learning for networks,” in KDD 2016.

[15] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei,
“Line: Large-scale information network embedding,” in WWW
2015.

[16] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-
based algorithm for discovering clusters in large spatial
databases with noise.” in KDD 1996.

[17] M. Jiang, A. Beutel, P. Cui, B. Hooi, S. Yang, and C. Falout-
sos, “A general suspiciousness metric for dense blocks in
multimodal data,” in ICDM 2015.

[18] N. Shah, A. Beutel, B. Hooi, L. Akoglu, S. Gunnemann,
D. Makhija, M. Kumar, and C. Faloutsos, “Edgecentric:
Anomaly detection in edge-attributed networks,” in ICDMW
2016.

[19] N.Jindal and B. Liu, “Opinion spam and analysis,” in WSDM
2008.

[20] S. Xie, G. Wang, S. Lin, and P. S. Yu, “Review spam detection
via temporal pattern discovery,” in KDD 2012.

[21] H. Li, G. Fei, S. Wang, B. Liu, W. Shao, A. Mukherjee,
and J. Shao, “Modeling review spam using temporal patterns
and co-bursting behaviors,” arXiv preprint arXiv:1611.06625,
2016.

[22] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph repre-
sentations with global structural information,” in CIKM 2015.

[23] R. Hu, C. C. Aggarwal, S. Ma, and J. Huai, “An embedding
approach to anomaly detection,” in ICDE 2016.

[24] K. Sricharan and K. Das, “Localizing anomalous changes in
time-evolving graphs,” in SIGMOD 2014.

https://www.researchgate.net/publication/330030140

