
Deep Structure Learning for Fraud Detection

Haibo Wang∗‡§, Chuan Zhou†, Jia Wu¶, Weizhen Dang∗‡§, Xingquan Zhu‖, Jilong Wang‡§
∗Department of Computer Science and Technology, Tsinghua University

†Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
‡Institute for Network Sciences and Cyberspace, Tsinghua University

§Tsinghua National Laboratory for Information Science and Technology
¶Department of Computing Faculty of Science and Engineering, Macquarie University, Sydney, Australia
‖ Dept. of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, USA

Email: {wang-hb15, dangwz16}@mails.tsinghua.edu.cn, zhouchuan@iie.ac.cn, jia.wu@mq.edu.au,
xzhu3@fau.edu, wjl@cernet.edu.cn

Abstract—Fraud detection is of great importance because
fraudulent behaviors may mislead consumers or bring huge
losses to enterprises. Due to the lockstep feature of fraudulent
behaviors, fraud detection problem can be viewed as finding
suspicious dense blocks in the attributed bipartite graph. In
reality, existing attribute-based methods are not adversarially
robust, because fraudsters can take some camouflage actions to
cover their behavior attributes as normal. More importantly,
existing structural information based methods only consider
shallow topology structure, making their effectiveness sensitive
to the density of suspicious blocks. In this paper, we propose
a novel deep structure learning model named DeepFD to
differentiate normal users and suspicious users. DeepFD can
preserve the non-linear graph structure and user behavior
information simultaneously. Experimental results on different
types of datasets demonstrate that DeepFD outperforms the
state-of-the-art baselines.

Keywords-Fraud Detection, Density Block, Graph Structure
Learning, Behavior Similarity

I. INTRODUCTION

Fraudulent behaviors, such as shilling attacks and network

attacks, have become widespread because they can bring

huge profit to fraudsters [1]. A typical fraudulent behavior

pattern is that fraudsters manipulate a large number of ac-

counts or IP addresses to rate or click some given items (e.g.,
products, websites). For example, fake reviews on ecom-

merce websites could mislead consumers to buy defective

products, and network attacks could reduce the processing

capacity of the servers in enterprises. Therefore, it is of

great significance for shopping websites and enterprises to

detect the fraudulent behaviors effectively for improving

their service.

The interaction between users and items can be modeled

as a bipartite graph with users being source nodes and items

being sink nodes. Due to the lockstep feature of fraudulent

behaviors, the fraud detection problem can be treated as

finding suspicious dense blocks in the attributed bipartite

graph. Most previous works [2]–[4] aim at finding these

dense blocks by exploiting the attribute information like

timestamp and review. They assume that fraudulent activities

tend to be concentrated in time and reviews for items given

by fraudsters are similar.

Figure 1. Deep Structure Learning for Fraud Detection. Blue circles and
squares represent normal users and items. Yellow/Green ones represent
fraudsters and corresponding fraudulent items in one/another fraud block.

In reality, these attribute-based methods for fraud detec-

tion are not adversarially robust, because deliberate fraud-

sters can take some camouflage actions to evade the detec-

tion. For instance, suspicious users may intentionally make

differential rating scores or reviews on the targeted items,

and network attackers could conduct long-term and low-

rate distributed denial-of-service (DDos) attacks to make

themselves look normal [5]. What’s more, the attribute

information in bipartite graphs is partially missing or even

unavailable in many application scenarios, which makes it

difficult for these attribute-based methods to be widely used.

In contrast, the structure information of bipartite graphs

can be easily accessible with low statistical noise, and cannot

be easily camouflaged. Each fraudulent behavior inevitably

generates an edge in the corresponding bipartite graph,

which is unable to be cleared away and hidden from view.

In other words, the topology of the bipartite graph contains

a complete set of structure information of suspicious behav-

iors. Hence, an important open problem is: whether and to

what extent we can address the fraud detection problem if

only structure information of the bipartite graph is available.

Existing approaches that directly work on structure in-

formation, such as maximizing the arithmetic or geometric

degree [6]–[9], only consider shallow topology structure,

making them sensitive to the density of suspicious blocks.

Despite of existing research efforts in the field, we are still

missing effective and robust approaches that can make deep

structure learning of the bipartite graph for fraud detection

problem.

In this paper, we propose a novel fraud detection method,

DeepFD, which embeds all user nodes into a latent space

by a deep structure learning method. Our goal is to make

the representations of the suspicious users in the same fraud

block as close as possible, while the representations of the

normal users distribute uniformly in the remaining latent

space, so fraud blocks can be detected accurately by density-

based detection methods. The intuitive idea is shown in

Fig. 1. DeepFD can simultaneously preserve the global non-

linear graph structure and behavior differences between di-

verse users. After obtaining embedding results, fraud blocks

can be easily detected by the position distribution of user

nodes in the latent space. Our method only makes use of

graph topology information without attribute information.

Additionally, DeepFD is featured to automatically find mul-

tiple fraud blocks without predefining the block number. We

conduct the experiments on three semi-real synthetic datasets

and one real-world DDos attack dataset. The results show

that our method outperforms the state-of-the-art competitors.

The main contributions can be summarized as follows:

(1) To the best of our knowledge, we are among the first to

detect fraudulent behaviors based on deep structure learning

with the intuitive comprehensibility.

(2) We propose a novel deep network embedded fraud

detection model, DeepFD, where the graph topology in-

formation is well exploited. The model can simultaneously

preserve global non-linear graph structure and user behavior

information. As a result, the embedding results are applica-

ble to differentiate normal users and suspicious users.

(3) Experimental results on three semi-real synthetic

datasets and one real-world network attack dataset demon-

strate the effectiveness of the proposed DeepFD model.

Moreover, the model is robust in automatically detecting

multiple fraud blocks without predefining the block number,

which cannot be achieved by the state-of-the-art baselines.

II. PROBLEM DEFINITION

In this section, we formally define deep network embed-

ded fraud detection in an interaction information graph.

Definition 1: (Interaction Information Graph) An interac-

tion information graph is a special form of a bipartite graph,

which is defined as G = (X,Y,E), where X = {x1, ..., xm}
represents m user nodes, Y = {y1, ..., yn} represents n item

nodes and E = {eij}j=1,...,n
i=1,...,m represents directed edges from

X to Y . If there exits an edge from xi to yj , eij = 1.

Otherwise, eij = 0. Note that X and Y are two disjoint

sets.

For example, when users purchase products or visit web-

sites, the user-item relationships can form an interaction in-

formation graph. In order to detect the fraudulent behaviors

in the interaction information graph accurately, we expect

that the deep network embedded fraud detection method

can embed all user nodes into a low-dimensional latent

space, and further differentiate normal and suspicious users

by their position relationship in the latent space. Because

fraudsters inevitably generate more suspicious edges in

the interaction information graph, the topology structure is

the most straightforward signal that reflects the fraudulent

behaviors. However, due to the camouflage actions of fraud-

sters (e.g., fraudsters buy some popular normal products),

shallow and local topology structure may be not sufficient.

We need to further capture the different behaviors of user

nodes. As we have explained above, the embedding of user

nodes in the interaction information graph should preserve

graph structure information and users’ behavioral differences

simultaneously.
The graph structure information can be defined as the

connections between user nodes and item nodes, and the

differences of behavior across user nodes can be described

by the following similarity metric.

Definition 2: (Similarity Metric) Given two different user

nodes xi and xj in the interaction information graph, the

similarity metric between them can be defined as simij =
|Ni∩Nj |
|Ni∪Nj | , where Ni := {yj ∈ Y : eij = 1} represents the

item node set associated with the user node xi.

Intuitively, if two user nodes share a lot of item nodes,

they tend to have a large similarity metric. In practice, for the

purpose of fraud, suspicious user nodes inevitably associate

with more of the same item nodes so that the similarity

between them is relatively higher, while the behaviors of

normal user nodes are independent, which leads to low

similarity in general. Therefore, the similarity metric is

effective to capture the differences of behavior across diverse

user nodes.
For two user nodes xi and xj , there may exist two extreme

cases: (1) the sets Ni and Nj do not share any common

element (i.e., |Ni ∩Nj | = 0); (2) the set Ni is identical to

Nj , which implies that |Ni ∩Nj | = |Ni ∪Nj |. In order to

make the similarity metric more robust, we add a smoothing

term into it. The improved similarity metric is shown as

follows:

simij =

⎧⎪⎪⎨
⎪⎪⎩

|Ni∩Nj |+1
|Ni∪Nj |+n |Ni ∩Nj | = ∅,
|Ni∩Nj |+(n−1)
|Ni∪Nj |+n |Ni ∩Nj | = |Ni ∪Nj |),

|Ni∩Nj |
|Ni∪Nj | otherwise.

Here n is the total number of the item nodes.
With the above definitions, we further formally define the

problem of deep network embedded fraud detection.

Definition 3: (Deep Network Embedded Fraud Detection)

Given an interaction information graph G = (X,Y,E), deep

568

Figure 2. The deep embedding framework of DeepFD model

network embedded fraud detection first learns a mapping

function f : X → R
d, where d � |Y |. The mapping

function should simultaneously preserve the graph structure

information and differences of behavior across diverse user

nodes. After that, all fraud blocks in the graph can be

detected automatically based on the position distribution of

user nodes in a low-dimensional latent space.

III. OUR SOLUTION: DEEPFD MODEL

In order to detect fraudulent behaviors, DeepFD proposes

to model user behaviors in a latent space, and classifies users

based on their latent space feature distributions. The deep

structure learning framework of DeepFD is shown in Fig.

2, which mainly consists of two components. The first com-

ponent aims to reconstruct the original graph structure by

vector representations of user nodes. The second component

preserves different behaviors among diverse users. By jointly

optimizing both two components, the embedding results

can preserve global graph structure information and user

behavior characteristics simultaneously, which will be used

for the fraud detection by density-based detection methods.

In the following parts, we will introduce how to realize and

optimize the model in details.

A. Graph Structure Reconstruction

The structure of the interaction information graph refers

to the connections between user nodes and item nodes. As

shown in Fig. 2, to preserve the global non-linear graph

structure information, we introduce a deep auto-encoder to

model the relationship between user nodes and item nodes.

The encoder part consists of multiple non-linear transforma-

tion layers to map the connections for each user node into

a low-dimensional space. The decoder part also composes

of several non-linear functions to reconstruct original graph

structure by vector representations of user nodes.

Given an interaction information graph G = (X,Y,E),
the graph structure can be expressed as S = {s1, s2, ..., sm},

where si = {sij}nj=1, sij = 1 if there exists a directed

edge from xi to yj , m is the number of user nodes and

n is the number of item nodes. Taking si as input of the

auto-encoder, we can get the hidden vector representations

for the corresponding non-linear transformation layers in the

encoder part, which are shown as follows:

g
(1)
i = σ(W (1)si + b(1))

g
(l)
i = σ(W (l)g

(l−1)
i + b(l)), l = 2, ...,K

(1)

where K is the number of layers in the encoder, and σ is

the activation function. Similarly, feeding user node repre-

sentation g
(K)
i into the decoder will produce reconstructed

vector output ŝi by another K non-linear mappings. In

this work, we use the ReLu activation function in both

encoder and decoder parts. Our goal is to minimize the

reconstruction error, i.e., minimize the distance between the

original input si and the reconstructed output ŝi. Therefore,

the reconstructed loss function is designed as follows:

Ltmp =
m∑
i=1

||ŝi − si||22 (2)

However, there may exist some issues with the reconstruc-

tion based loss function. In practice, both suspicious and

normal user nodes tend to be associated with a small portion

of item nodes, leading to the fact that the interaction infor-

mation graph is extremely sparse. Because the reconstructed

loss function in Eq. (2) treats all elements of the input vector

si equally and the number of zero elements in si is far

more than that of non-zero elements, the auto-encoder is

more likely to reconstruct zero elements. For fraud detection,

the item nodes that are associated with a given user node

are more effective to reflect the suspicious behaviors, but

this information is not considered in Eq. (2). To solve the

problem, we revise the loss function by setting larger weights

to non-zero elements, which is shown as follows:

Lrecon =
m∑
i=1

||(ŝi − si)� hi||22

= ||(Ŝ − S)�H||22
(3)

where � is the Hadamard product, Ŝ = {ŝ1, ŝ2, ..., ŝm},

H = {h1, h2, ..., hm} and hi is the weight vector for the

input vector si. For hi = {hij}nj=1, if sij = 0, hij = 1;

otherwise, hij = β > 1.

By minimizing the loss function of the revised model,

the vector representations generated by the Kth layer of the

encoder for all user nodes preserve the global non-linear

graph structure information. The deep auto-encoder mainly

describes the relationship between user nodes and item

nodes. In order to detect fraudulent behaviors accurately, we

need to further capture the different behaviors across diverse

user nodes, which will be introduced in the following part.

B. User Behavior Preservation

As we have explained, the behaviors of suspicious user

nodes in the same fraud block tend to be similar while the

behaviors of normal user nodes tend to be independent. We

expect that the vector representations of user nodes can

preserve the traits, which will be useful to detect fraud

blocks. In the low-dimensional latent space, the behavioral

differences between two user nodes can be described by the

distance of their vector representations.

For user node xi and user node xj , the distance measure

of their vector representations is defined as follows:

disij = ||(g(K)
i − g

(K)
j)||22 (4)

where g
(K)
i is the vector representations of user node xi,

which is defined in Section III-A. In order to convert the

distance measure into the similarity measure of vector rep-

resentations, we further employ a mapping function, which

is shown as follows:

ŝimij = exp (−λ · disij) (5)

where λ ≥ 0. When the distance of the two user nodes is

close to 0, the value of ŝimij is close to 1, which means

that their vector representations are very similar. While

when the distance is large enough, the value of ŝimij is

close to 0, which means that their vector representations are

quite different. In Section II, we have defined an empirical

similarity metric simij to characterize the differences of

behavior. To preserve the different behaviors across diverse

user nodes, we treat the empirical similarity metric as prior

information, and approximate it by the similarity of the

vector representations. The objective function is shown as

follows:

L′sim =
m∑

i,j=1

||ŝimij − simij ||22 (6)

We aim to detect the fraud blocks by the distribution of

user nodes in the latent space, which requires the model to

aggregate suspicious user nodes in the same fraud block and

spread out normal user nodes. Moreover, similar behaviors

for a group of users are likely to be fraudulent signals

in general. Therefore, capturing similar behaviors is more

crucial. To make the objective function more robust, we

impose larger weights to user node pairs that are more

similar. The revised objective function is shown as follows:

Lsim =
m∑

i,j=1

simij · ||ŝimij − simij ||22 (7)

C. Model Summary and Optimization

As shown in Fig. 2, in order to simultaneously preserve

the global graph structure information and behavior char-

acteristics of different users, we jointly optimize both two

components. The overall objective function is the combina-

tion of Eq. (3) and Eq. (7), which is shown as follows:

L = Lrecon + αLsim + γLreg (8)

where α and γ are two hyper-parameters, and Lreg is the

L2-norm regularizer term to prevent overfitting, which is

defined as follows:

Lreg =
1

2

K∑
l=1

(||W (l)||22+ ||Ŵ (l)||22+ ||b(l)||22+ ||b̂(l)||22) (9)

In order to minimize the overall objective function, we

need to calculate the partial derivatives of ∂L/∂Ŵ (l),

∂L/∂b̂(l), ∂L/∂W (l) and ∂L/∂b(l). The detail forms of

them are shown as follows:

∂L
∂Ŵ (l)

=
∂Lrecon

∂Ŵ (l)
+ γ

∂Lreg

∂Ŵ (l)
(10)

∂L
∂b̂(l)

=
∂Lrecon

∂b̂(l)
+ γ

∂Lreg

∂b̂(l)
(11)

∂L
∂W (l)

=
∂Lrecon

∂W (l)
+ α

∂Lsim

∂W (l)
+ γ

∂Lreg

∂W (l)
(12)

∂L
∂b(l)

=
∂Lrecon

∂b(l)
+ α

∂Lsim

∂b(l)
+ γ

∂Lreg

∂b(l)
(13)

where l = 1, 2, ...,K.

We first focus on the calculation of Eq. (10) and Eq. (11).

The first terms of Eq. (10) and Eq. (11) can be represented

as follows:

∂Lrecon

∂Ŵ (l)
=

∂Lrecon

∂Ŝ
· ∂Ŝ
∂Ŵ (l)

(14)

∂Lrecon

∂b̂(l)
=

∂Lrecon

∂Ŝ
· ∂Ŝ
∂b̂(l)

(15)

The partial derivative of ∂Lrecon/∂Ŝ can be easily cal-

culated based on Eq. (3), which is shown as follows:

∂Lrecon

∂Ŝ
= 2(Ŝ − S)�H (16)

Because Ŝ = σ(Ŵ (K)G(K−1) + b(K)), G(K−1) =
{gK−1

1 , gK−1
2 , ...gK−1

m }, the partial derivatives of ∂Ŝ/∂Ŵ (l)

and ∂Ŝ/∂b̂(l)(l = 1, 2, ...,K) can be obtained iteratively

by back-propagation. Similarly, the partial derivatives of

∂Lrecon/∂W
(l) and ∂Lrecon/∂b

(l)(l = 1, 2, ...,K) can also

be obtained during this process, which are the first terms of

Eq. (12) and Eq. (13).

The second terms of Eq. (10) and Eq. (11) can be

represented as γ · Ŵ (l) and γ · b̂(l) respectively according

to Eq. (9). Based on the above analysis, we can calculate

Eq. (10) and Eq. (11) successfully.

Then we focus on the calculation of Eq. (12) and Eq. (13).

Since the first terms (∂Lrecon/∂W
(l) and ∂Lrecon/∂b

(l))

have been calculated before, we only need to consider the

second and the third terms.

The partial derivatives of ∂Lsim/∂W (l) and ∂Lsim/∂b(l)

can be rephrased as follows:

∂Lsim

∂W (l)
=

m∑
i,j=1

∂Lsim

∂ŝimij

· ∂ŝimij

∂disij
· ∂disij
∂W (l)

(17)

∂Lsim

∂b(l)
=

m∑
i,j=1

∂Lsim

∂ŝimij

· ∂ŝimij

∂disij
· ∂disij
∂b(l)

(18)

where ∂Lsim/∂ŝimij = 2simij(ŝimij − simij) and

∂ŝimij/∂disij = −λ exp (−λ · disij). ∂disij/∂W
(l) and

∂disij/∂b
(l)(l = 1, 2, ...,K) can be easily obtained by back-

propagation.

The third terms of Eq. (12) and Eq. (13) are γ ·W (l) and

γ · b(l) respectively.

570

However, optimizing the overall objective function (Eq.

(8)) is computationally expensive because all pairwise user

node similarities are used when preserving the different

user behavior information in the second component of the

deep embedding framework. To address this problem, we

adopt the idea of negative sampling [10] to optimize the

computational cost of pairwise user similarities. The basic

idea is that for one user node, we do not need to calculate

its similarities with all other user nodes, but only a subset

of representative user nodes. In this problem, an assumption

is that two user nodes are likely similar if they share many

item nodes. Therefore, in order to preserve the similarities

in the low-dimensional latent space, for a given user node

xi, we first need to choose the user nodes that share at

least one of the same item nodes with xi to calculate the

similarities. Besides, we hope to distinguish user nodes with

different behavior characteristics. Therefore, we also choose

L negative user nodes that share no common items with xi

randomly based on the idea of negative sampling. By this

way, we can greatly reduce the computational overhead.

D. Deep Structure Learning for Fraud Detection
The deep structure learning introduced in Section III-C

makes a deep mining of the topological information of corre-

sponding bipartite graph, and embeds the excavated structure

knowledge into a low-dimensional space. After obtaining

embedding results, we expect that the vector representations

of suspicious users in the same fraud block will distribute

as closely as possible, while the vector representations of

normal users distribute uniformly in the remaining latent

space. Therefore, the fraud detection problem in the bi-

partite graph is ingeniously transformed to a dense region

detection problem in the latent vector space. The dense

region detection problem can be achieved easily by many

existing density-based detection methods. In this paper, we

adopt DBSCAN algorithm [16], which is one of the most

common density-based clustering algorithms. User nodes

that are close in distance and satisfy a certain number will

be clustered together, and the algorithm will further label

them as fraudsters in a fraud block. Specifically, the trait that

normal users distribute uniformly by deep structure learning

will make DBSCAN algorithm work more effectively and

efficiently.

Because DeepFD is highly nonlinear, before optimizing

the model, we employ Deep Belief Network to initialize the

Table I
TIME COMPLEXITY COMPARISON FOR FRAUD DETECTION METHODS

Methods Time Complexity Parameters
M-Zoom [2] O(|E| logW) |E|: Number of edges

D-Cube [3] O(|E|W) m: Number of user nodes

HoloScope [4] Subquadratic O(m2) n: Number of item nodes

FRAUDAR [6] O(|E| log (m+ n)) W : max (m,n)

DeepFD O(I(d1d2 + L)mh)
Other Parameters are shown

in Section III-C

parameters, which has been widely used in deep learning

to find the optimal solution [11], [12]. Finally, we adopt

stochastic gradient descent algorithm to minimize the overall

loss function. The pseudocode of the DeepFD model is

presented in Algorithm 1.

Based on the above analysis, we can conclude that the

time complexity of the DeepFD model is O(I(d1d2 +
L)mh), where m is the number of user nodes, h is the max-

imum dimension of the hidden layers in the first component

of the deep embedding framework, d1 is the average degree

of the user nodes, d2 is the average degree of the item nodes,

L is the number of the negative samples and I is the number

of the iterations. In the interaction information graph, the

values of d1 and d2 are very small in general. Therefore,

the time complexity of the DeepFD model is linear to the

number of user nodes approximately. Table I shows the

comparison of time complexity between our method and four

state-of-the-art methods that will be described in Section

IV-B. The results show that the time complexity of our

method is comparable with the state-of-the-art baselines.

IV. EXPERIMENTS

In this section, we empirically evaluate the effectiveness

and robustness of DeepFD on fraud detection. We com-

pare our method with four state-of-the-art fraud detection

methods on three semi-real synthetic datasets and one real-

world DDos attack dataset. To show the superiority of our

deep structure learning, we also design three new network

embedded fraud detection methods for comparisons.

Algorithm 1 DeepFD model

Input: The interaction information graph G = (X,Y,E),
The hyper-parameters α and γ, Batch size p, Embedding

size d, Number of iterations I
Output: Fraudsters for all fraud blocks fraudblock

1: Initialize the parameter set {Ŵ (l),W (l), b̂(l), b(l)}Kl=1 by

Deep Belief Network;

2: sim = GetSimliariyByNegativeSampling(G);

3: for i = 0 to I do
4: sim′ = Shuffle(sim);

5: while True do
6: minibatch = Sample(sim′, p);

7: nodeset = ConstructUserNodes(minibatch);

8: loss = Optimize(α, γ, nodeset, minibatch);

9: if Batch sampling is end then
10: break;

11: end if
12: end while
13: end for
14: f = GetEmbeddingResults(X);

15: fraudblock = FindFraudblockByDBSCAN(f);

16: return fraudblock;

571

A. Datasets

To validate the effectiveness and robustness of DeepFD,

we collect different types of datasets to evaluate the proposed

method, which include business reviews, product rating and

real-world flow records of DDos attack in a university of

China.

In these datasets, Yelp [3], Amazon Instrument [4] and

Amazon Movie [4] are semi-real datasets where synthetic

fraud blocks are injected. The descriptions of them are listed

as follows:

• Yelp [3]: It is a subset of the business reviews of

Yelp, including restaurant reviews, hotel reviews, etc.
In this dataset, user nodes are consumers, item nodes

are businesses and edges represent the user reviews on

businesses.

• Amazon Instrument and Amazon Movie [4]: They

are purchase records of products in Amazon. In the

two datasets, user nodes are consumers, item nodes are

products and edges represent rating scores for products.

The DDos attack dataset are real-world flow records in a

network, which consist of the labeled anomaly flow records

to be detected. The dataset are described as follows:

• DDos attack: It is a subset of real-world DDos attack

on the hosts in T University. This dataset records all

network flow records during the attack. The format

of a flow record is (source IP address, source port,

destination IP address, destination port, protocol). All

anomaly flow records have been labeled by DPI (Deep

Packet Inspection) device and further checked by net-

work administrators. In this dataset, user nodes refer to

source IP addresses and item nodes refer to IP addresses

of hosts in T University.

The detail statistics of datasets are shown in Table II.

B. Baseline Algorithms

In order to evaluate the performance of DeepFD model,

we first employ the following four state-of-the-art fraud

detection methods as baselines.

• M-Zoom [2]: It employs a greedy search algorithm

to detect suspicious dense blocks by a given density

measure in the attributed bipartite graph. It can support

various density measures.

• D-Cube [3]: It extends M-Zoom by searching attributes

sequentially in the attributed bipartite graph to improve

accuracy.

Table II
DATASET STATISTICS

Dataset #(User nodes) #(Item nodes) #(Edges)

Yelp 686K 85.3K 2.68M

Amazon Instrument 339K 83K 0.5M

Amazon Movie 2090K 201K 4.61M

DDos attack 130K 70K 32.1M

• HoloScope [4]: It designs a systematic metric to de-

tect the fraud blocks. The metric combines several

suspicious signals, namely graph topology information,

temporal bursts and drops and rating deviation.

• FRAUDAR [6]: It is a graph-based fraud detection

algorithm. The proposed metric can detect fraudsters

under camouflage by weighting edges’ suspiciousness.

DeepFD is a network embedded fraud detection method.

In order to demonstrate the superiority of our deep structure

learning, in addition to the above four fraud detection meth-

ods, we also replace the embedding algorithm of DeepFD

with three state-of-the-art embedding methods, including

DeepWalk [13], node2vec [14] and LINE [15], to compare

with DeepFD.
Note that these three network embedding methods are

not designed for bipartite graphs. In order to employ them,

we need to convert bipartite graph into homogenous graph.

Since our goals are to learn the vector representations of user

nodes and further detect fraudsters, we here construct user

topological graph from the user behavior data. Considering

that if two users share some common items, they are likely

similar. We define that if two user nodes share at least

one common item, there exists an edge between them.

Otherwise, there is no edge between them. In this way, we

can construct a user topological graph. For DeepWalk, the

edges in the graph are binary, while for node2vec and LINE,

each edge is associated with a weight, which indicates the

similarity between the two user nodes. The similarity metric

can be defined like that in Section II.
Based on the constructed graph, the three network em-

bedding methods can map user nodes into low-dimensional

vector space. After getting the vector representations, we

can detect the fraud blocks by the position distribution of

user nodes in the latent space. Without loss of generality, in

this paper, we uniformly adopt DBSCAN algorithm [16] to

detect fraud blocks, which is similar to DeepFD. Note that

the embedding results obtained by different methods are not

within the same value range. For fair comparisons, we map

the embedding results into the same value range between 0

and 1 before applying DBSCAN algorithm.
The three network embedded comparison methods can be

summarized as follows:

• WalkFD1: It is a combination of DeepWalk and

DBSCAN. We first use DeepWalk to learn the low-

dimensional latent vector representations for user nodes

in constructed user topological graph by local informa-

tion obtained from uniform random walks, and then

employ DBSCAN to detect fraud blocks.

• WalkFD2: It is a combination of node2vec and DB-

SCAN. node2vec employs a flexible biased random

walk to learn the vector representations of user nodes

in the weighted user topological graph constructed as

above. After that, DBSCAN detects fraud blocks by the

distribution of user nodes.

572

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Fraud Block Density

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F-

m
ea

su
re

M-Zoom
D-Cube
HoloScope
FRAUDAR
LineFD
WalkFD1
WalkFD2
DeepFD

(a) Yelp

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Fraud Block Density

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F-
m

ea
su

re

M-Zoom
D-Cube
HoloScope
FRAUDAR
LineFD
WalkFD1
WalkFD2
DeepFD

(b) Amazon Instrument

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Fraud Block Density

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F-
m

ea
su

re M-Zoom
D-Cube
HoloScope
FRAUDAR
LineFD
WalkFD1
WalkFD2
DeepFD

(c) Amazon Movie
Figure 3. Experimental results for the performance (F-measure) comparison between DeepFD and different baseline methods (four state-of-the-art fraud
detection methods and three network embedded fraud detection methods) on three semi-real synthetic datasets

• LineFD: It is a combination of LINE and DBSCAN.

The user topological graph constructed here is also

weighted and LINE can preserve the first-order proxim-

ity and the second-order proximity between user nodes.

C. Parameter settings
In this part, we will introduce the parameter settings for

the DeepFD model and baseline algorithms respectively.
The parameter settings for the four state-of-the-art fraud

detection methods are described as follows: For M-Zoom,

we set the density measure to arithmetic average mass, and

dimension of attributions to 2, which represents that we

only consider the user nodes and item nodes without other

extra attributions. For D-cube, a specific parameter is the

policy for choosing an attribute from which attribute values

are removed. We set this parameter to maximum cardinality

policy, which means the attribute with the largest cardinality

is chosen. The other parameters are the same with M-Zoom.

For FRAUDAR, the most important parameter is edges’ sus-

piciousness, the form of which is set to 1/log(d+ c), where

d is the degree of item node in a given edge and c is a small

constant (set to 5 in the experiments). For HoloScope, we

only consider the graph topology information as suspicious

signal, and adopt the default settings for other parameters.
The parameter settings for the three network embedded

fraud detection baseline methods are described as follows:

For WalkFD1, we set window size to 10, walk length to

40, the number of walks per vertex to 40. For WalkFD2,

parameter p is set to 1, parameter q is set to 2, and the other

parameters are the same with WalkFD1. For LineFD, we

consider both first-order and second-order proximity. The

number of negative samples is set to 5, the learning rate is

set to 0.025, and the number of iterations is set to 5.
For DeepFD model, the hyper-parameters α and β are

selected by grid search, which get the best performance

on the validation set. In the experiments, we set α to

10, β to 20, the regularizer term weight γ to 0.001 and

the learning rate to 0.025. We apply a three layers auto-

encoder for all datasets. The dimension of the first layer

depends on the number of item nodes in different datasets,

the dimension of the second layer is set to 128 and the

dimension of the third layer represents the dimension of the

embedding results. In Section IV-F, we will show that the

performance of the algorithm is insensitive to the dimension

of the learnt vector representations. Therefore, for better

understanding and visualization, we set the dimension of

vector representations to 2.

D. Evaluation on Synthetic Datasets
In order to demonstrate the effectiveness of our method,

we mimic fraudsters to generate fraudulent behaviors, and

inject synthetic fraud blocks with different desity settings

into Yelp, Amazon Instrument and Amazon Movie respec-

tively. We adopt the fraud blocks injection method used

typically in previous works [4], [6]. First, we choose some

unpopular item nodes that are rarely associated with user

nodes as fraudulent items. We then add a certain percent-

age of fraudsters and generate edges from fraudsters to

fraudulent items based on various block density settings

varying from 0.1 to 0.5. The generated fraud block is

in a uniform manner. Finally, we add some camouflage

actions for fraudsters, which means that each fraudster will

select some normal items to review or rate for evading the

detection.
We first compare DeepFD with the four state-of-the-art

fraud detection methods (i.e., M-Zoom, D-Cube, HoloScope

and FRAUDAR) on the three synthetic datasets. The exper-

imental results are shown in Fig. 3. We can observe that

the overall trends of F-measure for different datasets are

consistent. When the fraud block density is larger than 0.4,

almost all algorithms can achieve a high performance. How-

ever, when the density is reduced, the performance of these

baselines has an obvious drop, while DeepFD can keep a

high F-measure and is consistently better than other baseline

algorithms. The reason behind is that these baseline methods

are based on different kinds of density measures, which are

prone to be sensitive to the density of fraud block. However,

DeepFD makes the best use of deep graph structure and takes

full consideration of user behavior differences, which make

it more robust to distinguish normal users and fraudsters.

The experiments demonstrate the effectiveness of DeepFD.
In order to further demonstrate the superiority of our

deep structure learning (Algorithm 1) in fraud detection, we

also compare DeepFD with three other network embedded

573

F-measure: 0.335

(a) WalkFD1

F-measure: 0.341

(b) WalkFD2

F-measure: 0.531

(c) LineFD

F-measure: 0.974

(d) DeepFD
Figure 4. F-measure comparison for different fraud detection methods and visualization for embedding results (2 fraud blocks injected). Blue color
represents normal users, and other colors represent different fraud blocks.

F-measure: 0.345

(a) WalkFD1

F-measure: 0.344

(b) WalkFD2

F-measure: 0.518

(c) LineFD

F-measure: 0.942

(d) DeepFD
Figure 5. F-measure comparison for different fraud detection methods and visualization for embedding results (3 fraud blocks injected). Blue color
represents normal users, and other colors represent different fraud blocks.

F-measure: 0.342

(a) WalkFD1

F-measure: 0.339

(b) WalkFD2

F-measure: 0.476

(c) LineFD

F-measure: 0.940

(d) DeepFD
Figure 6. F-measure comparison for different fraud detection methods and visualization for embedding results (4 fraud blocks injected). Blue color
represents normal users, and other colors represent different fraud blocks.

F-measure: 0.341

(a) WalkFD1

F-measure: 0.337

(b) WalkFD2

F-measure: 0.373

(c) LineFD

F-measure: 0.922

(d) DeepFD
Figure 7. F-measure comparison for different fraud detection methods and visualization for embedding results (5 fraud blocks injected). Blue color
represents normal users, and other colors represent different fraud blocks.

M-Zoom D-Cube HoloScope FRAUDAR WalkFD1 WalkFD2 LineFD DeepFD
Algorithm

0.2

0.4

0.6

0.8

1

F
-m

ea
su

re

Figure 8. Experimental results on real-world DDos attack dataset

fraud detection methods introduced in Section IV-B. For

fair comparison, all these baseline methods apply DBSCAN

algorithm with the same settings to detect fraud block after

getting the vector representations of user nodes. The results

can also be found in Fig. 3. We can observe that the F-

measure of DeepFD is much higher than that of the three

baseline methods for different fraud block density settings. It

indicates that the embedding results learnt from DeepFD are

more effective to capture the suspicious information in the

graph, which is because that these baseline methods cannot

preserve the independent relationship among normal user

nodes and lose the partial topological relationship between

user nodes and item nodes. Besides, we can find that LineFD

outperforms WalkFD1 and WalkFD2. It is because that

LineFD captures the similarity of user nodes that share com-

mon item nodes, while WalkFD1 and WalkFD2 extract the

graph structure information by random walk, which makes

them difficult to distinguish normal users and fraudsters.

In practice, there may exist multiple uncorrelated fraud

blocks in an interaction information graph. It is very difficult

for previous fraud detection algorithms to accurately detect

all fraud blocks without predefining the number of the

blocks. However, DeepFD is robust to solve the problem

well. The vector representations of user nodes learnt by the

embedding model of DeepFD preserve the different user

behavior characteristics, which brings two favorable traits

to the position distribution of user nodes. On the one hand,

all normal users are distributed uniformly in the latent space.

On the other hand, suspicious users in the same fraud block

tend to form a cluster. To demonstrate the robustness of

DeepFD, we inject a different number of fraud blocks into

Amazon Instrument dataset, and evaluate the effectiveness

of DeepFD and the three netwrok embedded fraud detection

methods (i.e., WalkFD1, WalkFD2 and LineFD). Fig. 4,

Fig. 5, Fig. 6 and Fig. 7 respectively show the F-measure

of fraud detection and distribution of embedding results

for DeepFD and the three baselines when different number

of fraud blocks are injected. We can see that DeepFD is

robust in automatically detecting multiple fraud blocks in the

interaction information graph. The F-measure is always high

574

0 20 40 60 80 100
beta

0.5

0.6

0.7

0.8

0.9

1

F
-m

ea
su

re

(a) β

100 101 102 103
alpha

0.6

0.7

0.8

0.9

1

F
-m

e
a
su

re

(b) α

2 3 4 5 6 7 8 9 10
Dimension

0.6

0.7

0.8

0.9

1

F
-m

ea
su

re

(c) Dimension
Figure 9. Parameter sensitivity

and stable with the change of the number of fraud blocks.

While the other three netwrok embedded methods perform

poorly when the number of fraud blocks increases. Besides,

the distribution of embedding results for DeepFD show that

fraudsters belonging to the same fraud block are clustered

together. We can clearly distinguish between normal users

and different fraud blocks. For WalkFD1 and WalkFD2, the

characteristics of random walk mix fraud blocks with normal

users, which leads to a high false-positive rate. For LineFD,

in addition to fraudsters, normal users are also clustered

easily, which makes it difficult to accurately detect fraud

blocks. Therefore, the visualization results demonstrate that

DeepFD preserves favorable traits in embedding results and

has intuitive comprehensibility.

E. Effectiveness on Real-world Dataset

In this section, we evaluate the effectiveness of DeepFD

on real-world DDos attack dataset described in Section IV-A.

A typical form of DDos attack is that a large number of

zombie hosts initiate requests to target hosts, resulting in a

decrease in service capability of target hosts, which can also

be seen as a type of fraudulent behavior.

Here we employ above 7 fraud detection baseline algo-

rithms for comparison to detect zombie hosts. It should be

pointed that M-Zoom and D-Cube have shown their ability

to detect suspicious hosts in previous works [2], [3]. Our

experimental results are shown in Fig. 8. We can see that

our method achieves significant improvement on F-measure

compared with other baseline methods, including M-Zoom

and D-Cube. DeepFD outperforms the best baseline D-Cube

by around 10%, which demonstrates that our method is also

effective on real-world dataset.

F. Parameter Sensitivity
In this section, we investigate the effect of the two key

hyper-parameters (β and α) and the dimension of network

embedding on the performance of DeepFD. We respectively

study the trend of F-measure with the change of the three

parameters on the Amazon Movie dataset.

The hyper-parameter β is used to control the reconstruc-

tion weight of non-zero elements in auto-encoder. Increasing

the value of β means that auto-encoder will be more prone

to reconstruct non-zero elements in training. Fig. 9(a) shows

the trend of F-measure under different values of β. We

can observe that the performance of DeepFD is stable and

F-measure is consistently higher than 0.95 when β ≥ 5.

However, when β is small (e.g., β = 1), the performance

becomes poor, which is because auto-encoder tends to re-

construct zero elements in si. As we have explained before,

non-zero elements are more crucial than zero elements in

fraud detection.

The hyper-parameter α balances the weight between the

two components of embedding framework for DeepFD in

(8). Fig. 9(b) shows the trend of F-measure when α takes

values under different orders of magnitude. We can see

that the performance of DeepFD is insensitive to α. The

insensitivity to hyper-parameters implies that our model can

be easily trained.

Fig. 9(c) shows the trend of F-measure with the change

of embedding dimension. We can see that the F-measure

is always high under different dimension settings, which

means embedding dimension has no significant effect on the

performance of DeepFD. In this paper, we set the dimension

to 2 for better visualization.

V. RELATED WORK

Fraud detection: Most of the popular methods identify

fraudulent behavior with the help of attributes in the bipartite

graph. M-Zoom [2], D-Cude [3] and CROSSPOT [17] model

attribute information as a tensor, and further search for dense

blocks by different density measures. Shah et al. detect

the anomaly by the distribution of rating scores [18], while

Jindal et al. find fraud activities by review text [19]. Besides,

some works assume that the temporal burst is a signal of the

suspicious behaviors, and use the bursty patterns to detect

review spam [20], [21]. In order to make the detection

method more effective, Liu et al. systematically use multiple

signals to form a suspiciousness metric, which include

graph topology information, temporal bursts and drops and

rating deviation [4]. However, fraudsters tend to take some

camouflage actions, which make the attributes information

hard to be distinguished. Therefore, it is difficult for the

attribute-based methods to be widely used. In contrast,

since the fraudsters inevitably generate fraudulent edges in

the bipartite graph, the graph topology structure cannot be

easily camouflaged. It provides us an idea that whether

we can detect the fraud blocks only by graph structure

information. However, most of the existing topology based

detection methods [6]–[9] only consider shallow structure

information. They are sensitive to the density of fraud

blocks. Moreover, almost all of them cannot automatically

575

detect all fraud blocks without predefining the number of the

blocks. Our deep network embedded detection method fills

the gap. After getting the embedding results for user nodes

in the interaction information graph, all fraud blocks can be

detected automatically by density-based detection methods.

Network embedding: Network embedding aims to learn

low-dimensional vector representations for nodes of the

network. DeepWalk [13], node2vec [14] and LINE [15]

try to learn representations from local network structure,

while GraRep [22] tends to preserve global network topol-

ogy structure information. In order to capture highly non-

linear network structure, SDNE [11] designs an embedding

model that contains multiple layers of non-linear functions.

Besides, network embedding can also be applied to many

specific tasks, such as finding structurally inconsistent nodes

in the graph [23], [24]. Our work is inspired by these

methods. In this paper, we propose a novel deep network

embedded fraud detection model named DeepFD to detect

the fraudulent behaviors in the interaction information graph.

VI. CONCLUSION

In this paper, we propose a novel deep structure learning

method DeepFD for fraud detection. DeepFD can simulta-

neously capture global graph structure information and local

user behavior characteristics. For this goal, we design a deep

auto-encoder to reconstruct original bipartite graph topology

and approximate the empirical similarity of user behavior by

the similarity of vector representations. The deep embedding

results could then be used for effective fraud block detection

by the position distribution of user vector representations.

Experimental results on three semi-real synthetic datasets

and one real-world DDos attack dataset demonstrate that

DeepFD not only significantly outperforms other baseline

methods, but is also more robust for automatic detection of

multiple fraud blocks.

ACKNOWLEDGMENT

This work was supported by the National Key Research

and Development Program of China (No. 2016YFB0801301

and 2016QY12Z2103), the NSFC (No. 61502479 and

61872360), the MQNS (No. 9201701203), the MQ EPS (No.

9201701455), the US National Science Foundation (NSF)

through Grant IIS-1763452, the Youth Innovation Promotion

Association CAS (No. 2017210), and the Collaborative

Research Project (CRP) between Macquarie University and

Data61 on dynamic graph mining. Chuan Zhou is the

corresponding author.

REFERENCES

[1] X. Zhu, H. Tao, Z. Wu, J. Cao, K. Kalish, and J. Kayne, “Fraud
Prevention in Online Digital Advertising,” Springer, 2017.

[2] K. Shin, B. Hooi, and C. Faloutsos, “M-zoom: Fast dense-
block detection in tensors with quality guarantees,” in Joint
European Conference on Machine Learning and Knowledge
Discovery in Databases. 2016.

[3] K. Shin, B. Hooi, J. Kim, and C. Faloutsos, “D-cube: Dense-
block detection in terabyte-scale tensors,” in WSDM 2017.

[4] S. Liu, B. Hooi, and C. Faloutsos, “Holoscope: Topology-and-
spike aware fraud detection,” arXiv preprint arXiv:1705.02505,
2017.

[5] Y. Xiang, K. Li, and W. Zhou, “Low-rate ddos attacks detection
and traceback by using new information metrics,” TIFS, vol. 6,
no. 2, pp. 426–437, 2011.

[6] B. Hooi, H. A. Song, A. Beutel, N. Shah, K. Shin, and
C. Faloutsos, “Fraudar: Bounding graph fraud in the face of
camouflage,” in KDD 2016.

[7] M. Jiang, P. Cui, A. Beutel, C. Faloutsos, and S. Yang,
“Inferring strange behavior from connectivity pattern in social
networks,” in PAKDD 2014.

[8] A. Beutel, W. Xu, V. Guruswami, C. Palow, and C. Falout-
sos, “Copycatch: stopping group attacks by spotting lockstep
behavior in social networks,” in WWW 2013.

[9] B. Perozzi, L. Akoglu, P. Iglesias Sánchez, and E. Müller,
“Focused clustering and outlier detection in large attributed
graphs,” in KDD 2014.

[10] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in NIPS 2013.

[11] D. Wang, P. Cui, and W. Zhu, “Structural deep network
embedding,” in KDD 2016.

[12] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vin-
cent, and S. Bengio, “Why does unsupervised pre-training
help deep learning?” Journal of Machine Learning Research,
vol. 11, no. Feb, pp. 625–660, 2010.

[13] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online
learning of social representations,” in KDD 2014.

[14] A. Grover and J. Leskovec, “node2vec: Scalable feature
learning for networks,” in KDD 2016.

[15] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei,
“Line: Large-scale information network embedding,” in WWW
2015.

[16] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-
based algorithm for discovering clusters in large spatial
databases with noise.” in KDD 1996.

[17] M. Jiang, A. Beutel, P. Cui, B. Hooi, S. Yang, and C. Falout-
sos, “A general suspiciousness metric for dense blocks in
multimodal data,” in ICDM 2015.

[18] N. Shah, A. Beutel, B. Hooi, L. Akoglu, S. Gunnemann,
D. Makhija, M. Kumar, and C. Faloutsos, “Edgecentric:
Anomaly detection in edge-attributed networks,” in ICDMW
2016.

[19] N. Jindal and B. Liu, “Opinion spam and analysis,” in WSDM
2008.

[20] S. Xie, G. Wang, S. Lin, and P. S. Yu, “Review spam detection
via temporal pattern discovery,” in KDD 2012.

[21] H. Li, G. Fei, S. Wang, B. Liu, W. Shao, A. Mukherjee,
and J. Shao, “Modeling review spam using temporal patterns
and co-bursting behaviors,” arXiv preprint arXiv:1611.06625,
2016.

[22] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph repre-
sentations with global structural information,” in CIKM 2015.

[23] R. Hu, C. C. Aggarwal, S. Ma, and J. Huai, “An embedding
approach to anomaly detection,” in ICDE 2016.

[24] K. Sricharan and K. Das, “Localizing anomalous changes in
time-evolving graphs,” in SIGMOD 2014.

576

View publication statsView publication stats

https://www.researchgate.net/publication/330030140

