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Abstract:Activesitesplayanessentialroleinheterogeneouscatalysisandlargelydeterminethe

reactionproperties.Yetidentificationandstudyoftheactivesitesremainchallengingowingtotheir

dynamicbehaviorsduringcatalysisprocessandissueswithcurrentcharacterizationtechniques.This

articleprovidesashortreviewofresearchprogressesinactivesitesofmetalandmetaloxidecatalysts,

whichcoversthepastachievements,currentresearchstatus,andperspectivesinthisresearchfield.

Inparticular,theconceptsandtheoriesofactivesitesareintroduced. Majorexperimentaland

computationalapproachesthatareusedinactivesitestudyaresummarized,withtheirapplications

andlimitationsbeingdiscussed.Anoutlookoffutureresearchdirectioninbothexperimentaland

computationalcatalysisresearchisprovided.

Keywords: heterogeneouscatalysis;activesites;characterizationtechniques;computational

approach;DFT

1.Introduction

Acatalystbydefinitionisamaterialthatmediatesthereactionpathwayofachemicalprocess

withoutitselfbeingexpended[1].Distinguishedbywhethercatalystmaterialandreactingspecies

areinasameordifferentphase,acatalyticprocesscanbeclassifiedashomogeneouscatalysisor

heterogeneouscatalysis.Thisreviewarticleputthefocusonheterogeneouscatalysisandcatalyst

materials,whichhavevastapplicationsindifferentareas.Thousandsofproductsdemandedby

modernsocietylikegasoline,tires,cloth,drugs,andpolymerswouldnotbepossiblewithoutcatalytic

productionprocesses.Catalystsalsoplayanessentialroleinenvironmentalcontrolsuchaswaterand

airpollutiontreatmentandinenergyapplicationssuchasfuelcellsandmetal-airbatteries.

Thestudyofheterogeneouscatalysiscouldbedatedbacktothe1800s.Faradaywasoneofthe

firstscientistswhoexaminedtheabilityofplatinumtofacilitateoxidationreactions[2].Untilnow,

heterogeneouscatalysisiscrucialtochemicaltechnology,withalargevarietyofcatalystmaterials

beingdevelopedandwidelyusedinimportantindustrialprocessessuchasammoniasynthesis[3–5],

water-gasshiftreaction[6,7],methanereforming[8–10],andCO2hydrogenation[11–14].Thecatalysts

areprimarilymetalandmetaloxide-basedmaterials,whichnormallytaketheformofnanoparticles

withlargespecificsurfacearea[15].Forinstance,goldnanoparticlessupportedonreducibleoxides

werefoundtobeactiveforCOoxidationtoCO2underambientconditionduetoaquantumsize

effectwhichisrelatedtothethicknessofAuislands,whichcouldbeutilizedforCOlevelreductionin

buildingsbyformulatingAu/TiO2nanopowderswithpaintthatcoverstheinteriorwall[16]. With

surfaceAuatomsbeingconsideredasactivesites,theCOoxidationpropertiescanbeaffectedby

certaincatalystmaterialparameterslikeAuparticlesizeandstructure,reducibleoxidetype,andstate.

VanadiumoxidenanoparticlessupportedonmetaloxideslikeZrO2,Al2O3,andMgOwerefound
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to be active in oxidative dehydrogenation of alkanes to olefins due to the stoichiometric reduction
cycle of vanadium oxide following the Mars-van-Krevelen (MvK) mechanism, with the activity and
coking resistance properties being alterable by the vanadium oxide particle size [17,18]. These findings
revealed complexity of the active sites in catalyzing the reactions and the properties of active sites could
be influenced by many material parameters. Hence, in order to understand heterogeneous catalysis
and realize fine control of the reaction properties, insightful knowledge of active sites, including the
structure, chemical status, and interactions with both reactant molecules and substrate materials,
is essential.

This review aims at providing a glimpse of the active site studies, which is divided into three
sections including the past achievements, current status and challenges, and an outlook into the future
research. Both experimental studies and computational simulations of the active sites are reviewed,
with catalysts being mainly focused on metal and metal oxide-based materials.

2. Past Achievements

2.1. Concept and Theory of Active Sites

The concept of active sites in heterogeneous catalysis was firstly introduced by Tylor in 1925 [19].
He suggested that only a small fraction of catalyst surface (active sites or centers), which might be
composed of an atom or an ensemble of atoms situated at surface defects such as corners, edges, and
other crystalline discontinuities, is catalytically active. The idea that the number of active sites is
significantly smaller than the total available surface sites was supported by the fact that the amount
of poisoning species being required to effectively deactivate a catalyst was often much less than a
monolayer coverage of the catalyst surface. This led to the definition of Taylor Ratio (TR) which
describes the fraction of active sites out of the total number of catalyst surface sites [20]. In the same
period of time, Balandin [21,22] proposed a multiplet theory, suggesting that reacting species could be
simultaneously adsorbed to a group of active atoms of catalyst to form a multiplet complex. He also
introduced the correspondence between the geometry of active center and the energies of forming and
breaking chemical bonds.

Proceeding with Taylor’s principle of the existence of active sites on catalyst surfaces, Boudart et al.
classified reactions in terms of whether they are catalyst surface sensitive or not [23]. The reaction
rate of a surface-insensitive process would not change with the exposed planes of a single crystal or
the size of particles, whereas that of a surface-sensitive reaction would change significantly. Ethylene
hydrogenation catalyzed by platinum is considered as one good example of a surface-insensitive
reaction. There have been previous studies over a wide range of dispersions of Pt nanoparticles, as
well as single crystals and poly-crystals showing little effects on the reaction rate [20,24,25], suggesting
all surface Pt atoms are active sites and behave similarly, regardless of their crystallographic planes and
locations. On the other side, many other hydrocarbon conversion reactions have also been reported to
be surface sensitive [26–28]. Figure 1 shows the structure sensitivity in alkane isomerization reactions
catalyzed over platinum single-crystal surfaces [28], which correlates the activity and crystal planes as
well as surface atomic ensembles. The results suggest that square surface atom ensembles rather than
hexagonal ones favor alkane aromatization and isomerization reactions. One most prominent example
of surface-sensitive reaction is ammonia synthesis using iron catalyst. The determined activity ratio
of Fe(111):Fe(100):Fe(110) at 798 K was reported to be 418:25:1, suggesting that Fe(111) plane was the
most active in this reaction [5]. The development of surface science approach, utilizing structurally
and compositionally well-defined surfaces to examine individual reaction steps and intermediates
under ultra-high vacuum complement to single crystal studies further advanced the understanding
of surface structure dependence [29]. For instance, Somorjai et al. applied surface science techniques
to study the enhanced reaction activity of step sites compared to close-packed surface sites [30,31].
The surface structure sensitivity in catalysis has also been correlated with the electronic structure that
would be altered with surface structure and influence the catalytic properties. One example is the
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electronic band structure of transition metals, which would be altered when the size is reduced from
crystallites to nanoscale that results in different physiochemical and catalysis properties compared
with the corresponding bulk ones [32].
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Figure 1. Structure sensitivity in alkane isomerization reactions catalyzed over platinum single-crystal
surfaces. Adapted with permission from [28], Elsevier, 2001.

It is generally accepted nowadays that the active sites have two primary catalytic functions, that
is, promoting the reaction kinetics and controlling the product selectivity [33]. The active sites would
reduce the potential energy barrier or activation energy in the reaction paths by temporarily forming
moderate chemical bonds with the adsorbing molecules so that the residence time of the adsorbates is
long enough for the chemical rearrangement to occur. Either too strong or too weak bonding between
the active sites and the reacting species would lead to a poor catalytic performance. When the active
site-reacting species interactions are two strong, the reaction species will strongly adsorb to the active
sites that results in permanent blocking of the sites and thus catalyst poisoning. On the other side, too
weak interactions would not be able to help break the intramolecular bonds (like H-H, C-H, C-C, C=O
and N=N bonds within reactant molecules and requiring activation for reaction) of the reactant [33].
The other important function of active sites is to control the reaction product selectivity. A good
catalyst would facilitate the generation of only desired product molecules by suppressing side reaction
pathways. To achieve these two catalytic functions, a good understanding of active sites and the
interactions with reacting species, which would guide catalyst development with active sites of desired
features, is essential.

Three major catalysis mechanisms have been discovered [34], namely the Langmuir-Hinshelwood
(L-H) mechanism in which two reacting species simultaneously adsorb to active sites and react
with each other, the Eley-Rideal (E-R) mechanism in which adsorbed species reacts with bulk phase
molecules, and the Mars-van-Krevelen (MvK) mechanism in which one reactant bonds to the active
sites and the other reacting species is provided from local defect sites on support that would be
replenished upon consumption by reaction with bulk phase molecules [35]. A vast majority of catalytic
reactions have been reported to follow the L-H mechanism. One prominent example is CO oxidation
on Pt, in which adsorbed CO reacts with adsorbed oxygen on Pt surface sites [36]. Because the CO
adsorption to Pt is too strong that leads to a high CO surface coverage, it largely prohibits dissociative
O2 adsorption and consequently the reaction activity, especially at low temperature [37]. In practice,
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metals and alloys serve as one important category of heterogeneous catalysts and are active in many
reactions, for instance CO2 reforming of methane [38–42], hydrogenation of aromatics [43], and
CO preferential oxidation (PROX) [44,45]. Alloy catalysts were often found to be more active and
selective compared to the pure metal counterparts, which could be largely attributed to the ability of
electronic and geometry optimization of the active sites with the additional composition parameter
knob. For instance, Pt alloy catalysts have attracted considerable attraction due to the much improved
activity and selectivity properties than pure Pt in CO oxidation and PROX [46,47]. Based on current
understanding [44,48,49], CO PROX on Pt alloy (Pt-M) can be illustrated in Figure 2, with CO oxidation
following the dual-site L-H mechanism and H2 oxidation following the E-L mechanism. To be more
specific, CO and O2 follow a non-competitive adsorption mechanism, with CO adsorbing to Pt site
and O2 dissociatively adsorbing to M site followed by interaction and surface reaction between the
adsorbed species to generate CO2. In this way, O2 can be activated effectively even at low temperature
and the CO oxidation kinetics can thus be dramatically improved compared with that using Pt, on
which O2 cannot be effectively adsorbed and activated at low temperature due to the competitive
adsorption with CO. H2 oxidation at low temperature has to follow the E-L mechanism, in which H2

in the gas phase reacts directly with adsorbed oxygen at M site, because H2 undergoes competitive
adsorption against CO at Pt site and against oxygen at M site which is typically less electronegative and
pre-covered by oxygen. The reported high CO PROX selectivity on Pt-M catalysts, such as Pt-Sn, Pt-Fe,
and Pt-Co [50], can be attributed to a relative high activation energy of H2 oxidation that suppresses
the H2 oxidation at low temperature.
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Figure 2. Schematic illustration of CO preferential oxidation (PROX) pathways on Pt-M alloy catalyst.
Reprinted with permission from [45], American Chemical Society, 2018.

Another important category of solid materials for heterogeneous catalysis process is acid catalysts,
with acid-catalyzed reactions being one of the most studied reaction types for organic functional
groups transformations [51]. Various solid catalysts such as zeolites, metal complexes, metal-organic
framework (MOF), and zirconia have been reported to be promising candidates in heterogeneous
acid catalysis, serving as proton donors to accelerate reaction rates [51–54]. For instance, zeolites
(crystalline aluminosilicates interlinked by oxygen atoms) have a three-dimensional framework
structure with molecular pores, which makes it possible to exchange ions and produce charges
within the framework, while the charges could enhance the catalytic activity [55]. Takahara et al.
investigated the performance of zeolites in dehydration of ethanol into ethylene, suggesting that the
catalytic activity was directly related to the number of acid sites and the stability could be tuned via
the SiO2/Al2O3 ratio [56]. Corma et al. studied the role of different types of acid sites in n-heptane
cracking on HY zeolite and found that the cracking process could be initiated on Brønsted acid sites
(anions) by protolytic cracking while the cracking on Lewis acid sites (cations) followed the classical
β-scission mechanism [57]. Tang et al. prepared nanocrystalline Sn-Beta zeolites by incorporating
Sn(IV) into framework of Beta zeolites as a solid Lewis acid catalyst, exhibiting remarkable activity in
ring-opening hydration of epoxides under ambient and solvent-free conditions [58]. Other than the
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number of acid sites and SiO2/Al2O3 ratio, it’s believed that the catalytic performance of zeolites is also
greatly affected by pore size of zeolites since reactions are mainly restricted within the pores [55]. MOF
(a coordination network with organic ligands containing metal ions or clusters) is also widely used as
a solid acid catalyst. For instance, Alaerts et al. investigated the acid character of [Cu3(BTC)2] (BTC:
benzene-1,3,5-tricarboxylate), which is a zeolite-like porous-framework MOF with Cu(II) ion as the free
coordination site, on reactions such as isomerization of α-pinene oxide and the cyclization of citronellal
to isopulegol [59]. [Cu3(BTC)2] was identified as a Lewis acid catalyst and was proved to be effective
for various acid-catalyzed reactions. Because heterogeneous acid catalysis and homogeneous acid
catalysis share similar working mechanism, acid catalyst materials are not focused on in this review.

2.2. Experimental Approach for Studying Active Sites

Identification and study of the active sites where reaction occurs is critical to the catalysis
understanding and catalyst development, but demands advanced characterization techniques to
investigate the chemical status and structure of catalyst surface atoms at atomic level under the
reactive condition. Over the past several decades, multiple techniques have been developed to allow
more insightful characterizations of catalyst materials [60].

Surface techniques like low energy electron diffraction (LEED), X-ray photoelectron spectroscopy
(XPS), Auger electron spectroscopy (AES), atomic force microscope (AFM), scanning tunneling
microscope (STM) and low-energy ion scattering (LEIS) allow direct characterization of the top surface
layers of clean solid catalysts and even the adsorbed species, and thus have been widely used in catalyst
research [61]. LEED is nowadays one of the most powerful techniques for surface analysis by sending
a low energy electron beam (with energies varying from 20 to 500 eV) from an electron gun to samples
and collecting the diffracted electrons from the surface of samples as spots on a fluorescent screen [62].
Since low energy electrons are waves and can be diffracted by crystal surfaces, the diffraction patterns
can provide information on surface structure and atomic positions. For instance, LEED was applied
to study the restructuring of support materials for a Pt-based CO oxidation catalyst and the LEED
patterns confirmed that the support (crystalline alumina film) was turned to amorphous after the
samples were exposed to CO and O2 mixture [63]. XPS is a surface technique and one of the standard
tools in surface characterization. By exciting core electrons with one soft X-ray beam, XPS could give
information on composition and chemical state of the elements on catalyst surface via expulsion and
analyses of the related binding energies [64]. Our group applied high-resolution XPS in the study
of Pt alloy catalysts and found that Pt atoms on and near the particle surfaces were mainly in the
metallic state, while negative shifts in the Pt peak positions comparing to pure Pt indicated electronic
interactions of Pt and other metal elements [65]. AES is used to provide information of quantitative
elemental and chemical state of material surface by exciting the samples to emit Auger electrons
with a focused electron beam and analyzing the kinetic energy of Auger electrons [66]. For instance,
Yan et al. applied AES to determine surface composition (Fe/Au ratio) and carbon deposition of
Fe2O3/Au(111) catalyst in CO oxidation [67]. STM is accomplished by scanning a sharp metal tip
very close to sample surface and applying an electrical voltage between the tip and sample, where
electrons can tunnel through based on the quantum tunneling effect. The tunneling current is related
to position of the tip and local density of states of the sample, which enables build-up of 3D images of
the surface with atomic-scale resolution based on the current change [68]. For instance, in the study of
gas phase oxidation of benzyl alcohol over FeO/Pt(111) (FeO islands on Pt(111) surface), STM was
used to investigate the role of interfacial sites. The STM images clearly exhibited a larger density and
lower height of adsorbate on the interfacial sites, suggesting that the metal/oxide interfacial sites are
the active sites [69]. AFM is also one popular technique for surface characterization nowadays. In this
technique, a mechanical probe (normally an atomically sharp tip) scans across a surface and the force
change between the tip and the surface atoms is determined by recording the deflection of a small
spring-like cantilever. Thereby the surface topography can be constructed even down to an atomic
resolution. For instance, Ali et al. used AFM to characterize surface morphology and roughness in the
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study of Co-doped ZnO films grown on various crystalline substrates in Fischer-Tropsch synthesis
and revealed that the Co-ZnO films consisted of well-isolated nano-globules [70]. LEIS is mainly
used to study relative positions of atoms in a surface lattice and chemical composition of sample
surface by shooting ions (normally ionized noble gas atoms or alkali atoms) to the sample surface
and observing positions, velocities, and energies of the scattered ions [71]. For instance, LEIS was
applied to determine surface composition and concentration of metal elements in the study of acetone
hydrogenation over various Pt-Ru/C catalysts [72].

Besides the surface characterizations, careful characterizations of the overall structure of catalyst
materials are also important to help study the active sites, considering the fact that the generation
and performance of active sites would be influenced by the beneath lattice atoms and the local
environment. A large number of such techniques are available for use, such as X-ray diffraction
(XRD), Raman, infrared spectroscopy (IR), ultraviolet-visible spectroscopy (UV-vis), scanning electron
microscopy/transmission electron microscopy (SEM/TEM), high-resolution TEM (HRTEM), extended
X-ray absorption fine structure (EXAFS), and X-ray absorption near edge structure (XANES). Both
Raman and IR are widely-used vibrational spectroscopy methods in active sites study. Raman
spectroscopy is mainly used to provide information on molecular vibrations and crystal structures
by irradiating the sample with monochromatic light (usually from a laser) and detecting the Raman
scattered light as Raman spectrum after the interaction between laser light and molecular vibrations or
photons, wherein the fingerprinting characteristics of the Raman spectrum could be used to identify
substances and evaluate crystallinity [73]. IR is mainly used to identify particular functional groups in
an unknown sample and is accomplished by passing through the sample with a beam of infrared light,
which could be absorbed when frequency of the IR is equal to the vibrational frequency of the bonds
within the functional groups [74]. For instance, Otake et al. investigated the activity of a vanadium
oxide catalyst supported on metal-organic framework (MOF) for selective alcohol oxidation and used
both Raman and IR to characterize the synthesized catalysts, which exhibited the existence of different
V-containing bonds before and after reaction and helped reveal that the dehydrated form of V2 species
on MOF are actually the active sites [75]. While the interaction of molecules with infrared light causes
vibrational transitions (as in the case of IR), the UV (200–400 nm) and visible light (400–700 nm) with
shorter wavelength but higher energy radiation would cause electronic transitions to molecules, which
means that the molecules could adsorb certain wavelength of light that matches the energy difference
between the possible excited state and ground state of molecules [76]. By measuring the intensity
of light before and after the light passes through the sample, UV-vis spectrometer can be used to
determine qualitatively and quantitatively the concentration of ions or organic compounds based on
the Beer-Lambert Law [77]. For instance, to investigate the activity and deactivation of small-pore
zeolites for methanol-to-olefins process, Goetze et al. applied UV-vis to analyze the formation of
hydrocarbon species inside the zeolite crystals [78]. EXAFS and XANES are based on X-ray adsorption
spectroscopy (XAS), which is obtained when tunable X-ray are shone on sample and incident and
transmitted X-ray energy are recorded. The intensity of transmitted X-ray will drop dramatically
when the incident X-ray energy matches the binding energy of an electron within the atoms of a
sample, resulting in an adsorption edge. Since the binding energies of electrons for different elements
are generally different and correspond to their unique adsorption edges, XAS spectra can be used
to identify elements and provide information on the electronic structure of sample [79]. In detail,
EXAFS allows determination of near neighbor coordination numbers and interatomic distances, while
XANES provides information on energy bandwidth, bond angles, and oxidation state. For instance,
Magadzu et al. applied EXAFS/XANES to analyze Au-Cu ion mixtures on TiO2 in the study of
low-temperature water-gas shift reaction. XANES spectra confirmed that Cu exists as ions (Cu+/Cu2+)
before and during the reaction while EXAFS spectra suggested that the interaction between Au and Cu
is lower than its bimetallic system [80]. XRD was accomplished by shooting a beam of monochromatic
X-ray to sample and collecting the diffraction signals, of which the possible directions are related to
size and shape of the unit cell and the intensities mainly depend on atom arrangement in the crystal
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structure [81]. For instance, XRD was used to identify crystalline phases of mixed metal oxide supports
and Ni-based catalyst in CO2 methanation on Ni catalysts supported on ternary and quaternary mixed
oxide [82]. TEM, HRTEM, and SEM are powerful to obtain morphology, crystallinity, size, structure,
facet exposure information of characterized catalyst materials. TEM is accomplished by transmitting
a beam of electrons through sample and interact with the electrons within the sample, while SEM is
done by scanning the surface of sample with a beam of electrons, generating signals that contains
information about the surface topography [83,84]. Figure 3 shows the characterizations of nickel
nitride nanosheet catalyst with XRD, SEM, HRTEM, and AFM, which confirmed a hexagonal Ni3N
phase, uniform nanosheet morphology, unique porosity in structure, and about 5−7 unit cells in
thickness [85].Catalysts 2018, 8, x FOR PEER REVIEW  7 of 19 
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2.3. Computational Approach for Studying Active Sites

The computational approach which range from semi-empirical to first principles has become
a powerful tool in catalysis study nowadays [86]. The tight-binding method, also known as the
Huckel method and one most extensively used semi-empirical method, was initially used to calculate
the electronic structures in organic chemistry and later on introduced to study clusters and slabs of
transition metal systems [87–89]. This method was further developed by Hoffmann to better model the
transition metal systems by specially treating the nonorthogonality of atomic orbits, also known as the
EHT method (the extended Huckel method) [90]. EHT considers all valence electrons in a molecular
orbital calculation based on the orbital overlaps and experimental ionization potentials and could give
reasonable results of the corresponding eigenvalues for the molecular orbitals. However, EHT method
also has its limitations when dealing with medium-sized molecules [91]. An extension of the EHT
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method was named ASED (atomic superposition and delocalization), in which repulsive interactions
were introduced by Anderson and proved to be more reliable in calculating adsorption geometries and
energetic trends [92–94]. For instance, Koster et al. studied the adsorption of methyl (CH3), methylene
(CH2), and methyne (CH) on Rh(111) and Ni(111) with both EHT and ASED method by calculating
the local density of states and bond order overlap populations [95]. The results determined the active
sites for CHx species adsorption and showed that the adsorption energy increased with an increase in
hydrogen content (x) in CHx. However, the semi-empirical method has its limitations when dealing
with electron-electron interactions and electron correlation, especially for transition metal systems
which contains a large number of d-electrons and degenerate eigenstate [96]. Methods such as the
ab initio molecular orbital methods and density functional theory (DFT), which are derived from
the first principles, have been proven to be effective in the prediction of the electronic and energetic
properties in transition metal systems. The most basic approach of ab initio molecular orbital methods
is the HF-SCF (Hartree-Fock self-consistent field) method and has been mainly used on small metallic
clusters and simple periodic models [97]. The basic concept of HF-SCF method is that one can use a
single slater determinant to approximate the exact N-body wave function of a system and the solution
can give us the HF wavefunction and the energy of the system [98]. HF-SCF method is widely used
in solving the Schrödinger equation for atoms and nanostructures in active sites study. For instance,
Radhakrishnan et al. used HF-SCF calculations to explore the structural possibilities of a MnOx/Al2O3

catalyst for ozone decomposition and the calculated vibrational frequencies matched well with the
experimental data [99]. However, HF-SCF does not account for the correlations between electrons and
sometimes would result in a large deviation from the experimental results.

The development of DFT can be traced back to Thomas and Fermi in the 1920s [100], while it
was formally used as one first principle method by Hohenberg and Kohn who demonstrated that
the energy is a unique function of the density [101]. With significant advances in the algorithms and
methods of DFT as well as the computer power, DFT is now the most widely used computational
method in catalysis study and has been able to deal with thousands of atoms with reasonable accuracy.
For instance, in the study of identification of the active site of the Cu/ZnO/Al2O3 catalyst for industrial
methanol synthesis, DFT calculation was conducted to rationalize the effect of the structural features
that have been previously identified to be relevant for the catalytic properties, as shown in Figure 4 [102].
The ideal defect-free catalyst was represented by a flat Cu(111) surface while the catalyst with surface
defects was represented by a stepped Cu(211) surface (Figure 4 black and blue curves). The CO2

hydrogenation pathways on the two different surfaces are shown in Figure 4b, being proceeded by
forming the intermediates HCOO, HCOOH, and H2COOH. The C-O bond in H2COOH was split
to generate adsorbed H2CO and OH, with H2CO being further hydrogenated to methanol via the
methoxy (CH3O) intermediate. As suggested in Figure 4b, the intermediates were bonded more weakly
on the flat Cu(111) than on the stepped Cu(211). In the meantime, the energies of the intermediates and
the transition state energies decreased significantly on the (111) surface compared with on the (211)
surface, indicating step sites are more active than the terrace sites. The hydrogenation of CO shows
similar results (Figure 4c), with a different reaction pathway via the intermediates including HCO,
H2CO, and H3CO. To study the beneficial role of Zn at the catalyst surface, the Cu(211) surface where
Cu in the step was partially substituted by Zn was calculated (Figure 4, red curves). By alloying Zn
into the Cu step, the adsorption energies of HCO, H2CO, and H3CO did not further increase. However,
the energy barriers showed significant decrease, leading to promoted methanol synthesis kinetics.
The order of activity for CO2 and CO hydrogenation is CuZn(211) > Cu(211) > Cu(111). In this way,
the active site was suggested to be Cu step site alloyed with Zn.
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Figure4.TheCu(111),Cu(211),andCuZn(211)facetsasviewedfromperspective(a);Gibbsfreeenergy

diagramobtainedfromDFTcalculationsforCO2(b)andCO(c)hydrogenationonclose-packed(black),

stepped(blue),andZnsubstitutedsteps(redIntermediatesmarkedwithastarareadsorbedonthe

surface.Reprintedwithpermissionfrom[102],AAAS,2012.

3.CurrentStatusandChallenges

3.1.CurrentStatus

Inrecentyears,thedevelopmentofadvancedinsitutechniques,suchasinsituelectron

microscopyandambientpressureXPS,enablescharacterizationofactivesitesunderthereactive

conditionthatmimickingtherealreactionenvironmentandthusobtainingstructuralinformationof

thefunctioningactivesites[103–105].Forinstance,Vendelboetal.imagedtheoscillatorybehavior

ofPtnanoparticlesduringCOoxidationusinginsituTEMandrevealedthatperiodicchangesin

theCOoxidationpropertiesaresynchronouswithperiodicre-facetingofthePtnanoparticles[106].

Niuetal.reportedaninsitustudyofPbSgrowthonAunanorodseedsusingliquidcellTEMand

observedinterfacialdynamicsduringtheAu-PbScore-shellnanostructureformation[107].Shenetal.

inourgroupcombinedinsituSTEMandoperandoFTIRtechniquestoinvestigateCo(OH)2-to-CoO

transitionin2Dnanosheets,asshowninFigure5[108].TheSTEMimagestakenunderthereaction

conditionprovidedclearevidenceofintermediatephasesthatweregeneratedatdifferenttransition

stagesanddetailedstructuralevolutioninformationtheatphaseboundaries.

Thecurrentcomputationalmethodshavebeensufficientlyfasttodealwithcomplexsystems

andaccuratelyprovidetheinteractionenergiesbetweenmoleculesandactivesites,especiallyfor

transitionmetalsandalloys[109,110],whichhascreatedthepossibilityofcomputer-basedactivity

siteidentificationanddesign.Acombinationaluseofcomputationandexperimentshasmadethe

computationalchemistryanevenmorepowerfultoolinactivesitesstudy.Forinstance,todesignthe

catalystsbasedonlessexpensiveandmoreearth-richmetalsforselectivehydrogenationofacetylene,

DFTcalculationwasfirstlyperformedonvariousmetalsandmetalalloys(Figure6),followedby

experimentsbeingconductedtovalidatethecalculationresults[111].Previousstudiessuggested

thatthestabilitiesofadsorbedacetyleneandethylenearetwodominantparametersdetermining
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thecatalystactivityandselectivitypropertiesandbothacetyleneandethyleneadsorptionenergies

scalewithmethyladsorptionenergies(Figure6a)[111].Agoodcatalystcandidateideallyshould

haveahighstabilityofadsorbedacetylene,whichwouldpromotetheacetylenehydrogenationrate,

andalowstabilityofadsorbedethylene,whichwouldimprovetheethyleneproductselectivityby

suppressingitsover-hydrogenation.Figure6ashowsthattheadsorptionenergiesofacetyleneand

ethylene,whichwerelinearlycorrelatedthatsuggestsnometalswouldhaveweakethyleneadsorption

andstrongacetyleneadsorptioninthesametime.Inotherwords,therewouldbecertaincompromise

inthetwoparametersincatalystdesign.Thistogetherwiththescalingrelations(asbeingdiscussed

indetailinthenextsection)ledtoawindowofcandidatecatalystmaterialswithmethylbinding

energyasadescriptorparameter(Figure6a).Bycalculatingthemethylbindingenergyonabout

70differentalloysurfaces,anumberofalloycompositionsfellintothesightofinterest,asshownin

Figure6b,wheretheconstituentcostwasplottedversusthemethyladsorptionenergy.Ni-Znalloys

exhibitedparticularstabilityintheanalysisofstabilityofdifferentalloys,andwerethereforeselected

fordetailedstudy.AsshowninFigure6c,theadsorbatesarebondedtonickelsitesinsteadofzinc,

whilethezincatomswouldchangetheelectronicpropertiesofthenickelatoms.AseriesofNi-Zn

alloycatalystsonMaAl2O4supportweresynthesizedandevaluatedfortheacetylenehydrogenation

properties(Figure6d).ThemodelPd-Agcatalystshowedagoodselectivityevenathighconversion.

TheNi-Zncatalystwith75%zinccontentexhibitedacomparableselectivitycomparedwiththebest
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Thediscoveryofscalingrelationshipisoneofthemostimportantfindingsincomputational

chemistryinrecentyears.PreviousstudieshavediscoveredthattheDFTcalculationresultsofa

simplifiedandidealizedmodelcouldrepresenttheoverallcatalyticpropertiesofacomplexedsystem

toalargeextentaccordingtothelinearscalingrelation.Thisfindingwasinitiallydiscoveredfor

adsorptionontransitionmetalsurfaces[112],andwaslateronextendedtomorecomplexsystems

suchastransitionmetalcarbide[113],oxide[114],andnitride[114]surfaces.Accordingtothescaling

relation,theadsorptionenergiesofcomplexmoleculescouldbeestimatedfromtheadsorptionenergy

valuesofthesimpleatoms.Luo’sgroup[115]foundthatthescalingrelationalsoholdsnicelyatthe

nanoscalefornoblebimetallicparticlesofdifferentcompositions,shapes,andsizes,suggestingthat

theadsorptionenergyvaluescalculatedfromsimpleatomscouldbeusedtoestimatetheadsorption

energiesofalloynanoparticleswithasimplelinearscalingrelation.Thescalingrelationshipmakesit

possibletostudytheactivesitesincomplexedcatalyticsystemsusingasimplifiedmodel.
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Figure 6. Catalysts design for selective acetylene hydrogenation. (a) Heats of adsorption for acetylene
(C2H2) and ethylene (C2H4) plotted against the heat of adsorption for methyl (CH3). The solid lines
show the predicted acetylene (red line) and ethylene (blue line) adsorption energies from scaling. The
dotted lines define the region of interest; (b) Price (in 2006) of 70 binary intermetallic compounds plotted
against the calculated methyl binding energies. The smooth transition between regions of low and high
selectivity (blue) and high and low reactivity (red) is indicated; (c) Modeling of the NiZn catalyst in the
bcc-B2 (110) structure. The Ni atoms are shown as blue and Zn as gray. The adsorption of acetylene (left)
and ethylene (right) is shown (small black and white structures); (d) Measured concentration of ethane
at the reactor outlet as a function of acetylene conversion for seven catalysts. Ethane production is a
measure of the selectivity of acetylene hydrogenation, and zero ethane corresponds to the most-selective
catalyst. Experimental details are given in the corresponding reference. Adapted with permission
from [86], Springer Nature, 2009.

3.2. Present Challenges

It needs to be noted that, although the fast development of advanced characterization techniques
and computational chemistry have significantly advanced the study of active sites, there are still
technological limitations and challenges associated with these approaches. For instance, the electron
microscopy technologies nowadays have been able to characterize surface atoms of catalyst materials
at atomic scale. However, the characterizations by themselves are still not conclusive to identify
active sites, which can only be proposed as possible ones based on the catalysis mechanisms [116].
Besides, the possible electron beam effects are of concern in influencing the real structure of active
sites. Moreover, active sites could be generated in situ under reaction conditions (i.e., the real active
sites would be significantly different from ex situ characterized ones). One example is reported in
the study of propane metathesis over dispersed molybdenum oxide on silica support. It was found
that the active sites were not surface molybdenum oxide but Mo(VI)−alkylidene moieties that were
generated under the reaction condition [117]. In some cases, surface rearrangement/restructuring
would occur under reaction condition that causes dynamic changes in the active sites. One such
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example is VMgO catalyst for oxidative propane dehydrogenation [118], in which a monolayer of
amorphous V species were identified as the active sites. These surface V units underwent a reversible
order/disorder reconstruction behavior under the reaction condition, which might be attributed to
their dynamic redox process during the catalysis cycles.

The use of advanced in situ TEM and STEM characterizations would possibly alter or even
damage the active sites due to high-energy electron beams and their interactions with the catalyst
materials. How to eliminate the beam effects remains a challenge. A TEM with an operation voltage
at 200 kV or more can generate a sub-nanometer electron probe with a current density of about 105

A/cm2, which could create defects and even destroy the ordering of a crystalline structure, transform
amorphous structure to ordered phase, and fluctuate the structure of nanoparticles [116]. For instance,
Figure 7 shows the shape and structure of an Au nanoparticle supported on activated carbon under
an electron beam [119]. The observed fluctuation in shape and inner structure was attributed to the
energy that transfers from the incident electrons to the Au particle.
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beam irradiation at various observation times. Electron doses: (a) 1.1×106, (b) 6.6×106, (c) 31.9×106,
(d) 44×106, (e) 48.4×106, (f) 59.4×106, (g) 73.7×106, (h) 84.7×106, (i) 102.3×106, (j) 110×106 e−nm−2.
Adapted with permission from [119], John Wiley and Sons, 2011.

The electron beam effects would get even more severe when gas and heating are introduced
for in situ experiments, because catalyst surface becomes more active when interacting with gas
molecules and the heating enhances the frequency and amplitude of atom vibration that result in
accelerated electron beam damage [116]. For instance, by exposing V2O5 crystallite to an electron
beam in liquid helium (4.2 K), Su et al. studied the effect of temperature in electron beam-induced
reduction of V2O5. They observed that V5+ was reduced to V4+ and the structure was transformed
from orthorhombic to amorphous phase [120], whereas a similar experiment at room temperature
showed that V5+ was reduced to V2+ state with the structure being transferred to stable cubic [121].
The temperature-dependent results indicated that an elevated temperature increased the diffusion rate
of oxygen and displaced atoms by the electron beam.

Challenges also await solutions in computational catalysis research. There is always a compromise
between computation accuracy and cost in DFT calculations. For instance, DFT calculations could
yield estimated kinetic parameters with reasonable accuracy for direct hydrocarbon reactions in
combustion, but the computation cost is significantly high [122]. Besides, the selection of approximation
to the exchange correlation is important since it greatly affects the accuracy of DFT calculation.
However, which approximations should be used for specific systems remains a great issue although
the commonly used approximations like local density approximation (LDA) and the generalized
gradient approximation (GGA) can handle various many-electrons systems. For instance, Hinuma et al.
calculated the energies of different binary oxides with seven different approximations and found that
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the strongly constrained and appropriately normed (SCAN) approximations seemed to be the best
approximations among all the tested approximations instead of LDA and GGA based on analysis
of the calculation results [123]. DFT calculations have been proved to work quite well in many
transition metal and metal oxide systems as discussed above. In the meantime, there are still many
cases that the DFT cannot handle successfully [124–126]. One example case is DFT simulation of the
hybrid organic-inorganic halide perovskite system in the study of photovoltaics for energy generation,
which is still beyond the capacity of computational study and needs the guide by experiments [127].
Moreover, current DFT calculations lack the computational power to describe the interactions between
a large number of molecules and large-size catalyst particles that reflect the real reaction environment.
However, there are some methods available to address this issue, for example, the QM/MM (quantum
mechanics/molecular mechanics) method [128]. In this method, the QM region of the system where
chemical process occurs is solved by quantum mechanics theory such as DFT and semi-empirical
method, while the rest of the system is described by a molecular mechanics force field [129]. Since
the QM/MM method combines the accuracy of QM and the speed of MM method, it can handle
systems close to real reaction environments with thousands of atoms, especially in enzymatic catalysis.
For instance, Lai et al. reported a computational study of the amyloid-β peptide degradation by insulin
degrading enzyme (IDE) based on QM/MM with more than 100 thousand of atoms and revealed a
four-step mechanism for this process, providing the basis for future study of IDE in humans [130].

4. Outlook of Future Research Direction

Knowing that heterogeneous catalysis is a complicated dynamic process in which chemical
species undergo a series of transient reaction steps on catalyst surface through interacting with the
active sites, the identification and study of active sites would be very challenging without the use of
a comprehensive set of in situ surface characterization techniques. Using the conventional ex situ
characterizations like TEM, the surface atoms we observe are sometimes not the real form of active
sites because restructuring, segregation and transformation phenomena of the active sites are common
when they leave the reactive atmosphere. Despite the enormous potential of in situ TEM/STEM
characterizations, there are still technological limitations and disadvantages associated with these
techniques and awaiting solutions with continuous research efforts. For instance, recent efforts have
been made to develop low-voltage TEM/STEM operating at 20 kV to 80 kV to mitigate the electron
beam effects on catalyst materials, with the loss in resolution due to use of low energy electrons being
compensated by a smaller Cs through aberration corrections [131,132]. Given this strategy being proven
effective, in situ electron microcopy operating at low voltage could represent one future direction in the
active site study. Another possible direction is the development of appropriate techniques that could
characterize the active site in real in situ conditions and in the meantime analyze the reactants and
products on line. In general, techniques that allow the handling of catalysts in real reaction conditions
with a dynamic and simultaneous observation of active site evolution are highly desirable in active
site study. Besides the techniques, the design of novel active sites for metal and metal oxide-based
catalysts, especially for noble-metal-free catalysts with low cost and satisfactory performance, remains
an important challenge. For instance, Rh-based catalysts used to be among the most effective catalysts
for the decomposition of nitrous oxide, however, satisfactory activity could also be achieved by some
metal oxides, hexaaluminates, and perovskites by careful design of the active sites [133]. It’s also
worth noted that the structure and morphology of the active sites may have significant effects on the
catalytic performance. It’s expected that one can achieve better activity of the catalysts by modifying
the morphology of the active sites. For instance, Li et al. summarized the state-of-art progress of the
metal nanoparticle supported by metal oxide core/yolk-shell nanostructures, which showed unique
collective and synergetic effects over conventional structures in various catalytic process [134].

With the development of electronic structure theory and computational methods, the
computational catalysis approach holds great promise in active site study. The examples discussed
in this review all refer to the active sites on transition metals and metal oxides by calculating the
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binding energy between the adsorbed molecules and the surface atoms. However, the interactions
between the nanoparticles and the support, which could involve support defects and molecule or
atom migration, are often more complicated and might play important roles in affecting the active
sites. More research efforts are needed to find out how we can systematically and directly include the
support effects in the simulations. Some newly discovered theories may be further developed to better
simulate the complicated process. For instance, Shen et al. reported the description of adsorption
energy on transition metals by considering both ionic bonding and covalent bonding contributions and
introduced work function as one additional responsible parameter, with which the adsorption energy
on transition metals was more accurately described [135]. This theory may be further extended to other
types of catalysts like metal oxides, which requires more work for validation. Moreover, the activity
and selectivity properties of active sites in many catalytic processes have been able to be simulated with
DFT calculations. In the meantime, more computational approaches need to be developed to simulate
some other equally important properties, for instance the catalyst stability and the resistance to poisons.
In recent years, machine learning has raised increasing interests in the field of computational chemistry,
especially in active sites study [136–139]. For instance, Nørskov’s group explored the activity of around
583 adsorption sites from 40 different facets of four different bulk composites for CO2 reduction with a
neural-network-based machine learning method and screened some adsorption sites as candidates of
active sites for following DFT calculation, which significantly reduced the number of DFT calculations
needed [140]. Nevertheless, with the continuous advances in new experimental techniques and
computational methods, a combinational use of these advanced approaches will provide an even more
powerful tool in future study of active sites and heterogeneous catalysis.
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