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Abstract—Attributed network embedding aims to learn low-
dimensional vector representations for nodes in a network,
where each node contains rich attributes/features describing node
content. Because network topology structure and node attributes
often exhibit high correlation, incorporating node attribute
proximity into network embedding is beneficial for learning
good vector representations. In reality, large-scale networks often
have incomplete/missing node content or linkages, yet existing
attributed network embedding algorithms all operate under the
assumption that networks are complete. Thus, their performance
is vulnerable to missing data and suffers from poor scalability.

In this paper, we propose a Scalable Incomplete Network
Embedding (SINE) algorithm for learning node representations
from incomplete graphs. SINE formulates a probabilistic learning
framework that separately models pairs of node-context and
node-attribute relationships. Different from existing attributed
network embedding algorithms, SINE provides greater flexibility
to make the best of useful information and mitigate negative
effects of missing information on representation learning. A
stochastic gradient descent based online algorithm is derived
to learn node representations, allowing SINE to scale up to
large-scale networks with high learning efficiency. We evalu-
ate the effectiveness and efficiency of SINE through extensive
experiments on real-world networks. Experimental results con-
firm that SINE outperforms state-of-the-art baselines in various
tasks, including node classification, node clustering, and link
prediction, under settings with missing links and node attributes.
SINE is also shown to be scalable and efficient on large-scale
networks with millions of nodes/edges and high-dimensional
node features. The source code of this paper is available at
https://github.com/daokunzhang/SINE.

I. INTRODUCTION

Network embedding, also known as network representation

learning, aims to embed each node of a network into a low-

dimensional vector space, by preserving network structure

and other side information. As a result, network analytical

tasks can be easily conducted by applying machine learning

techniques to the new vector space. Due to the increasing

popularity of networked applications, such as social networks,

real-world networks are often of large scale, containing a large

number of nodes, links, and high-dimensional content features.

These challenges have motivated the development of many

network embedding solutions in the field.

Two main streams of network embedding algorithms in-

clude (1) structure preserving network embedding methods,

e.g., DeepWalk [1], LINE [2], node2vec [3], that preserve

only network structure, and (2) attributed network embed-
ding methods, e.g., TADW [4], HSCA [5], MVC-DNE [6],

that augment network structure with node attributes. Because

structure preserving network embedding methods only utilize

network topology structure, they have shown to be inferior to

attributed network embedding methods which combine both

node content and structure information for embedding learn-

ing. Meanwhile, while existing attributed network embedding

methods can leverage node content, they often assume the

input networks are complete and cannot handle missing data.

In addition, they suffer from poor scalability due to high

computational cost. In summary, two major drawbacks of the

existing attributed network embedding methods include:

Vulnerable to missing data: Real-world networks are often

incomplete with missing edges and/or missing node content

features [7], due to various reasons. First, privacy or legal

restrictions make sensitive information on node attributes

or part of connections among nodes inaccessible. Second,

networks have too large size, making it prohibitively expensive

or even impossible to directly acquire complete networks.

Instead, a common practice is to obtain a smaller sample of

large networks for analysis. The sampled network inevitably

contains lots of missing nodes and links. Third, networks are

dynamic in nature, and thus newly joined nodes often have

very few links or content features. All these aspects result in

noisy and incomplete networks. Although research has shown

that jointly exploiting network structure and node attributes

can enhance the embedding performance, existing attributed

network embedding algorithms require node attributes to be

all complete. When nodes in networks have no attributes or

important dimensions of attributes are unobservable, existing

methods are vulnerable to such missing data.

Poor scalability: Most attributed network embedding al-

gorithms rely on matrix factorization (e.g., TADW [4],

HSCA [5]) or deep neural networks (e.g., MVC-DNE [6]) to

fuse the information on network structure and node attributes

towards learning a better joint representation. The matrix fac-

torization or deep neural networks require high computational

cost, where the time complexity is at least quadratic to the

number of nodes, preventing them from scaling to large-scale

networks with a large number of nodes and high-dimensional

node features. Thus, there is a strong demand for developing

efficient and effective network embedding algorithms.

The above observations motivate our research to find a better

network representation that is not only robust to missing data

in networks, but also scalable to large-scale networks.
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In this paper, we propose a new attributed network em-

bedding algorithm, called SINE, that provides a probabilistic

formulation that 1) models pairs of node and context rela-

tionships to capture broader structural dependency in random

walks; 2) models pairs of node and attribute relationships to

make the best of available node content information. Different

from existing attributed network embedding algorithms, SINE

provides a flexible way to leverage useful information and

diminish the negative impacts on the learned embedding

representation, caused by the existence of missing data on

network structure and/or node attributes. We derive an online

optimization strategy based on stochastic gradient descent,

which enables SINE with high learning efficiency and the

ability to scale up to large networks. We evaluate the efficacy

and efficiency of SINE on real-world networks in various

tasks, including node classification, clustering, and link predic-

tion. As compared with the state-of-the-art baselines, SINE is

demonstrated to be robust to missing links and node attributes,

but also scalable to large-scale networks.

The main contribution of this paper is threefold:

• We advance the existing attributed network embedding

learning to a realistic missing data setting, allowing

embedding leaning to be highly efficient and accurate for

real-world networks.

• We propose a scalable and efficient algorithm to combine

network structure and node attributes to learn a joint

embedding representation, thereby diminishing negative

impacts of missing information.

• We evaluate the effectiveness of the proposed method

under different missing data settings, showing its superior

performance to the state-of-the-art baselines.

The remainder of this paper is organized as follows. Sec-

tion II reviews previous work related to network embedding

and incomplete network analysis. The problem definition and

preliminaries directly related to our formulation are given in

Section III, followed by the proposed algorithm described

in Section IV. Experiments and discussions are presented in

Section V, and we conclude the paper in Section VI.

II. RELATED WORK

A. Network Embedding

Existing research on unsupervised network embedding can

be divided into two categories [8]: structure preserving net-
work embedding algorithms that only leverage network struc-

ture to learn node embeddings, and attributed network em-
bedding algorithms that couple network structure with node

attributes for more effective network embedding.

1) Structure Preserving Network Embedding: Inspired by

Skip-Gram [9], DeepWalk [1] learns node representations by

preserving the similarity between nodes sharing similar con-

texts. Random walks are adopted by DeepWalk to obtain node

contexts. node2vec [3] (a variant of DeepWalk) exploits biased

random walks to capture more flexible structural contexts.

LINE [2] learns node embeddings by directly modeling the

first-order proximity (the proximity between connect nodes)

and the second-order proximity (the proximity between nodes

sharing direct neighbors). GraRep [10] steps further to con-

sider high-order proximities by modeling the relations between

nodes and their k-step neighbors. M-NMF [11] complements

the local structural proximity with community structure to

learn community preserving node representations. Deep learn-

ing techniques are also adopted to learn deep, non-linear

node representations. DNGR [12] employs stacked denoising

autoencoder [13] to learn deep low-dimensional node embed-

dings. SDNE [14] designs a semi-supervised autoencoder to

learn node representations that preserve the first-order and

second-order proximity.

These algorithms leverage only network structure to learn

node representations, while ignoring node content information.

In situations where the links are sparse, these algorithms fail

to produce satisfactory results.

2) Attributed Network Embedding: TADW [4] incorporates

node text features into network embedding through inductive

matrix factorization [15]. HSCA [5] enhances TADW through

enforcing the first-order proximity in the embedding space.

pRBM [16] constructs node representations from node at-

tributes with Restricted Boltzmann Machine [17], and simul-

taneously preserves the similarity between connected nodes.

To deal with social networks with noisy user profile features,

UPP-SNE [18] learns node representations by performing a

structure-aware non-linear mapping on user profile features.

CANE [19] learns context-aware node embeddings from node

attributes via the mutual attention mechanism. MVC-DNE [6]

adopts deep multi-view learning to learn node representations

that encode network structure and node content features.

GraphSAGE [20] infers node representations inductively from

node content features through neighborhood feature aggre-

gation. AANE [21] learns node representations by finding a

low-dimensional content feature subspace, where the distance

between connected nodes is penalized.

The above attributed network embedding methods assume

that networks are complete. When missing data is present

in the networks, especially on node attributes, their perfor-

mance deteriorates dramatically, because they lack the ability

to handle missing data. In addition, because these methods

are mostly based on matrix factorization and deep learning

techniques, most of them also suffer from poor scalability. In

contrast, our work proposes an effective and efficient way to

learn node embeddings robust to missing data.

B. Incomplete Graph Mining

Missing data is very common in networks, but few research

has investigated incomplete network mining. It is well recog-

nized that, if missing data is simply ignored, network analysis

results will be severely skewed. Therefore, research efforts

have been put on missing data imputation before network

analysis is performed. [22] studies the network completion

problem, where the focus is to learn a probabilistic model

that fits the observed part of a network, and then uses the

model to infer missing nodes and links of the network. More

specifically, [23] addresses the problem of recovering the
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missing infections and the source nodes of an epidemic from

sampled snapshots of large graphs. The notion of graph iden-

tification is introduced in [24], which aims to infer a cleaned

output network from a noisy, incomplete input graph. [25]

studies the effects of non-random missing data on common

network measures such as centrality, homophily, topology and

centralization. However, very little attention has been put

on investigating network embedding and developing robust

algorithms for large-scale incomplete networks.

III. PROBLEM DEFINITION AND PRELIMINARIES

A. Problem Definition

Assume an incomplete network G = (V, E ,A, X,Ω) is

given, where V is the set of nodes, E is the set of observed

edges, and A is the set of node attributes. X ∈ R
|V|×|A| is

node feature matrix, with each observed element Xij � 0
indicates the occurrence times/weights of attribute aj ∈ A
at node vi ∈ V , and Ω ∈ {0, 1}|V|×|A| indicates whether

the node attribute value Xij is observed, with Ωij = 1 for

observed Xij and Ωij = 0 for unobserved Xij . For networks

with attributes taking continuous values, discretization can be

applied to convert the continuous attributes to discrete ones.

The objective of incomplete network embedding is to lever-

age incomplete information in E and X to learn a mapping

function Φ : vi ∈ V �→ R
|V |×d. The learned node repre-

sentations Φ(vi) are expected to be (1) low-dimensional with

d � |V|, and (2) informative for the downstream tasks, such

as node classification, node clustering and link prediction, etc.

B. DeepWalk

The Skip-Gram model [9] learns word representations by

capturing the semantic similarity between words sharing sim-

ilar contexts. DeepWalk generalizes the idea of Skip-Gram

from word representation learning to network embedding, by

using random walks to collect node contexts. Given a trun-

cated random walk with length L, {vr1 , vr2 , · · · , vri , · · · vrL},
DeepWalk learns representation Φ(vri) for node vri by using

it to predict its context nodes, which is achieved by solving

the following optimization problem,

min
Φ
− log P({vri−t

, · · · , vri+t
} \ vri |vri), (1)

where {vri−t , · · · , vri+t} \ vri are the context nodes of vri
within t window size.

By making conditional independence assumption, the prob-

ability P({vri−t
, · · · , vri+t

} \ vri |vri) can be expanded as

P({vri−t , · · · , vri+t} \ vri |vri) =
i+t∏

j=i−t,j �=i

P(vrj |vri). (2)

Following [18], considering all the generated random walks,

the overall optimization problem of DeepWalk can be refor-

mulated as

min
Φ
−
|V|∑
i=1

|V|∑
j=1

n(vi, vj) log P(vj |vi), (3)

Σ Σ · · · Σ · · · Σ Σ Σ · · · Σ · · · Σ

Σ Σ · · · Σ · · · Σ

0 0 · · · 1 · · · 0

Output Layer

Softmax Classifiers

Hidden Layer

Linear Neurons

Input Layer

One-hot Representation
the position

corresponding to vi

P(v1|vi) P(vj |vi) P(v|V||vi) P(a1|vi) P(aj |vi) P(a|A||vi)

W in

W out,aW out,s

Fig. 1. The model architecture of SINE. For each node vi, SINE learns its
representation by using it to predict its context node vj and its observable
attribute aj so that nodes sharing similar context nodes or similar observed
attributes are embedded closely in the new vector space. In this way, the
incomplete structure and node attribute information is utilized flexibly to learn
informative node representations.

where n(vi, vj) is the total occurrence times of vj as vi’s
context nodes across all generated random walks within t
window size. The overall optimization problem can be solved

by stochastically sampling a node context pair (vi, vj) and

minimizing the following partial objective:

Os
ij = − log P(vj |vi). (4)

IV. SINE: SCALABLE INCOMPLETE NETWORK

EMBEDDING

A. Model Architecture

Inspired by DeepWalk [1], SINE encodes network structure

into node embeddings by allowing nodes sharing similar

context nodes to have similar representations. This is achieved

by minimizing the DeepWalk partial objective in Eq. (4) for

each node context pair (vi, vj) collected from random walks.

In addition to topology structure, we also wish that nodes

sharing similar attributes should be close in the new vector

space. Following the mechanism of Skip-Gram [9], we make

the learned node representations respect this property by using

node vi to predict its co-occurring attribute aj for each

observed node attribute co-occurrence pair (vi, aj). This is

achieved by minimizing the following objective:

Oa
ij = − log P(aj |vi). (5)

As shown in Fig. 1, the learning framework of SINE

is a three-layer neural network: the first layer is the one-

hot representation for each node vi, the hidden layer is

the node representation Φ(vi) ∈ R
d constructed by a lin-

ear transformation from the input layer with weight matrix

W in ∈ R
|V|×d, the output layer is the softmax conditional

probability P(vj |vi) and P(aj |vi), for each node vj and each

attribute aj , aggregated from the hidden layer with weight

matrix W out,s ∈ R
d×|V| and W out,a ∈ R

d×|A|, respectively.
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Given the one-hot representation p(i) ∈ R
|V | of node vi

with p
(i)
i = 1 and p

(i)
j = 0 for j �= i, the node representation

Φ(vi) in the hidden layer is constructed as

Φ(vi) = W inT
p(i) = win

i , (6)

where win
i is the transpose of the i-th row of W in ∈ R

|V|×d

(the weight matrix from the input layer to the hidden layer).

In the output layer, for node context pair (vi, vj), the

probability P(vj |vi) is modeled by the softmax signal:

P(vj |vi) =
exp(Φ(vi) ·wout,s

j )
∑|V|

k=1 exp(Φ(vi) ·wout,s
k )

, (7)

where wout,s
j is the j-th column of W out,s ∈ R

d×|V| (the

weight matrix from the hidden layer to the output layer for

predicting node context).

Similarly, for the node attribute co-occurrence pair (vi, aj),
the probability P(aj |vi) is modeled by

P(aj |vi) =
exp(Φ(vi) ·wout,a

j )
∑|A|

k=1 exp(Φ(vi) ·wout,a
k )

, (8)

where wout,a
j is the j-th column of W out,a ∈ R

d×|A| (the

weight matrix from the hidden layer to the output layer for

predicting node attribute).

By aggravating the structure preserving objective in Eq. (4)

and the node attribute preserving objective in Eq. (5), node

representations Φ(·) that well preserve the available structure

and node content information, can be learned by solving the

following overall optimization problem:

min
Φ
O, (9)

where

O =− α1

|V|∑
i=1

|V|∑
j=1

n(vi, vj)logP(vj |vi)

− α2

|V|∑
i=1

|A|∑
j=1

ΩijXij logP(aj |vi).
(10)

where α1 and α2 are the trade-off parameters that balance the

structure preserving objective and the node content preserving

objective. They are set as

α1 =
1∑|V|

i=1

∑|V|
j=1 n(vi, vj)

, α2 =
1∑|V|

i=1

∑|A|
j=1 ΩijXij

.

In Eq. (10), we only concern about the non-zero values of

n(vi, vj) and ΩijXij , i.e., the node context pairs collected

from observed links and the observed node attribute co-

occurrence pairs, whose number is much smaller than |V|×|V|
and |V| × |A|, respectively. In this way, the available network

structure and node content information can be fully utilized,

and the negative impacts of missing information is diminished.

B. Model Optimization

We solve the overall optimization problem in Eq. (9)

by minimizing the partial objective in Eq. (4) and Eq. (5)

alternately with stochastic gradient descent by sampling a

node context pair (vi, vj) or a node attribute co-occurrence

pair (vi, aj) at each iteration, according to the distribution of

n(vi, vj), and ΩijXij , respectively.

For the sampled node context pair (vi, vj), negative sam-

pling is used to speed up training. Thus, the partial objective

Os
ij in Eq. (4) can be reformulates as

Os
ij = − log σ(Φ(vi) ·wout,s

j )

−
∑

k:vk∈Vneg

log σ(−Φ(vi) ·wout,s
k ), (11)

where Vneg is the set of sampled negative nodes. The param-

eters are updated by gradient descent:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

win
i = win

i − η
∂Os

ij

∂win
i

,

wout,s
j = wout,s

j − η
∂Os

ij

∂wout,s
j

,

wout,s
k = wout,s

k − η
∂Os

ij

∂wout,s
k

, for vk ∈ Vneg,

(12)

where η is the learning rate. The gradients are calculated as

follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Os
ij

∂win
i

= (σ(Φ(vi) ·wout,s
j )− 1)wout,s

j

+
∑

k:vk∈Vneg

σ(Φ(vi) ·wout,s
k )wout,s

k ,

∂Os
ij

wout,s
j

= (σ(Φ(vi) ·wout,s
j )− 1)Φ(vi),

∂Os
ij

wout,s
k

= σ(Φ(vi) ·wout,s
k )Φ(vi), for vk ∈ Vneg.

(13)

Similarly, for each sampled node attribute co-occurrence

pair (vi, aj), by adopting negative sampling, the partial ob-

jective Oa
ij in Eq. (5) is approximated by

Oa
ij = − log σ(Φ(vi) ·wout,a

j )

−
∑

k:vk∈Aneg

log σ(−Φ(vi) ·wout,a
k ), (14)

where Aneg is the set of sampled negative attributes. The

parameters are updated as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

win
i = win

i − η
∂Oa

ij

∂win
i

,

wout,a
j = wout,a

j − η
∂Oa

ij

∂wout,a
j

,

wout,a
k = wout,a

k − η
∂Oa

ij

∂wout,a
k

, for ak ∈ Aneg.

(15)
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Algorithm 1 SINE: Scalable Incomplete Network Embedding

Input:
An incomplete network G = (V, E ,A, X,Ω);

Output:
Node representation Φ(·) for each vi ∈ V;

1: S ← generate a set of random walks on G;

2: n(vi, vj)← count frequency of node context pairs (vi, vj)
in S;

3: repeat
4: draw a random number r ∈ (0, 1);
5: if r � 0.5 then
6: (vi, vj) ← sample a node context pair according to

the distribution of n(vi, vj);
7: Vneg ← draw K negative nodes;

8: (W in,W out,s) ← update parameters with

(vi, vj ,Vneg) and Eq. (12);

9: else
10: (vi, aj)← sample a node attribute pair according to

the distribution of ΩijXij ;

11: Aneg ← draw K negative attributes;

12: (W in,W out,a) ← update parameters with

(vi, aj ,Aneg) and Eq. (15);

13: end if
14: until maximum number of iterations expire;

15: construct node representation Φ(·) with W in and Eq. (6);

16: return Φ(·);

The gradients are calculated as follows
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Oa
ij

∂win
i

= (σ(Φ(vi) ·wout,a
j )− 1)wout,a

j

+
∑

k:ak∈Aneg

σ(Φ(vi) ·wout,a
k )wout,a

k ,

∂Oa
ij

wout,a
j

= (σ(Φ(vi) ·wout,a
j )− 1)Φ(vi),

∂Oa
ij

wout,a
k

= σ(Φ(vi) ·wout,a
k )Φ(vi), for ak ∈ Aneg.

(16)

Algorithm 1 gives the major procedure of the proposed

SINE algorithm. At step 1, SINE starts random walks with

length L at each node for γ times, and at step 2, counts the

frequency of node context pairs n(vi, vj) within t window size.

At step 3-14, SINE updates the parameters with stochastic

gradient descent. At each iteration, SINE samples a random

switch variable r ∈ (0, 1) to determine whether the structure

preserving objective or the node attribute preserving objective

is to be minimized, with a threshold of 0.5. To sample node

context pair and node attribute pair, the alias table method [26]

is used, which takes only O(1) time. After the iteration is

finished, node representations Φ(·) are constructed with W in

and Eq. (6).

The time complexity of SINE only relies on the maximum

number of iterations and the dimension of learned node

representations d. The maximum number of iterations is at

the scale of O(max(nnz(ΩijXij), |V|)), where nnz(ΩijXij)

TABLE I
SUMMARY OF FOUR REAL-WORLD NETWORKS

Cora Citeseer DBLP(Subgraph) DBLP(Full)

|V| 2,708 3,312 18,448 1,632,442

|E| 5,278 4,732 45,611 2,327,450

|A| 1,433 3,703 5,959 154,309

nnz(X) 49,216 105,165 108,016 10,413,178

# of Class 7 6 4 N/A

is the number of non-zero values of ΩijXij , i.e., the num-

ber of observed node attribute co-occurrence pairs, and |V|
indicates the scale of node context pairs collected from ran-

dom walks. Thus, SINE has an overall time complexity of

O(d ·max(nnz(ΩijXij), |V|)), ensuring its good scalability.

V. EXPERIMENTS

In this section, we present experimental results on real-

world networks to verify the effectiveness and efficiency of

the proposed SINE algorithm in learning informative node

representations for incomplete networks.

A. Benchmark Networks

Four real-world networks used in our experiments are

detailed as follows:

Cora and Citeseer1: The Cora network contains 2,708 pub-

lications and 5,249 citations. The Citeseer network includes

3,312 publications and 4,732 citations. For Cora and Citeseer,

each paper is represented by a 1,433-dimensional, and 3,703-

dimensional binary vector, with each dimension indicating the

presence/absence of the corresponding word.

DBLP(Subgraph) and DBLP(Full): The DBLP(Full) net-

work is constructed by the papers and their citation rela-

tionships of the DBLP bibliographic network2. There are

1,632,442 papers and 2,327,450 citations in all. To construct

the DBLP(Subgraph) network, we extract papers from the four

research areas: Database, Data Mining, Artificial Intelligence,

Computer Vision, according to papers’ venue information and

remove papers with no citations. The DBLP(Subgraph) net-

work contains 18,448 papers and 45,661 citations. From paper

titles, for DBLP(Subgraph) and DBLP(Full), we construct

5,959-dimensional and 154,309-dimensional binary node fea-

ture vectors, respectively, with each dimension indicating the

presence/absence of the corresponding word.

For all networks, the link direction is ignored. The statistics

of these networks are summarized in Table I.

B. Baseline Methods

We compare SINE with the following baseline methods:

DeepWalk [1] / node2vec [3]: node2vec is equivalent to

DeepWalk under the default setting p = 1 and q = 1.

They learn node representations by preserving the similarity

between nodes sharing similar contexts in random walks.

1https://linqs.soe.ucsc.edu/data
2https://aminer.org/citation (Version 3 is used)
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LINE-1 [2]: LINE-1 denotes the version of LINE that learns

node representations by modeling the first-order proximity.

LINE-2 [2]: LINE-2 is the version of LINE that preserves the

second-order proximity.

SDNE [14]: SDNE uses a semi-supervised autoencoder to

learn deep node representations that preserve both the first-

order and second-order proximity.

Attribute: This baseline learns node representations from only

node attributes with the SINE learning framework.

TADW [4]: TADW incorporates node content features into

DeepWalk’s network representation learning paradigm via

inductive matrix factorization [15].

HSCA [5]: HSCA enhances TADW via enforcing a first-order

proximity preserving objective.

UPP-SNE [18]: UPP-SNE learns node representations by

performing a structure-aware non-linear mapping on node

content features.

MVC-DNE [6]: MVC-DNE encodes network structure and

node content attributes into node representations through the

deep autoencoder based cross-view learning. The decoding

based version is used.

Due to the large size of DBLP(Full), TADW, HSCA, UPP-

SNE and MVC-DNE can not run on this dataset. Thus, on

DBLP(full), only DeepWalk, LINE-1, LINE-2 and Attribute

are compared with SINE in Section V-F.

C. Experimental Settings

For DeepWalk, UPP-SNE and SINE, we set the length of

random walks L = 100, the number of random walks starting

from each node γ = 40, and the window size t = 10.

For fair comparison, DeepWalk and UPP-SNE are trained

using the same strategy with SINE: we first collect node con-

text pairs, and then update parameters with stochastic gradient

descent by sampling a node context pair at each iteration.

Negative sampling is adopted by DeepWalk, LINE-1, LINE-2,

UPP-SNE, Attribute, and SINE, where the number of negative

samples K is set to 5 uniformly. For the 6 stochastic gradient

descent based algorithms, the maximum number of iterations

I is set to 100 million on Cora, Citeseer and DBLP(Subgraph),

and 1 billion on DBLP(Full), and the learning rate η decreases

from the starting value η0 = 0.025 to ητ = η0(1− τ/I) after

every 10,000 iterations, with τ being the number of elapsed

iterations. Parameters of TADW and HSCA are set to their

default values. For SDNE, its hyperparameters α and ν are

set to 0.01, and β is set to 10. The number of neurons at each

layer is set to 2708-256, 3312-256, and 18,448-1,024-256 on

Cora, Citeseer, and DBLP(Subgraph), respectively. For MVC-

DNE, on Cora, Citeseer, and DBLP(Subgraph), the number of

neurons at each layer in structure view is respectively set to

2708-128, 3312-128, and 18,448-512-128, and the number of

neurons at each layer in node attribute view is set to 1,433-128,

3,703-128, and 5,959-128. For SDNE and MVC-DNE, 500

epochs are run for both pre-training and parameter fine-tuning.

Other parameters of SDNE and MVC-DNE are set according

to [6]. For SINE and all baseline methods, the dimension of

learned node representations is set to 256.

D. Performance Comparison on Incomplete Networks
In this section, we conduct experiments to compare the

performance of SINE and baseline methods on incomplete

networks. To better understand the ability of different network

embedding algorithms to deal with missing data, we investi-

gate the following four research questions:

Q1 How is the performance affected when a portion

of node attributes are missing compared with the

complete network? (complete attribute vs.
incomplete attribute)

Q2 How does the performance change when the

attributes of structurally important nodes are

missing compared with missing attributes for

randomly selected nodes? (random vs.
important X row missing)

Q3 How does the performance change when the

attributes at important dimensions are missing

compared with missing attributes at random

dimensions? (random vs. important X column
missing)

Q4 How do different network embedding algorithms

perform for link prediction when a portion of

edges are missing?

To answer research questions Q1, Q2, and Q3, we compare

the performance of different network embedding algorithms

on Cora, Citeseer and DBLP(Subgraph) under 5 settings: (1)

complete network, (2) randomly selecting 50% nodes and

dropping all of their attributes (random X row missing), (3)

selecting the top 50% structurally important nodes measured

by degree and dropping their attributes (important X row

missing), (4) missing node attributes at randomly selected

50% dimensions (random X column missing), and (5) missing

node attributes at top 50% important dimensions measured

by mutual information with class label (important X column

missing). As the baselines of Attribute, TADW, HSCA and

UPP-SNE require all nodes to have observed attributes, under

settings (2) and (3), for nodes with no attributes, we fill their

attribute values with the observed modes at each dimension.

To compare the performance, using the learned node represen-

tations as features, we conduct multi-class node classification

experiments on Cora, Citeseer and DBLP, and carry out node

clustering experiments on Cora.
To answer research question Q4, we perform link prediction

experiments on Cora and DBLP(Full). We randomly remove

30%, 50% and 70% links, learn node representations from the

respective incomplete networks with different algorithms, and

compare their performance for predicting missing links.
1) Comparison of Classification Performance: Using the

learned node representations as features, we train an SVM

classifier (with the LIBLINEAR implementation [27]) on the

randomly selected 50% samples, and then classify the re-

mainder 50% samples with the learned classifier. The random
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TABLE II
NODE CLASSIFICATION RESULTS ON CORA

Method Complete
Incomplete

X Row Missing X Column Missing
Random Important Random Important

Micro-F1

DeepWalk 0.8245 0.8245 0.8245 0.8245 0.8245
LINE-1 0.7697 0.7697 0.7697 0.7697 0.7697
LINE-2 0.7081 0.7081 0.7081 0.7081 0.7081
SDNE 0.6047 0.6047 0.6047 0.6047 0.6047
Attribute 0.7222 0.4905 0.4721 0.6581 0.2592
TADW 0.8543 0.7387 0.3982 0.8383 0.7068
HSCA 0.8569 0.7366 0.3791 0.8530 0.7309
UPP-SNE 0.8191 0.5538 0.5438 0.8058 0.7201
MVC-DNE 0.7528 0.6258 0.6500 0.7075 0.4978
SINE 0.8340 0.8329 0.8383 0.8332 0.8010

Macro-F1

DeepWalk 0.8184 0.8184 0.8184 0.8184 0.8184
LINE-1 0.7673 0.7673 0.7673 0.7673 0.7673
LINE-2 0.6986 0.6986 0.6986 0.6986 0.6986
SDNE 0.5811 0.5811 0.5811 0.5811 0.5811
Attribute 0.6927 0.4373 0.4130 0.6302 0.1427
TADW 0.8457 0.7297 0.2903 0.8295 0.6890
HSCA 0.8487 0.7151 0.2521 0.8445 0.7130
UPP-SNE 0.8088 0.5322 0.5227 0.7985 0.7072
MVC-DNE 0.7263 0.5872 0.6176 0.6808 0.4447
SINE 0.8214 0.8218 0.8266 0.8228 0.7896

TABLE III
NODE CLASSIFICATION RESULTS ON CITESEER

Method Complete
Incomplete

X Row Missing X Column Missing
Random Important Random Important

Micro-F1

DeepWalk 0.6038 0.6038 0.6038 0.6038 0.6038
LINE-1 0.5684 0.5684 0.5684 0.5684 0.5684
LINE-2 0.4673 0.4673 0.4673 0.4673 0.4673
SDNE 0.4614 0.4614 0.4614 0.4614 0.4614
Attribute 0.6883 0.4325 0.4287 0.6549 0.2264
TADW 0.6957 0.5086 0.3267 0.7014 0.5199
HSCA 0.6825 0.3708 0.3128 0.7031 0.5358
UPP-SNE 0.7124 0.4418 0.4551 0.6858 0.5662
MVC-DNE 0.6954 0.5642 0.5467 0.6578 0.3187
SINE 0.7136 0.6791 0.6882 0.7030 0.5682

Macro-F1

DeepWalk 0.5465 0.5465 0.5465 0.5465 0.5465
LINE-1 0.5300 0.5300 0.5300 0.5300 0.5300
LINE-2 0.4192 0.4192 0.4192 0.4192 0.4192
SDNE 0.3986 0.3986 0.3986 0.3986 0.3986
Attribute 0.6317 0.4051 0.4018 0.5951 0.1962
TADW 0.6403 0.4673 0.2806 0.6480 0.4613
HSCA 0.6292 0.3191 0.2589 0.6505 0.4740
UPP-SNE 0.6567 0.4135 0.4323 0.6230 0.5027
MVC-DNE 0.6269 0.4996 0.4788 0.5851 0.2714
SINE 0.6564 0.6201 0.6256 0.6401 0.5017

TABLE IV
NODE CLASSIFICATION RESULTS ON DBLP(SUBGRAPH)

Method Complete
Incomplete

X Row Missing X Column Missing
Random Important Random Important

Micro-F1

DeepWalk 0.8005 0.8005 0.8005 0.8005 0.8005
LINE-1 0.7810 0.7810 0.7810 0.7810 0.7810
LINE-2 0.7125 0.7125 0.7125 0.7125 0.7125
SDNE 0.6464 0.6464 0.6464 0.6464 0.6464
Attribute 0.7509 0.5665 0.6275 0.6226 0.3952
TADW 0.8070 0.7195 0.4544 0.7533 0.4928
HSCA 0.8023 0.6227 0.4178 0.7532 0.4628
UPP-SNE 0.8267 0.6092 0.6606 0.7078 0.4141
MVC-DNE 0.7697 0.6693 0.7089 0.7025 0.6232
SINE 0.8370 0.8278 0.8370 0.8275 0.7953

Macro-F1

DeepWalk 0.7176 0.7176 0.7176 0.7176 0.7176
LINE-1 0.6896 0.6896 0.6896 0.6896 0.6896
LINE-2 0.6129 0.6129 0.6129 0.6129 0.6129
SDNE 0.3973 0.3973 0.3973 0.3973 0.3973
Attribute 0.6604 0.4403 0.5412 0.4870 0.1882
TADW 0.7271 0.5539 0.2935 0.6443 0.2760
HSCA 0.6926 0.4537 0.2436 0.6140 0.2549
UPP-SNE 0.7668 0.5196 0.5988 0.6187 0.1985
MVC-DNE 0.6699 0.5222 0.5961 0.5854 0.4022
SINE 0.7731 0.7620 0.7727 0.7618 0.7122

TABLE V
NODE CLUSTERING RESULTS ON CORA

Method Complete
Incomplete

X Row Missing X Column Missing
Random Important Random Important

Accuracy

DeepWalk 0.6097 0.6097 0.6097 0.6097 0.6097
LINE-1 0.3444 0.3444 0.3444 0.3444 0.3444
LINE-2 0.4162 0.4162 0.4162 0.4162 0.4162
SDNE 0.3897 0.3897 0.3897 0.3897 0.3897
Attribute 0.3869 0.3216 0.3240 0.3454 0.3021
TADW 0.3561 0.3123 0.3045 0.4000 0.3316
HSCA 0.3721 0.3257 0.3046 0.3956 0.3357
UPP-SNE 0.6270 0.4496 0.4269 0.6319 0.5573
MVC-DNE 0.6228 0.4058 0.3685 0.5352 0.3021
SINE 0.6323 0.6397 0.6355 0.6343 0.6297

NMI

DeepWalk 0.4165 0.4165 0.4165 0.4165 0.4165
LINE-1 0.0910 0.0910 0.0910 0.0910 0.0910
LINE-2 0.1806 0.1806 0.1806 0.1806 0.1806
SDNE 0.1409 0.1409 0.1409 0.1409 0.1409
Attribute 0.1475 0.0528 0.0661 0.0836 0.0056
TADW 0.1377 0.0321 0.0120 0.1603 0.0698
HSCA 0.1646 0.0556 0.0113 0.1892 0.0767
UPP-SNE 0.4377 0.2171 0.2003 0.4427 0.3490
MVC-DNE 0.3737 0.1326 0.1119 0.3018 0.0067
SINE 0.4456 0.4458 0.4401 0.4468 0.4376

training and test data split is repeated for 10 times, and

averaged Micro-F1 and Macro-F1 values are used to evaluate

the classification performance.
Tables II-IV report node classification results of differ-

ent network embedding algorithms on Cora, Citeseer and

DBLP(Full), under the five settings: (1) complete, (2) random

X row missing, (3) important X row missing, (4) random

X column missing, and (5) important X column missing. For

each setting, the best Micro-F1 and Macro-F1 values are bold-
faced, and the second best performers are underlined.

By comparing column 3 with columns 4-7 in Tables II-

IV, we can respond to research question Q1: when node

attributes become incomplete, the performance of the existing

attributed network embedding baselines (Attribute, TADW,

HSCA, UPP-SNE and MVC-DNE) drops remarkably in most

cases, while SINE often shows greater stability. This attributes

to the flexible way that SINE leverages node attributes, making

it able to best utilize observed node attributes and to diminish

the negative impact caused by missing attributes.
To better understand research question Q2, we compare

column 4 with column 5 in Tables II-IV. When the attributes

of structurally important nodes are missing, the performance of

TADW and HSCA degrades dramatically on all three datasets.

Interestingly, on DBLP, the Attribute baseline experiences a

performance gain. This might be due to the fact that struc-

turally important nodes tend to have strong correlations with

neighbor nodes on attribute values, resulting in information

redundancy. When such redundancy is removed, Attribute

achieves better classification performance. Due to the same

reason, UPP-SNE and MVC-DNE share the same trends

with Attribute on DBLP. However, under both settings, SINE

exhibits more stable performance and outperforms all other

baselines.
To answer research question Q3, we compare column 6

with column 7 in Tables II-IV. The performance of Attribute

decreases dramatically when node attributes at important di-

mensions are missing, compared with the missing in randomly

selected dimensions. Accordingly, attributed network embed-

ding algorithms consistently experience a dramatic perfor-

mance drop, to a level inferior to the only structure preserving

network embedding algorithms. In this case, the remaining

node attributes are of poor quality, making them deteriorate

rather than complement network structure in learning network

embeddings. By contrast, the performance of SINE drops less
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TABLE VI
OPERATORS TO CONSTRUCT EDGE FEATURES

Operator Symbol Definition

Average � [Φ(vi) � Φ(vj)]k =
Φk(vi)+Φk(vj)

2
Hadamard � [Φ(vi) � Φ(vj)]k = Φk(vi) · Φk(vj)

Weighted-L1 ‖·‖1̄ ‖Φ(vi) · Φ(vj)‖1̄k = |Φk(vi)− Φk(vj)|
Weighted-L2 ‖·‖2̄ ‖Φ(vi) · Φ(vj)‖2̄k = (Φk(vi)− Φk(vj))

2

significantly, demonstrating its better robustness to missing

node attributes.

From Tables II-IV, we can conclude that SINE achieves

the best overall performance under all node attribute missing

settings. This not only verifies the effectiveness of SINE in

handling missing node attributes, but also signifies its great

potential to solve real-world applications with missing data.
2) Clustering Performance Comparison: As a complement

to node classification, we also conduct node clustering ex-

periments on Cora. We feed node representations learned by

different network embedding algorithms into the K-means

clustering algorithm and group them into 7 categories. To

alleviate the impact caused by random initialization, we run

K-means for 20 times and report averaged Accuracy and

NMI [28] values. The clustering results are presented in Table

V, with the best and second performer highlighted by bold and

underline respectively. Similar to node classification results,

SINE achieves the best clustering performance with small

variance across all node attribute missing settings.
3) Link Prediction Performance Comparison: To answer

research question Q4, we carry out link prediction experi-

ments on Cora and DBLP(Full). Specifically, we compare

the performance of different network embedding algorithms

on link prediction, when a portion of edges are missing.

Following [3], we perform link prediction using the edge

features constructed from the learned node representations

with the operators listed in Table VI. We randomly remove

30%, 50% and 70% of edges. To construct the test set, for

each removed edge (vi, vj), we randomly sample a negative

node pair (vi, vk) with (vi, vk) /∈ E as negative ground truth.

To construct the training set, for each connected node pair

(vi, vj), we randomly sample a negative node pair (vi, vk),
with no edges between vi and vk observed in the remaining

network.

SVM implemented by LIBLINEAR [27] is used to perform

training and testing on edge features. Due to the memory

limitation, for DBLP(Full), 5% training and test samples are

randomly selected from the two original sets respectively. We

also compare SINE with the common neighbor based heuristic

link prediction methods, which are given in Table VII. The

Area Under Curve (AUC) score is used to evaluate the link

prediction performance.

Tables VIII-IX report the link prediction results on Cora

and DBLP(Full), with the best performer and the second best

performer highlighted by bold and underline respectively. As

can be seen, on both Cora and DBLP(Full), the proposed SINE

algorithm with the Hadamard operator consistently achieves

the best link prediction performance with all missing edge

TABLE VII
HEURISTIC SCORES FOR PREDICTING THE LINK BETWEEN NODE PAIR

(vi, vj) WITH THEIR DIRECT NEIGHBOR SETS N (vi) AND N (vj)

Score Definition
Common Neighbors |N (vi) ∩N (vj)|
Jaccard’s Coefficient

|N (vi)∩N (vj)|
|N (vi)∪N (vj)|

Adamic-Adar Score
∑

vk∈N (vi)∩N (vj)
1

log |N (vk)|
Preferential Attachment |N (vi)| · |N (vj)|

TABLE VIII
AUC VALUES FOR LINK PREDICTION ON CORA

Operator Method 30% 50% 70%

Common Neighbors 0.5115 0.5045 0.5019
Jaccard’s Coefficient 0.5115 0.5045 0.5019
Adamic-Adar 0.5115 0.5045 0.5019
Pref. Attachment 0.5445 0.5282 0.5229

Average

DeepWalk 0.5123 0.4952 0.5039
LINE-1 0.5542 0.5307 0.5157
LINE-2 0.5280 0.5220 0.5178
SDNE 0.5585 0.5488 0.5384
Attribute 0.5320 0.5326 0.5264
TADW 0.5571 0.5434 0.5386
HSCA 0.5543 0.5368 0.5272
UPP-SNE 0.5336 0.5213 0.5214
MVC-DNE 0.5348 0.5202 0.5269
SINE 0.5507 0.5425 0.5375

Hadamard

DeepWalk 0.7632 0.6657 0.5563
LINE-1 0.6702 0.6003 0.5403
LINE-2 0.6763 0.5808 0.5255
SDNE 0.5730 0.5516 0.5293
Attribute 0.8095 0.7966 0.7989
TADW 0.8361 0.7850 0.7202
HSCA 0.8623 0.8108 0.7351
UPP-SNE 0.8615 0.8160 0.7415
MVC-DNE 0.6749 0.6090 0.5643
SINE 0.8804 0.8545 0.8289

Weighted-L1

DeepWalk 0.8368 0.7302 0.6015
LINE-1 0.6303 0.5900 0.5199
LINE-2 0.6429 0.5726 0.5109
SDNE 0.5643 0.5365 0.5219
Attribute 0.7402 0.7212 0.7179
TADW 0.7443 0.6611 0.5834
HSCA 0.7725 0.6840 0.5859
UPP-SNE 0.8512 0.7970 0.7095
MVC-DNE 0.7883 0.7662 0.7418
SINE 0.8438 0.8035 0.7643

Weighted-L2

DeepWalk 0.8368 0.7356 0.6041
LINE-1 0.6102 0.5720 0.5131
LINE-2 0.6631 0.4888 0.4874
SDNE 0.5267 0.4915 0.5198
Attribute 0.7398 0.7311 0.7333
TADW 0.7279 0.6540 0.5742
HSCA 0.7400 0.6630 0.5749
UPP-SNE 0.8414 0.7937 0.7149
MVC-DNE 0.7359 0.7331 0.7264
SINE 0.8344 0.7965 0.7581

ratios. We can also observe that, compared with attributed

network embedding algorithms, the only structure preserving

network embedding algorithms are more vulnerable to missing

edges. As the ratio of missing edges increases, apart from

the Attribute baseline, all methods experience a performance

drop, while SINE retains more robust results. There are two

main reasons: first, SINE uses random walks to bridge nodes

with no immediate links and preserve their similarity in the

learned node representations; second, SINE makes the best of

the available node features to complement network structure

for more effective network embedding.

E. Experiments on Parameter Sensitivity

We also conduct experiments to investigate the sensitivity

of SINE to three important parameters: the maximum number

of iterations I , window size t, and the dimension of learned
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Fig. 2. Parameter sensitivity

TABLE IX
AUC VALUES FOR LINK PREDICTION ON DBLP(FULL)

Operator Method 30% 50% 70%

Common Neighbors 0.5024 0.5013 0.5006
Jaccard’s Coefficient 0.5024 0.5013 0.5006
Adamic-Adar 0.5024 0.5013 0.5006
Pref. Attachment 0.8898 0.8768 0.8513

Average

DeepWalk 0.9016 0.8896 0.8619
LINE-1 0.5500 0.5389 0.5281
LINE-2 0.8810 0.8689 0.8424
Attribute 0.6215 0.6205 0.6185
SINE 0.8747 0.8692 0.8533

Hadamard

DeepWalk 0.9841 0.9668 0.9270
LINE-1 0.9835 0.9590 0.8999
LINE-2 0.9766 0.9576 0.9146
Attribute 0.8490 0.8500 0.8507
SINE 0.9887 0.9831 0.9670

Weighted-L1

DeepWalk 0.9766 0.9463 0.8819
LINE-1 0.8157 0.7573 0.6397
LINE-2 0.8787 0.8601 0.8400
Attribute 0.7818 0.7819 0.7778
SINE 0.9382 0.9150 0.8497

Weighted-L2

DeepWalk 0.9390 0.9018 0.8160
LINE-1 0.8055 0.7452 0.6172
LINE-2 0.6910 0.6618 0.8246
Attribute 0.7681 0.7701 0.7688
SINE 0.9029 0.8787 0.8113

node embeddings d. We fix any two of the three parameters

and study how the performance of SINE changes by varying

the remaining one in turn. Fig. 2 reports the change of Micro-

F1 values for node classification on Cora and Citeseer with

regards to the three parameters, under the settings where at-

tributes in randomly selected 50% nodes are missing (random

X row missing). Here, we observe a similar trend with an

increase of all three parameters: SINE performs increasingly

better and stabilizes after a threshold.

F. Running Time Comparison

We evaluate the running time of different network em-

bedding algorithms in this section. We hope this empirical

evaluation can help compare the efficiency and scalability of

these algorithms, though they are implemented in different

programming languages, with DeepWalk, UPP-SNE and SINE

in C, LINE in C++, SDNE and MVC-DNE in Python, as

well as TADW and HSCA in Matlab. Fig. 3 compares the

CPU running time (log-scale) of different algorithms on Cora,

Citeseer, DBLP(Subgraph) and DBLP(Full). On DBLP(Full),

due to its large size, only the running time of DeepWalk,

LINE-1, LINE-2 and SINE is available. We can see that,

SINE is much more efficient than SDNE and other attributed
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Fig. 3. The comparison of running time of different network embedding
algorithms on the log scale

network embedding methods including TADW, HSCA, UPP-

SNE and MVC-DNE. The running time of SINE is comparable

to that of DeepWalk, LINE-1 and LINE-2. This demonstrates

high efficiency of SINE and its ability to scale to large-scale

networks on a single machine (without GPU support).

VI. CONCLUSION

Large-scale networks often contain incomplete node at-

tributes and/or missing links, which impose significant chal-

lenges to attributed network embedding. Because missing

node attributes or links result in inaccurate node similarity

estimation, most existing methods are vulnerable to missing

data, and minor presence of missing information may signif-

icantly deteriorate the algorithm performance. In this paper,

we propose a novel scalable incomplete network embedding

(SINE) method, which uses probabilistic learning of node-

context and node-attribute relationships to tackle missing data

on large-scale networks. SINE couples network node content

and topology structures through a three-layer neural network,

where each node learns its representation by considering

context nodes and observable attributes of the node. By doing

so, SINE fully minimizes the impact of missing data on the

learning of node representations. A stochastic gradient descent

based online algorithm is derived to ensure SINE can scale

to large-scale networks. Extensive experiments and compar-
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isons demonstrate the effectiveness and scalability of SINE

for learning network embeddings on large-scale incomplete

networks.
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