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Abstract—Attributed network embedding aims to learn low-
dimensional vector representations for nodes in a network,
where each node contains rich attributes/features describing node
content. Because network topology structure and node attributes
often exhibit high correlation, incorporating node attribute
proximity into network embedding is beneficial for learning
good vector representations. In reality, large-scale networks often
have incomplete/missing node content or linkages, yet existing
attributed network embedding algorithms all operate under the
assumption that networks are complete. Thus, their performance
is vulnerable to missing data and suffers from poor scalability.

In this paper, we propose a Scalable Incomplete Network
Embedding (SINE) algorithm for learning node representations
from incomplete graphs. SINE formulates a probabilistic learning
framework that separately models pairs of node-context and
node-attribute relationships. Different from existing attributed
network embedding algorithms, SINE provides greater flexibility
to make the best of useful information and mitigate negative
effects of missing information on representation learning. A
stochastic gradient descent based online algorithm is derived
to learn node representations, allowing SINE to scale up to
large-scale networks with high learning efficiency. We evalu-
ate the effectiveness and efficiency of SINE through extensive
experiments on real-world networks. Experimental results con-
firm that SINE outperforms state-of-the-art baselines in various
tasks, including node classification, node clustering, and link
prediction, under settings with missing links and node attributes.
SINE is also shown to be scalable and efficient on large-scale
networks with millions of nodes/edges and high-dimensional
node features. The source code of this paper is available at
https://github.com/daokunzhang/SINE.

I. INTRODUCTION

Network embedding, also known as network representation
learning, aims to embed each node of a network into a low-
dimensional vector space, by preserving network structure
and other side information. As a result, network analytical
tasks can be easily conducted by applying machine learning
techniques to the new vector space. Due to the increasing
popularity of networked applications, such as social networks,
real-world networks are often of large scale, containing a large
number of nodes, links, and high-dimensional content features.
These challenges have motivated the development of many
network embedding solutions in the field.

Two main streams of network embedding algorithms in-
clude (1) structure preserving network embedding methods,
e.g., DeepWalk [1], LINE [2], node2vec [3], that preserve
only network structure, and (2) attributed network embed-
ding methods, e.g., TADW [4], HSCA [5], MVC-DNE [6],
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that augment network structure with node attributes. Because
structure preserving network embedding methods only utilize
network topology structure, they have shown to be inferior to
attributed network embedding methods which combine both
node content and structure information for embedding learn-
ing. Meanwhile, while existing attributed network embedding
methods can leverage node content, they often assume the
input networks are complete and cannot handle missing data.
In addition, they suffer from poor scalability due to high
computational cost. In summary, two major drawbacks of the
existing attributed network embedding methods include:
Vulnerable to missing data: Real-world networks are often
incomplete with missing edges and/or missing node content
features [7], due to various reasons. First, privacy or legal
restrictions make sensitive information on node attributes
or part of connections among nodes inaccessible. Second,
networks have too large size, making it prohibitively expensive
or even impossible to directly acquire complete networks.
Instead, a common practice is to obtain a smaller sample of
large networks for analysis. The sampled network inevitably
contains lots of missing nodes and links. Third, networks are
dynamic in nature, and thus newly joined nodes often have
very few links or content features. All these aspects result in
noisy and incomplete networks. Although research has shown
that jointly exploiting network structure and node attributes
can enhance the embedding performance, existing attributed
network embedding algorithms require node attributes to be
all complete. When nodes in networks have no attributes or
important dimensions of attributes are unobservable, existing
methods are vulnerable to such missing data.
Poor scalability: Most attributed network embedding al-
gorithms rely on matrix factorization (e.g., TADW [4],
HSCA [5]) or deep neural networks (e.g., MVC-DNE [6]) to
fuse the information on network structure and node attributes
towards learning a better joint representation. The matrix fac-
torization or deep neural networks require high computational
cost, where the time complexity is at least quadratic to the
number of nodes, preventing them from scaling to large-scale
networks with a large number of nodes and high-dimensional
node features. Thus, there is a strong demand for developing
efficient and effective network embedding algorithms.

The above observations motivate our research to find a better
network representation that is not only robust to missing data
in networks, but also scalable to large-scale networks.
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In this paper, we propose a new attributed network em-
bedding algorithm, called SINE, that provides a probabilistic
formulation that 1) models pairs of node and context rela-
tionships to capture broader structural dependency in random
walks; 2) models pairs of node and attribute relationships to
make the best of available node content information. Different
from existing attributed network embedding algorithms, SINE
provides a flexible way to leverage useful information and
diminish the negative impacts on the learned embedding
representation, caused by the existence of missing data on
network structure and/or node attributes. We derive an online
optimization strategy based on stochastic gradient descent,
which enables SINE with high learning efficiency and the
ability to scale up to large networks. We evaluate the efficacy
and efficiency of SINE on real-world networks in various
tasks, including node classification, clustering, and link predic-
tion. As compared with the state-of-the-art baselines, SINE is
demonstrated to be robust to missing links and node attributes,
but also scalable to large-scale networks.

The main contribution of this paper is threefold:

o We advance the existing attributed network embedding
learning to a realistic missing data setting, allowing
embedding leaning to be highly efficient and accurate for
real-world networks.

« We propose a scalable and efficient algorithm to combine
network structure and node attributes to learn a joint
embedding representation, thereby diminishing negative
impacts of missing information.

o We evaluate the effectiveness of the proposed method
under different missing data settings, showing its superior
performance to the state-of-the-art baselines.

The remainder of this paper is organized as follows. Sec-
tion II reviews previous work related to network embedding
and incomplete network analysis. The problem definition and
preliminaries directly related to our formulation are given in
Section III, followed by the proposed algorithm described
in Section IV. Experiments and discussions are presented in
Section V, and we conclude the paper in Section VI.

II. RELATED WORK
A. Network Embedding

Existing research on unsupervised network embedding can
be divided into two categories [8]: structure preserving net-
work embedding algorithms that only leverage network struc-
ture to learn node embeddings, and attributed network em-
bedding algorithms that couple network structure with node
attributes for more effective network embedding.

1) Structure Preserving Network Embedding: Inspired by
Skip-Gram [9], DeepWalk [1] learns node representations by
preserving the similarity between nodes sharing similar con-
texts. Random walks are adopted by DeepWalk to obtain node
contexts. node2vec [3] (a variant of DeepWalk) exploits biased
random walks to capture more flexible structural contexts.
LINE [2] learns node embeddings by directly modeling the
first-order proximity (the proximity between connect nodes)
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and the second-order proximity (the proximity between nodes
sharing direct neighbors). GraRep [10] steps further to con-
sider high-order proximities by modeling the relations between
nodes and their k-step neighbors. M-NMF [11] complements
the local structural proximity with community structure to
learn community preserving node representations. Deep learn-
ing techniques are also adopted to learn deep, non-linear
node representations. DNGR [12] employs stacked denoising
autoencoder [13] to learn deep low-dimensional node embed-
dings. SDNE [14] designs a semi-supervised autoencoder to
learn node representations that preserve the first-order and
second-order proximity.

These algorithms leverage only network structure to learn
node representations, while ignoring node content information.
In situations where the links are sparse, these algorithms fail
to produce satisfactory results.

2) Attributed Network Embedding: TADW [4] incorporates
node text features into network embedding through inductive
matrix factorization [15]. HSCA [5] enhances TADW through
enforcing the first-order proximity in the embedding space.
pRBM [16] constructs node representations from node at-
tributes with Restricted Boltzmann Machine [17], and simul-
taneously preserves the similarity between connected nodes.
To deal with social networks with noisy user profile features,
UPP-SNE [18] learns node representations by performing a
structure-aware non-linear mapping on user profile features.
CANE [19] learns context-aware node embeddings from node
attributes via the mutual attention mechanism. MVC-DNE [6]
adopts deep multi-view learning to learn node representations
that encode network structure and node content features.
GraphSAGE [20] infers node representations inductively from
node content features through neighborhood feature aggre-
gation. AANE [21] learns node representations by finding a
low-dimensional content feature subspace, where the distance
between connected nodes is penalized.

The above attributed network embedding methods assume
that networks are complete. When missing data is present
in the networks, especially on node attributes, their perfor-
mance deteriorates dramatically, because they lack the ability
to handle missing data. In addition, because these methods
are mostly based on matrix factorization and deep learning
techniques, most of them also suffer from poor scalability. In
contrast, our work proposes an effective and efficient way to
learn node embeddings robust to missing data.

B. Incomplete Graph Mining

Missing data is very common in networks, but few research
has investigated incomplete network mining. It is well recog-
nized that, if missing data is simply ignored, network analysis
results will be severely skewed. Therefore, research efforts
have been put on missing data imputation before network
analysis is performed. [22] studies the network completion
problem, where the focus is to learn a probabilistic model
that fits the observed part of a network, and then uses the
model to infer missing nodes and links of the network. More
specifically, [23] addresses the problem of recovering the



missing infections and the source nodes of an epidemic from
sampled snapshots of large graphs. The notion of graph iden-
tification is introduced in [24], which aims to infer a cleaned
output network from a noisy, incomplete input graph. [25]
studies the effects of non-random missing data on common
network measures such as centrality, homophily, topology and
centralization. However, very little attention has been put
on investigating network embedding and developing robust
algorithms for large-scale incomplete networks.

III. PROBLEM DEFINITION AND PRELIMINARIES
A. Problem Definition

Assume an incomplete network G = (V,&, A, X, Q) is
given, where V is the set of nodes, £ is the set of observed
edges, and A is the set of node attributes. X € RIVIXIAL g
node feature matrix, with each observed element X;; > 0
indicates the occurrence times/weights of attribute a; € A
at node v; € V, and Q € {0,1}|V‘X‘A| indicates whether
the node attribute value X;; is observed, with Q;; = 1 for
observed X;; and €;; = 0 for unobserved X;;. For networks
with attributes taking continuous values, discretization can be
applied to convert the continuous attributes to discrete ones.

The objective of incomplete network embedding is to lever-
age incomplete information in £ and X to learn a mapping
function ® : v; € V +— RIVI*? The learned node repre-
sentations ®(v;) are expected to be (1) low-dimensional with
d < |V|, and (2) informative for the downstream tasks, such
as node classification, node clustering and link prediction, etc.

B. DeepWalk

The Skip-Gram model [9] learns word representations by
capturing the semantic similarity between words sharing sim-
ilar contexts. DeepWalk generalizes the idea of Skip-Gram
from word representation learning to network embedding, by
using random walks to collect node contexts. Given a trun-
cated random walk with length L, {v,,, Upy, -+, Up;, - Up, }
DeepWalk learns representation ®(v,.,) for node v,, by using
it to predict its context nodes, which is achieved by solving
the following optimization problem,
ey

mqin - 10gP({Un7u T vm+t} \ Ur; |vm)v

where {v,,_,, -+ ,vr .} \ v, are the context nodes of v,,
within ¢ window size.

By making conditional independence assumption, the prob-
ability P({vy,_,, - ,vr,, .} \ vr,|vy,) can be expanded as

i+t
II Pyl @

j=i—t,ji

P({U"‘i—t7 e

) UTv‘,th,} \ UH |U’V’i,)

Following [18], considering all the generated random walks,
the overall optimization problem of DeepWalk can be refor-
mulated as

VI VI

Z Z n(v;, vj) log P(vjlv;),

i=1 j=1

3

min —
3
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Fig. 1. The model architecture of SINE. For each node v;, SINE learns its
representation by using it to predict its context node v; and its observable
attribute a; so that nodes sharing similar context nodes or similar observed
attributes are embedded closely in the new vector space. In this way, the
incomplete structure and node attribute information is utilized flexibly to learn
informative node representations.

where n(v;,v;) is the total occurrence times of v; as v;’s
context nodes across all generated random walks within ¢
window size. The overall optimization problem can be solved
by stochastically sampling a node context pair (v;,v,) and
minimizing the following partial objective:

O;; = —log P(vj|v;). )
IV. SINE: SCALABLE INCOMPLETE NETWORK

EMBEDDING

A. Model Architecture

Inspired by DeepWalk [1], SINE encodes network structure
into node embeddings by allowing nodes sharing similar
context nodes to have similar representations. This is achieved
by minimizing the DeepWalk partial objective in Eq. (4) for
each node context pair (v;, v;) collected from random walks.

In addition to topology structure, we also wish that nodes
sharing similar attributes should be close in the new vector
space. Following the mechanism of Skip-Gram [9], we make
the learned node representations respect this property by using
node v; to predict its co-occurring attribute a; for each
observed node attribute co-occurrence pair (v;,a;). This is
achieved by minimizing the following objective:

O?j = — logP(aj|v,-). (5)

As shown in Fig. 1, the learning framework of SINE
is a three-layer neural network: the first layer is the one-
hot representation for each node wv;, the hidden layer is
the node representation ®(v;) € R? constructed by a lin-
ear transformation from the input layer with weight matrix
Win e RIVIXd the output layer is the softmax conditional
probability P(v;|v;) and P(a;|v;), for each node v; and each
attribute a;, aggregated from the hidden layer with weight
matrix Wout:s ¢ R4Vl and Weoute ¢ RXIAl| respectively.



Give(n) the one-ho(t.)representation p® e RIVI of node v
1 1

with p,” =1 and p; =0 for j # i, the node representation
®(v;) in the hidden layer is constructed as

where w{" is the transpose of the i-th row of W ¢ RIVIxd
(the weight matrix from the input layer to the hidden layer).
In the output layer, for node context pair (v;,v;), the

probability P(v;|v;) is modeled by the softmax signal:
exp(®(v;) - wi""™)
P(vlv;) = VI . out,s @)
WL exp(®@(v;) - wy )’

where wout * is the j-th column of Weut:s ¢ RI*IVI (the
weight matrlx from the hidden layer to the output layer for
predicting node context).

Similarly, for the node attribute co-occurrence pair (v;, a;),
the probability P(a;|v;) is modeled by

exp(@(v;) - wi""")

j
A

S exp(@(v;) -
where w?"

; ©% is the j-th column of Weout-e e RIXIAl (the
weight matrix from the hidden layer to the output layer for
predicting node attribute).

By aggravating the structure preserving objective in Eq. (4)
and the node attribute preserving objective in Eq. (5), node
representations ®(-) that well preserve the available structure
and node content information, can be learned by solving the
following overall optimization problem:

P(aslve) = oy ®
k

min O, C))
where
V| Vv
=—m Z Z n(v;, v;j)logP (vj|v;)
i=1 j=1
10
VI |A| (10)
— Q9 Z Z Q”XUIOgP(CLJ ‘Uz)
i=1 j=1

where o and a» are the trade-off parameters that balance the
structure preserving objective and the node content preserving
objective. They are set as

1 1
7a =
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In Eq. (10), we only concern about the non-zero values of
n(v;,v;) and Q;;X;;, i.e., the node context pairs collected
from observed links and the observed node attribute co-
occurrence pairs, whose number is much smaller than | V| x |V|
and |V| x | A|, respectively. In this way, the available network
structure and node content information can be fully utilized,
and the negative impacts of missing information is diminished.

ay =
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B. Model Optimization

We solve the overall optimization problem in Eq. (9)
by minimizing the partial objective in Eq. (4) and Eq. (5)
alternately with stochastic gradient descent by sampling a
node context pair (v;,v;) or a node attribute co-occurrence
pair (v;,a;) at each iteration, according to the distribution of
n(v;,v;), and Q;;X;;, respectively.

For the sampled node context pair (v;,v;), negative sam-
pling is used to speed up training. Thus, the partial objective
ij in Eq. (4) can be reformulates as

s __ out,s
0j; = —logo(®(vi) TWw; )

3 logo(~B(v;) - wit),

kv €EVney

an

where V,,.4 is the set of sampled negative nodes. The param-
eters are updated by gradient descent:

i __ o in aOS
wL - ’LU 778 va
s
out,s __ out,s - 601] (12)
7 - % out,s’
ow
s
out,s out,s 80 f V
w;. = w, 7]78 outs’ or vy € negs
Wy,

where 7 is the learning rate. The gradients are calculated as
follows

6(9:] out,s out,s
G = (0200 ") — Duf
4 Z Zut 5) Zut,s,
kg €Vneq (13)
903 out,s
ouzj,s = (O’((I)(Ul) ' wj b ) - 1)‘1)(121),
w;
005,
oultjs = U(q)( ) w,ZUt 9)@(1]2_)’ for Vi € Vneg~
k
Similarly, for each sampled node attribute co-occurrence

pair (v;,a;), by adopting negative sampling, the partial ob-
jective Of; in Eq. (5) is approximated by

a __ out,a
Of; = —logo(®(v;) - wi™)

kg €Aneqy

_ (14)

out,a,)7

log o (—®(v;) - wy,

where A,., is the set of sampled negative attributes. The
parameters are updated as

w@'n _ wzn _ aOa
v law”“
a
wout,a _ out,a 807.7 (15)
g - Y - out,a’
Ow;
a
out,a __ out,a 80 f ./4
k - Yk - ) outa’ oray € neg-
Wy,



Algorithm 1 SINE: Scalable Incomplete Network Embedding
Input:
An incomplete network G = (V, &, A, X, Q);
Output:
Node representation ®(-) for each v; € V;
1: S « generate a set of random walks on G}
2: n(v;,v;) < count frequency of node context pairs (v;, v;)
in S;
3: repeat

4:  draw a random number r € (0,1);

5. if r < 0.5 then

6: (vs,v;) < sample a node context pair according to
the distribution of n(v;, v;);

7: Vyeg ¢ draw K negative nodes;

8: (Win Wout:s) < update parameters with
(v, V5, Vneg) and Eq. (12);

9: else

10: (vs,a;) < sample a node attribute pair according to
the distribution of QUXZ],

11: Ayeg < draw K negative attributes;

12: (Win Weuta) < update parameters with
(vs, a5, Aneg) and Eq. (15);

13:  end if

14: until maximum number of iterations expire;
15: construct node representation ®(-) with W*" and Eq. (6);
16: return o(-);

The gradients are calculated as follows

ao? out,a out,a
3w2@i = (o(®(vi) - w; ey — Dw; b
+ Z a(®(v;) - wzut’a)wzut’“7
k:ap€EAney
o0 . (16)
2 out,a
out?a - (J((I)(Ul) : wj ) - 1)(1)(1}1)7
w;
00%
Tfa = o(®(v;) ~w2“t’a')¢>(v,;), for a, € Ajeq.
k

Algorithm 1 gives the major procedure of the proposed
SINE algorithm. At step 1, SINE starts random walks with
length L at each node for ~ times, and at step 2, counts the
frequency of node context pairs n(v;, v;) within ¢ window size.
At step 3-14, SINE updates the parameters with stochastic
gradient descent. At each iteration, SINE samples a random
switch variable r € (0, 1) to determine whether the structure
preserving objective or the node attribute preserving objective
is to be minimized, with a threshold of 0.5. To sample node
context pair and node attribute pair, the alias table method [26]
is used, which takes only O(1) time. After the iteration is
finished, node representations ®(-) are constructed with "
and Eq. (6).

The time complexity of SINE only relies on the maximum
number of iterations and the dimension of learned node
representations d. The maximum number of iterations is at
the scale of O(max(nnz(Q;;X:;),|V])), where nnz(€;;X;;)
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TABLE I
SUMMARY OF FOUR REAL-WORLD NETWORKS

Cora Citeseer | DBLP(Subgraph) | DBLP(Full)
V| 2,708 3,312 18,448 1,632,442
€] 5,278 4,732 45,611 2,327,450
|A| 1,433 3,703 5,959 154,309
nnz(X) 49,216 | 105,165 108,016 10,413,178
# of Class 7 6 4 N/A

is the number of non-zero values of 2;;X;;, i.e., the num-
ber of observed node attribute co-occurrence pairs, and |V|
indicates the scale of node context pairs collected from ran-
dom walks. Thus, SINE has an overall time complexity of
O(d - max(nnz(€;; X;;),|V|)), ensuring its good scalability.

V. EXPERIMENTS

In this section, we present experimental results on real-
world networks to verify the effectiveness and efficiency of
the proposed SINE algorithm in learning informative node
representations for incomplete networks.

A. Benchmark Networks

Four real-world networks used in our experiments are
detailed as follows:

Cora and Citeseer': The Cora network contains 2,708 pub-
lications and 5,249 citations. The Citeseer network includes
3,312 publications and 4,732 citations. For Cora and Citeseer,
each paper is represented by a 1,433-dimensional, and 3,703-
dimensional binary vector, with each dimension indicating the
presence/absence of the corresponding word.
DBLP(Subgraph) and DBLP(Full): The DBLP(Full) net-
work is constructed by the papers and their citation rela-
tionships of the DBLP bibliographic network?. There are
1,632,442 papers and 2,327,450 citations in all. To construct
the DBLP(Subgraph) network, we extract papers from the four
research areas: Database, Data Mining, Artificial Intelligence,
Computer Vision, according to papers’ venue information and
remove papers with no citations. The DBLP(Subgraph) net-
work contains 18,448 papers and 45,661 citations. From paper
titles, for DBLP(Subgraph) and DBLP(Full), we construct
5,959-dimensional and 154,309-dimensional binary node fea-
ture vectors, respectively, with each dimension indicating the
presence/absence of the corresponding word.

For all networks, the link direction is ignored. The statistics
of these networks are summarized in Table 1.

B. Baseline Methods

We compare SINE with the following baseline methods:
DeepWalk [1] / node2vec [3]: node2vec is equivalent to
DeepWalk under the default setting p 1 and ¢ = 1.
They learn node representations by preserving the similarity
between nodes sharing similar contexts in random walks.

Thttps://lings.soe.ucsc.edu/data
Zhttps://aminer.org/citation (Version 3 is used)



LINE-1 [2]: LINE-1 denotes the version of LINE that learns
node representations by modeling the first-order proximity.

LINE-2 [2]: LINE-2 is the version of LINE that preserves the
second-order proximity.

SDNE [14]: SDNE uses a semi-supervised autoencoder to
learn deep node representations that preserve both the first-
order and second-order proximity.

Attribute: This baseline learns node representations from only
node attributes with the SINE learning framework.

TADW [4]: TADW incorporates node content features into
DeepWalk’s network representation learning paradigm via
inductive matrix factorization [15].

HSCA [5]: HSCA enhances TADW via enforcing a first-order
proximity preserving objective.

UPP-SNE [18]: UPP-SNE learns node representations by
performing a structure-aware non-linear mapping on node
content features.

MVC-DNE [6]: MVC-DNE encodes network structure and
node content attributes into node representations through the
deep autoencoder based cross-view learning. The decoding
based version is used.

Due to the large size of DBLP(Full), TADW, HSCA, UPP-
SNE and MVC-DNE can not run on this dataset. Thus, on
DBLP(full), only DeepWalk, LINE-1, LINE-2 and Attribute
are compared with SINE in Section V-F.

C. Experimental Settings

For DeepWalk, UPP-SNE and SINE, we set the length of
random walks L = 100, the number of random walks starting
from each node v = 40, and the window size ¢t = 10.

For fair comparison, DeepWalk and UPP-SNE are trained
using the same strategy with SINE: we first collect node con-
text pairs, and then update parameters with stochastic gradient
descent by sampling a node context pair at each iteration.
Negative sampling is adopted by DeepWalk, LINE-1, LINE-2,
UPP-SNE, Attribute, and SINE, where the number of negative
samples K is set to 5 uniformly. For the 6 stochastic gradient
descent based algorithms, the maximum number of iterations
1 is set to 100 million on Cora, Citeseer and DBLP(Subgraph),
and 1 billion on DBLP(Full), and the learning rate n decreases
from the starting value 79 = 0.025 to 7, = no(1 — 7/1I) after
every 10,000 iterations, with 7 being the number of elapsed
iterations. Parameters of TADW and HSCA are set to their
default values. For SDNE, its hyperparameters a and v are
set to 0.01, and S is set to 10. The number of neurons at each
layer is set to 2708-256, 3312-256, and 18,448-1,024-256 on
Cora, Citeseer, and DBLP(Subgraph), respectively. For MVC-
DNE, on Cora, Citeseer, and DBLP(Subgraph), the number of
neurons at each layer in structure view is respectively set to
2708-128, 3312-128, and 18,448-512-128, and the number of
neurons at each layer in node attribute view is set to 1,433-128,
3,703-128, and 5,959-128. For SDNE and MVC-DNE, 500
epochs are run for both pre-training and parameter fine-tuning.
Other parameters of SDNE and MVC-DNE are set according
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to [6]. For SINE and all baseline methods, the dimension of
learned node representations is set to 256.

D. Performance Comparison on Incomplete Networks

In this section, we conduct experiments to compare the
performance of SINE and baseline methods on incomplete
networks. To better understand the ability of different network
embedding algorithms to deal with missing data, we investi-
gate the following four research questions:

Ql

How is the performance affected when a portion
of node attributes are missing compared with the
complete network? (complete attribute vs.
incomplete attribute)

Q2 | How does the performance change when the
attributes of structurally important nodes are
missing compared with missing attributes for
randomly selected nodes? (random vs.

important X row missing)

Q3 | How does the performance change when the
attributes at important dimensions are missing
compared with missing attributes at random
dimensions? (random vs. important X column

missing)

Q4 | How do different network embedding algorithms
perform for link prediction when a portion of

edges are missing?

To answer research questions Q1, Q2, and Q3, we compare
the performance of different network embedding algorithms
on Cora, Citeseer and DBLP(Subgraph) under 5 settings: (1)
complete network, (2) randomly selecting 50% nodes and
dropping all of their attributes (random X row missing), (3)
selecting the top 50% structurally important nodes measured
by degree and dropping their attributes (important X row
missing), (4) missing node attributes at randomly selected
50% dimensions (random X column missing), and (5) missing
node attributes at top 50% important dimensions measured
by mutual information with class label (important X column
missing). As the baselines of Attribute, TADW, HSCA and
UPP-SNE require all nodes to have observed attributes, under
settings (2) and (3), for nodes with no attributes, we fill their
attribute values with the observed modes at each dimension.
To compare the performance, using the learned node represen-
tations as features, we conduct multi-class node classification
experiments on Cora, Citeseer and DBLP, and carry out node
clustering experiments on Cora.

To answer research question Q4, we perform link prediction
experiments on Cora and DBLP(Full). We randomly remove
30%, 50% and 70% links, learn node representations from the
respective incomplete networks with different algorithms, and
compare their performance for predicting missing links.

1) Comparison of Classification Performance: Using the
learned node representations as features, we train an SVM
classifier (with the LIBLINEAR implementation [27]) on the
randomly selected 50% samples, and then classify the re-
mainder 50% samples with the learned classifier. The random



TABLE 1T
NODE CLASSIFICATION RESULTS ON CORA

TABLE III
NODE CLASSIFICATION RESULTS ON CITESEER

Incomplete Incomplete

Method Complete X Row Missing X Column Missing Method Complete X Row Missing X Column Missing
Random Important Random Important Random Important Random Important
DeepWalk 0.8245 0.8245 0.8245 0.8245 0.8245 DeepWalk 0.6038 0.6038 0.6038 0.6038 0.6038
LINE-1 0.7697 0.7697 0.7697 0.7697 0.7697 LINE-1 0.5684 0.5684 0.5684 0.5684 0.5684
LINE-2 0.7081 0.7081 0.7081 0.7081 0.7081 LINE-2 0.4673 0.4673 0.4673 0.4673 0.4673
SDNE 0.6047 0.6047 0.6047 0.6047 0.6047 SDNE 0.4614 0.4614 0.4614 0.4614 0.4614
Micro-Fy Attribute 0.7222 0.4905 0.4721 0.6581 0.2592 Micro-Fy Attribute 0.6883 0.4325 0.4287 0.6549 0.2264
TADW 0.8543 0.7387 0.3982 0.8383 0.7068 TADW 0.6957 0.5086 0.3267 0.7014 0.5199
HSCA 0.8569 0.7366 0.3791 0.8530 0.7309 HSCA 0.6825 0.3708 0.3128 0.7031 0.5358
UPP-SNE 0.8191 0.5538 0.5438 0.8058 0.7201 UPP-SNE 0.7124 0.4418 0.4551 0.6858 0.5662
MVC-DNE 0.7528 0.6258 0.6500 0.7075 0.4978 MVC-DNE 0.6954 0.5642 0.5467 0.6578 0.3187
SINE 0.8340 0.8329 0.8383 0.8332 0.8010 SINE 0.7136 0.6791 0.6882 0.7030 0.5682
DeepWalk 0.8184 0.8184 0.8184 0.8184 0.8184 DeepWalk 0.5465 0.5465 0.5465 0.5465 0.5465
LINE-1 0.7673 0.7673 0.7673 0.7673 0.7673 LINE-1 0.5300 0.5300 0.5300 0.5300 0.5300
LINE-2 0.6986 0.6986 0.6986 0.6986 0.6986 LINE-2 0.4192 0.4192 0.4192 0.4192 0.4192
SDNE 0.5811 0.5811 0.5811 0.5811 0.5811 SDNE 0.3986 0.3986 0.3986 0.3986 0.3986
Macro-Fy Attribute 0.6927 0.4373 0.4130 0.6302 0.1427 Macro-Fy Attribute 0.6317 0.4051 0.4018 0.5951 0.1962
TADW 0.8457 0.7297 0.2903 0.8295 0.6890 TADW 0.6403 0.4673 0.2806 0.6480 0.4613
HSCA 0.8487 0.7151 0.2521 0.8445 0.7130 HSCA 0.6292 0.3191 0.2589 0.6505 0.4740
UPP-SNE 0.8088 0.5322 0.5227 0.7985 0.7072 UPP-SNE 0.6567 0.4135 0.4323 0.6230 0.5027
MVC-DNE 0.7263 0.5872 0.6176 0.6808 0.4447 MVC-DNE 0.6269 0.4996 0.4788 0.5851 02714
SINE 0.8214 0.8218 0.8266 0.8228 0.7896 SINE 0.6564 0.6201 0.6256 0.6401 0.5017
TABLE IV TABLE V

NODE CLASSIFICATION RESULTS ON DBLP(SUBGRAPH) NODE CLUSTERING RESULTS ON CORA

Incomplete Incomplete
Method Complete X Row Missing X Column Missing Method Complete X Row Missing X Column Missing

Random Important Random Important Random Important Random Important

DeepWalk 0.8005 0.8005 0.8005 0.8005 0.8005 DeepWalk 0.6097 0.6097 0.6097 0.6097 0.6097
LINE-1 0.7810 0.7810 0.7810 0.7810 0.7810 LINE-1 0.3444 0.3444 0.3444 0.3444 0.3444
LINE-2 0.7125 0.7125 0.7125 0.7125 0.7125 LINE-2 0.4162 0.4162 0.4162 0.4162 0.4162
SDNE 0.6464 0.6464 0.6464 0.6464 0.6464 SDNE 0.3897 0.3897 0.3897 0.3897 0.3897
Micro-Fy Attribute 0.7509 0.5665 0.6275 0.6226 0.3952 Accuracy Attribute 0.3869 0.3216 0.3240 0.3454 0.3021
TADW 0.8070 0.7195 0.4544 0.7533 0.4928 TADW 0.3561 0.3123 0.3045 0.4000 0.3316
HSCA 0.8023 0.6227 0.4178 0.7532 0.4628 HSCA 0.3721 0.3257 0.3046 0.3956 0.3357
UPP-SNE 0.8267 0.6092 0.6606 0.7078 0.4141 UPP-SNE 0.6270 0.4496 0.4269 0.6319 0.5573
MVC-DNE 0.7697 0.6693 0.7089 0.7025 0.6232 MVC-DNE 0.6228 0.4058 0.3685 0.5352 0.3021
SINE 0.8370 0.8278 0.8370 0.8275 0.7953 SINE 0.6323 0.6397 0.6355 0.6343 0.6297
DeepWalk 0.7176 0.7176 0.7176 0.7176 0.7176 DeepWalk 0.4165 0.4165 0.4165 0.4165 0.4165
LINE-1 0.6896 0.6896 0.6896 0.6896 0.6896 LINE-1 0.0910 0.0910 0.0910 0.0910 0.0910
LINE-2 0.6129 0.6129 0.6129 0.6129 0.6129 LINE-2 0.1806 0.1806 0.1806 0.1806 0.1806
SDNE 0.3973 0.3973 0.3973 0.3973 0.3973 SDNE 0.1409 0.1409 0.1409 0.1409 0.1409
Macro-F Attribute 0.6604 0.4403 0.5412 0.4870 0.1882 NMI Attribute 0.1475 0.0528 0.0661 0.0836 0.0056
TADW 0.7271 0.5539 0.2935 0.6443 0.2760 TADW 0.1377 0.0321 0.0120 0.1603 0.0698
HSCA 0.6926 0.4537 0.2436 0.6140 0.2549 HSCA 0.1646 0.0556 0.0113 0.1892 0.0767
UPP-SNE 0.7668 0.5196 0.5988 0.6187 0.1985 UPP-SNE 0.4377 0.2171 0.2003 0.4427 0.3490
MVC-DNE 0.6699 0.5222 0.5961 0.5854 0.4022 MVC-DNE 0.3737 0.1326 0.1119 0.3018 0.0067
SINE 0.7731 0.7620 0.7727 0.7618 0.7122 SINE 0.4456 0.4458 0.4401 0.4468 0.4376

training and test data split is repeated for 10 times, and
averaged Micro-F} and Macro-F} values are used to evaluate
the classification performance.

Tables II-IV report node classification results of differ-
ent network embedding algorithms on Cora, Citeseer and
DBLP(Full), under the five settings: (1) complete, (2) random
X row missing, (3) important X row missing, (4) random
X column missing, and (5) important X column missing. For
each setting, the best Micro-F; and Macro-F values are bold-
faced, and the second best performers are underlined.

By comparing column 3 with columns 4-7 in Tables II-
IV, we can respond to research question QIl: when node
attributes become incomplete, the performance of the existing
attributed network embedding baselines (Attribute, TADW,
HSCA, UPP-SNE and MVC-DNE) drops remarkably in most
cases, while SINE often shows greater stability. This attributes
to the flexible way that SINE leverages node attributes, making
it able to best utilize observed node attributes and to diminish
the negative impact caused by missing attributes.

To better understand research question Q2, we compare
column 4 with column 5 in Tables II-IV. When the attributes
of structurally important nodes are missing, the performance of

743

TADW and HSCA degrades dramatically on all three datasets.
Interestingly, on DBLP, the Attribute baseline experiences a
performance gain. This might be due to the fact that struc-
turally important nodes tend to have strong correlations with
neighbor nodes on attribute values, resulting in information
redundancy. When such redundancy is removed, Attribute
achieves better classification performance. Due to the same
reason, UPP-SNE and MVC-DNE share the same trends
with Attribute on DBLP. However, under both settings, SINE
exhibits more stable performance and outperforms all other
baselines.

To answer research question Q3, we compare column 6
with column 7 in Tables II-IV. The performance of Attribute
decreases dramatically when node attributes at important di-
mensions are missing, compared with the missing in randomly
selected dimensions. Accordingly, attributed network embed-
ding algorithms consistently experience a dramatic perfor-
mance drop, to a level inferior to the only structure preserving
network embedding algorithms. In this case, the remaining
node attributes are of poor quality, making them deteriorate
rather than complement network structure in learning network
embeddings. By contrast, the performance of SINE drops less



TABLE VI
OPERATORS TO CONSTRUCT EDGE FEATURES

Operator Symbol Definition

Average s [@(v;) B & (v;)],, = 2P0

Hadamard o [@(v;) O ®(v;)], = Pp(vi) - Pr(vy)
Weighted-L1 | [|-]|7 12 (vi) - (v))llg), = [Pr(vi) — <I’k(ﬂj)|2
Weighted-L2 II-llz 1@ (vi) - ®(v)) |5, = (Pr(vi) — Pr(vy))

significantly, demonstrating its better robustness to missing
node attributes.

From Tables II-IV, we can conclude that SINE achieves
the best overall performance under all node attribute missing
settings. This not only verifies the effectiveness of SINE in
handling missing node attributes, but also signifies its great
potential to solve real-world applications with missing data.

2) Clustering Performance Comparison: As a complement
to node classification, we also conduct node clustering ex-
periments on Cora. We feed node representations learned by
different network embedding algorithms into the K -means
clustering algorithm and group them into 7 categories. To
alleviate the impact caused by random initialization, we run
K-means for 20 times and report averaged Accuracy and
NMI [28] values. The clustering results are presented in Table
V, with the best and second performer highlighted by bold and
underline respectively. Similar to node classification results,
SINE achieves the best clustering performance with small
variance across all node attribute missing settings.

3) Link Prediction Performance Comparison: To answer
research question Q4, we carry out link prediction experi-
ments on Cora and DBLP(Full). Specifically, we compare
the performance of different network embedding algorithms
on link prediction, when a portion of edges are missing.
Following [3], we perform link prediction using the edge
features constructed from the learned node representations
with the operators listed in Table VI. We randomly remove
30%, 50% and 70% of edges. To construct the test set, for
each removed edge (v;,v;), we randomly sample a negative
node pair (v;,vy) with (v, v) € € as negative ground truth.
To construct the training set, for each connected node pair
(vs,v5), we randomly sample a negative node pair (v;, vg),
with no edges between v; and v observed in the remaining
network.

SVM implemented by LIBLINEAR [27] is used to perform
training and testing on edge features. Due to the memory
limitation, for DBLP(Full), 5% training and test samples are
randomly selected from the two original sets respectively. We
also compare SINE with the common neighbor based heuristic
link prediction methods, which are given in Table VII. The
Area Under Curve (AUC) score is used to evaluate the link
prediction performance.

Tables VIII-IX report the link prediction results on Cora
and DBLP(Full), with the best performer and the second best
performer highlighted by bold and underline respectively. As
can be seen, on both Cora and DBLP(Full), the proposed SINE
algorithm with the Hadamard operator consistently achieves
the best link prediction performance with all missing edge
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TABLE VII
HEURISTIC SCORES FOR PREDICTING THE LINK BETWEEN NODE PAIR
(vi,vj) WITH THEIR DIRECT NEIGHBOR SETS N (v;) AND N (v;)

Score Definition
Common Neighbors N (v) NN (vy)]
mecard’c . [N (vi) N (v;)]
Jaccard’s Coefficient [N (o) UN (o]
Adamic-Adar Score 2 eN (0NN (v;) Tog TN o)
Preferential Attachment [N (vi)| - [N (v
TABLE VIII
AUC VALUES FOR LINK PREDICTION ON CORA
Operator Method 30% 50% 70%
Common Neighbors 0.5115 0.5045 0.5019
Jaccard’s Coefficient 0.5115 0.5045 0.5019
Adamic-Adar 0.5115 0.5045 0.5019
Pref. Attachment 0.5445 0.5282 0.5229
DeepWalk 0.5123 0.4952 0.5039
LINE-1 0.5542 0.5307 0.5157
LINE-2 0.5280 0.5220 0.5178
SDNE 0.5585 0.5488 0.5384
Average Attribute 0.5320 0.5326 0.5264
TADW 0.5571 0.5434 0.5386
HSCA 0.5543 0.5368 0.5272
UPP-SNE 0.5336 0.5213 0.5214
MVC-DNE 0.5348 0.5202 0.5269
SINE 0.5507 0.5425 0.5375
DeepWalk 0.7632 0.6657 0.5563
LINE-1 0.6702 0.6003 0.5403
LINE-2 0.6763 0.5808 0.5255
SDNE 0.5730 0.5516 0.5293
Hadamard Attribute 0.8095 0.7966 0.7989
TADW 0.8361 0.7850 0.7202
HSCA 0.8623 0.8108 0.7351
UPP-SNE 0.8615 0.8160 0.7415
MVC-DNE 0.6749 0.6090 0.5643
SINE 0.8804 0.8545 0.8289
DeepWalk 0.8368 0.7302 0.6015
LINE-1 0.6303 0.5900 0.5199
LINE-2 0.6429 0.5726 0.5109
SDNE 0.5643 0.5365 0.5219
. Attribute 0.7402 0.7212 0.7179
Weighted-L 1 TADW 07443 0.6611 0.5834
HSCA 0.7725 0.6840 0.5859
UPP-SNE 0.8512 0.7970 0.7095
MVC-DNE 0.7883 0.7662 0.7418
SINE 0.8438 0.8035 0.7643
DeepWalk 0.8368 0.7356 0.6041
LINE-1 0.6102 0.5720 0.5131
LINE-2 0.6631 0.4888 0.4874
SDNE 0.5267 0.4915 0.5198
. Attribute 0.7398 0.7311 0.7333
Weighted-1.2 TADW 0.7279 06540 | 05742
HSCA 0.7400 0.6630 0.5749
UPP-SNE 0.8414 0.7937 0.7149
MVC-DNE 0.7359 0.7331 0.7264
SINE 0.8344 0.7965 0.7581

ratios. We can also observe that, compared with attributed
network embedding algorithms, the only structure preserving
network embedding algorithms are more vulnerable to missing
edges. As the ratio of missing edges increases, apart from
the Attribute baseline, all methods experience a performance
drop, while SINE retains more robust results. There are two
main reasons: first, SINE uses random walks to bridge nodes
with no immediate links and preserve their similarity in the
learned node representations; second, SINE makes the best of
the available node features to complement network structure
for more effective network embedding.

E. Experiments on Parameter Sensitivity

We also conduct experiments to investigate the sensitivity
of SINE to three important parameters: the maximum number
of iterations I, window size t, and the dimension of learned
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TABLE IX
AUC VALUES FOR LINK PREDICTION ON DBLP(FULL)

Operator Method 30% 50% 70%
Common Neighbors 0.5024 0.5013 0.5006
Jaccard’s Coefficient 0.5024 0.5013 0.5006
Adamic-Adar 0.5024 0.5013 0.5006

Pref. Attachment 0.8898 0.8768 0.8513
DeepWalk 0.9016 0.8896 0.8619

LINE-1 0.5500 0.5389 0.5281
Average LINE-2 0.8810 0.8689 0.8424
Attribute 0.6215 0.6205 0.6185

SINE 0.8747 0.8692 0.8533
DeepWalk 0.9841 0.9668 0.9270
LINE-1 0.9835 0.9590 0.8999
Hadamard LINE-2 0.9766 0.9576 0.9146
Attribute 0.8490 0.8500 0.8507
SINE 0.9887 0.9831 0.9670
DeepWalk 0.9766 0.9463 0.8819
LINE-1 0.8157 0.7573 0.6397
Weighted-L1 LINE-2 0.8787 0.8601 0.8400
Attribute 0.7818 0.7819 0.7778
SINE 0.9382 0.9150 0.8497
DeepWalk 0.9390 0.9018 0.8160
LINE-1 0.8055 0.7452 0.6172
Weighted-L2 LINE-2 0.6910 0.6618 0.8246
Attribute 0.7681 0.7701 0.7688

SINE 0.9029 0.8787 0.8113

node embeddings d. We fix any two of the three parameters
and study how the performance of SINE changes by varying
the remaining one in turn. Fig. 2 reports the change of Micro-
F values for node classification on Cora and Citeseer with
regards to the three parameters, under the settings where at-
tributes in randomly selected 50% nodes are missing (random
X row missing). Here, we observe a similar trend with an
increase of all three parameters: SINE performs increasingly
better and stabilizes after a threshold.

F. Running Time Comparison

We evaluate the running time of different network em-
bedding algorithms in this section. We hope this empirical
evaluation can help compare the efficiency and scalability of
these algorithms, though they are implemented in different
programming languages, with DeepWalk, UPP-SNE and SINE
in C, LINE in C++, SDNE and MVC-DNE in Python, as
well as TADW and HSCA in Matlab. Fig. 3 compares the
CPU running time (log-scale) of different algorithms on Cora,
Citeseer, DBLP(Subgraph) and DBLP(Full). On DBLP(Full),
due to its large size, only the running time of DeepWalk,
LINE-1, LINE-2 and SINE is available. We can see that,
SINE is much more efficient than SDNE and other attributed
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Fig. 3. The comparison of running time of different network embedding
algorithms on the log scale

network embedding methods including TADW, HSCA, UPP-
SNE and MVC-DNE. The running time of SINE is comparable
to that of DeepWalk, LINE-1 and LINE-2. This demonstrates
high efficiency of SINE and its ability to scale to large-scale
networks on a single machine (without GPU support).

VI. CONCLUSION

Large-scale networks often contain incomplete node at-
tributes and/or missing links, which impose significant chal-
lenges to attributed network embedding. Because missing
node attributes or links result in inaccurate node similarity
estimation, most existing methods are vulnerable to missing
data, and minor presence of missing information may signif-
icantly deteriorate the algorithm performance. In this paper,
we propose a novel scalable incomplete network embedding
(SINE) method, which uses probabilistic learning of node-
context and node-attribute relationships to tackle missing data
on large-scale networks. SINE couples network node content
and topology structures through a three-layer neural network,
where each node learns its representation by considering
context nodes and observable attributes of the node. By doing
so, SINE fully minimizes the impact of missing data on the
learning of node representations. A stochastic gradient descent
based online algorithm is derived to ensure SINE can scale
to large-scale networks. Extensive experiments and compar-



isons demonstrate the effectiveness and scalability of SINE
for learning network embeddings on large-scale incomplete
networks.
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