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ARTICLE INFO ABSTRACT

A network of independently trained Gaussian processes (StackedGP) is introduced to obtain predictions of
geospatial quantities of interest (model outputs) with quantified uncertainties. The uncertain nature of model
outputs is due to model inadequacy, parametric uncertainty, and measurement noise. StackedGP framework
supports component-based modeling in environmental science, enhances predictions of quantities of interest
through a cascade of intermediate predictions usually addressed by cokriging, and propagates uncertainties
through emulated dynamical systems driven by uncertain forcing variables. By using analytical first and second-
order moments of a Gaussian process with uncertain inputs using squared exponential and polynomial kernels,
approximated expectations of model outputs that require an arbitrary composition of functions can be obtained.
The performance of the proposed nonparametric stacked model in model composition and cascading predictions
is measured in a wildfire and mineral resource problem using real data, and its application to time-series pre-
diction is demonstrated in a 2D puff advection problem.
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Software Availability

An open source Python software package (StackedGP) is available as
of January 2018 under GNU General Public License v2 and hosted by
UQIlab on BitBucket (https://bitbucket.org/uqglab/stackedgp) to create
general StackedGP models, perform optimizations and calculate pre-
dictions. This software does not require specific hardware but it is de-
pendent on the following Python packages: numpy, scipy, GPy (since
2012) and sklearn.preprocessing. The main developer is the first author
of the paper Kareem Abdelfatah, who can be reached at krabea@email.
sc.edu.

1. Introduction

Complex environmental models are modular and hierarchical (He
et al. (2002); Griitzner (1995); Letcher and Jakeman (2009); Jgrgensen
(2010)). As no one model can describe the entire behavior of a complex
system, complex models requires coupling of submodels built using
various sources of data. For example, component-based modeling is
used in forest landscape modeling (He et al. (2002)), where fire and
wind models are coupled with vegetation models to estimate the total
burned area, and in crop modeling, where pest population models are
coupled with biophysics models to estimate crop growth (Whish et al.

* Corresponding author.

(2015)). The central challenge with component-based modeling is that
there is a compound effect of uncertainties coming from errors due to
structural submodel inadequacies and noise in experimental data that
need to be quantified and propagated to the model outputs. This model
composition can be arbitrary and highly nested to capture the phe-
nomenon of interest and can be used to make predictions for potentially
unobserved quantities of interest.

This paper develops a general probabilistic modeling framework to
address the above two challenges: component-based modeling under
structural uncertainty and propagation of uncertainties to quantities of
interest. One of the current challenges in component-based modeling
arises from the fitted parametric nature of submodels with no in-
formation most of the time on the magnitude of the uncertainty of the
parameters. While parametric uncertainty can be quantified in these
cases and propagated to the quantities of interest using sampling
methods, the uncertainty in model predictions may still be under-
estimated by ignoring model form uncertainty. In this paper we pro-
posed to use a data-driven and nonparametric approach to build sub-
models and develop an expectation-based approach to propagate the
uncertainty. The proposed model is based on a network of in-
dependently trained Gaussian processes accompanied by an approx-
imate scheme to obtain expectations of quantities of interest that re-
quire model composition. Gaussian processes (GP) (Williams and
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Fig. 1. StackedGP example - two chained Gaussian processes. Circles represent GP nodes and the square represents the input. DataZ and DataY are used to train the
first and second GP, respectively. The figure shows the fitting of GP, and GP, with the training data in the blue frames. The final output of the StackedGP is obtained
by integrating out the uncertainty in 2. The predicted mean and confidence of y given x is shown in the red frame. Note that there is no training data to directly model
y as a function of x. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Rasmussen (1996); Rasmussen (1997); Rasmussen and Williams
(2005)) are nonparametric statistical models that compactly describe
distributions over functions with continuous domains. This makes them
ideal to quantify uncertainties for environmental subprocesses by
modeling measurement noise and structure inadequacies that arise with
usual parametric approaches. Since all environmental subprocesses/
components are modeled using GPs, the resulted probabilistic model is
a stacked Gaussian process (StackedGP). In this hierarchical setting,
GPs modeling forcing variables govern the input space of GPs modeling
environmental state variables.

To provide the intuition behind the motivation for StackedGP,
consider the following simple environmental example of predicting
fungal toxin production in corn (y - quantity of interest) at various
spatial locations (x). Interpolation methods do not work directly as the
quantity of interest is virtually unobservable over the spatial domain (Li
et al. (2015)). As a result, this effort requires the derivation of a model
composition where the toxin production is modeled as a function of
temperature (z), which at its turn is easily observable, and can be es-
timated at any location via spatial interpolation models. Finding a
parametrization for both models to obtain the fungal toxin production
at different locations is a non trivial task. Furthermore, the un-
certainties in these models as well as in the measurements need to be
estimated and propagated to the quantity of interest. Fig. 1 shows a
simple scenario that illustrate the motivation of this environmental
example. It shows a proposed StackedGP comprising two Gaussian
processes for both temperature interpolation and modeling toxin pro-
duction as a function of temperature to predict with quantified un-
certainties the toxin production at various spatial locations. The two
GPs are built using two datasets: DataZ is obtained from field mea-
surements and consists of temperature values (z) recorded at different
locations (x), and DataY is obtained from wet-lab experiments and
consists of fungal toxin production (y) at different temperatures (). The
final probabilistic prediction of toxin production (y) as a function of
location (x) is obtained using StackedGP by integrating out the un-
certainty in the temperature (z). The interactive Python code to
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generate this experiment can be found on our online StackedGP re-
pository' and is sketched in Section 1.

The novelty of the paper is in the derivation of a novel approximate
algorithm to propagate uncertainties through an arbitrary StackedGP to
the quantities of interest using both squared exponential and poly-
nomial kernels (Rasmussen and Williams (2005)). The second con-
tribution is the application of StackedGP to several representative ex-
amples in environmental science (wildfire, geology of mineral
resources, and atmospheric transport) by emphasizing improvements in
modeling areas such as component-based modeling, cokriging, and
emulation of dynamical systems. Finally, a Python package? is provided
to build arbitrary StackedGP models and study uncertainty propagation
using the proposed algorithm. All the environmental examples in this
paper are included in our online code repository.

The proposed modeling framework is relevant in a number of en-
vironmental science problems such as wildfire and forest landscape
modeling (Millington et al. (2009); He et al. (2002)), where component-
based modeling is used to model various spatio-temporal subprocesses
(vegetation, soil moisture, and solar radiation) to predict quantities of
interest such as total burned area. In this paper, we study the applic-
ability of the proposed method in predicting the total burned area by
encoding the modular structure of the Canadian forest fire weather
index (FWI) system (Taylor and Alexander (2006)) into the StackedGP.

In addition to supporting the component-based environmental
modeling, StackedGP can be used to enhance predictions of quantities
of interest using intermediate predictions of secondary variables, which
is usually addressed using cokriging (Wackernagel (1996)). Enhanced
predictions of quantities of interest can be obtained by stacking GPs for
predicting intermediate secondary responses that govern the input
space of GPs used to predict primary responses. Several examples can
illustrate the idea such as estimating ozone concentrations (Singh et al.

1 https://bitbucket.org/uqlab/stackedgp/src/master/Synthetic_Datasets.
2 https://bitbucket.org/uqlab/stackedgp.
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(2011)) using the results of chemical transport model simulation as
secondary variables and predicting cadmium concentration using con-
centration of other metals as secondary variables in Swiss Jura
(Goovaerts (1997); Wilson et al. (2012)). StackedGP is not designed to
capture the correlations of response variables, however, StackedGP
models can be constructed by stacking GPs for predicting intermediate
secondary responses that govern the input space of GPs used to predict
primary responses. This hierarchical framework outperforms other
methods as described in the numerical results section, where Jura da-
taset (Wilson et al. (2012)) is used to assess the prediction accuracy of
model with intermediate predictions.

In environmental sciences, uncertainty propagation through dyna-
mical systems is also relevant when high-fidelity models are emulated
(Castelletti et al. (2012); Bayarri et al. (2007); Conti and O'Hagan
(2010); Bhattacharya (2007)). For example, propagating uncertainties
through atmospheric dispersion models (Nielsen et al. (1999); Sykes
et al. (2006)) can be tackled through emulation. In this case, emulators
can be used to speed up the uncertainty propagation process and obtain
estimates of quantities of interest with quantified uncertainties (Konda
et al. (2010); Cheng and Sandu (2009); Conti et al. (2009)). This is
pertinent in operational context when model predictions guide deci-
sion-making processes and uncertainty propagation and data assimila-
tion (Terejanu et al. (2007, 2008)) need to be performed in real-time.
StackedGP is especially applicable in the context of GP emulators
driven by forcing variables predicted by other GP or StackedGP models.
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inference is performed independently for each GP node and the un-
certainty is approximately propagated through the network. StackedGP
provides flexibility in kernel selection for intermediate nodes (RBF,
polynomial as well as kernels obtained via their sum) and has no re-
striction in selecting a suitable kernel for input nodes. Since the GP
nodes are independently trained using multiple datasets, the running
time of the StackedGP grows linearly with the number of nodes and can
be sped up through embarrassing parallel training of GPs.

The paper is organized as follows. Section 1 provides information
about the StackedGP Python package. This is followed by a brief in-
troduction to GP in Section 4. Section 5 re-derives the expectations of a
GP with uncertain inputs for squared exponential kernel, and provides a
novel derivation for the polynomial kernel. Section 6 generalizes the
StackedGP to an arbitrary number of layers and nodes, and discusses
the advantages and limitations of the proposed model. Three numerical
results are presented in Section 7 and conclusions are given in Section
8.

2. Brief tutorial for StackedGP software package

The StackedGP software package hosted on BitBucket (https://
bitbucket.org/uglab/stackedgp) contains all the examples used in this
paper to showcase the applicability of the StackedGP. The Python im-
plementation using StackedGP of the hypothetical 1D example in the
introduction, see Fig. 1, is provided below in Code 1.

from stackedGPNetwork import StackedGPNetwork

# create a StackedGP with a specific number of layers

stackedNetwork = StackedGPNetwork(nlayers

# to create a node specify the

output datasets used to

|, outputdata = DataZ[’'z’])

stackedNetwork . createNewNode (layerIndx=1, inputdata

|, outputdata = DataY['y’])

# estimate
stackedNetwork . optimize ()

# final
predMean ,

predVar

A simple 2D puff advection example is provided to showcase Stack-
edGP's applicability in uncertainty propagation using emulated dyna-
mical systems.

This work unifies the approach of Girard et al. (2002) and Li et al.
(2015). In Li et al. (2015), the authors introduced StackedGP to predict
carcinogenic toxin concentrations using environmental conditions and
Monte Carlo sampling was used to propagate the uncertainty through
the stacked model and estimate the mean and variance of the quantity
of interest. Since sampling requires a high computational cost, here, the
uncertainty propagation through the network is achieved approxi-
mately by leveraging the exact moments for the predictive mean and
variance derived by Girard et al. (2002) for a single GP with uncertain
inputs and squared exponential kernel.

StackedGP is conceptually different from deep GPs (Damianou and
Lawrence (2013)), where no data is available for the latent nodes and
where the latent variable model requires to jointly infer the hy-
perparameters corresponding to the mappings between the layers. A
model carrying the same name was introduced by Neumann et al.
(2009), where a stacked Gaussian process was proposed to model pe-
destrian and public transit flows in urban areas. The model proposed by
Neumann et al. (2009) is capable of capturing shared common causes
using a joint Bayesian inference for multiple tasks. In our work, the

the hyper—parameters

layer number and the
train
stackedNetwork . createNewNode (layerIndx=0, inputdata

2)

input and

the GP node
= DataZ| 'x’
= DataY [z’
of all the nodes in the mnetwork
test input

prediction for a particular
stackedNetwork . predict (x)

Code 1: Example StackedGP API.

3. Gaussian process background

Unlike parametric models, non-parametric models provide infinite
dimensional parameters for modeling the distribution of the data.
Gaussian processes are popular non-parametric models (Rasmussen and
Williams (2005); Williams and Rasmussen (1996); Williams (1998);
Reggente et al. (2014)) that have found various applications in the
environmental modeling community. They are used as data-driven
models capable to predict various quantities of interest with quantified
uncertainties such as ultra fine particles (Reggente et al. (2014)), mean
temperatures over North Atlantic Ocean (Higdon (1998)), wind speed
(Hu and Wang (2015)), and monthly streamflow (Sun et al. (2014)),
just to name a few. When the training data for GPs comes from simu-
lators rather than field measurements, then GPs become computational
efficient surrogate models or emulators of high-fidelity models
(Kennedy et al. (2002); O'Hagan (2006); Conti and O'Hagan (2010)),
with various applications in environmental modeling such as fire
emissions (Katurji et al. (2015)), ocean and climate circulation
(Tokmakian et al. (2012)), urban drainage (Machac et al. (2016)), and
computational fluid dynamics (Moonen and Allegrini (2015)).
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Fig. 2. Simple StackedGP - two chained Gaussian processes. Circles represent a
GP node and squares represent the observable inputs. Dataset, and Dataset, are
used to train the first and second GP, respectively.

Given D = {X, z}, a set of n data points, each consisting of d inputs
(X € ®"<4) and one output (z € ]R"), the output of the ith data point, z;,
is modeled as follows:

zi=gx) + ¢&f (@)
gt~ N(O, crfz )
g ~ GP(0, kz(-,")) 3

Here, g represents a latent function with zero mean Gaussian process
prior and kernel or covariance function k,(-,-). The kernel measures the
similarity between two inputs, x; and x;. For example, the squared
exponential or radial basis function (RBF) kernel is defined as follows.

4

The hyperparemeters, CTEZZ , and e.g. ¢ and 6 corresponding to the RBF
kernel, are estimated using the maximum likelihood approach, where
the log-likelihood is given by,

kz (x;, xj) = ¢ exp{—0llx; — xsz}

1 _ 1 n
Inp = _EZT(KZ + UEZZI)(le, @, 6, GEZZ) lz — Eln K, + UEZZI - 51n27r s
()
and the covariance matrix K, is an n X n Gram matrix with elements

Kij = kz(x,-, x,-).

Once the hyperparameters are estimated, the predictive distribution
of z* at a new testing inputx”, is given by the following normal dis-
tribution.

z ~ N(uz*, azz*)

(6)
pe =k C'z @
UZZ,, =k (x", x") + o? — kI C] 'k, ®
C,=K; + UEZZI 9

In the following section we provide the background for a simple
StackedGP as an extension to GP with uncertain inputs as initially de-
veloped by Girard et al. (2002).

4. Simple StackedGP - two chained Gaussian processes

Consider the following simple StackedGP in Fig. 2 given by two
chained GPs with their own training dataset. The input to the first GP is
given by the vector x. The output of the first GP, z governs the input to
the second GP, and y is the final output of the StackedGP in Fig. 2.

The goal of this section is to introduce the mechanism of obtaining
analytical expectations of two-layer StackedGPs for both RBF and
polynomial kernels. Note that the predictive distribution of even a
simple StackedGP as the one in Fig. 2 is non-Gaussian, however its
mean and variance can be obtained analytically. In the next section we
will generalize the approach to obtain the approximate expectations of
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StackedGPs with arbitrary number of layers and nodes per layer.

We start with providing analytical expressions for mean and var-
iance for a general kernel, and follow with specific expressions for RBF
kernel as initially derived by Girard et al. (2002), and then with a novel
derivation for polynomial kernel.

The predicted mean of the StackedGP with input x" is obtained
using the law of total expectation by integrating out the intermediate
variable z":

Ey'ly, x"] = E#[EYly, x", 2]] (10)

Here, E[yly, x", 2'] = k; C;'y is the expectation of a standard GP
with input z and output y, and it can be expanded as follows:

n
Ey'ly, x", 21 =y" ) ;' (Dky (2, 2) ,

i=1

an

where C, is the covariance matrix of the second GP and k, (2", z;) is the
kernel between the predicted variable z* and the i training data point
Zi, and n is the number of training points for the target node. The final
predicted analytical mean of y* can be written as

Ey’ly, x 1=y ), G (D E [k (@, 2)] -
i=1 —_—

N (12)

E [ky (z', z)] is the key integration to obtain the analytical predicted
mean. The expectation in Eq. (12) is with respect to a normal dis-
tribution with mean u - and variance crzzﬁ as obtained from the predic-
tion of the first GP. The expectation can be obtained analytically for
RBF and polynomial kernels as shown in the following two subsections.

The variance of the StackedGP can be obtained similarly using the
law of total variance.

Var(y'ly, x")= B/ [Var(y'ly, x7, 2] + Var *(ED’ly, x7, 2'])

= E[ky (", 2") + o} — k] C;'k,] + Var (k] C;y)
o2 + E k(2. 2)] = E-[k! €5k, + Var (k! C;y)
(13)

Ay

Here, afy is the noise variance of the target GP and E [k; C;"k,] can be
obtained using the following expansion.

n n
Eq k'] = D0 D) G U DE Nk @ 20k, (@, 2)]

i=1j=1 A3 14)
The last term in Eq. (13) is given by,
Var #(k; C;'y) = yTC; 5, C; 1y (15)
where, X, = Var +(k,) € R"*" can be expressed as
% = Bulkyky] — B [k)]E[K',]. 16)

Note that ¥ is computed using the two integrations of A; and A;.
In the following two subsections, we will provide the analytical first
and second moments of StackedGP for RBF and polynomial kernels.

4.1. RBF Kernel - simple case

Using the RBF kernel k,(z", z)) = ¢exp{—0(z" — z,)’} to evaluate A,
in Eq. (12) we obtain:

(zi - ,UZ*)Z
2(azz, n 1/(26))

| (1/(29))
= ¢\/UZ2*+(1/(26))6X

_— e L& @ — 1,
E A =gyl |————27 Cl(, " Tz’
V. x1 =y \/Uzz* + (1/(26)) % ; Y (Dexp 2(02* + 1/(29))

17)
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Here, 0 is the corresponding length scale in the target node, ¢ is the
kernel's variance, and y” is the output training points that have been
used during training of the target GP node.

For RBF kernel, A, = ¢ and A; in Eq. (13) can be calculated using
the following expression.
Ay = 2 | 1/(48) _ xexp 0G@i—g) @i+ z)2—pP

| 1/40) + o 2 2(1/46) + 02)

Here, z; is the i input training data point for the target node.
Finally, the predicted variance is given by:
1/(46)

VarQ'ly. x)= oF + ¢ + Y G %Gy - 25,1, C;l(i’j)\f‘il/@e)wz
| ,
z

2
6(zi -z B [(Zi*'zj)/z"‘z*]

2

X exp
2(1/(46) + UZ*)
z

18

These analytical expressions corresponding to the RBF kernel co-
incide with those derived by Girard et al. (2002) and Candela et al.
(2003). We have provided them here for completeness and to empha-
size the role of uncertainty in the network as described in the following
sections. In the next subsection we provide novel analytical expressions
for the predicted mean and variance of StackedGP when using poly-
nomial kernels.

4.2. Polynomial Kernel - simple case

Following the same simple StackedGP configuration and a d-order
polynomial kernel at the target node k,(z", z;) = (z*%z;)", the predicted
mean of Eq. (12) can be calculated as

n
E[y'ly, x'1 =y" ), €' (i)(asz)

i=1
where A, = (a4z%) and ay follows the non-central moments of the
normal distribution, namely

2]
w=3

=0

d — g 2u d—2u
(zu)(Zu 1)..0’; B 19
The expression for the predicted variance in Eq. (13) is obtained by
substituting A, = ayg and A; = azdzidzf where a,, is calculated using Eq.
(19). Finally, the predicted variance in the case of polynomial kernel is
given by,

n n
Vaty (' ly, ¥7) = 02 + @y + YT G5 Cly — D D az'7 € G ).

i=1 j=1

5. Stacked Gaussian Process - generalization

The goal of this section is to extend the previous StackedGP to an
arbitrary number of layers and nodes per layer. First, we start by pre-
senting the analytical mean and variance of a two-layer StackedGP with
arbitrary number of nodes in the first layer. Second, we provide a dis-
cussion on accommodating an arbitrary number of output nodes in the
second layer. Finally, we present an algorithm to compute the ap-
proximate mean and variance of a generalized StackedGP, and discuss
the advantages and limitations of the model.

5.1. Generalized number of nodes in the first layer of a two layer StackedGP
Consider an arbitrary number of nodes in the first layer as an ex-

tension of the simple two layer StackedGP in the previous section while
keeping the single output, see Fig. 3. The analytical expectations
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Fig. 3. StackedGP with multiple nodes in the first layer. Circles represent GP
nodes and squares represent the observable inputs.

presented here will require the independence assumption for the input
uncertainties in the target node. Namely, the outputs of the first layer,
z = [z, Z2..2m|" are considered independent, see Eq. (20). In addition,
the multidimensional kernel is assumed to be obtained as a product of
1D kernels. This can easily be extended to sum of kernels and sum of
products of 1D kernels.

my
k(@' 2) =[] kG 2)

i1 (20)
Thus, the expectation of the kernel is factorized as follows:
my .
E k@ 2] = [] Bl G, 2)]
j=1 21)
Eq. (12) for the mean is generalized as follows,
Ely'ly, x'1 =Gy, (22)

where the elements of the vector v € R"%! correspond to the training
data points z; fori = 1...n and act as kernels under the uncertain inputs.

v = B[k, (2", z)] = H EZ; [ky(z;’ Zji)]

j=1 (23)

Similarly, given Eq. (14) the predicted variance of the target node
can be generalized as follows:

var[y'ly, x'l = 2 + Ay, + YTCI5Cly — 31 (CT' O H)

IR S @4
where the symbol "©” is used for element-wise product or Hadamard
product and the elements of H € R™*" reflect integrations under the
uncertain inputs of the product of two kernel functions as given in Eq.
(20) and evaluated at different training data points.

H;; = E[k,(z", z)ky (2, 7)) (25)

5.1.1. RBF kernel - generalized number of nodes in the first layer
The analytical mean in the case of the RBF kernel for the output node
is obtained using the following elements of the v vector in Eq. (22).

v = wg, (26)
I e

() ) -

i 7



K. Abdelfatah et al.

m

q = gexpi Y, —

j=1

(ei—r)
)

Here, i = 1..n, where n is the number of training data points for the
output node, m, is the number of inputs to the output GP node, and z;; is
the j* element of the i’ training data point. Note that the predicted
mean of the StackedGP has the same form as the standard GP but with
two main differences. First the kernel evaluations v; measure the si-
milarity between the i?" training data and the predicted mean g - from
the previous layer instead of the direct input. Second, the similarity is
discounted based on the input uncertainty o 2. Note, that if we set crz2 to

(28)

zero, we obtain a common product of RBF kernels correspondlng to
each node in the first layer. However, the larger the input uncertainty
for a particular node the lower the similarity on that particular di-
mension.

To obtain the analytical variance for the RBF kernel in Eq. (24), we
use the following relations: Ay, = ¢ and H = uP where the scalar u and
the elements of P € R"*" are given by

ny ‘\
u=||“
J

A

1/(46))

(1))

(29)
2
m ooz —z:)? [(Zja+Zjb)/2—,uf]
By = ¢lexpl— . ) "’2 ) + il
j=1 2(1/(46]-) + o%)
4 (30)
Using Eq. (16), we can get the following expression for Z:
S = uP — w’T (31)
where the elements of the matrix T € R"™*" are defined as
( 2 2
m Zja—ﬂf‘) +(Zjb—#f)
T,» = p*expi— ), Z K
j=1 2(1/(29j) + 02*)
% (32)

We emphasize the impact of input uncertainty on the predictive
mean and variance, which is key in obtaining better predictions.
Namely, the input uncertainty weighs the contributions of the parti-
cular input to the GP node's prediction. Note that if the uncertainty
from the first layer a = 0 then we obtain the same standard variance
of a Gaussian process Namely, the scalers u and w become one and
Py=T,=k, (za, uzj)ky(zb, ,lej‘)T, which yields £, =0 and thus
¢ = 01in Eq. (24). As a result, in the case of certain inputs, the predicted
variance of the StackedGP is similar to the standard GP, namely
o, + ¢ — ky C7'k,. Here, k, is the kernel evaluated at the training point
and the predicted mean of the first layer. In other words, if we have
certain inputs, we get standard GP prediction. Otherwise, the un-
certainty in the first layer is propagated to the second layer, increasing
the predictive uncertainty of the StackedGP output.

In the next section we expand these derivations to polynomial
kernels.

5.1.2. Polynomial kernel - generalized number of nodes in the first layer

The analytical mean in the case of polynomial kernel of order d for
the output node is obtained using the following multinomial expansion
for the i element of the v vector in Eq. (22).

Z (pl, p;f ...p,m) H lapzi] -

P1+Py+ Py =d 1<t<m

V=
(33)
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Here, p; indicates the power of the t* input with 1 <t < m. In
. d _ d! L

additions, ( P1» Py ~~~Pm1) T — and the coefficient a, follows
the non-central moment of the normal distribution shown in Eq. (19).
Note, that in the absence of input uncertainty, namely setting crz* =0,

we actually set all but the first term in Eq. (19) to zero, which results in
the same formula for the mean of a standard GP with a polynomial
kernel of order d.

To obtain the analytical variance for the polynomial kernel in Eq.
(24), we use the following relations:

(pl, pf .-.pml) IT [a]

Az, Z

P1+D2+--Ppy=d 1<t<m (34)
2%p,
2 2
Qyp, = z ( >l‘pl)(Zu — Dlguy P
o 2u % % (35)
Using Eq. (16), we can get the expression for X;:
S =H-—w' (36)

where the elements of the matrix H € R"*" are obtained using the
following multinomial expansion,

_ d d P4
Hy= 3 z (pl, .,.pml)(ql, ...qml) II [@pran 2|
P1te-Dm=d q1+.Gp=d 1<t<m
37)
b t+q
2 b t+q
Appq = ¢ Qu - Do 2wy Pt
P-4t Ié) ( 2u )( ) P ﬂz, (38)

Similarly as in the RBF case, if there is no uncertainty coming from
the first layer, namely o2 = 0, then H = w’, which yields £, = 0 and
%

thus ¢ = 0 in Eq. (24). Since H, = k, (za, ,uzj* k, (zb, uzjf T, this leads
to a predicted variance of the StackedGP similar to the standard GP
with polynomial kernel, o; + Ay, — ky C'k,. Here, k, is the poly-
nomial kernel evaluated at the predicted mean of the first layer and the
training points.

Note that the first two moments can be easily obtained also for
kernels that involve sums of RBF and polynomial kernels. In the fol-
lowing section we discuss how we can expand the two-layer network to
arbitrary number of outputs, and finally the assumptions needed to
obtain approximate expectations in a StackedGP with arbitrary number
of layers and nodes per layer.

5.2. StackedGP with arbitrary number of layers and nodes per layer

The only assumption in the previous sections is that the outputs of
layers that propagate as inputs to the next layer are independent. This
applies also to the extension of the previous StackedGP to an arbitrary
number of outputs in the last layer. This assumption is for convenience
as the derivations are significantly more involving, however the
methodology can accommodate correlated inputs. For example, co-
kriging methods (Cressie (1992)) and dependent GPs (Boyle and Frean
(2005)) provide an alternative formulation for obtaining coupled out-
puts. Any of these models might be used to generate correlated outputs
for any layer, however these correlations need to be incorporated into
the StackedGP expectations. In our numerical results, we have opted to
pre-process the training data using independent component analysis
(ICA) to obtain independent projections that are finally used to train the
GPs. Note that this procedure does not include the deterministic input
observations. We plan to extend the derivations to account for corre-
lations in our next study.

The objective of this section is to build a StackedGP to model an m
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X

Fig. 4. Stacked Gaussian Process model. The output dimension of y(x) is my
where the model has [ stacked layers and each layer has m; GP nodes (i refers to
the index of the layer). Circles represent a GP node and squares represent the
observable inputs.

dimensional function y(x) as shown in Fig. 4. The model has I stacked
layers with each layer having m; GP nodes (I refers to the index of the
layer and the value of m; can be different from layer to layer). We as-
sume that we are given the following set of training datasets
Dyrgin = {D1, D, ...Dg}, where Q = 25:1 m; represents the total number
of nodes in the model. In this stacked model each node is independently
trained using its own available dataset D,, where g = 1..Q. Thus, each
node acts as a standalone standard GP, where the hyper-parameter
optimization/inference is conducted using node specific datasets.
While for two-layer StackedGP the mean and the variance can be
obtained analytical for both RBF and polynomial kernel, in the case of
three or more layers the expectations are intractable for the RBF kernel,
and in the case of polynomial kernels, they involve keeping track of
large number of terms. We have opted to approximately propagate the
uncertainty from layer to layer and approximate the expectations of the
StackedGP. Note that even if we are able to obtain analytical expecta-
tions for a chain of two GPs, the underlying distribution is still non-

Require: Dipin = [D1, Do, ...

Environmental Modelling and Software 109 (2018) 293-305

Gaussian. As a result, in addition to the independence assumption for
the outputs of each layer, we add another assumption which involves
approximating the distribution of the output of each layer with a
Gaussian distribution. Given the analytical mean and variance, we use
the maximum entropy principle to obtain the Gaussian approximation
(Shore and Johnson (1980); Trebicki and Sobczyk (1996)). The effect of
this approximation is an increase in the uncertainty that is propagated
through the network, resulting in conservative predictions.

In large networks or multi-step predictions this uncertainty inflation
due to maximum entropy approach might have a significant impact.
However, this impact is minimized in applications such as data assim-
ilation, where frequent measurements can reduce the predicted un-
certainty. Furthermore, a sensitivity analysis can be used to determine
the nodes and the inputs that contribute the most to the final un-
certainty of the quantity of interest. This way, one can allocate re-
sources such as targeted data collection or kernel tuning to improve the
GP model of the node with the highest uncertainty contribution.

Finally, Egs. (22) and (24) provide the main mechanism to obtain
the approximate mean and variance of a layer given the predictions of
the previous layer. This process is applied sequentially until the mean
and variance of the final quantities of interest are obtained. Algorithm 1
demonstrates how a general StackedGP is built and the steps required to
obtain the desired expectations.

Algorithm 1. StackedGP - model building and uncertainty propagation

One limitation of the model is related to the matrix inversion re-
quired by the standard GP model, which takes ¢ (rn®) operations, where
n is the number of training data points for a particular node. Several
approaches have been proposed to deal with the curse of dimension-
ality: kernel mixing (Higdon (1998)), sparse GP with pseudo-inputs
(Snelson and Ghahramani (2006)), incremental local Gaussian regres-
sion (Meier et al. (2014)), and inversion free approaches (Anitescu et al.
(2017)).

Dg). @ number of nodes in the StackedGP.

Require: nodeLayerIdr = {(I,n);};=1..0. @ tuples of layer and node index

for each node.
Require: stackedStructure:

an array of @ lists,

where each list

stackedStructure[node] has an arbitrary number of tuples to specify the

inputs nodes to the current node.

Require: New observation «*
{# Create StackedGP}
1: for i in range(1,Q) : do

kernel initialization (RBF, Polynomial, or RBF + Polynomial).

if nodeLayerIdz[i][1]! = 0 then

apply ICA on Dypgin[i]. X
end if

estimate hyperparameters for node.

add node to StackedGP at location nodeLayerIdxz|i]

: end for
{# Uncertainty propagation}

2
3
4
5:
6:  init node with inputs Dy [i].X and outputs Dypgin[i].Y
7
8
9

10: for i in range(number of layers) do

11:  for node in layer[i].nodes do

12: extract mean and variance of all inputs from stackedStructure[node]
{# Calculate the mean and variance for the current node}

13: RBF kernel: mean (Egs. 22, 28), and variance (Egs. 24, 29, 30, 32).

14: Polynomial kernel: mean (Egs. 22, 33), variance (Eqs. 24, 34, 37).

15:  end for
16: end for
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When the output of various layers is high-dimensional, then di-
mensionality reduction techniques can be added to pre-process the
training data (Higdon et al. (2008)). Also, various operations in Algo-
rithm 4 are easily parallelizable. Namely, the optimization for hy-
perparameter estimation of each node can be carried out in parallel as
well as within layer propagation of information from the previous layer.
Obviously, this computational efficiency over multi-output methods
comes at a cost of properly accommodating for the correlation of the
outputs.

6. Numerical results

In this section we provide three different examples to demonstrate
the applicability of StackedGP. The first application corresponds to the
Jura geological dataset, where the StackedGP is used to enhance the
prediction of a primary response using intermediate predictions of
secondary responses. In the second example, we use StackedGP to
combine two real datasets to predict the burned area as part of a forest
fire application. Finally, we demonstrate the use of StackedGP in the
context of emulated dynamical systems for 2D puff advection driven by
uncertain inputs for multi-step predictions.

6.1. Cascading predictions - Jura dataset

In this subsection we use Jura dataset collected by the Swiss Federal
Institute of Technology at Lauasanne (Atteia et al. (1994); Webster et al.
(1994)). The dataset contains concentration samples of several heavy
metals at 359 different locations. Similar to previous experiments
(Goovaerts (1997); Alvarez and Lawrence (2011a); Wilson et al.
(2012)), we are interested in predicting cadmium concentrations, the
primary response at 100 locations given 259 training measurement
points. The training data contains location information and con-
centrations of various metals (Cd, Zn, Ni, Cr, Co, Pb and Cu) at the
sampled sites. The primary response is the concentration of Cd, and the
other metals are considered secondary responses.

Note that standard Gaussian processes model each response variable
independently and thus knowledge of secondary responses cannot help
in predicting the primary one (Teh et al. (2005)). In this case a standard
Gaussian process (StandardGP) will use a training dataset with only
locations as inputs and Cd measurements as target (Alvarez and
Lawrence (2011a); Wilson et al. (2012)). Multi-output regression
models such as co-kriging (Cressie (1992)) can use the correlation be-
tween secondary and primary response to improve the prediction of Cd.
The StackedGP, while it does not model the correlation between pri-
mary and secondary responses, it can be used to enhance the prediction
of the primary response using intermediate predictions of the secondary

Table 1

Example 1 (cascading predictions) - Performance on modeling Cd using dif-
ferent two/three layers StackedGP structures with mean absolute error (MAE)
as performance metric.

Model MAE STD
StackedGP 0.3860 6 x 1073
StackedGP(Co) 0.3617 3.3 %1076
StackedGP(Cr) 0.3884 7.5 % 1077
StackedGP(Co,Cr) 0.3602 5.7 x 1077
GPRN(VB) Wilson et al. (2012) 0.4040 6% 1074
SLFM(VB) Teh et al. (2005) 0.4247 4x1074
SLFM Teh et al. (2005) 0.4578 2.5 x 1073
ICM Goovaerts (1997) 0.4608 2.5% 1073
CMOGP Boyle and Frean (2004) 0.4552 1.3 x 1073
Co-Kriging 0.51

StandardGP(Zn,Ni) 0.3844 4 %1073
StandardGP 0.5714 3x 1074
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Fig. 5. Example 1 (cascading predictions) - StackedGP for predicting Cd based
on estimated Zn and Ni at location of interest X and Y.

responses.

In the heterotopic case (Goovaerts (1997)), the primary target is
undersampled relative to the secondary variables. This provides access
to secondary information such as Ni and Zn at 100 locations being es-
timated. As a result a standard Gaussian process can be built to have Ni
and Zn directly as inputs. Here we will denote it as StandardGP(Zn,Ni).
This is also the case for comparing our results with other six multi-task
regression models as reported by Wilson et al. (2012) and tabulated in
Table 1.

Wilson et al. (2012) developed a Gaussian Process Regression Net-
work (GPRN) to model the correlations between multiple outputs such
as primary and secondary responses. The outputs are given by weighted
linear combinations of latent functions where GP priors are defined
over the weights, unlike similar studies for Semiparametric Latent
Factor Model (SLFM) (Teh et al. (2005); Boyle and Frean (2005)) where
the weights are considered fixed. As these models have no analytical
solutions to learn its hyper-parameters, the authors use different ap-
proximation methods such as variational Bayes (VB) (Fox and Roberts
(2012)). The SLFM has been motivated from intrinsic coregionalization
model (ICM) (Goovaerts (1997)) in geostatistics. However unlike ICM,
the SLFM includes Gaussian process hyper-parameters such as length-
scales during the learning process. In additions, Convolution GP Model
for Multiple Outputs (CMOGP) is another regression model where each
output at each x € X is a mixture of latent Gaussian processes mixed
across the whole input domain X. StackedGP is not designed to capture
the correlations of response variables, however, StackedGP models can
be constructed by stacking GPs for predicting intermediate secondary
responses that govern the input space of GPs used to predict primary
responses. This hierarchical framework outperforms other methods as
shown in Table 1.

The first proposed StackedGP uses the first layer to model Zn and Ni
based on locations and the second layer to model Cd based on the lo-
cations and the estimated output of the first layer, see Fig. 5. In the
heterotopic case the StackedGP can use directly the available mea-
surements of Ni and Zn instead of predictions by setting the uncertainty
associated with these measurements to zero. In this case the StackedGP
acts as the StandardGP(Zn,Ni).

Three other structures are proposed by using intermediate predic-
tions of Co, Cr, and Co and Cr together.” In this case, we have a three
layer StackedGP to model Cd, see Fig. 6. The first layer is the same as in
the previous setup. The second layer models intermediate responses
(Co, Cr, and Co and Cr). The third layer is used to model Cd based on
the second layer predictions in additions to the input/output of the first
layer, namely location and Zn and Ni. Fig. 6 also shows the predicted
spatial fields for different metals. The predicted mean concentration of
each metal is depicted as a heat map where x-axis and y-axis represent
latitude and longitude respectively.

Table 1 shows the results of these stacked structures, StackedGP
(Co), StackedGP(Cr) and StackedGP(Co,Cr). While measurements of Ni

3 Interactive python for all stackedGP structures for Jura dataset can be found
on https://bitbucket.org/uqlab/stackedgp/src/master/cadmium_prediction/
demo.


https://bitbucket.org/uqlab/stackedgp/src/master/cadmium_prediction/demo
https://bitbucket.org/uqlab/stackedgp/src/master/cadmium_prediction/demo
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Fig. 6. Example 1 (cascading predictions) - StackedGP for predicting Cd based on estimated Zn, Ni, Co, and Cr at location of interest X and Y. The figure also shows

the predicted spatial fields for Zn, Ni, Cr, Co, and Cd metals in Jura dataset.

and Zn are available in the testing scenarios, there are no measurements
for Co and Cr during testing. Thus, Cd predictions of these three
StackedGPs rely on predictions of Co and Cr using locations and Ni and
Zn measurements at these locations.

The mean absolute error (MAE) between the true and estimated Cd
is calculated at the 100 target locations. The experimental setup follows
Alvarez and Lawrence (2011a) and Wilson et al. (2012) for which the
simulation is restarted 10 times using different initializations of the
parameters, namely the length scale for the RBF kernel in case of the
StackedGP. The average and standard deviation of MAE over these 10
runs is reported in Table 1. Overall StackedGP gives better results as

compared with the other models. Also, when Zn and Ni measurements
are available as assumed by the other multi-output regression models
(Wilson et al. (2012); Alvarez and Lawrence (2011a)), then a Stan-
dardGP(Ni,Zn) can provide a lower MAE than the other six multi-output
regression models. However, StackedGP can provide a better perfor-
mance over the Standard(Zn,Ni) by making use of intermediate pre-
dictions of secondary responses.

For all these experiments we found that the log transformation and
normalization can lead to better results. For multi-responses in the
middle layer, we used independent component analysis (ICA) to obtain
independent projections of secondary responses. This is required as the
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Precipitation Precipitation Precipitation

Temperature Temperature Temperature
Relative Humidity ~ Relative Humidity
Wind
l Wind
Fine Fuel Duff Drought
Moisture Code Moisture Code Code
(FFMC) (FFMC) (DC)
Initial Spread Buildup
Index Index
(I1S1) (BUI)
Fire
Weather Index
(FwI)

Fig. 7. Example 2 (forest fire) - Structure of the fire weather index (FWI) system
module of the Canadian forest fire danger rating system (Taylor and Alexander
(2006)).
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Fig. 8. Example 2 (forest fire) - StackedGP for predicting burned area based on
estimated FWI indices. Letters P, T, RH, W stands for precipitation, tempera-
ture, relative humidity and wind respectively. Also, the first two layers are
trained using dataset D; , while dataset D, is used to train the last layer.

Table 2
Example 2 (forest fire) - Predictive results using different models. The input for
each model is T for meteorological features and FWI for fire indices. The results
obtained with multiple regression (MR), decision trees (DT), random forests
(RF), and neural networks (NN) have been reported by Cortez and Morais
(2007).

Model Input MAE RMSE
StackedGP T 12.80 46.0
MR FWI 13 64.5
DT T 13.18 64.5
RF T 12.98 64.4
NN T 13.08 64.6
SVM T 12.71 64.7

current derivation assumes that inputs to a GP node are independent.
The complexity of most of multi-task models (e.g. CMOGP, SLFM), is
O(N?p*) where N is size of the training dataset and p is the number of
output responses (Alvarez and Lawrence (2011b); Wilson et al. (2012)).
As GPRN depends on approximation methods such as variational Bayes,
it needs several iterations to reach suitable hyper-parameters. A larger
the number of iterations increases the time complexity of the model.
Therefore, it may achieve lower complexity such as O (pN?) at the cost
of obtaining a lower accuracy by decreasing the number of iterations.
StackedGP scales linearly with the number of nodes in the structure
because of the independent training of the nodes, which can be done in
parallel. In the worst case StackedGP is O(pN?). Nonetheless, sparse
approximation techniques can be used to further reduce this complexity
in the case of large training datasets (Snelson (2007); Damianou et al.
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Fig. 9. Example 3 (uncertainty propagation) - StackedGP model for uncertainty
propagation using emulated 2D puff advection driven by uncertain wind field.

(2011)). Furthermore, StandardGP, Co-Kriging, and ICM have O(N?)
complexity, but they achieve a lower accuracy as compared with the
other mulit-task models.

6.2. Model composition - Forest Fire Dataset

The prediction of the burned area from forest fires has been dis-
cussed in different studies such as Cortez and Morais (2007) and
Castelli et al. (2015). The burned area of forest fires has been predicted
using meteorological conditions (e.g. temperature, wind) and/or sev-
eral Canadian forest fire weather indices (Taylor and Alexander (2006))
for rating fire danger, namely fine fuel moisture code (FFMC), duff
moisture code (DMC), drought code (DC), initial spread index (ISI), and
buildup index (BUI), as shown in Fig. 7.

In this application we are interested in developing a StackedGP * by
first modeling the fire indices using meteorological variables T from one
dataset presented in Van Wagner et al. (1985) and then model the
burned area based on fire indices using another dataset presented in
Cortez and Morais (2007). The proposed StackedGP is depicted in
Fig. 8. The GP nodes corresponding to the four fire indices (FFMC,DMC,
DC, and ISI) are trained from data published in Van Wagner et al.
(1985) according to the hierarchical structure shown in Fig. 7. While
the second dataset (Cortez and Morais (2007)) contains meteorological
conditions along with the fire indices and burned area, we assume that
the meteorological conditions are missing in the training phase from
this dataset and use only the fire indices and burned area data to train
the GP node in the last layer of the StackedGP.

A 10-fold cross validation is applied to the dataset published by
Cortez and Morais (2007) to train the burned area node and test the
whole StackedGP model. Because of the skewed distribution of the
burned area values and to ensure positive value for our predictions,
instead of directly modeling the burned area using StackedGP, we have
modeled the log of the burned area. As a result, the final mean and
variance of the burned area B[T] as a function of the meteorological
conditions T is given by Egs. (39) and (40) respectively. In additions, we
have found that scaling the target variable to have zero mean and unit
variance to be a beneficial preprocessing step.

E[B] = [e%s — 1] eXns+oin (39)

Var[B] = etns 0500, (40)

Here, u,; and oj,p are the output of the probabilistic analytical Stack-
edGP (Egs. (22) and (24)) in the case of the RBF kernel, see Section
6.1.1.

The result of modeling the burned area using the StackedGP is
shown in Table 2. The StackedGP model is compared with the results of

“ Interactive python for stackedGP structure for Forest Fire Dataset can be
found at https://bitbucket.org/uqlab/stackedgp/src/master/forestfire.


https://bitbucket.org/uqlab/stackedgp/src/master/forestfire
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Fig. 10. Example 3 (uncertainty propagation) - Histogram of 1000 MC samples (blue) and the predicted StackedGP Gaussian distribution (red) at time step 10 for
figures [a, b, and c] and time step 20 for figures [d, e, and f]. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

Table 3

Example 3 (uncertainty propagation) - Predicted mean and standard deviation of puff states using proposed approximate and Monte Carlo propagation of uncertainty
through StackedGP.

k Approximate Propagation Monte Carlo

Xg Yk di Xg Yk di

u 4 u o u o u o u o u o
5 7.76 0.19 7.83 0.13 2.61 0.23 7.74 0.19 7.89 0.14 2.59 0.16
10 9.52 0.26 9.67 0.18 5.19 0.29 9.47 0.27 9.76 0.2 5.17 0.24
15 11.3 0.32 11.5 0.22 7.74 0.34 11.22 0.33 11.59 0.24 7.72 0.29
20 13.09 0.37 13.33 0.26 10.26 0.39 12.95 0.38 13.38 0.28 10.25 0.33

5 other regression models reported by Cortez and Morais (2007). Be- Gaussian-shaped puff (Nielsen et al. (1999); Terejanu et al. (2007)). The
cause these regression models have been tested using different input states of the puff evolve using the following equations.
spaces, Table 2 tabulates the best results achieved by each model as

described in Cortez and Morais (2007). Even though the StackedGP Xer1 = X+ U () AL

(41)
predicts the burned area based on estimated indices from the first da-
taset and not the actual values as presented in the second dataset, it is Virr = Vi + wy ()AL (42)
still able to give comparable results with the other models that make
use of meteorological conditions and/or fire indices available in the A1 =di + ug () + “y2 ) At 43)
second dataset. This experiment emphasizes that the StackedGP is able
to combine knowledge from multiple datasets with noticeable perfor- Here, (x,y,) is the position of the center of the puff, and the
mance.

downwind distance from the source d; is used to compute the puff ra-
dius, o, = pdy in models such as RIMPUFF (Nielsen et al. (1999)) based
on Karlsruhe-Jiilich diffusion coefficients (Reddy et al. (2006)), (p, q).

The goal here is to build a GP emulator for the above dynamical
system, knowing that the release location is fixed at (xo = 0 km, y, =0
km) and the wind velocity is uncertain with normally distributed wind

6.3. Uncertainty propagation - atmospheric transport

Gaussian processes with uncertain inputs have been previously used
in multi-step time series predictions (Girard et al. (2003); Candela et al.

(2003)). Modeling multi-step ahead predictions can be achieved by components (y, uy).
feeding back the predicted mean and variance at each time and pro- Uy, ty ~ /" (4m/s, 1m/s) (44)
pagating the uncertainty to the next time step. This idea has been used

in different time-series applications such as electricity forecasting The GP emulator h(-) is constructed using 15 training trajectories
(Lourenco and Santos (2010)) and water demand forecasting (Wang that start at the same release location, but correspond to different wind
et al. (2014)). Here we expand this concept by further driving the dy- fields that randomly sampled from the distribution in Eq. (44). The total
namical system using another GP for propagating uncertainty in an

simulation time is 30min with a time step At = 90 sec. As a result, k has
atmospheric transport problem. We consider a simple advection of a 2D range of 20 steps during the simulation time.
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Xkt V1> D] = hGs Yio U O01), uy (i) (45)

Another GP model is constructed to determine the wind field based
on 16 wind sensors positioned 4 km apart in both directions. The wind
sensor readings are just independent and identically distributed sam-
ples from Eq. (44).

[ux (), uy )] = g (x, y)

Note, that in this particular case the wind velocity at different lo-
cations is correlated. Both emulators use RBF kernels, and they are
stacked to build a recurrent StackedGP as shown in Fig. 9.

To assess the effect of the two assumptions in constructing the
StackedGP® (independent inputs for each layer and Gaussian distribu-
tion approximation for the output of each layer), we compared the
approximate mean and variance of the puff states from StackedGP using
the proposed algorithm with those resulted from a Monte Carlo pro-
pagation of uncertainty through the StackedGP using 1000 samples.

Fig. 10 shows the approximate predicted Gaussian distribution of
the states along with the histogram of the Monte Carlo samples pro-
pagated through the StackedGP. Table 3 lists the predicted mean and
standard deviation of the puff states at different time steps.

Note that even though the state equations for the location of the puff
are linear, because they are emulated using a GP, which at its turn is
driven by a GP model for the wind field, the distribution of the
StackedGP output may depart from the Gaussian distribution. The as-
sumption of approximating the output with a Gaussian distribution may
result in biasing the mean location. The statistical significant difference
between the StackedGP approximate mean propagation and its Monte
Carlo estimate confirms the impact of this approximation as shown in
Table 3.

Furthermore, the assumption of ignoring the correlation structure
between the outputs of StackedGP may result in an artificial inflation of
the uncertainty. In our simple example, this is clearly manifested in
larger standard deviations for the downwind using approximate pro-
pagation as compared with the Monte Carlo estimate. This impact on
uncertainty propagation might be exacerbated when more nonlinear
models are used, which limits the horizon of uncertainty propagation.
Obviously, the gain in computational speed combined with field mea-
surements in the context of data assimilation may position these
stacked model as real contenders for real time applications. We plan to
investigate in the future the application of StackedGP to data assim-
ilation.

(46)

7. Conclusions

A stacked model of independently trained Gaussian processes, called
StackedGP, is proposed as a modeling framework in the context of
model composition. This is especially of interest in environmental
modeling where, e.g., model composition is used to generate large scale
predictions by combining geographical interpolation models with
phenomenological models developed in the lab. An approximate ap-
proach is developed to obtain estimates of the quantities of interest with
quantified uncertainties. This leverages the analytical moments of a
Gaussian process with uncertain inputs when squared exponential and
polynomial kernels are used. The StackedGP can be extended to any
number of nodes and layers and has no restriction in selecting a suitable
kernel for the input nodes.

The numerical results show the utility of using StackedGP to learn
from multiple datasets and propagate the uncertainty to quantities of
interest. While it is not specifically designed to model correlations be-
tween secondary and primary responses, StackedGP can be used to
enhance the prediction of primary responses by creating an

S Interactive python for stackedGP structure for Atmospheric Transport ex-
periment can be found on https://bitbucket.org/uglab/stackedgp/src/master/
Uncertainty_Propagation_Atmospheric_Transport.
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intermediate layer of predictions of secondary responses. This comes
with a lower computational complexity as compared with multi-output
methods - and can make use of off-the-shelves Gaussian processes.
While in the current paper we assume that outputs of intermediate
layers are independent and resolve this using independent component
analysis preprocessing, we plan to extend our derivation to account for
these correlations in the next study. This will allow multi-output models
to act as nodes in the proposed StackedGP. Along with the in-
dependence assumption, the other drawback of the proposed un-
certainty propagation algorithm is the Gaussian assumption of the
predictive distribution. While this is motivated using maximum-entropy
principle in a multi-step prediction setting it overestimates the pre-
dicted uncertainty.
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