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Abstract

We conduct a systematic study of the properties of tilted accretion flows around spinning black holes, covering a
range of tilt angles and black hole spins, using the general-relativistic magnetohydrodynamics code ATHENA++-.
The same initial magnetized torus is evolved around black holes with spins ranging from 0 to 0.9, with inclinations
ranging from 0° to 24°. The tilted disks quickly reach a warped and twisted shape that rigidly precesses about the
black hole spin axis with deformations in shape large enough to hinder the application of linear bending wave
theory. Magnetized polar outflows form, oriented along the disk rotation axes. At sufficiently high inclinations a
pair of standing shocks develops in the disks. These shocks dramatically affect the flow at small radii, driving
angular momentum transport. At high spins they redirect material more effectively than they heat it, reducing the
dissipation rate relative to the mass accretion rate and lowering the heating efficiency of the flow.
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1. Introduction

The general-relativistic (GR) effects of nonzero spin can
have important consequences for accretion flows onto Kerr
black holes. These effects are most dramatic when the spin of
the black hole is not aligned with the rotational axis of the
accretion disk, breaking the axisymmetry of the system. Such
tilted disks are expected to occur in nature, for instance, in
supermassive black holes where the material falling from large
radii in general has no reason to be aligned with the black hole
spin. Lense-Thirring precession of a tilted flow is also a
popular model for type C low-frequency quasi-periodic
oscillations in black hole X-ray binaries (Ingram et al. 2009).

First simulated in GR by Fragile & Anninos (2005) and
Fragile et al. (2007) with the COSMOS and COSMOS++ codes,
tilted accretion disks display dynamical behavior not seen in
untilted systems. For example, the monotonic relation between
spin and the inner edge of the disk breaks down (Fragile 2009),
complicating black hole spin measurements. Even more
noteworthy is the shape of tilted disks, as radial variation in
the strength of Lense-Thirring precession results in disks
warping and twisting as they precess around the black hole
spin axis.

Simulations have shown that tilted disks can develop a pair
of standing shocks that can alter the transport of angular
momentum and dissipation of energy in the disk (Fragile &
Blaes 2008; Generozov et al. 2014). Such structures may
directly affect the variability observed in accreting systems
(Henisey et al. 2012). Tilt also comes into play when
relativistic jets are considered. For example, Polko &
McKinney (2017) have studied the effect of relativistic jets
on orienting tilted disks, and Liska et al. (2018) have examined
how jets in such systems are oriented and how they precess.

The evolution of the shape of a tilted disk is often
categorized either as a diffusive process (Bardeen & Petter-
son 1975; Papaloizou & Pringle 1983) or in terms of bending
waves (Papaloizou & Lin 1995), depending on whether the

scale height //r is small or large compared to the effective a-
viscosity parameter. In the diffusive regime, the inner disk may
align with the black hole spin, with the outer disk remaining
misaligned. This will generally not happen in the bending wave
regime, which is where most numerical work is done. Even
when simulations can resolve geometrically thin accretion
flows (h/r < 0.1), it can be prohibitively expensive to resolve
flows so thin as to have h/r < a.

Krolik & Hawley (2015) contest that the distinction between
diffusion and bending waves is based on isotropic viscosity
models, and that in magnetohydrodynamics (MHD) the only
important distinction is the degree of nonlinearity in the
bending waves. As shown by Sorathia et al. (2013) and Krolik
et al. (2014) using finite-volume ZEUS simulations, MHD
effects cannot be neglected in studying these disks. Even
though magnetic forces on tilted disks are generally small
compared to hydrodynamic ones, the anisotropy of MHD
stresses and the turbulent nature of flows subject to the
magnetorotational instability (MRI, Balbus & Hawley 1991)
have important consequences for the transport of angular
momentum, including the component of angular momentum
responsible for alignment.

Even where numerical work has been done in the traditional
bending wave regime, there is a lack of consensus on what the
final shape of the disk is. In contrast to the aforementioned
authors, Nelson & Papaloizou (2000), and later Nealon et al.
(2015, 2016) wusing the smoothed-particle hydrodynamics
PHANTOM code, find that disks can break, with fragments at
different radii inclined relative to one another. This may be a
result of the disk being unable to radially transport differen-
tially applied Lense—Thirring torques rapidly enough. While
direct comparison between such different numerical methods
using the same physical conditions is difficult, the existence of
these discrepancies between simulations indicates that the
codes may not be in agreement regarding the rate of angular
momentum transport relative to GR precession.
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Neither ZEUS nor PHANTOM employ GR directly, but rather
add post-Newtonian corrections to capture the leading-order
nodal (Lense-Thirring) and possibly apsidal (Einstein) preces-
sion terms, the magnitudes of which are sometimes artificially
increased in order to observe the effects of differential
precession in fewer orbital periods. PHANTOM is limited to
simulating hydrodynamics with an artificial, isotropic viscosity,
while the ZEUS results employ MHD to self-consistently
induce turbulence and drive angular momentum transport. As it
is the interplay between GR dynamics and angular momentum
transport that shapes the disk, these concerns need to be
resolved. This motivates the use of a code that employs both
GR and MHD, naturally including the post-Newtonian terms at
all orders and directly modeling the MRI turbulence we know
to be essential in accretion processes.

Other studies on tilted disk dynamics have gone so far as to
employ full numerical relativity and thus capture the gravita-
tional effect of the disk itself (Mewes et al. 2016a, 2016b),
though these are still done in viscous hydrodynamics rather
than MHD. While the COSMOS++ code uses both MHD and
stationary GR, the aforementioned results were only able to
marginally resolve the MRI. Moreover, those studies, like most
of those done to date, examine one or two tilted configurations
and compare them to an untilted control disk. As the shape and
state of disks are apparently sensitive enough to GR effects and
angular momentum transport that oversimplified approxima-
tions can lead to notably different outcomes, it is natural to ask
how outcomes vary with physical parameters, assuming
numerics are handled adequately.

Here we more thoroughly explore a slice of parameter space,
varying black hole spin and disk tilt angle, focusing on how
these parameters affect the dynamics of tilted accretion disks.
We use the finite-volume GR ideal MHD capabilities of
ATHENA++ (White et al. 2016) to evolve 10 similar initial
conditions with different combinations of spin and initial tilt.
Our goal is to systematically vary these parameters keeping all
else fixed, so that we may quantify how the accretion flows
depend on these important variables. At the same time, we
want to be sure that we are including all relevant physics (GR
and MHD) in order to accurately simulate the behavior of tilted
disks.

The simulations are described in Section 2, with important
definitions regarding tilted coordinate systems given in
Section 3. The results are analyzed in terms of the shape of
the disk midplane (Section 4), the resulting poloidal structure
(Section 5), and the standing shocks we find (Section 6).
Concluding remarks are made in Section 7. As these are
nonradiative, non-self-gravitating, ideal MHD simulations, the
results scale to any black hole mass M, with all lengths
implicitly in units of GM /c? and times in units of GM /3.

2. Numerical Setup

We choose to use spherical Kerr—Schild coordinates (Font
et al. 1998) aligned with the black hole axis. Our coordinates
cover the entire sphere, including the appropriate transmissive
polar boundary, and extend from inside the horizon to » = 70.
In order to keep the timesteps reasonable, we use static mesh
refinement to keep the part of the grid near the poles at low
resolution. The regions within 22°5 of the poles are at an
effective resolution of 56 x 32 x 64 in r, 6, ¢; regions
between 22°5 and 33°75 from the poles are at
112 x 64 x 128; and the grid within 56°25 of the midplane
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is at 224 x 128 x 256. For com!)arison, the fiducial resolution
of Fragile et al. (2007) was 128~ (with the outer radius of the
simulation at r = 120). Improvement of the azimuthal resolu-
tion in particular means that at late times we achieve a
relativistic MRI quality factor
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in the inner parts of the disk ranging from approximately 70 (no
spin) to 90 (highest spin). Hawley et al. (2011) suggest
convergence sets around values of 15-20. We note that the
results of Section 6 indicate that while the MRI may be
necessary to have any accretion, once the flow develops
standing shocks it is the adequate resolution of these
hydrodynamic features that may become more important.

In choosing to incline the disk relative to the grid, rather than
have the two be initially aligned, we are limited in how extreme
a tilt we can achieve before the disk lies in the lower resolution
polar region. However, this choice means the disk is free to
precess about the spin axis without approaching the grid axis.
For example, if we set the disk and grid to be initially aligned,
with the spin axis misaligned from these by 24°, then after half
a precession the disk would still be 24° off the spin axis but
180° out of phase with the grid. As a result the disk and grid
would be misaligned by 48° and much of the disk would be
worryingly close to the grid polar axis. Even introducing a
global precession into the grid itself will not solve this, given
that the disk can precess differently at different radii.

ATHENA++ is run with a second-order van Leer integrator
at a Courant-Friedrichs—Lewy number of 0.3, where 1/3 is the
maximum for this integrator in three spatial dimensions. We
use the second-order modified van Leer spatial reconstruction
from Mignone (2014). The HLLE Riemann solver is used to
calculate fluxes.

The initial conditions are those of the hydrostatic equilibrium
solution of Fishbone & Moncrief (1976) with inner edge at
r =15, pressure maximum at r = 25, adiabatic index of
I’ = 4/3, and peak rest mass density of p = 1. These are the
same inner edge and pressure maximum values as those in
Fragile et al. (2007), though we have a more compressible
adiabatic index compared to their I' = 5/3. These are thick tori
with no cooling added, so at late times the scale height
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ranges from 0.1 to 0.2 inside r = 20. This solution is calculated
for an untilted disk and is then given the desired inclination (so
it is no longer exactly in equilibrium).

We next add a magnetic field from a vector potential that has
only an azimuthal component in disk-aligned coordinates
proportional to max(p — 0.2, 0). The strength of the magnetic
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Figure 1. Inclinations of disks as functions of radius, time-averaged over 3000 < ¢

< 4000. The flatness of the a = 0 and 0° lines is expected, indicating conservation

of angular momentum. Of the six spinning, tilted cases, five display a peak in inclination at small radii. This shows the disks warping further away from alignment
with the black hole at small radii compared to large radii, before beginning to align at very small radii. The vertical dotted lines indicate the radius of the

equatorial ISCO.

We perform 10 simulations out to a time of ¢ = 4000, with
snapshots made every 10 time units. Two of these are around a
Schwarzschild black hole, one with an initial disk inclination of
0°, and another with an inclination of 24° used to verify that the
results do not depend on the orientation of the disk with respect
to the grid. We also run simulations with 0°, 8°, 16°, and 24°
inclinations around black holes with dimensionless spins
a = 0.5 and a = 0.9. Steady-state inflow is established out to
approximately » = 10 by the end of the simulations.

3. Measuring Disk Properties

In order to analyze the properties of a tilted accretion disk,
we must have a definition of the disk’s orientation at a moment
in time, either globally or as a function of radial coordinate. We
choose the gas angular momentum defined to be

Li=1[ijklriTos, 4)
where hats indicate Cartesian coordinates related to our
underlying spherical coordinates in the usual way, the brackets
denote the antisymmetric Levi—Civita symbol, and

r
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are the components of the hydrodynamic stress-energy tensor.
The results are much the same if instead of Tg(’;; we choose

pulu’ or even pu*/u® as is done by some authors.

From the angular momentum we can construct the Euler
angles i (inclination, sometimes called (3 in the literature) and
¢, (90° less than the longitude of ascending node, sometimes
called «). They are given by

. 71 LZ
P («L}f)2 IO ) o
o = tan~'(L", LY). (6b)

These angles relate the coordinates 6, ¢ aligned with the grid
and black hole to the coordinates ¢, ¢’ aligned with the disk

according to

0’ = cos™(cos i cos f + sini cos ¢, sin 0 cos ¢
+ sinisin ¢, sin 0 sin ¢), (7a)

@' = tan~!(—sin ¢, sin 6 cos ¢ + cos P sin O sin ¢,
— sinicos @ 4 cosicos ¢, sinf cos ¢
+ cosisin ¢, sin§ sin ¢), (7b)
0 = cos™!(—sinisinf’ cos ¢’ + cosicosf’), (7¢)
¢ = tan~!(sin sin ¢, cos 0’
+ cosisin ¢, sin 0’ cos ¢’ + cos ¢ sin 6’ sin ¢,
sini cos ¢, cos @’ + cosicos ¢, sin b’ cos ¢’
— sin ¢, sin 0’ sin ¢’). (7d)

Note that for a circular geodesic, i is not exactly the maximum
deviation of @ from the midplane over the orbit. However, these
two senses of inclination are in close agreement, never
deviating by more than approximately a degree over all radii
in the range of spins and tilts considered.

4. Disk Shape

In each of our simulations, the disk orientation as a function
of radius stops evolving by t = 1500, except for a slow, rigid-
body precession. This precession rate is 274 per 1000 time
units in the a = 0.5 cases, and 378-4°1 per 1000 time units in
the a = 0.9 cases. For comparison, Fragile et al. (2007), whose
initial conditions match ours in terms of the inner edge and
pressure maximum radii, find a rigid-body precession period of
approximately 0.3 (M /M) s for a = 0.9 with a 15° inclina-
tion. This corresponds to 6° per 1000 time units. As with
Fragile et al., our precession rate is consistent with the total
angular momentum of the rigid body and the Lense—Thirring
torque applied to it. As a measure of conservation of angular
momentum when the disk and grid are not aligned, the 24°
inclined disk around the Schwarzschild black hole precesses
less than 0°1 per 1000 time units.

The radially dependent orientation defined by the Euler
angles i and ¢, averaged over 3000 < r < 4000, is shown in
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Figure 2. Precession angles of disks as functions of radius, time-averaged over 3000 < r < 4000. The flatness of the line for the tilted Schwarzschild case (left panel)
reflects conservation of angular momentum. The other six cases show the disk twisting a significant fraction of a full circle as material moves inward. The vertical
dotted lines indicate the radius of the equatorial ISCO. The untilted disk runs are omitted, as ¢, is not well defined for i = 0.

Figures 1 and 2. We mark the equatorial innermost stable
circular orbit (ISCO) for reference. As the disk is rotating
rigidly at a rate much slower than the precession of geodesics at
small radii, we can time average ¢, without worrying that we
are averaging over many full precession periods at these radii.
In fact, over the period of the time averaging, the solid body
rotates less than 10° at all radii.

The small deviation in i of the initially untilted disk with
a =09 (Figure 1, right panel, black line) measures the
imprecision of this definition due to the stochastic nature of the
accretion flow, as well as magnetic field angular momentum
not included in (4). The relative flatness of the initial 24°
inclination when there is no spin (left panel, colored line)
demonstrates that the code does well at conserving angular
momentum even when the flow is not aligned with the grid or
coordinate system.

The most striking feature of Figure 1 is that the inclinations
increase with decreasing radius. That is, the disks are warped
even further out of the plane near the black hole. Only at the
highest spin and lowest inclination is this not seen. This
additional warping is observed in other simulations of tilted
thick disks; see, for example, Figure 12 of Fragile et al. (2007)
or Figure 7 of Mewes et al. (2016b).

One way this effect can arise is if angular momentum
exchange between adjacent radii occurs primarily at the
ascending and descending nodes. (See Section 6 for a
description of the standing shocks found in our simulation,
whose locations near the nodes can cause this to happen.) The
inclination angle defined in 6(a) is notably different from the
inclination of the orbit’s direction while crossing the line of
nodes, d-tan~'(u%/u?). In particular, for a constant inclination
as defined by angular momentum (or by antinodal latitude), this
nodal inclination decreases with decreasing r. Conversely, if
nodal inclination is kept constant with radius, the angular
momentum inclination of circular geodesics must increase
toward the black hole. Thus if the stress responsible for
transporting angular momentum tends to align the trajectories
of adjacent fluid elements, and if this mechanism operates
primarily near the line of nodes, one expects to see inclination
increasing toward smaller radii in steady state.

With Figure 2 we again have a measure of the numerical
nonconservation of angular momentum, given by the small
deviation of the 24° inclined disk around the Schwarzschild
black hole (left panel, colored line). For the inclined flows
around spinning black holes, we see the disks being twisted by
differential precession. This effect is strong enough in the
a = 0.9 case that the very inner parts of the disk can be twisted
beyond 180° relative to the outer parts.

While we observe a large amount of differential precession
in these simulations, we note that the effect would be much
stronger if not for internal stresses redistributing angular
momentum. To see this, we consider a model in which particles
orbit on circular geodesics, accumulating a precession angle at
a rate d¢,/dT with respect to their proper time (see
Appendix A). This can be converted to a differential precession
do, /dr by dividing by a prescribed radial velocity u' = dr/dr.

We show the results of this calculation in Figure 3. The solid
lines are the observed precession angles as shown in Figure 2.
The dashed lines are computed by integrating d¢, /dr inward
from r = 20, where the curves are matched to the observed
values. The values of u' used are taken from the respective
simulations; they are density-weighted shell averages within
one scale height of the disk midplane and averaged in time over
3000 < ¢ < 4000. The fact that the dashed lines are higher
than the solid lines indicates that the disk is transporting
angular momentum induced by the Lense—Thirring effect from
small radii to large radii.

The spread in the observed ¢, profiles matches that of this
geodesic calculation, and this is due almost entirely to
differences in u' between simulations at different inclinations.
That is, the differences in differential precession between
simulations with the same value of a are dominated by
differences in radial velocity, not by minute differences in
precession of geodesics at different inclinations. While nodal
precession of circular geodesics does have a small dependence
on inclination (beyond the linear order used by Lense and
Thirring), this effect is hardly noticeable at the scale of the plot.
Instead of using the radial velocities from each simulation we
can use the values from the untilted simulation at the
appropriate spin, thus removing the effect of different u'
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Figure 3. Precession angles of disks as functions of radius, time-averaged over 3000 < # < 4000. Solid lines show the same data as in Figure 2. Dashed lines show
the prediction given just nodal precession of geodesics and the simulations’ measured radial velocities. The dotted line is the prediction if the corresponding untilted
simulation’s radial velocity is used instead. The displacement between solid and broken lines comes from redistribution of angular momentum from internal disk
torques. The spread in dashed lines relative to the dotted lines shows the effect of different radial velocities in determining disk shape. That this spread roughly agrees
with the spread in solid lines indicates that the differences in disk shape among disks with different inclinations can be traced to the different infall velocities in those

simulations.

a=0.5 a=20.9
90° -
. — R0
75° 1 i — 16°
\ . 1 \ 24°
o \ “ “ —— measured
60° 7 \\ ] v\ = = prediction
Do : v
~ 45° - Y 1 v
RN : \ N
: A : N
30°] === X, 1 ] T
A} S F s
\\\\~- : \\\ \\\5
. ~ . e
: b
OO 1 I I I 1 1
0 5 10 15 20 0 5 10 15 20
r r

Figure 4. Directly measured inclinations (solid, time-averaged over 3000 < ¢ < 4000), and those predicted by linear bending wave theory (dashed, computed from
time-averaged values of surface density and pressure). The linear solutions are matched onto the observed values at » = 20. The disagreement interior to this indicates
that our disks are not well described by the linear theory we employ. The vertical dotted lines indicate the radius of the equatorial ISCO.

values, and the result is shown as the black dotted line in
Figure 3.

As there are internal aligning and precessing torques in these
thick disks, one might consider comparing our results to the
theory of bending waves. Convenient formulas for the solution
to the linearized bending wave problem are given in Foucart &
Lai (2014). This framework is developed in a Newtonian
context with a nonspherical potential. The solution depends on
the orbital, epicyclic, and vertical frequencies of orbits, as well
as the integrated density and pressure of the disk and an
effective viscosity for the disk.

The result of this comparison, however, only highlights the
inapplicability of linear bending wave theory to most realistic
tilted disks around black holes. The theory makes a number of
assumptions that are violated here: that the epicyclic and
vertical frequencies deviate only slightly from their Keplerian
values (see Appendix B, for the definitions and plots of these in

Kerr spacetime), that there is no stress at the ISCO, and that
h/r > «. In order to illustrate this incompatibility, we show
the observed and theoretical disk inclinations in Figure 4.

We can quantify the out-of-plane bending of the disk,
defining the dimensionless warp and twist to be

W=r|nXx d_n s ®)
r
2 -1
s = r2 ﬂ X (n X @) . @ (9)
dr? dr dr

Here n is the Cartesian vector of angular momentum
components L', scaled to have unit norm. These are similar
to the definitions given in Shiokawa (2013), but we use the
radial coordinate rather than scale height to make them
dimensionless. The nontrivial warps and twists from our
simulations are plotted in Figures 5 and 6.
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Figure 5. Dimensionless warps as functions of radius, time-averaged over 3000 < ¢ < 4000. Warping increases at small radii, and the effect is stronger in the

simulations with higher inclinations.

5. Poloidal Structure

Here we examine the structure of our tilted accretion flows in
the poloidal plane. For the plots in this section we slice the
simulation along the plane orthogonal to the line of nodes,
orienting all images such that the black hole spin axis is
vertical. Thus the disks will always be tilted down to the right.
These slices are averaged in time for 3000 < ¢ < 4000.
Streamlines are constructed from the r- and #-components of
vector quantities. In all cases we show the inner 40 x 40
gravitational radius patch of the simulation, with the black hole
masked in the center.

Slices of rest-frame density p are shown in Figure 7. From
these it is clear that most of the disks display large bending out
of their original planes. For the highest inclinations, the disk
even appears to split into two streams: a thinner one close to
vertical in the image, and a broader one. The fact that these
streams remain clearly visible even after the long time
averaging indicates they are not transient phenomena.

The density plots indicate that an evacuated, low-density
region forms along the direction of the disk’s angular
momentum rather than parallel to the black hole spin. Untilted
simulations generically see outflows along the common axis, so
this raises the question of what direction the material is flowing
in the tilted case. For this reason we construct Figure 8 showing
the velocity streamlines of u' and uz, with colors indicating the
radial velocity.

In the untilted cases, we clearly see the polar outflow
strengthening with increasing spin. Comparing tilted disks to
untilted disks at a given nonzero spin, we see that this outflow
is overall suppressed in the former. Still, its direction is
generally aligned with the low-density regions.

By comparing the lower right panels in Figures 7 and 8, we
can analyze the velocity structure in relation to the disk
location. In particular, there is a pattern of positive u' above the
disk on the right-hand side and below the disk on the left, with
negative u' in the opposite positions. The outward radial
velocity is not an unbound outflow, but rather the part of an
eccentric orbit going from periapsis to apoapsis. Above the
disk, the matter is orbiting with apoapsis behind the figure and
periapsis in front, with the reverse holding below the disk. This
pattern persists through time averaging, showing that it is fixed

in place relative to the rigidly precessing disk. These eccentric
orbits, with those above the disk 180° out of phase relative to
those below and with apsides near to the disk’s line of nodes,
are observed in Fragile & Blaes (2008, see Figure 1), where
they are found to be signatures of standing shocks. The
coherence of the velocity pattern decreases with decreasing
spin and tilt, so that we expect shocks to be strongly
influencing the accretion flows only in our simulations with
higher tilts and spins.

Also worth viewing in poloidal slices is the magnetization of
the material. For this we choose o = 2p,,,/p, shown in
Figure 9. Here streamlines are constructed from B' and B*. In a
time-averaged sense, there is a current sheet in a relatively
narrow region roughly aligned with the midplane of the disk. A
radial current is expected whenever a disk with a poloidal
magnetic field rotates faster at its midplane, shearing the field
azimuthally with a reversal at the midplane. Tilting the disk
does not change this general feature except by warping the
current sheet.

Unsurprisingly, the low-density polar regions seen in
Figure 7 correspond to the higher magnetizations in Figure 9.
It is more noteworthy that the average magnetic field
orientation in this region appears to have less inclination to
the black hole spin axis (vertical in the figures) than the disk’s
rotational axis does. This is despite the initial field being
aligned with the disk, and in contrast with the average velocity
structure in the same regions, which is close to perpendicular to
the plane of the disk. Thus the velocity and magnetic structures
of a jet may carry information about the relative inclination of
the disk to the black hole.

Note these are only weak polar outflows, as expected given
that we did not use initial conditions designed to yield a
magnetically arrested disk (MAD). Define

1= — f pu J=F db do, (10a)

P = %95 Var|B'|/—g dO do, (10b)
d
= — 1
%) < '>|/2’ (10c¢)
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Figure 6. Dimensionless twists as functions of radius, time-averaged over 3000 < 7 < 4000. Twist generally decreases with decreasing radius, and it does not show a

strong dependence on either spin or inclination.

where the time average in the last equation is taken over
3000 < 7 < 4000. We find ¢ <8 in all our simulations,
whereas the prototypical strong-jet-producing MAD simula-
tions of Tchekhovskoy et al. (2011) have ¢ ~ 47.

6. Standing Shocks

In order to investigate standing shocks, we first construct
averages of density, gas pressure, and velocity over the time
interval 3000 < ¢ < 4000, rotating each snapshot in ¢ in order
to compensate for the global precession rate. The quantities
other than density are density weighted in this average. At each
point in this average state, assumed to be stationary, we
compute the nonadiabatic source term for generation of entropy
per unit coordinate volume per unit coordinate time, pu'd;s,
where s = log(p,,,/p") /(U — 1). This follows from writing a
“conservation law” for entropy per unit volume analogous to
that for mass per unit volume:

Vi(sputy = sV, (pu") + pu"~N,s = put0,s. (11)

The second equality follows from mass conservation
V. (put) = 0. The right-hand side must be the nonadiabatic
entropy source per unit time and volume in the rest frame of the
fluid, whose direct evaluation is normally hindered by not
knowing Jys given only s at a single time slice. However, in
steady state this term must vanish, and we are left with the
source term pu'd;s. Dividing by u° converts the rate from that
measured in the fluid frame to that measured with respect to
Kerr—Schild time 7, but we must also multiply by u° to obtain a
rate per unit coordinate volume rather than per unit fluid-frame
volume. Multiplying by temperature T = p,,,/p gives the
irreversible heating rate per unit coordinate time per unit
coordinate volume g = p,, u'0;s. This term should have large
positive values in regions of shocks.

Plots of the spatial distribution of this source term are shown
in Figure 10. In order to make these plots, we orient each shell
of material according to its own angular momentum. The
longitude of ascending node at ¢’ = 7/2 is the upward vertical
axis in the figures, with the angular momentum vector coming
out of the page. As a result the plane of the figure is warped and
twisted in r, 0, ¢ coordinates. The source term is volume-

averaged over a scale height in 6’ at each point r, ¢'. The solid
black circles indicate the event horizon, the gray shaded
regions are inside the prograde photon sphere radius ry,, and
the dashed black lines denote the ISCO, all calculated in the
black hole’s midplane.

From the figure we can see a trend of stronger, more well-
defined shocks at higher inclinations. Much of this happens
outside the photon sphere, which can be used as a rough
estimate for the boundary inside of which extra dissipation will
have only negligible observable consequences (Generozov
et al. 2014). In fact, the shock structure extends well beyond
the ISCO.

More quantitatively, we can integrate the heat source term
over the domain to gauge the extra heating caused by the
shock. To do this, we must first incorporate our heating term
into a proper tensor equation for energy evolution. In the fluid
rest frame, we know ¢ must be the source for contravariant
energy density 7%°. As this source term should be the time
component of a four-vector, it is more appropriate to say qu’ is
the source for 7%, as u® = 1 in this frame. More generally, the
adiabatic evolution of conserved (covariant) energy-momentum
density must then obey

(v,uT;l/u)adi = —qu, (12)

in all frames. Physically, the factor of —u, multiplying the
right-hand side when considering energy (¥ = 0) accounts for
gravitationally redshifting and Doppler shifting the released
energy to a stationary observer at infinity. Thus we define the
integrated source term

0= f_uopgasui(aisu_—g dr db d¢, (13)

which agrees with Ressler et al. (2015, (45)), where a fluid-
frame heating rate is integrated to find a global quantity
measured at infinity. We integrate from r,, to r = 10, with the
upper bound chosen in order to focus on the shock in the region
of the flow in steady state. Q has units of energy per unit
coordinate time. The results are plotted in the left panel of
Figure 11. At low spins, the heating rate is not strongly affected
by disk inclination, implying that whatever nonaxisymmetric
shocks are created in these cases are too weak or too limited in
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16° 24°

Figure 7. Time-averaged poloidal slices of density for all the simulations. Each panel is 40 gravitational radii wide, with the black hole spin pointing up and the line of
ascending nodes receding into the page. The two upper panels should look like tilted versions of one another, since there is no spin to break spherical symmetry. At the
highest spins and inclinations the warping at small radii (see Figure 1) can be seen directly, with the disk taking on a complex shape.

extent to significantly alter the flow. For a = 0.5 the heating
rate is 19% larger at 24° compared to 0°. However, the a = 0.9
cases show strong tilt dependence, with the 24° heating rate
89% larger than that found at 0°. Thus there is significant extra
heating due to this mechanism, but it only applies when spins
and inclinations are sufficiently high. This agrees with
expectations from Teixeira et al. (2014), who found that no
shocks form for a = 0.1.

The right panel normalizes Q by the time average of M over
the same time interval over which Q was measured, so the
plotted quantity has units of energy per unit mass. This
provides a measure of the heating efficiency of the accretion
flow (a proxy for the radiative efficiency). The result of
increasing initial tilt is that both shock heating and accretion
rate increase, and in fact that the latter has a steeper dependence
on tilt, resulting in lower heating efficiencies. In going from 0°
to 24°, Q/(M) decreases by 7% for a = 0.5 and by 26% for
a = 0.9. At higher inclinations the shocks induce more angular
momentum transport per unit dissipation. We note, however,
that this trend only applies when considering heating at all
latitudes. When dissipation is only measured near the midplane,
it increases with inclination faster than M. That is, the

increased heating is more concentrated in the disk midplane
than the increased mass flux.

Figure 12 shows the three-dimensional structure of the shock
in the a = 0.9, 24° inclined case. Both panels are oriented
looking down the black hole spin axis, with the disk ascending
node vertical in the top half of the figure. The data is averaged
over 3000 < ¢ < 4000. In both panels values are shown along
the p = 0.05 isosurface within r = 20. On the left we show the
heating term p,, u'O;s on a logarithmic scale, and on the right
we show radial velocity u'.

The radial velocity pattern indicates fluid elements are on
eccentric orbits, in agreement with Figure 8 but more clearly
seen here. This pattern is antisymmetric with respect to
reflection through the midplane of the disk. At the disk
antinodes, material that is at high latitudes with respect to the
disk but near the black hole midplane is moving outward.
When these fluid elements reach apoapsis near the disk’s line of
nodes, they encounter the shock and are abruptly redirected
inward. At the same time we can consider material at the disk
antinodes and above the disk but at very high black hole
latitudes. This material is moving inward, but when it reaches
periapsis near the disk line of nodes it changes radial direction
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Figure 8. Time-averaged poloidal slices of radial velocity for all the simulations. The streamlines indicate the velocity field in the plane of the figure. Each panel is 40
gravitational radii wide, with the black hole spin pointing up and the line of ascending nodes receding into the page, as in Figure 7. The a = 0.9 simulations tend to
develop a strong outflow that is oriented with the disk, though low but nonzero disk inclination seems to suppress the outflow overall. A pattern of positive radial
velocity above the disk and negative below, reversed on the opposite side of the image, can be seen at high inclinations. This pattern matches that of Figure 1 of

Fragile & Blaes (2008), where it is explained via ordered eccentric orbits.

smoothly with no shock. This picture of material shocking
where eccentric orbits’ apoapsides cluster (due to radially
varying eccentricity) matches that of Fragile & Blaes (2008).

Only one standing shock is visible in Figure 12, with the
other one hidden on the underside of the disk, 180° away in
azimuth. The shock locations correspond to where the material
abruptly changes from moving outward to moving inward,
indicating that the shocks are significant causes of angular
momentum transport in this simulation.

The relative importance of the shocks can be examined by
partitioning the stress-energy tensor into Reynolds and
Maxwell components:

W F Ly, V LV
T Rey = (p + T 1 lpgas)ulu + Poas 8" (14a)
T Nax = 2Pmag"U” + Prygg 8" — Db, (14b)

We define agey and anax using the appropriate stress-energy
terms in the definition

o= f|TX”y”|/(pgas + pmag) X pw/ —8 de d¢
[py=g db do

Here the tensor is evaluated in a Cartesian frame comoving
with the average fluid as described in the Appendix C. The
coordinates are oriented such that z” points along the angular
momentum direction at that radius and y” points along the
ascending node, and so this definition (corresponding to e in
the Appendix) captures the radial transport of angular
momentum that is aligned with the disk axis and drives
accretion. These values are plotted in Figure 13. In the
nontrivially tilted cases Reynolds stress is generally larger than
Maxwell stress. This difference is especially striking in the
innermost parts of the a = 0.9 tilted simulations, where the
shock is strongest.

15)
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Figure 9. Time-averaged poloidal slices of magnetization for all the simulations. The streamlines indicate the magnetic field in the plane of the figure. Each panel is 40
gravitational radii wide, with the black hole spin pointing up and the line of ascending nodes receding into the page, as in Figures 7 and 8. In all cases there is a low
magnetization current sheet that, on average, tracks the midplane of the disk, as well a high magnetization outflow oriented perpendicular to the disk.

7. Discussion

We have run 10 simulations showing how the same initial
magnetized fluid evolves as a function of black hole spin and
disk inclination. In all cases with nontrivial inclinations, the
disks evolve to a highly warped and twisted steady state that
precesses rigidly. While it is clear that torques are being
transmitted through the disks, redistributing angular momen-
tum, the shapes are not readily described by a straightforward
application of linear bending wave theory. Given that we did
not go to the most extreme spins, nor to very high inclinations,
we expect many naturally occurring systems to challenge such
a theory with their nonlinear behavior.

For these inefficiently cooled, thick accretion flows, there is
no observable Bardeen—Petterson effect, nor do the disks break.
Rather, the inner parts of the disk smoothly become more
inclined than the outer parts (Figure 7). This can be explained
by angular momentum transport not being evenly distributed in
azimuth, as happens when standing shocks form at the line of
nodes, combined with the peculiar shape of inclined circular
geodesics in Kerr spacetime. Analytic models that assume
azimuthally symmetric coupling between adjacent rings of
material can miss this effect.

10

All of our simulations have a low-density polar region.
When there is no spin the relatively small amount of net
vertical magnetic flux means this region consists of material
falling inward, though an outflow turns on with even moderate
spins. At a = 0.5, this moderate outflow can be entirely
disrupted by any inclination in the disk; tilted disks can
suppress otherwise moderate outflows. With a = 0.9 the
outflow is strong enough to be formed even in the presence
of a tilt. These outflows align with the disk rather than the spin
of the black hole, in agreement with Liska et al. (2018).
However, the large-scale, average magnetic field in some cases
evolves from being initially aligned with the disk to partially
aligning with the black hole. Further investigation with
simulations that achieve high resolution in the polar regions
can help quantify to what extent the velocity and magnetic
structure of the outflow depend on the tilt of the disk.

Our results confirm the presence of standing shocks, as
found in Fragile & Blaes (2008) and later works. These shocks
considerably increase the heating of material and the hydro-
dynamic angular momentum transport in the inner 5-10
gravitational radii of the disk, but only at sufficiently high
spin and only when the inclination is larger than about 8°. The
effects are more pronounced at higher inclination angles, and
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Figure 10. Irreversible heating rates, averaged within a scale height of the disk and plotted in the curved plane of the disk, for all the simulations. Each panel is 20
gravitational radii wide. Each ring of a given radius is oriented with the angular momentum of that shell of material pointing out of the page and the ascending node
placed directly up. The m = 2 pattern of positive entropy generation at high inclinations and nonzero spins indicates the location of the standing shocks. The
concentric circles denote the event horizon, equatorial prograde photon sphere, and equatorial ISCO.

they can be the dominant driving mechanism for both
dissipation and accretion.

Importantly, these shocks can be better at redirecting fluid
elements than stopping them. This can lead to more angular
momentum transport and thus accretion per unit dissipation,
mimicking the lower heating efficiencies of systems with lower
black hole spins. As noted above, however, this trend reverses
if the higher latitudes of these accretion flows are neglected. It
is possible that a given heating efficiency can correspond to a
range of black hole spins. While tilted disk simulations with
in situ radiation will be required to verify these trends, but it is
clear that one should be cautious when interpreting possibly
tilted flows using untilted models.

In the limit where accretion is dominated by these shocks
(@209 and i 2 16°), it is possible that simple analytic
models can be developed to capture the correct behavior. That
is, there may be regimes where the complexity of MRI
turbulence can be neglected, not because it can be replaced by
an isotropic viscosity, but because in reality transport becomes
dominated by a mechanism more amenable to modeling. Other
processes like the MRI are, however, still needed to drive
material close to the black hole in the first place.

11

Given the presence of standing shocks, we expect to see time
variability in accretion, based on the results of Henisey et al.
(2012). Here we have focused on large-scale properties that
stay constant in time, leaving the examination of the variability
present in these simulations for a future work. We also suggest
that a parameter survey similar to this be done with more
efficiently cooled disks. This can help address whether the lack
of disk breaking we see here, where GR and MHD processes
are being modeled accurately, extends to thinner disks.

In summary, the magnitude of tilt does not strongly affect
dimensionless warping and twisting, nor does it qualitatively
change the behavior of inclination and precession angles. It
affects the velocity of polar outflows, while having less of an
effect on their magnetization. Most importantly, large tilts can
increase the efficacy of standing shocks in heating the material
and transporting angular momentum.

We thank S. M. Ressler for pointing out the subtleties of
entropy and heating in a GR context. This research was
supported in part by the National Science Foundation under
grants  NSF PHY-1748958,  NSF AST 13-33612, and
NSF AST 1715054; by Chandra theory grant TM7-18006X
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Figure 11. Left: integrated irreversible heating per unit coordinate time for the simulations. This is the integral of —uopy,, u'd;s from ry, to r = 10. For large, fixed
spin, dissipation increases with increasing inclination, past about 8°. The two a = 0 points should physically be the same, and so their small difference (2%) can be
taken as an estimate of the numerical uncertainty of this measurement. Right: the same quantity, normalized by the time average of M over 3000 < ¢ < 4000 in the
simulation. The decrease with tilt in the a = 0.9 case indicates the shocks enhance angular momentum transport even more than dissipation.
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Appendix A
Nodal Precession of Geodesics in Kerr Spacetime

Here we outline the numerical evaluation of the nodal
precession rate in Kerr spacetime. The procedure here is exact,
as opposed to the well-known Lense—Thirring formula, which
is formulated in the linear regime and breaks down for large a
and small r.

We will work in Boyer—Lindquist coordinates until the end
of this section. In this system, the geodesics of massive
particles obey the well-known equations (see Wilkins 1972,
(H-3))

Yu = a(l — aesin®0) + i(r2 + a®)P, (16a)
Yu' = +JR, (16b)
Yu? = +J0, (16c¢)
4 a
Yud = — ae + —P, 16d
sin%0 A (16d)
where we define
A =r?—2Mr + a2, (17a)
Y =r? + a?cosd, (17b)
P=e@?+ a% — la, (17¢)
R=P> - A(G*+ g+ ( — ae)®), (17d)
2
O=q— (az(l — %) + — 5 )00529, (17e)
sin“6
and e, [, and g are constants of the motion.
Consider a particle initially at position

x(‘é) =0, r, /2 + i, 0), for fixed radius r and inclination i,

and with velocity u(’é) = (u(%), 0, 0, u(%)). We want the orbit to
stay at the same radius for all time, and so the radial geodesic

12

equation becomes

1
Fw,u(%)u:/o) = O, (18)
which is a quadratic eguation for u(%) / u(%) (taki.ng the positiye
root for prograde motion). This can be used with the velocity
normalization

gttt = —1, (19)

to find u(%) and u(%) independently.
Equations 16(a) and (d) can be rearranged, together with
17(a) and (c), to yield

2Mar

(i(r2 +a*? —a? sin20)e — £ =3SuQ, (20a)
2Mar 1 a’
N (sin20 B X)[ = St 200

This linear system can easily be solved to find the specific
energy and angular momentum constants e and ¢. The Carter
constant ¢ then follows from 17(e) and knowing © = 0 from
16(c) (or from 17(c) and (d) knowing R =0 from 16(b)).
With the constants of motion in hand, we can compute the
relative rate of change between the two angular coordinates:

3

do u ae(r* + a*) — la*
aa _w _ 4 _
dg  u? sin%é r2 — 2Mr + a?
5 ~1,2
x (q — (az(l — )+ — )00329) .
sin“f

21

This formula is similar to (25) from Wilkins (1972), but we
include the spin dependence rather than assume an extremal
black hole. The overall negative sign should be taken for
prograde motion with i > 0, as the particle will initially start to
move toward smaller € as it moves forward in ¢. By symmetry
we know ¢ advances by the same amount in the first quarter of
the vertical oscillation as in all other quarters, and so the total



THE ASTROPHYSICAL JOURNAL, 878:51 (16pp), 2019 June 10

-2.0

-3.0

- -5.0

White, Quataert, & Blaes

0.20

Figure 12. Three-dimensional visualizations of the @ = 0.9, 24° inclined simulation with the black hole spin out of the page and the ascending node of the disk at the
top of each image. The colors show the local irreversible heating rate 10g; ((Py,s u'8;s) (left) and radial velocity u' (right) on surfaces of constant density p = 0.05 inside
r = 20. The region of high entropy generation matches that of a rapid radial velocity change from outward to inward, occurring along the locus of apoapsides of

eccentric orbits. The same pattern is repeated on the underside of the disk.

azimuthal precession in one vertical period is

@ do — 2.

Ap =4
¢ x/2+i dO

(22)

The corresponding change in proper time for the particle is
similarly calculated:

/2 1
Ar=4 [ —ab.
T/2+i U

Dividing A¢ by At gives us d¢/dr, the average nodal
precession of particles at a given radius and inclination around
a black hole with a given spin. This is easily converted to Kerr—
Schild coordinates via

doys
dr

(23)

_ dogy + iul.

24
dr A 24

In particular, we can neglect the difference between Kerr—
Schild and Boyer-Lindquist coordinates to the extent our
approximation of vanishing radial velocity is appropriate.

For comparison, the Lense-Thirring result is a gravitomag-
netic nodal advance of 4mar—3/2 per orbit. Alternatively, a
more accurate estimate of 27 (1 — Qy/Q) can be used (see
Appendix B for the definitions of 2 and 2y), taking into
account the retrograde contribution from the black hole’s
quadrupole moment. Around a black hole of spin @ = 0.9 at a
radius of r =15, these formulas predict A¢ = 58°0 and
A¢ ~ 43°0, while the exact result ranges from approximately
49°0 to 49°9 as the inclination ranges from 8° to 24°.

Appendix B
Dynamical Frequencies for Circular Geodesics in Kerr
Spacetime

For reference we give the dynamical frequencies for
prograde circular equatorial orbits in Kerr spacetime. All
formulas here are the same in both Kerr—Schild and Boyer—

13

Lindquist coordinates, since the two 3 + 1 metrics induce the

same 2 4+ 1 metric on any given hypersurface of constant r.
The orbital, epicyclic, and vertical frequencies with respect

to coordinate time are given by Okazaki et al. (1987) and Kato

(1990):
d 3 B
QE—¢:[L+a] , (25a)
dt M
Q, = 9(1 - 6(L)_1 + 8_“(L)_3/2 _ E(L)_z)m
' M M\Mm M2\ M ’
(25b)

—-3/2 2 —2\1/2
0 =9f1 - 4—"(i) + 31(i) . (250
M\M M2\ M
We can convert these to frequencies with respect to an orbiting
particle’s proper time via the Lorentz factor v = dt/dr. As the

particle’s velocity is u* = (v, 0, 0, v§2), the normalization
g u'u” = —1yields

(26)

With v we can convert ) to the orbital frequency per unit
proper time w = d¢/d7, and likewise for the other frequencies:

v = (=800 — 280302 — g3 /2

w =9, (27a)
Wy = WQrs (27b)
Wy = ’ng. (270)

Plots of these frequencies for the spins considered in our
simulations are shown in Figure 14. These enter into the linear
warp theory as deviations of epicyclic and vertical frequencies
from the orbital frequency. Since the epicyclic frequency
necessarily diverges at the ISCO, its deviations are particularly
large for the inner parts of the disk, to the point where linear
theory may no longer be applicable even for very small
inclinations.
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Figure 13. Effective accretion viscosities related to Reynolds and Maxwell stresses, time-averaged over 3000 < 7 < 4000. As inclination angle and spin increase,
Reynolds stresses become more important relative to Maxwell stresses. This is expected given the strengthening of the standing hydrodynamic shock. The vertical

dotted lines indicate the radius of the equatorial ISCO.

Appendix C
Definition of Effective Viscosity

In order to define an a-viscosity in a way appropriate for
tilted disks and GR, we adopt and modify a procedure
described in Penna et al. (2013).

We begin with the fluid velocity in Kerr—Schild coordinates
ufs. These are easily transformed to Boyer-Lindquist coordi-
nates via

by = s — ks (282)
uby = uks, (28b)
ud = ugs, (28¢)

URL = Uis — muk& (28d)

Knowing the Euler angles i and ¢, at each radius (see
Section 3), we can convert to the disk-aligned frame.
Specifically, we need the components

uh = uly, (292)
.0 a¢/
Uy = 8—(ZMZBL + %;@,L. (29b)

For completeness, we give all the components of the Jacobian
corresponding to (7):

!
sin 9’88% = —sini cos ¢, cos 0 cos ¢

— sinisin¢ycosfsing + cosisinfd,  (30a)
sin 9’% = —sini sin ¢ sin 0 cos ¢
+ sinicos ¢, sinf sin ¢, (30b)
sinze’%z/ = sinisin¢,cos ¢ — sinicos @,sing,  (30c)

14

. 5,00 o .
sin“0 36 —sini cos ¢, cos 6 sind cos ¢

— sini sin ¢, cos 0 sin 0 sin ¢ + cosi sin®0,

(30d)
. 00 . , , e
sin QW = sinicosf’ cos @’ + cosisind’, (30e)
sin Gﬁ = —sini sin @' sin ¢/, (301)
o¢’
PN oL
sinff—— = sinisin ¢/, 30
50 ¢ (30g)
. 2 aqs . . , . / / . . 2 /
sin 9—/ = sinicosf'sin 6’ cos ¢’ + cosisind’.  (30h)
We next define the mean velocity components
I 27r !
ib=—— [ ubds. Gla)
T
il =0, (31b)
! 27T I
iy = 1 uy do'. (3lc)
2w

This averaging only yields meaningful results with tilted

components and along rings that vary only in the coordinate ¢’.
_0/

We then find the corresponding time components ig; via

—pl =

gl g = —1. (32)

Note that while the radial and azimuthal components of the
mean velocity vary with just r and €’, the time component will
in general vary with ¢’ as well. These four components are then
transformed back into the untilted coordinates:

—0 _0/
= UpL,
— _1/

UBL,

(33a)
(33b)
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Figure 14. Orbital, epicyclic, and vertical frequencies as functions of radius. The vertical dotted lines denote the prograde photon orbit at smaller r and the equatorial
ISCO at larger r. In the left panel the vertical frequencies are exactly the same as the orbital frequencies.

_ 00 _o 00 _3
gy = 20 BL T _8¢,M%L’ (33¢)
3 09 o | 00 _3
oL = —prUbL + —3¢/“BL‘ (33d)

We can now construct the transformation from untilted
Boyer-Lindquist coordinates to an orthonormal frame follow-
ing an appropriately defined mean flow, as was first done in
Krolik et al. (2005). (There is still a degree of arbitrariness in
rotating the radial and poloidal directions of this frame, as has
been noted by previous authors.) We present the formulas in
notation more closely following Penna et al. (2013), correcting
one of the normalizations. The transformation components are

ey = iy, (342)

efr = E(“BL“%L’ I+ aytiay, + @y g, 0, iy i),
(34b)
ebr = (uzBLu%L, aSlaky, 1+ aslad,, aStay),  (34c)
ey = N%(—ﬁ?L/ﬁ'SL, 0,0, 1), (34d)

with the definitions
s = —sgn(@@stay, + aStig,), (35a)
_(MBL BL(U ”gL"‘ ’7‘]33]77%1)

+ gu(@gag, + a5 iy )*)"?, (35b)
N = (g (1 + i3 iig))' /2, (35¢)
N3 = (g00(@8" /") — 2goaiiy-/agh + g3/ (35d)

The velocity at any point can be transformed into this fluid
frame according to

i

/ BL v
u' =g emp. (36)

The magnetic field components b'" are found in the same way.
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We perform one last transformation to Cartesian coordinates:

. " " . "
u® = sin@ cos ¢'ul” + cos @’ cos p'u?" — sin¢'u?’, (37a)
! . . " . " "
Y = sin @’ sin ¢’'u!” + cos @' sin ¢'u®" + cos ¢'u?’, (37b)
4 4 . "
u¥ = cos@u'" — sin0'u? (37¢)

(and similarly for the magnetic field). Here the z”-direction, like
the z'-direction, points in the direction of the disk angular
momentum. Thus x”y”-stress corresponds to radial transport of
"-angular momentum, driving accretion. Similarly the y
"_direction points to the ascending node, so x"z"-stress governs
rotation about this axis, aligning the disk with the black hole.
Finally, y"”z"-stress corresponds to precessing the disk angular
momentum about the black hole axis. These considerations

justify the definitions
ST [(Dgas + Prnag) % /=8 dO dob

Qgec = , (38a)
[py=zg db d¢
Tx” ! as + ma; X d
e = ST [(Dyas + Prnag) X P—8 i (35b)
[py=g db do
T [ (Dyas + Prne) X PJ—8 dO d
Qali = ST e + ) > 278 ¢, (38¢)

[0y db do

for the accretion, precession, and alignment effective viscos-
ities. Though the calculation of these relativistic effective
viscosities are rather involved, they still broadly agree with the
Newtonian equivalents. For example, ope is small in
magnitude and suffers large cancellations when averaging, as
was found with a4 derived from rf-stresses in Sorathia et al.
(2013).
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