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Abstract

We investigate numerical convergence in simulations of magnetically arrested disks around spinning black holes.
Using the general-relativistic magnetohydrodynamics code Athena++, we study the same system at four
resolutions (up to an effective 512 x 256 x 512 cells) and with two different spatial reconstruction algorithms.
The accretion rate and general large-scale structure of the flow agree across the simulations. This includes the
amount of magnetic flux accumulated in the saturated state and the ensuing suppression of the magnetorotational
instability from the strong field. The energy of the jet and the efficiency with which spin energy is extracted via the
Blandford—Znajek process also show convergence. However the spatial structure of the jet shows variation across
the set of grids employed, as do the Lorentz factors. Small-scale features of the turbulence, as measured by
correlation lengths, are not fully converged. Despite convergence of a number of aspects of the flow, modeling of
synchrotron emission shows that variability is not converged and decreases with increasing resolution even at our

highest resolutions.
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1. Introduction

The notion that accumulation of ordered magnetic field could
qualitatively change the nature of an accretion flow was first
investigated by Bisnovatyi-Kogan & Ruzmaikin (1974).
Numerical simulations by Narayan et al. (2003) confirmed
that poloidal flux could lead to an efficient conversion of
gravitational energy into mechanical energy, even around a
nonspinning black hole. These simulations showed a magne-
tically arrested disk (MAD), in which accretion was hampered
by a strong magnetic barrier.

Simulations around spinning black holes followed (Hawley
& De Villiers 2004; Tchekhovskoy et al. 2011; McKinney et al.
2012), adding in some cases optically thin cooling (Avara et al.
2016) or radiative transfer (McKinney et al. 2015; Morales
Teixeira et al. 2018). In some of these simulations, the
outflowing energy was found to exceed the amount infalling.
This can be attributed to the Blandford—Znajek process
(Blandford & Znajek 1977) at play, electromagnetically
extracting energy from the spin of the black hole and using it
to launch a jet. At the same time, magnetic field threading a
disk is expected to launch a wind via the Blandford—Payne
process (Blandford & Payne 1982).

McKinney et al. (2012) ran a number of models in which
they varied physical parameters such as black hole spin and
magnetic field geometry to explore the MAD parameter space.
Here we address the orthogonal issue of to what extent
numerical results depend on numerical parameters. That is,
how well do simulations of this nature capture all the relevant
physics? In particular, four concerns we seek to address are:

1. In axisymmetry, MAD leads to a completely arrested
inflow that is broken by occasional bursts of accretion,
while fully 3D simulations show interchanges of dense,
less-magnetized fluid with magnetically buoyant bubbles
(Igumenshchev 2008). The dynamics of a heavier fluid
supported against gravity by a lighter fluid lend

themselves to the magnetic Rayleigh—Taylor instability
(RTI; Kruskal & Schwarzschild 1954), only recently
studied analytically in this context (Contopoulos et al.
2016). Without sufficient resolution, one might not fully
capture this nonaxisymmetric instability, and this can in
turn affect the reported accretion of matter and magn-
etic flux.

2. One defining characteristic of the MAD state is suppres-
sion of the magnetorotational instability (MRI; Balbus &
Hawley 1991). However, merely knowing that the MRI is
suppressed is not sufficient to determine the strength of
turbulence in these flows, as mechanisms such as the
aforementioned RTI can also induce turbulence, as for
instance is found by Marshall et al. (2018). What
resolutions sufficiently resolve turbulence?

3. However much or little the statistical nature of a turbulent
disk may change with resolution, how much does this
affect the smoother, highly magnetized, relativistic jet?
Jets are an extremely important consequence of MAD
conditions, especially given their observability. What
resolutions are needed to be confident in simulations’
measured jet properties?

4. What impact does grid resolution have on directly
observable quantities?

In order to address these concerns, we run a single MAD
scenario around a rotating black hole, varying the resolution
but not the physical parameters. We go up to an effective
resolution of 173 cells per decade in radius, 256 cells in polar
angle, and 512 cells in azimuthal angle. Our simulations are
performed with the GRMHD capabilities of Athena++
(White et al. 2016), which utilizes staggered-mesh constrained
transport and transmissive rather than reflecting polar axis
boundary conditions. We employ the HLLE Riemann solver
(Einfeldt 1988) commonly used in the GRMHD community.
While this solver is not the least diffusive available, we have
found that having even less diffusion adversely affects the
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Figure 1. Inner portion of the fully refined (level 3) grid used in these
simulations. Each box represents a block of 16 cells in radius and 4 cells in
polar angle. When we refer to a simulation on a level n grid, the grid will
resemble the above picture, but with levels n + 1 and higher coarsened to
level n.

robustness of these highly magnetized simulations around
rapidly spinning black holes. The code can use either a
piecewise linear method (PLM; van Leer 1974) or the
piecewise parabolic method (PPM; Colella & Woodward 1984)
for spatial reconstruction. In multiple dimensions both methods
formally converge at second order in spatial resolution, though
the latter often has significantly smaller errors. We run
simulations with both methods, because the effect of using
PPM over PLM is to better capture spatial variability, just as
would occur with increasing resolution.

In Section 2 we provide details about the setup and running
of the simulations. We then investigate the effect of resolution
on the disk itself (Section 3), on the jetted outflow (Section 4),
and on observable electromagnetic signatures (Section 5).
Discussion and conclusions follow in Sections 6 and 7.

2. Simulations

All of our simulations are done in the same spherical Kerr-
Schild coordinates (¢, r, 6, ¢) as defined in Gammie et al. (2003),
where we will drop ¢, G, and the black hole mass M from
all expressions. The coordinates are regular at the outer
horizon rpo; = 1 + +/1 — @ and have determinant given by
J=& = (r* + a®cos® 0)sin §. We set the spin to be a = 0.98.
In some cases we will express quantities in the cylindrical version
of these coordinates, obtained with the standard spherical-to-
cylindrical transformations. That is, we have (¢, R, ¢, z), where
R = rsinf and z = rcosf. The metric determinant in these
coordinates is given by \/Tcyl =./-g /r. In what follows we
will denote fluid-frame rest-mass density by p; fluid-frame gas
pressure by p,,; four-velocity components by u"; normal-frame
Lorentz factor by +; fluid-frame magnetic pressure by
Pinag = bub”/2, where b* = u, (xF)"" and F is the electro-
magnetic field tensor; magnetic field components by B’ = (+F)";
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Table 1
Description of Static Mesh Refinement Regions
Level r-range” N,i® Cells/Decade f-range® Nt N,
0 1.078-1000 64 22 0-m 32 64
1 1.078-1000 128 43 7/8-T7/8 64 128
2 1.078-1000 256 86 3n/16-137/16 128 256
3 1.078-118.2 512 173 37/8-57/8 256 512

Notes.

# Evaluated at the midplane. Range may be less at higher latitudes.

® Number of cells needed to extend resolution within range to the entire
domain.

¢ Evaluated at small radii. Range may differ at large radii.

and the plasma magnetization parameters by 57! = pru. /P
and 0 = 2p,,. /p-

We begin with a torus of material in hydrodynamical
equilibrium, following the prescription of Fishbone & Moncrief
(1976). We set the inner edge of the disk to be at r = 16.45,
with the pressure maximum at » = 34. The fluid has a fixed
adiabatic index I' =13/9. This value is chosen as a
compromise between relativistically hot (I' = 4/3) electrons
and relativistically cold (I' =5/3) ions, as is done, for
example, by Ryan et al. (2018) when more carefully considering
the two-temperature nature of the accreting plasma. We add an
initial magnetic field similar to that of Tchekhovskoy et al.
(2011). That is, the initial field is purely poloidal, circulating
about a point well outside the pressure maximum. Specifically,
we take the vector potential to have only an azimuthal
component

Ay o< (max(pg,, — 1078, 0))!/2 % sin 6
sin (7L (r; 17, 500))sin (zL(6: 7/6, 57/6)), (1)

where L is the linear ramp function

0» X g Xmin»
X — Xmin .
L(x; Xmin, Xmax) = > Xmin <X < Xmax; )
Xmax — Xmin

1, X 2 Xmax-

The field is normalized to have the density-weighted average of
7" of the torus be 0.01.

Our root grid (refinement level 0) has 64 x 32 x 64 cells in r,
0, and ¢. In radius it extends from r ~ 1.078 to r = 1000 with
logarithmic spacing, with the innermost cell entirely inside the
horizon. The grid is uniform in € and ¢. We then add successive
layers of static mesh refinement to the domain as follows. Each
additional level refines all cells in its domain by a factor of 2 in
each dimension. Level 1 refinement covers 7/8 < 6 < 77/8 at
all radii and all polar angles for r 2 5.948. Level 2 covers
31/16 < 6 < 137/16 at all radii, 7/16 < 6 < 157/16 for r 2
13.97, and all polar angles for r = 32.83. Level 3 covers
37/8 < 0 < 57/8 for r < 118.2. The grid is illustrated in
Figure 1, where the grid lines are drawn every 16 cells in 7 and
every 4 cells in 6.

With this grid, the timestep at all refinement levels is limited
by the ¢-width of the (never-refined) cells at the base of the
polar axis. The root grid has a radial resolution of
approximately 22 cells per decade, and each successive
refinement level doubles this, up to 173 cells per decade at
the highest resolution. At the highest resolution there are 512
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Figure 2. Time-averaged mass accretion rate as a function of radius. The level 3 PPM curve is duplicated on the left with a dotted line for comparison. The level 2 and
level 3 simulations, using both PLM and PPM, agree on the steady-state value. The rate is underestimated with insufficient resolution. Oscillatory behavior occurs at

very low resolution with PPM, but in no other cases.

cells in azimuth, and the polar resolution in the bulk of the disk
is the same as an effective 256 equally spaced cells. These
values are detailed in Table 1.

For comparison, the grid employed in Tchekhovskoy et al.
(2011) and in model A0.99N100 (the only one with a spin
approximately the same as ours) of McKinney et al. 2012, has
128 cells in polar angle, 64 cells in azimuth (doubled to 128
midway through the simulation), and fewer than 95 cells per
decade in radius. The high-resolution runs AQ0.94BfN40,
A-0.94BfN40HR, and A0.94BtN10HR of McKinney et al. all
have 87-88 cells per radial decade in the inner regions, 425
effective polar cells based on the midplane resolution at
r =10, and 256 cells in azimuth. A more recent study on
MAD accretion, Avara et al. (2016), has an effective resolution
of approximately 600 cells in 6 (used to resolve a thin disk) and
208 cells in ¢, while the tilted jets in Liska et al. (2018) are
simulated with effective resolutions up to 576 x 960 in angle.
Except for this last case, our highest resolution typically has 2
or more times as many total cells per dimension as these
previous calculations.

We define the radial width W, of a cell to be the integral of
&, over the line of constant ¢ and ¢ passing through the cell
midpoint from one constant-r face to another, and likewise for
polar and azimuthal widths. (These reduce to the expected Ar,
rAf, and rsinfA¢ in the Newtonian limit.) Then in the
midplane our grid has W,/ W, varying from approximately 0.6522
at the inner boundary to 0.9194 at the outer boundary, while
W,/W, varies from 1.138 to 0.9194. Having aspect ratios near
unity across all our grids is important, as refining only one or two
dimensions will have little effect on reducing errors once those
errors become dominated by the coarser dimensions.

A number of limits are imposed on the variables for
numerical stability. The density and gas pressure are kept
above the floors

Prmin = Max(1074r73/2,1078), (3a)

Peasmin= max(10-°773/2, 10-19), (3b)

In addition, we enforce 571 < 100, o < 100, and ~ < 50.
Whenever these limits are imposed, the magnetic field is left
unaltered. For comparison, Tchekhovskoy et al. (2011) enforce
either 3! < 7500 and o < 500 orelse 5 < 750 and o < 50
(stating that the choice makes little difference), while

McKinney et al. (2012) have ﬁ_l < 1500 and o < 50. More
recent work by Liska et al. (2018), which includes strong fields
launching jets, uses the limits 5" < 225 and o < 50, while
also enforcing p > 10 % 2 and Peas > 2/3 x 1077771073,

We start with a single simulation with level 3 refinement and
PPM reconstruction, running until time 10,000. This check-
point is then coarsened to the other grids, and all simulations
are then run from ¢ = 10,000 to ¢ = 20,000, using both PLM
and PPM. When averaging results in time, we choose
15,000 <t < 20,000 in all cases.

To run for a simulation time of 10,000, the level 3 PPM
simulation took 27,600 node-hours on 125 Intel Knights
Landing (Xeon Phi 7250) nodes, with 68 cores per node. The
level 2 PPM simulation took 3990 node-hours on 37 Intel
Skylake (Xeon Platinum 8160) nodes, with 48 cores per node.

3. Disk Properties
3.1. Mass Accretion Rate

We define the mass accretion rate at a fixed time through a
sphere S(7) of fixed radius r to be

M) = — fs g A0 do. 4)

Positive values correspond to inflow. Figure 2 shows the run of
M with r, averaged in time, for our simulations. In steady state,
we expect M to be independent of radius, and indeed we do see
an extended plateau. There is a small rise inward at very small
radii (» < 2). This is an artifact of numerical floors, and it
measures the small amount of mass added by the floors at these
radii. Other simulations using different codes see the same
effect; see, for example, Figure 4 of Morales Teixeira et al.
(2018). The four level 2 and level 3 simulations agree on the
plateau height. At sufficiently low resolutions, the accretion
rate is underestimated. Moreover, there is a cell-to-cell
oscillatory numerical artifact that occurs at very low resolutions
when using PPM, almost certainly due to the slope limiter
itself. There is no sign of this effect at higher resolutions.
When fixing a single radius at which to measure M, we
choose r =5 from here on. Using this radius, we show the
values of M as a function of time in Figure 3. In all cases
except the lowest-resolution PLM simulation, the accretion
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Figure 3. Mass accretion rate as a function of time, smoothed with a Gaussian filter of width Ar = 100. At sufficiently low resolution with only PLM reconstruction,

turbulence does not fully develop. In the other cases, the flow is highly variable.

becomes highly variable, experiencing order-unity changes
even on the timescale of At = 10 between snapshots. In order
to make the figure clearer, we smooth the accretion rate with a
Gaussian filter of full width at half maximum A¢ = 100. (This
smoothing accounts for the lines differing at = 10,000, when
all the simulations are identical.) The average accretion rates
are not changing significantly over time, and there are many
oscillations in the time window from 15,000 to 20,000,
justifying our time averages. We note that recent work by
Balbus (2017) suggests that unstable modes near the innermost
stable circular orbit (ISCO) can disrupt the inner parts of disks,
suggesting caution when searching for and interpreting steady-
state values of M.

3.2. Accumulation of Magnetic Flux

The MAD state is characterized by strong poloidal magnetic
flux, which we can measure in a number of ways. Following
Tchekhovskoy et al. (2011) and McKinney et al. (2012) we can
integrate radial flux through spheres S(r) of different radii r to
define

Bon(r) = % fS | NATIBT g db do. )

Our explicit factor of /47 is implicit in the units in
Tchekhovskoy et al. (2011). We can also define the midplane
vertical flux out to a radius r by either of two equivalent
formulas:

Dppia(r)

27 r
fo f VAT B [—go; dR dy

edge

fo o f " VA (—-B% g dr do. 6)

Tedge

Ppnig counts only flux that passes through the midplane, while
@y, also includes field lines that terminate at the horizon.
Figure 4 shows both measures of flux, time-averaged, as a
function of radius. As @y, > Ppyig for the inner part of the disk,
most of the magnetic field lines here terminate at the horizon.
These profiles agree in the region where steady-state accretion
has been attained. Thus even at low resolution we are capturing
the large-scale structure of the magnetic field.

As in Tchekhovskoy et al. (2011), we normalize the horizon
flux based on each simulation’s average accretion rate. We
choose to use the difference Oy, — Pryig, as the value of this
quantity at any radius is the flux on the horizon so long as the
field is essentially vertical (all field lines are either outside
the sphere and midplane annulus, cross the sphere twice and the
midplane once, or cross the sphere once and terminate on
the horizon). We define

Do — Prig

)7 7

Y=

Here the fluxes and accretion rate are evaluated at » = 5. The
time-averaging is done with a Gaussian filter of full width at
half maximum 100. Figure 5 shows the results. The average
level and variability in ¢ for most of our cases is similar to that
found by Tchekhovskoy et al. (2011), where the saturated state
has ¢ =~ 47. (Note that there exists another common flux
normalization, denoted T, that is approximately a factor of 6
times smaller than ¢ at the horizon for our spin.) At the lowest
resolution, PPM can still capture some of the variability,
though the accumulated flux is too low. At that resolution,
PLM gives no time variability, again indicating the numerics in
that case are not sufficiently capturing the turbulent nature of
the flow.

3.3. The MRI

The crucial qualitative difference between a true MAD state
and a disk with just a strong field is the inhibition of the MRI
due to the field. In order to investigate if this has indeed
occurred, we compare the marginally stable wavelength
Aqit for the vertical MRI to the disk scale height.

The general-relativistic dispersion relation relating Alfvén
frequency v, . = k;va ; to oscillation frequency w for a mode is
given by Gammie (2004):

W= W@+ ) R OR - =00 ®)
Here & is the epicyclic frequency and we have

N P 2,.-2
2= i 1 —-2r'4+ a*r . )
A\ — 3r 4 2gqr73/2
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Figure 4. Total magnetic flux ¢ interior to a radius r. ®y, measures all flux passing through the sphere, while ®mig only measures flux passing through the midplane.
The difference between the solid and dashed lines counts field lines that pass through the sphere of radius r only once, terminating at the horizon rather than continuing
through the opposite hemisphere. This difference is what should be constant with radius in steady state. The level 3 PPM curves are duplicated on the left with dotted

lines for comparison.
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Figure 5. Normalized magnetic flux on the horizon ¢ as a function of time. Most of our simulations are in the expected MAD state. With insufficient resolution, the
level and variability are too low (as in level 0 PPM) or there is no variability at all (level 0 PLM), but the solution converges rapidly with increasing resolution.

The dispersion relation is quadratic in wz, and the critical
frequency ~;, corresponds to the value of ~, _ such that the
lesser quadratic root for w? vanishes. This is simply %mz =5,
as can be easily verified. Now v, _ is a frequency as measured
by a local observer on a circular orbit. Gammie gives the
prescription for transforming this into a frequency as seen by an

observer at infinity. The result is the instability criterion

[3
-
A> >\cril = 27rVA,z ?féritv (10)
where
1+ ar3/2
Jerit = (11)

(A —=2r '+ a?r 22

is the relativistic correction to the standard formula (see the
nonrelativistic version 108 from Balbus & Hawley 1998). This
correction necessarily approaches unity as r — oo; it also
diverges as r — rpor, meaning the effect of general relativity is
to stabilize the inner disk. Note that some sources omit the /3
in their definition of A.j;.

For the scale height, we adopt a definition similar to that
found in McKinney et al. (2012), though we vary vertical

coordinate z rather than polar coordinate 6. That is, for given ¢,
¢, and R, we calculate

j:f Zp«/ _gcyl dZ

Zmid = T T
L7 pql_gcyl dZ

where the cutoffs are chosen to be z;. = +50. Then the scale
height H at that location is given by

S @ = amia)p T d
NN

Figure 6 shows the radial profiles of H and Ay, each
averaged in ¢ and 7. Also shown is the height Az of a single
cell at the midplane. Except at the innermost few gravitational
radii, A reaches or exceeds the scale height throughout the
inner regions of all the disks, indicating that these are
sufficiently MAD to inhibit the MRI. Disk scale height is
relatively invariant across simulations, as is the run of A ; in
the regions that have reached steady state. At the lowest
resolutions we are only marginally resolving Ay and H,
though at higher resolutions we have many cells per critical
wavelength and per scale height.

12)

H2

13)
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Figure 6. Radial profiles of MRI critical wavelength Ay (solid), scale height H (dashed), and midplane cell height Azyiq (dotted). Throughout much of the inner disk
we have Aqi¢ > H, indicating the magnetic field has become strong enough to suppress the MR

We define an MRI suppression factor S = 2H /A This
counts the number of critical wavelengths spanning the full
disk, so the instability is expected to be unimportant for S < 1.
Note that the suppression factor in McKinney et al. (2012)
differs from ours by a factor of £, /</3, and so their cutoff of
one-half corresponds to S < /3 /(2f.,;) ~ 1 with our defini-
tion. The fact that S is small even in the lowest resolutions,
where we have already seen other evidence of underresolved
behavior, indicates that building up enough vertical flux to
suppress the MRI is only a matter of physical conditions and
that any reasonable resolution is numerically capable of
showing the effect.

Gammie (2004) also gives formulas corresponding to the
maximum growth rate. This occurs at a wavelength of

1673
)\max = 27TVA,Z Ffmax’ (14)

where again we have a relativistic correction factor

fmax =

factors of 11, 9, 39, and 95, and the PPM simulations have
values of 7, 19, 41, and 99. The lower two resolutions are only
marginally resolving the MRI according to Hawley et al.
(2011).

3.4. Disk Structure

Late-time snapshots of the midplane density structures of the
disks for all our runs is shown in Figure 7. At the lowest
resolutions little azimuthal variation is present. The remaining
simulations show low-density magnetically supported bubbles
repeatedly forming and rising buoyantly away from the black
hole, as we expect from the magnetic RTI. These bubbles are
well resolved where they appear, with their sizes being roughly
independent of the grid scale. Still there is a clear trend of
increasingly finer structure appearing at higher resolutions,
with secondary instabilities appearing at the surfaces of the
bubbles in the higher-resolution PPM simulations.

S5+ ar3/2) (1 — 3r71 4 2ar3/2)1/2

15)

multiplying the Newtonian version (114 in Balbus &
Hawley 1998). From this we can define a vertical MRI quality
factor counting the number of cells in a single wavelength of
the fastest growing mode:

— Amax
T rAg
Taking an R-weighted mean of Q at the midplane inside
R = 10, we find that the PLM simulations have average quality

(16)

A =2r 1+ a2 2725 -1

81 + 16ar—3/2 — 3ag%r—2)1/2

Figure 8 shows plasma 3~ ' in the same midplane slices.
Dark red lines indicate field reversals and thus current sheets.
They become thinner and more numerous at higher resolution
and also at fixed resolution when transitioning from PLM
to PPM.

We also show late-time vertical slices through the simula-
tion, colored by p (Figure 9) and ﬂfl (Figure 10). In both cases
there is structure down to the grid scale, with current sheets
generally being a single cell thick.
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Figure 7. Density p in the midplane at r = 20,000. Magnetic bubbles can be seen in all but the lowest resolutions, and their sizes are not dependent on resolution.
However, secondary instabilities make them less clearly defined with PPM at levels 2 and 3.
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Figure 8. Plasma 3~ in the midplane at = 20,000. As resolution and reconstruction order increase, more and thinner current sheets appear and highly magnetized
bubbles become more numerous.

The amount of structure can be more quantitatively expressed where 6g is the change in a quantity ¢ from its mean over the
via correlation lengths of various quantities. We do this with same domain, the range i, < 7 < fnax covers a single cell in
correlations in the azimuthal direction in the midplane, following radius, and the range O, < 0 < Opax covers the two cells in
Shiolfawa et al. (201.2). We define the time-dependent correlation polar angle bordering the midplane. We normalize and average
function for a quantity g to be this to obtain the time-independent correlation function

2 0 max Tmax
Rerooy= [ [ [ qu v, 0, ) |
o o Jn M R, ) = ——— [ RED D)y, (18)
x 6q(t, v, 0, ¢ + ¢)dr' d9’ d¢’, (17) Imax — Imin Yimin ~ R(2, 1, 0)
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Figure 9. Density p in a poloidal slice at # = 20,000. Turbulent structures appear in all but the lowest resolutions, but they are never resolved in the sense that they

continue down to the grid scale in all cases.
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Figure 10. Plasma 3" in a poloidal slice at # = 20,000. The current sheet thicknesses are set by the grid scale.

Figure 11 shows the run of the time-independent correlation
function with ¢ at a representative value of r = 10, calculated
for ¢ = p. While large-scale features may be captured almost
as well by the level 1 simulations as those at level 3,
correlations at small scales are still changing with resolution
between levels 2 and 3.

The essence of our correlation functions can be summarized
by a single correlation length at each radius. The correlation

length at a given radius r is the value A\ for which
R(r, \) = R(r, 0)/e. Note that these lengths are in fact angles.

The correlation lengths for p and 5" are shown in Figure 12.
In all cases the angular length scales are invariant with radius over
the inner region in which steady state has been achieved. At some
fixed resolutions, correlation lengths in the plateau region are
slightly lower when using PPM as opposed to PLM, and also
slightly lower when looking at 3~ ' rather than p, but these
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Figure 11. Time-independent correlation function for density p at r = 10 as a function of azimuthal angle. There is some agreement at large scales. However,
systematic trends are seen in small scales, with only the highest two resolutions using PPM close to agreeing.
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Figure 12. Midplane correlation length for p (top) and 3! (bottom) in the azimuthal direction as a function of radius. Note the trend with resolution, indicating
convergence has not been fully achieved. However, the line spacing indicates a trend toward convergence in the PPM cases, possibly achieved with another factor of
2—4 in resolution.

differences are small compared to the effect of resolution. We having small structures sheared out in the azimuthal direc-
have not achieved convergence, though the values we measure tion: the direction in which we measure correlations is not
suggest convergence might be achieved with approximately two orthogonal to the current sheets. Furthermore, as noted in
more levels of refinement (a factor of 4 in resolution). White et al. (2016) when comparing such correlations in non-

It is interesting to note that the correlation lengths shown in MAD disks to those found by Shiokawa et al. (2012), at fixed
Figure 12 are much larger than the azimuthal cell widths, which ¢-resolution midplane correlation lengths can decrease with
range from 5°625 to 0°7031. This is partly expected from increasing f-resolution in the midplane. That is, one should use
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Figure 13. Plasma 3" (left) and o (right), averaged in azimuth (weighted by density) and time for the level 3 PPM run. The disk proper can be taken to be the red
region of 37! < 1 on the left, while the jet can be taken to be the blue region of o > 1 on the right. The corona lies in between. Streamlines show the average poloidal
part of the magnetic field (left) and density-weighted average of the poloidal part of the four-velocity (right).

caution in comparing these correlation lengths between
simulations with different polar grids. We expect then that
had we concentrated our grid near the midplane these particular
correlation lengths would have been lower.

As there is no explicit dissipation mechanism in these
simulations, it is expected that some turbulent properties
continue to scale with the grid size and corresponding
magnitude of numerical dissipation. However, the nonconver-
gence of small-scale turbulence does not necessarily preclude
the convergence of global properties, especially in MAD flows.
In contrast to cases with no net vertical flux, the transport of
angular momentum in these flows can be dominated by large-
scale magnetic stresses instead of stresses resulting from small-
scale turbulence. This explains how our accretion rates can
agree at sufficiently high resolution even when our correlation
lengths do not.

4. Jet Properties
4.1. Magnetic Structure

While most of our simulations are quite turbulent, they do
reach steady state in the average sense and so regions can be
defined based on their - and ¢-averaged properties. We do this
with two measures of magnetization, plasma §~' and o.
Figure 13 shows the results for the level 3 PPM run (the other
runs appear similar). As suggested in McKinney et al. (2012),
we can loosely define the disk to be where gas pressure
dominates magnetic pressure, the jet to be where magnetic
energy density dominates rest-mass energy density, and the
corona to be the region in between. The color schemes in the
figure emphasize these transitions at 3~ ' ~ 1 and o ~ 1.

In order to compare our simulations, we sample average
magnetization along arcs of constant » = 25 and varying 6. The
results are shown in Figure 14. The results across the simulations
are in generally good agreement, with two exceptions. First, the
lowest resolutions show slightly less magnetization in the bulk
volume of the jet, outside the core. Second, there is a trend of disk
magnetization increasing with resolution. While even very low
resolutions can capture the qualitative structure of the magnetized
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accretion flow (agreeing with the findings in Section 3.2), the
quantitative amount of magnetization relative to the hydrodyna-
mical state of the disk is another example of a property that has
not entirely converged.

While 3" and o are large near the poles, they are below the
numerical ceilings of 100 at the sampled radius. We caution,
however, that the magnetization could be larger closer to the
horizon. Once the jet has propagated some distance it is no
longer affected by the ceilings, but they could leave an imprint
by adding density and pressure at very small radii.

4.2. Energy Extraction

Just as with mass, we can calculate the flux of covariant
(binding) energy through a spherical surface:

E= f T, /=% db do. (19)
Sy
The efficiency of the black hole is taken to be
M- E
n=———, (20)
(M)

where the denominator is smoothed in time with a Gaussian
filter of full width at half maximum Az = 100. Given that
(M) > 0 always (see Figure 3), n > 0 corresponds to some
positive energy (negative binding energy) being transported to
infinity. If this is simply the binding energy of a circular orbit at
the ISCO relative to O at infinity, as in the Novikov—Thorne
model, we expect n ~ 0.23 for a = 0.98. In cases where
n > 1, this energy exceeds not only the binding energy but also
the rest-mass energy of the matter falling into the black hole,
and we expect to see this given high spin and a MAD disk
(Tchekhovskoy et al. 2011).

Figure 15 shows the energy extraction and efficiency as
functions of time. As with other quantities that reflect the turbulent
nature of these flows, the time series are highly variable, though
again the level 0 PLM run shows no significant variability.
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Figure 14. Polar angle profiles of plasma 3~ (top) and o (bottom), averaged in azimuth and time. The values shown are at » = 25. There is good agreement in the jet
region except at the lowest resolutions. At the same time, the middle of the disk continues to become more magnetized with increasing resolution, especially in terms
of 3~'. At higher resolutions than those studied here, we may even expect Pinag 10 €xceed p,, everywhere.

At higher resolutions and with higher-order reconstruction, the
energies and efficiencies are slightly higher, though the differences
are somewhat obscured by the high variability.

Most of the measured efficiencies exceed unity, going up to
approximately 150%. Even the level 0 PLM run shows n ~ 1,
whereas we would expect 1 = 0 if the accretion flow were not
in the MAD state, or if the black hole were not spinning.

We can differentiate between energy in the jet and energy in
the wind by labeling locations as one of “jet,” “wind,” or “disk”
according to the average accretion state as pictured in
Figure 13. Constructing these averages for all eight simula-
tions, we define the jet to be where o > 1, the wind to be where
o< 1and u” > 0, and the disk to be the remaining volume.
The disk contributes negligibly (less than 1%) in all cases to the
energy flux used to calculate 7. Among the PLM simulations,
the jet comprises 76%, 78%, 73%, and 73% of the energy flux
in order of increasing resolution. For PPM, these values are
86%, 78%, 719%, and 75%.

The jet contributions to 7 alone are far larger than the
Novikov-Thorne efficiency. Thus the Blandford—Znajek mech-
anism for extracting spin energy from the black hole is robustly
modeled, even at moderate resolutions that do not fully capture
other aspects of the accretion flow.

4.3. Jet Structure

While the rate of spin energy extraction may not vary much
with resolution, the jet structure can change. Figure 16 shows
cylindrical radial profiles of fluxes in the jet in the z = £50
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planes (averaging the results for the two planes). In particular,
we plot the outward mass flux per unit area +pu* and outward
binding energy per unit area +7%. This later quantity is
negative where energy is flowing to infinity. Total fluxes
through the planes correspond to integrating the values
against \/Tcyl dR dop.

In these planes, the jet (o 2 1) is inside R = 20, as can be
seen in Figure 14. Immediately outside the jet there is
considerable coronal outflow of mass in all simulations. Inside
the jet region, the mass flux becomes negligible, with a large
amount of energy flowing outward in the form of Poynt-
ing flux.

Our refinement scheme refines the jet in these planes, though
the jet base is always on a coarse grid. Any resolution-
dependent effects we see are therefore due to processes in the
jet but beyond the base, or else due to properties of the disk. In
fact there is very little variation in jet flux profiles with disk
resolution. However, all PPM simulations consistently con-
centrate much of the energy flux in a narrow jet core, while the
PLM simulations have a much broader distribution in R. This
suggests the jet structure would change if the resolution of the
always-coarse jet base were altered, likely appearing more like
the PPM results at higher resolution.

Figure 17 shows the Lorentz factor of the fluid, relative to
the normal observer, through these same planes. Here the
effects of resolution are more noticeable. The similarity of the
level 2 and level 3 PPM profiles might indicate convergence,
though the grid resolution in the jet region does not change
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dominates the jet core. Changing the resolution does little to alter these profiles, though using PPM instead of PLM reconstruction helps to resolve the jet.
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Figure 18. Light-curve variability for the eight simulations. As with other
properties, the level 0 PLM simulation does not show signs of turbulence, but
in all other cases the light curves reach a saturated state and display large
variations about that mean. The variability is still decreasing with resolution
even at level 3.

between these two refinement schemes. Qualitatively, all runs
show similar off-axis peaks in Lorentz factor, with the core
being slower than the jet walls.

We caution that properties of this highly magnetized, rapidly
moving part of the flow can depend numerically on not only
resolution, but also the treatment of floors and variable
inversion failures. Radial profiles of mass and internal energy
fluxes indicate that density and gas pressure floors add only
very small amounts of material and heat in our simulations.
Still, the ideal MHD condition means that even with perfect
magnetic field evolution, electric fields and thus electro-
magnetic energies are sensitive to any changes in fluid velocity
resulting from numerical floors.

5. Light Curves

The results of the previous sections show that some of the
physical properties of the accretion flow are converged with
resolution while others are not. This raises the question of how
converged direct observables are. While our simulations do not
model photons in situ, we can postprocess snapshots in order to
generate light curves from the simulations. For this purpose we
choose to use the code ibothros, which models synchrotron
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emission and absorption and propagates photons along
geodesics in the Kerr spacetime to generate an image of
specific intensity at a given frequency.

We must set several physical scales, and we choose these to
reflect the supermassive black hole in M87. Following Ryan et al.
(2018) we set the black hole mass to M = 6.2 x 10° M., placed at
a distance of D = 16.7 Mpc. We choose a viewing angle 20° off
the jet axis. The electron density is taken to trace the fluid density,
with a constant temperature ratio of 4 between the ion and electron
temperatures, and the electrons are assumed to be thermal. Images
are sampled every 10 GM/ ¢ (ie., every 3.5 days) over the
simulation times 15,000 < #/ (GM/c3) < 20,000 (i.e., spanning
4.8 yr). Each image consists of 2007 pixels covering a patch of sky
30GM/ ¢®D (110 pas) on each side. The density scale of the fluid
is adjusted until the total emission at 230 GHz matches the
observed value of 0.98 + 0.04Jy from Doeleman et al. (2012).

Except in the level 0 PLM case, where the flux varies
monotonically with time, the light curves all display variability
about a saturated state. The standard deviations of the fluxes are
shown in Figure 18. The standard deviations of these standard
deviations are small, less than 0.02 in all cases, making the
trend with resolution statistically significant. That is, variability
is decreasing with increasing resolution, and it does not appear
converged at our highest resolution.

6. Discussion

In examining the same problem of MAD accretion at
different resolutions, we can determine which properties have
converged and are therefore the most robustly determined by
simulations.

The large-scale structure of the accretion flow is relatively
constant across our simulations. In particular, the time-
averaged magnetization as depicted in Figure 13 roughly holds
at all resolutions. This is reflected in the constancy of where the
solid lines cross the dotted lines in the lower panels of
Figure 14, as well as the similar sizes of magnetic bubbles
shown in Figures 7 and 8.

Figure 6 shows that the MRI is robustly suppressed in the inner
part of all our simulations. Even at low resolutions, we can see
that the critical wavelength of the MRI tracks the disk scale
height. Our initial setup thus robustly leads to a MAD state in the
sense of growth of the MRI being suppressed by buildup of
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Table 2
Summary of Simulation Results

Run M @ S Ap) n (%) sk, /F
PLM-0 8.39 + 0.59 512 £ 1.0 0.190 £ 0.029 1.76 £ 0.60 103.1 £2.5 0.1513 £ 0.0048
PLM-1 12.8 £3.8 532 +£7.1 0.69 £+ 0.18 1.243 £ 0.034 118 £ 29 0.490 £ 0.016
PLM-2 15.7 £ 6.2 51.1 £ 8.0 0.47 £ 0.47 0.788 + 0.026 107 £+ 36 0.475 £ 0.015
PLM-3 158 £7.2 52.7 + 8.8 0.37 £ 0.34 0.545 £ 0.027 133 + 48 0.429 £+ 0.014
PPM-0 135 +43 409 + 8.8 0.96 + 0.34 1.360 £ 0.060 100 £ 37 0.537 £ 0.017
PPM-1 149 £ 6.0 52.1 £8.6 0.56 £+ 0.57 0.834 £ 0.014 141 +£ 43 0.482 £ 0.015
PPM-2 163 £ 6.7 573 £ 7.6 0.47 £ 0.47 0.575 £ 0.023 153 £ 51 0.403 £ 0.013
PPM-3 15.6 £ 6.5 56.4 £ 7.5 0.37 £0.33 0.480 £ 0.027 147 + 52 0.355 £ 0.011

magnetic flux and compression of the disk. This occurs even at
lower resolutions where the MRI quality factors indicate we are
only moderately sampling unstable wavelengths.

A number of important global parameters converge at
sufficiently high resolution, including the accretion rate
(Figures 2 and 3), the vertical magnetic flux near the horizon
(Figures 4 and 5), and the rate of energy extraction from the
black hole (Figure 15). This last quantity is highly variable in
time in the MAD state, and so longer run times would allow for
a more precise measurement of the mean efficiency.

We consistently find about 3 times as much outgoing energy
in the magnetized jet as in the wind. This is in agreement
with the values of n; and 7, , reported in Table 5 of McKinney
et al. (2012) for comparable models (A0.9N25, A0.9N50,
A0.9N100, A0.9N200, and A0.99N100). On the other hand,
the MAD models of Avara et al. (2016) and Morales Teixeira
et al. (2018) have more energy leaving through the wind than
the jet. This can be an effect of the thinness of those radiatively
cooled disks, as well as the fact that they only have a = 0.5,
meaning the Blandford—Znajek process will produce a much
weaker jet.

Other aspects of the flow show signs of converging, though
there is disagreement at our highest resolutions, indicating
somewhat higher resolutions are required to attain conv-
ergence. For example, the midplane values of magnetization as
measured by o agree at high resolutions, but there is still
disagreement when using ' (Figure 14). The quantitative
measure of MRI suppression, S, follows 3~ in not being fully
converged.

The statistical nature of the turbulence, as measured by
correlation lengths, has also not quite converged (Figures 11
and 12); size scales decrease as resolution increases (and they
decrease slightly as higher-order reconstruction is used).
Figure 11 in particular is essentially a power spectrum and
captures the same information as the azimuthal power spectra
computed by Morales Teixeira et al. (2018), who see agreement
among simulations that only have up to 128 x 128 x 64 cells
within 7 ~ 10. They have at most seven azimuthal cells per
correlation length and see convergence while we have up to 43
cells per correlation length (512 cells with a length of 30°) and
do not have the same agreement. This discrepancy is likely due
to the radiative nature of their disks.

It may seem inconsistent that we easily suppress the MRI
even at low resolutions and yet we do not attain convergence in
turbulence at our highest resolution. This tension is resolved by
having another driving force for turbulence, the magnetic RTI.
Marshall et al. (2018) study the stresses in a thinner MAD disk,
and they also see turbulent angular momentum transport
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despite MRI suppression, attributing this to the constant
formation and disruption of Rayleigh—-Taylor bubbles.

The jet Lorentz factor (Figure 17) is another quantity whose
values may still change with higher resolution. It is somewhat
surprising that energy extraction shows less discrepancy
between different resolutions than Lorentz factor. We reiterate
that the jet base has the same grid in all our simulations, so we
can only measure convergence in terms of properties that
depend on resolving disk properties and resolving the
propagation of the jet tens of gravitational radii beyond the
horizon.

Some properties are far from converged in our simulations.
The thinnest current sheets are always at the grid scale
(Figures 8 and 10), and secondary instabilities on top of
Rayleigh—-Taylor bubbles do not even appear except at the
highest resolutions (Figure 7).

More disconcerting is the trend light-curve variability has
with resolution (Figure 18). We are possibly far from
convergence, which one expects if the short-timescale
variability comes from small, transient, highly magnetized
parcels of plasma that are not well resolved on the grid.

We summarize key average quantities for the simulations in
Table 2. For the accretion rate M and horizon magnetic flux ¢
we take a simple average in time, quoting the standard
deviation of the 501 samples in the range 15,000 <
t < 20,000. We do the same for the efficiency 7 but with 40
fewer samples, as times at the very end of time simulation
cannot be used due to the width of the Gaussian filter used in
calculating these quantities. For the MRI suppression factor
S = 2H/A\.i, we average the scale height H and critical
wavelength A in azimuth, calculate S, and then average in
time. Then S and the density correlation length A(p) have been
time-averaged, but we must find a way to average in radius. For
q € {S, Mp)} we define

[qR dr
7] = ee— 21
q fR R 21
and
5 quR drR
=<4 _ 7, 22
p fR R q (22)

where the integrals are over the region R < 10, using 20, 40,
79, and 159 samples at levels O through 3. The table reports
g £ o, for all five of these measures. For the N = 500 values
of F, in each light curve, we define s to be the unbiased
estimator of the variance of the set, with the uncertainty in s
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taken to be

2 rov2 V)
N—1\T(V = 1)/2)

in terms of the gamma function. The table reports (s & ;) /F,,
where the mean used to normalize is always within 0.01Jy of
the observed 0.98 Jy.

Of the quantities in the table, the horizon-penetrating flux ¢
is the most clearly converged, showing similar values even at
the lowest resolutions. The accretion rate M, MRI suppression
factor S, and efficiency 7 also appear converged at the
resolutions of refinement levels 2 and 3, though these are
intrinsically highly variable statistics in these flows. Turbulent
correlation length A(p) and synchrotron light-curve variability
sg /E, do not converge by level 3.

(23)

o =s|1—

7. Conclusion

We study a single physical scenario of MAD accretion onto
a rapidly spinning black hole at various resolutions. This is
done by employing the static mesh refinement ability of
Athena++, spanning a factor of 8 in resolution in each
dimension over the bulk of the disk. By only varying resolution
and comparing results, we can determine which features of
such simulations are adequately resolved and can therefore be
trusted. A priori, it is not obvious how much sensitivity to
resolution we should expect in MAD structure given inward
field advection is competing with the complex nonlinear
processes of turbulent diffusion and magnetic RTI.

Certain global properties are found to converge with
resolution in our set of simulations, notably accretion rate M
and jet efficiency 7, as well as the fact that the MRI is
suppressed. Magnetic structure is generally well captured. In
particular, the accumulated magnetic flux on the horizon ¢ is
found to be essentially the same at all resolutions we consider.
Buoyant magnetic bubbles are well resolved on the higher-
resolution grids (though with secondary Kelvin—Helmholtz
instabilities only appearing at high resolution with higher-order
spatial reconstruction).

As simulations in the literature use grids that go up to our
levels 2 and 3 (Tchekhovskoy et al. 2011; McKinney et al.
2012; Avara et al. 2016), going even higher in some cases
(Liska et al. 2018), these results provide assurance that the
large-scale structures of MAD flows are being accurately
modeled by the community.

On the other hand, the details of jet structure, including
profiles of energy flux and Lorentz factor, do not agree among
our simulations. Higher resolutions at the base of the jet itself
would be helpful in reliably determining the velocity and
energy distributions between the core and outer parts of the jet.
The Lorentz factor will also probably change at higher
resolutions, though increasing resolution alone will very likely
not be enough to create jets with v ~ 10-100 given that ~ in all
our jets peaks between 1.8 and 2.4.

We do not see convergence in the length scales of turbulent
eddies, though these scales may converge with another factor
of approximately 4 in resolution. We also do not see
convergence in the thicknesses of current sheets, and indeed
this is not surprising given the lack of any explicit dissipation
mechanism decoupled from the grid scale in the simulations.

The lack of convergence in small-scale features would not
necessarily be a concern, except these features can affect
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observables. One might hope that in going from accretion flows
with disordered magnetic fields to MAD flows, with small-
scale turbulence giving way to large-scale magnetic stresses as
the important transport mechanism, the emitted light will be
less sensitive to the resolution. However, when postprocessing
our simulations to model thermal synchrotron emission, we see
that there is light-curve variability that continues to scale with
resolution even at the highest resolutions (Figure 18). There are
certainly caveats to these findings—including not modeling the
radiation dynamically, not including other radiative processes
such as Compton scattering, and not considering nonthermal
particles—indicating future avenues of exploration. Still, our
results suggest caution in comparing simulations to data via
light curves, even when most aspects of the simulation appear
converged.

We conclude that the general MAD flow structure is robust.
This includes the suppression of the MRI as well as the field
structure that results from an equilibrium between inward
advection and the rising of magnetically buoyant bubbles in a
setting unstable to RTI. Details of turbulence are, however, not
fully captured at these resolutions, in the sense that some
observable quantities are affected by our choice of grid, and
this can affect observables.

We relegate the computationally expensive study of
resolution at the base of the jet to a separate investigation.
Future simulations with in situ radiative transfer can help
further determine to what extent the variation of turbulence
with resolution has on direct observables.
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