RETRIEVING SPEECH SAMPLES WITH SIMILAR EMOTIONAL CONTENT USING A
TRIPLET LOSS FUNCTION

John Harvill, Mohammed AbdelWahab, Reza Lotfian and Carlos Busso

Multimodal Signal Processing (MSP) Laboratory, Department of Electrical and Computer Engineering
The University of Texas at Dallas, Richardson TX 75080, USA

jbh150030@utdallas.edu, mxal29730Q@utdallas.edu,

ABSTRACT

The ability to identify speech with similar emotional content is
valuable to many applications, including speech retrieval, surveil-
lance, and emotional speech synthesis. While current formulations
in speech emotion recognition based on classification or regression
are not appropriate for this task, solutions based on preference learn-
ing offer appealing approaches for this task. This paper aims to
find speech samples that are emotionally similar to an anchor speech
sample provided as a query. This novel formulation opens interest-
ing research questions. How well can a machine complete this task?
How does the accuracy of automatic algorithms compare to the per-
formance of a human performing this task? This study addresses
these questions by training a deep learning model using a triplet loss
function, mapping the acoustic features into an embedding that is
discriminative for this task. The network receives an anchor speech
sample and two competing speech samples, and the task is to deter-
mine which of the candidate speech sample conveys the closest emo-
tional content to the emotion conveyed by the anchor. By compar-
ing the results from our model with human perceptual evaluations,
this study demonstrates that the proposed approach has performance
very close to human performance in retrieving samples with similar
emotional content.

Index Terms— emotion retrieval, triplet loss, ranking, percep-
tion, preference learning

1. INTRODUCTION

This paper presents a ranking formulation to retrieve speech
samples with similar emotional content to that of a given anchor.
Emotion is an important part of everyday life. Creating machines
that understand emotion is valuable to society for a variety of rea-
sons such as detecting depression or schizophrenia [1, 2], improv-
ing human robot interaction (HRI) [3], monitoring quality of ser-
vice in call centers [4,5], and supporting intelligent tutoring systems
(ITSs) [6,7]. Common formulations for speech emotion recognition
include regression [8—10] and classification [11, 12]. An alterna-
tive formulation is preference learning where emotional behaviors
are ranked according to emotional attributes [13—16], or the cate-
gorical emotions [17, 18]. Preference learning also provides suitable
tools to address a novel problem in affective computing: retrieving
speech samples that have similar emotional content to that of a tar-
get anchor. The ability to compare the emotional content of two or
more speech samples is important for several reasons. From a the-
oretical perspective, this formulation takes into account the relative
nature of emotions, where relative comparisons are better than ab-
solute judgements in terms of reliability and validity [19,20]. From
an application perspective, this formulation allows machines to dis-
tinguish differences in emotional content between speech samples
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based on learned preferences. The ability to identify speech with
similar emotional content is valuable to many applications such as
speech retrieval, surveillance, and emotional speech synthesis. This
is a new formulation that opens research questions. How well can
a machine complete this task? How does the accuracy of automatic
algorithms compare to the performance of a human performing this
task? This study addresses these questions.

This study considers an anchor speech sample that is used to
retrieve speech samples with similar emotional content from an au-
dio repository. We accomplish this goal with a triplet-loss neural
network that is trained on triplets consisting of an anchor, a posi-
tive sample (a recording with similar emotion) and a negative sam-
ple (a recording with different emotion). The deep learning network
creates an embedding space for samples depending on acoustic fea-
tures. After training, pairs of samples with similar emotional content
are closer in the embedding space than dissimilar sample pairs. Us-
ing our ranking formulation, we compare two annotation methods
for representing emotional content. The first representation consid-
ers a three dimensional vector for the emotional attributes valence,
arousal, and dominance (VAD). In this representation, the samples
in the database are sorted according to the deviations from the va-
lence, arousal and dominance scores assigned to the anchor speech.
The second representation considers a nine dimensional vector for
categorical emotions, describing the distribution of emotions pro-
vided by different evaluators to a given speech recording.

Our results show that this proposed network achieves better per-
formance using the VAD representation than the categorical emo-
tional representation. We compare the performance of our network
on discriminating triplets with anchors from different regions in the
VAD-space. The performance varies with the location of the anchors
in the VAD-space, obtaining better accuracies for anchors with ex-
treme emotions. The evaluation also considers perceptual evalua-
tions to compare the performance of our network with the perfor-
mance of humans completing this task. We find similar performance
between humans and our models when evaluating samples from cer-
tain regions of the VAD-space.

This is the first approach that combines ranking methods with
triplet loss networks to retrieve samples with similar emotion. The
results show that comparing the emotional content between speech
samples is a difficult task for both machines and humans.

2. RELATED WORK

This study builds on work using preference learning for emotion
recognition. Previous work has shown that ranking systems can be
effectively used to sort sentences according to emotional attributes
(e.g., which recording is more aroused?) [13—16], or emotional cate-
gories (e.g., which recording is more happy?) [17,18]. For example,
Lotfian et al. [14] explored the practical use of preference learning to
rank recordings according to their either arousal or valence scores.
The study analyzed the optimal margin to establish preference be-
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tween two recordings and optimal size of the training set to obtain
good performance. Other relevant formulations in speech emotion
recognition (SER) are to detect emotionally salient regions [21,22],
and detecting changes in emotion during a conversation [23, 24].
While these formulations are related to our task, to the best of our
knowledge, retrieving sentences with similar emotion to an anchor
speech sample is a new problem.

This study relies on the use of triplet-loss networks for emotion
retrieval. Triplet-loss neural networks have traditionally been used
for face verification [25], but this study applies these networks to
discriminate between different emotional content. Huang et al. [26]
has recently demonstrated the ability of triplet loss networks to train
categorical emotional speech recognition systems. The authors used
a triplet loss function and a supervised loss function to train a long
short-term memory (LSTM) network. They used hard positive min-
ing techniques to choose hard triplets. While Huang et al. [26] used
variable-length processing to make use of temporal information to
train the LSTM network, this study relies on high-level descriptors
(HLDs) from the speech extracted at the sentence level. In Huang et
al. [26], the embeddings were used to classify samples using a sup-
port vector machine (SVM). The novelty of our approach relies on
choosing triplets to determine which of two competing speech sam-
ples has similar emotional content to the anchor speech sentence.

3. RESOURCES
3.1. MSP-Podcast corpus

The study relies on the MSP-Podcast corpus, which is a database
of naturalistic emotional speech [27]. The samples in the database
are drawn from publicly-available podcasts, after segmenting the
recordings into speaking turns. This study uses version 1.2 of the
corpus, which contains 29,440 audio samples (50 hours and 5 min-
utes of audio). The test set has 7,341 speaking turns recorded by
50 speakers. The validation set has 2,861 speaking turns recorded
by 20 speakers. The remaining 19,238 speaking turns of the corpus
are included in the training set. The large amount of data in the cor-
pus creates a rich variety of emotional content on which to train our
models. Lotfian and Busso [27] gives more details about this corpus.

Each sample in the corpus was annotated by at least five annota-
tors using a crowdsourcing protocol inspired by Burmania et al. [28].
The evaluation considered the emotional attributes valence (negative
versus positive), arousal (calm versus active), and dominance (weak
versus strong). Each evaluator provided a score between one and
seven. The evaluation also considered categorical emotions, where
the raters were asked to identify the dominant emotion perceived in
the recording, which we refer to as primary emotion. The list of emo-
tions are anger, sadness, happiness, surprise, fear, disgust, contempt,
neutral state and other. The evaluators were also asked to annotate
all the emotional classes perceived in the recordings, which we refer
to as secondary emotions. The options for the secondary emotions
were extended by adding other categories [27].

3.2. Acoustic Features

The acoustic features used to train our model are the feature
computational paralinguistics challenge (ComParE) set [29] ex-
tracted using the OpenSMILE toolkit [30]. The features consist
of HLDs calculated from low-level descriptors (LLDs) such as the
mean of the fundamental frequency. In total, 6,373 HLD features are
extracted from each audio segment.

4. PROPOSED APPROACH

The goal of this paper is to retrieve speech samples that have
similar emotional content to that of an anchor speech sample. The

formulation of this problem consists of comparison between three
samples: an anchor provided to query the database, and two compet-
ing samples. Our network has to decide which of these two samples
have emotional content that is closer to the emotional content of the
anchor speech.

This study addresses this problem using a triplet-loss neural net-
work. While triplet-loss networks have shown impressive perfor-
mance in other fields, this structure has not been fully explored in
speech emotion recognition. The goal of a triplet-loss network is
to pull embeddings of emotionally similar samples together and to
push embeddings of emotionally dissimilar samples apart. This is
accomplished by applying the triplet loss function to a neural net-
work during training.

4.1. Triplet Loss Function

The network maps the acoustic features extracted for each sam-
ple into a d-dimensional embedding space represented by f(z) €
R%. The goal is to make sample ¢ (anchor) closer to all other sim-
ilar samples z? (positive), and farther from dissimilar samples =}’
(negative). In this study, similarity is determined by distances in the
VAD-space or P+S-space (see Sec. 4.2). The corresponding formu-
lation is:

() = f@D3 + o < || f(f) = fe)]]3 M
Vi@i), f(27), f(ai') €T

where « is a margin to help separate positive and negative samples,
and I" is the set of all possible triplets in the training set. The function
f(x) is learned using a fully connected deep neural network (DNN).
Through training, the triplet loss is minimized:

N
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While we do not assign classes to the samples, we use the triplet
loss function to map samples with similar emotional content to sim-
ilar locations in the embedding space.

4.2. Emotion Representation

An important aspect of the proposed approach is to identify an
appropriate representation to describe emotions. Our approach uses
two alternative representations relying on either the core affect the-
ory or basic emotion theory.

The first representation uses emotional attributes. For each di-
mension, we estimate the average score provided by the evaluators
to the speaking turn. Then, we create a three dimensional vector rep-
resenting the speaking turn as one point in the VAD-space. We refer
to this approach as VAD representation.

The second representation relies on categorical emotions. We
create a nine dimensional vector where each dimension represents an
emotion (Sec. 3.1). This vector provides the distribution of emotions
assigned to the speaking turn by the evaluators. The vector consid-
ers the primary and secondary emotions. This study only uses sec-
ondary emotions from the original nine possible primary emotions,
discarding the additional categories added to the list. We weight the
primary emotion twice to emphasize that the emotion was dominant.
We aggregate the selection across evaluators, normalizing the vector
to obtain the distribution. We refer to this approach as P+S represen-
tation (i.e., primary plus secondary emotions).

4.3. Triplet Generation
The success of a triplet-loss network is largely dependent upon
the quality of the triplets that it receives for training [25]. This study
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Fig. 1. Choosing positive and negative samples with respect to an
anchor to generate a triplet. After sorting the samples according to
their distance from an anchor sample, we randomly select a positive
sample from the 20 closest samples, and a negative sample from 20
samples located at the Xth percentile in the list.
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Fig. 2. Performance of the proposed triplet-loss network using sorted
lists created over the VAD-space and P+S-space. The negative sam-
ples are drawn from the 40th, 60th or 90th percentiles.

creates the triplets by ordering samples with respect to their distance
to the anchor sample in the emotional space. For the VAD-space,
we consider the Euclidean distance in the three dimensional space
between an anchor sample and each of the samples in the set. For
the P+S-space, we rely on the Kullbach-Liebler divergence (KLD),
comparing the distribution of the anchor sample with the distribution
of all other samples in the set. Once the samples are ordered from
the lowest to the largest distances from a given anchor, we select
the positive and negative examples. Figure 1 illustrates this process.
The positive sample is chosen randomly as one of the twenty closest
samples to the anchor. The negative sample is randomly chosen from
a set of twenty samples located at the X'th percentile of the list. We
consider the 40th, 60th, or 90th percentiles. Notice that the distance
between the positive and negative example is higher when we use
the negative sample from the 90th percentile in the list.

5. EXPERIMENTAL EVALUATION

The evaluation considers the train, test and validation partitions
in the MSP-Podcast corpus. Although we can generate multiple
triplets per sample, this study only creates one triplet per speech
sample by separately considering the train, test and validation par-
titions (i.e., the anchor, positive and negative samples belong to the
same partition). We create 19,238 training triplets, 2,861 validation
triplets, and 7,341 test triplets. We evaluate the triplet-loss network
by estimating its accuracy in detecting positive and negative exam-
ples. The network is correct when it chooses the positive sample over
the negative one. Thus the accuracy reported for the experiments is
the percentage of times the embeddings of the anchor and positive
sample are closer to one another than the embeddings of the anchor
and the negative sample. The distance between two embeddings is
estimated with Euclidean distance.

The input of the network is a 6,373 feature vector. The network
has three intermediate hidden layers with 1,024 nodes per layer. The
output layer is implemented with 512 nodes. Therefore, the net-
work maps the 6,373 acoustic features to a 512 dimensional embed-
ding. We use dropout (p=0.2) between layers and batch normaliza-
tion. The hidden layers use the rectified linear unit (ReLU) activa-
tion function. For training, we use the Adam optimizer and a batch
size of 512. The models are trained for 15 epochs on a total of 19,238
triplets. The results reported throughout the paper are the averages
of the performance of 10 models with random weight initializations.

5.1. Global Performance

We evaluate the proposed approach by training and testing net-
works on triplets created with either the VAD-space or the P+S-
space. The negative samples are selected from the 40th, 60th, or
90th percentile of the list (i.e., six conditions). Figure 2 shows the
accuracy of the models. The best performance that we obtain for this
task is 69%, when we use the VAD-space drawing negative samples
from the 90th percentile. The results show that the triplets created
based on the ordering of VAD vectors are better than those created
from the P+S vectors. We compare the average accuracies over the
10 models for each condition using the one-tailed two sample pop-
ulation mean t-test, asserting significance at p-value<0.05. The dif-
ferences are statistically significant at each percentile, showing that
using the valence, arousal and dominance space is more appropri-
ate for this task than using categorical emotions. Another trend to
notice is that as the percentile increased, the performance improved
for both emotional spaces. This result is intuitive, because a higher
percentile implies the negative samples are drawn from farther down
the list, increasing the difference between positive and negative sam-
ples. While the VAD-space is superior to the P+S-space based on the
results of this experiment, the fact that the performance increased for
both methods as the negative sample percentile increased shows that
both methods are valuable in being able to rank samples in a mean-
ingful way with respect to emotional content. We focus the rest of
the discussion on results obtained using the VAD-space, due to its
superior performance over the P+S-space.

5.2. Performance per Region in the VAD-Space

In order to gain a better understanding of the performance of the
model with respect to the expressiveness of the anchor samples, we
divide the VAD-space into 27 cubes by splitting the values for each
attribute into low (1-3), medium (3-5) and high (5-7). The triplets
are placed into each cube according to their anchors’ VAD value.
Figure 3 illustrates this process, listing the number of triplets in the
testing set per cube. Cubes marked with “None” did not contain any
triplets. The central cube has 3,243 test samples, which convey fairly
neutral emotions. Samples in the cubes toward the edges present
more expressive behaviors.

Figure 3 shows the accuracy per cube, when we draw negative
samples from the 90th percentile of the sorted list. In general, we ob-
serve better performance towards the outer areas of the VAD-space.
We believe that this result is due to the distribution of the data. For
anchors in the central cube, negative samples in the 90th percentile
in the list may not be far enough from the positive samples, as there
are many samples in the center. For anchors in the extreme of the
space, the distance in the VAD-space between positive and negative
samples is larger, simplifying this task. The best performance is as-
sociated with regions where the arousal value is either low or high,
suggesting that this may be the most discriminative dimension for
this task using acoustic features. We also notice similar performance
across the valence dimension when arousal and dominance are held
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Table 1. Comparing human performance and our proposed triplet-
loss network.

Triplet network Human performance
Region | Entire Test Set 60 Triplets 60 Triplets
90th Percentile  90th Percentile 90th Percentile
I 76.46% 82% 86.67%
2 74.50% 96 % * 73.33%
3 89.80% 98 % * 82.22%
4 83.50% 74% 66.67%
5 63.98% 65% 75.31%
[ 40th Percentile  40th Percentile | 40th Percentile
1 66.69% 64% 75.56 %
2 65.98% 64% 80%*
3 78.79% 78% 65.56%
4 65.50% 66 % 57.78%
5 56.59% 49% 60 % *

constant. This result indicates that valence may be less discriminant
for comparing emotional content using acoustic features. This result
agrees with previous studies showing the changelles in detecting va-
lence from speech [31,32].

5.3. Human Performance per Region in the VAD-Space

We use triplets from the test set to evaluate the ability of hu-
mans to detect which candidate speech is more similar to the emo-
tion of the anchor. To simplify the evaluation, we only consider
the five regions shown in Figure 4. These regions mostly consider
arousal and valence scores, discarding dominance. We create two
separate sets of 30 triplets each, one of which has the negative sam-
ples drawn from the 90th percentile and one which has the negative
samples drawn from the 40th percentile. For each set of 30 triplets,
five triplets belong to each of the regions one through four, and ten
triplets belong to region five. The perceptual evaluations are per-
formed by 9 subjects in our laboratory, who evaluated all 60 triplets.

Table 1 lists the cumulative results. The table also reports the

performance of our triplet-loss network over the 60 triplets evalu-
ated by the raters, and over all the sentences in each of these five re-
gions. Percentages in bold indicate better performance by either the
model or humans, and an asterisk indicates statistical significance
(one-tailed two sample proportion t-test, p-value<0.05). When the
negative samples are drawn from the 90th percentile, we can see that
the only statistically significant results are in regions two and three
where the proposed model outperforms human perception. When
the negative samples are drawn from the 40th percentile, we notice a
decrease in performance for both humans and our model compared
to triplets from the 90th percentile. We also notice that humans per-
form statistically significantly better than our model on regions two
and five. These results indicate that our model performs better on
easy triplets with expressive anchors whereas humans perform bet-
ter on more difficult triplets with less expressive anchors.

6. CONCLUSIONS

This paper proposed to determine speech recordings with simi-
lar emotional content to that of an anchor speech sample. This ap-
proach is consistent with the ordinal nature of emotion [19,20], and
offers new opportunities in practical applications. We addressed this
problem with a triplet-loss network that compares the embedding of
the anchor speech with the ones of the positive sample (i.e., similar
emotion to the anchor), and a negative sample (i.e., different emotion
from the anchor). This study demonstrated that evaluating emotion
similarity in the VAD-space is better than in the P+S-space, for this
task. The results showed that triplets with expressive anchors are
easier to discriminate than triplets with neutral anchors due to larger
distances between positive and negative samples in the VAD-space.
The study also showed that the performance of our model for the
task of retrieving similar emotional samples is close to human per-
formance, overall, and is even superior when the anchor speech is in
certain regions in the VAD-space.

While the results are competitive, we are exploring alternative
options to improve the accuracy of the models, especially for anchors
in the center of the VAD-space. One limitation of the study is that the
number of human evaluators is small. Also, humans only evaluate
a few samples from each region, thus the samples taken from each
region may not properly represent each region’s distribution. We are
planning to extend the perceptual evaluation to cover more examples.
A future work in this area is to perform a similar study where each
partition includes data from a given speaker. Due to differences in
how humans express emotion, the task may become easier when one
subject’s emotional expression is learned in depth with preference
learning through a triplet loss neural network.

7403



(1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

(12]

[13]

[14]

[15]

7. REFERENCES

L.A. Low, N.C. Maddage, M. Lech, L.B. Sheeber, and N.B. Allen,
“Detection of clinical depression in adolescents’ speech during
family interactions,” IEEE Transactions on Biomedical Engineer-
ing, vol. 58, no. 3, pp. 574-586, March 2011.

J. Edwards, H.J. Jackson, and PE. Pattison, “Emotion recogni-
tion via facial expression and affective prosody in schizophrenia: a
methodological review,” Clinical Psychology Review, vol. 22, no.
6, pp. 789-832, July 2002.

P. Rani, C. Liu, N. Sarkar, and E. Vanman, “An empirical study of
machine learning techniques for affect recognition in human-robot
interaction,” Pattern Analysis and Applications, vol. 9, no. 1, pp.
58-69, May 2006.

L. Devillers, C. Vaudable, and C. Chastagnol, “Real-life emotion-
related states detection in call centers: A cross-corpora study,” in
Interspeech 2010, Makuhari, Japan, September 2010, pp. 2350-
2353.

C.M. Lee and S.S. Narayanan, “Toward detecting emotions in spo-
ken dialogs,” IEEE Transactions on Speech and Audio Processing,
vol. 13, no. 2, pp. 293-303, March 2005.

S.K. D’Mello, S.D. Craig, B. Gholson, S. Franklin, R. Picard, and
A.C. Graesser, “Integrating affect sensors in an intelligent tutoring
system,” in Affective Interactions: The Computer in the Affective
Loop Workshop at 2005 International Conference on Intelligent
User Interfaces, San Diego, CA, USA, January 2005, pp. 7-13.

A. De Vicente and H. Pain, “Informing the detection of the stu-
dents’ motivational state: An empirical study,” in International
conference on Intelligent Tutoring Systems (ITS 2002), S.A. Cerri,
G. Gouarderes, and F. Paraguacu, Eds., vol. 2363 of Lecture Notes
in Computer Science, pp. 933-943. Springer-Verlag Berlin Heidel-
berg, Biarritz, France and San Sebastian, June 2002.

M. Wollmer, A. Metallinou, N. Katsamanis, B. Schuller, and
S. Narayanan, “Analyzing the memory of BLSTM neural net-
works for enhanced emotion classification in dyadic spoken inter-
actions,” in International Conference on Acoustics, Speech, and
Signal Processing (ICASSP 2012), Kyoto, Japan, March 2012, pp.
4157-4160.

S. Parthasarathy and C. Busso, “Jointly predicting arousal, valence
and dominance with multi-task learning,” in Interspeech 2017,
Stockholm, Sweden, August 2017, pp. 1103-1107.

S. Parthasarathy and C. Busso, “Ladder networks for emotion
recognition: Using unsupervised auxiliary tasks to improve pre-
dictions of emotional attributes,” in Interspeech 2018, Hyderabad,
India, September 2018, pp. 3698-3702.

E.M. Albornoz, D.H. Milone, and H.L. Rufiner, “Spoken emo-
tion recognition using hierarchical classifiers,” Computer Speech
& Language, vol. 25, no. 3, pp. 556-570, July 2011.

R. Lotfian and C. Busso, “Curriculum learning for speech emotion
recognition from crowdsourced labels,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. To Appear, 2019.

S. Parthasarathy and C. Busso, “Preference-learning with qualita-
tive agreement for sentence level emotional annotations,” in Inter-
speech 2018, Hyderabad, India, September 2018, pp. 252-256.

R. Lotfian and C. Busso, “Practical considerations on the use of
preference learning for ranking emotional speech,” in IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP 2016), Shanghai, China, March 2016, pp. 5205-5209.

S. Parthasarathy, R. Lotfian, and C. Busso, “Ranking emotional at-
tributes with deep neural networks,” in IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP 2017),
New Orleans, LA, USA, March 2017, pp. 4995-4999.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

7404

S. Parthasarathy, R. Cowie, and C. Busso, “Using agreement
on direction of change to build rank-based emotion classifiers,”
IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, vol. 24, no. 11, pp. 2108-2121, November 2016.

R. Lotfian and C. Busso, “Retrieving categorical emotions using a
probabilistic framework to define preference learning samples,” in
Interspeech 2016, San Francisco, CA, USA, September 2016, pp.
490-494.

H. Cao, R. Verma, and A. Nenkova, “Speaker-sensitive emotion
recognition via ranking: Studies on acted and spontaneous speech,”
Computer Speech & Language, vol. 29, no. 1, pp. 186-202, Jan-
uary 2015.

G.N. Yannakakis, R. Cowie, and C. Busso, “The ordinal nature
of emotions,” in International Conference on Affective Computing
and Intelligent Interaction (ACII 2017), San Antonio, TX, USA,
October 2017, pp. 248-255.

G.N. Yannakakis, R. Cowie, and C. Busso, “The ordinal nature of
emotions: An emerging approach,” IEEE Transactions on Affective
Computing, vol. To appear, 2019.

S. Parthasarathy and C. Busso, “Predicting emotionally salient re-
gions using qualitative agreement of deep neural network regres-
sors,” IEEE Transactions on Affective Computing, vol. To appear,
2019.

S. Parthasarathy and C. Busso, “Defining emotionally salient re-
gions using qualitative agreement method,” in Interspeech 2016,
San Francisco, CA, USA, September 2016, pp. 3598-3602.

Z. Huang and J. Epps, “Detecting the instant of emotion change
from speech using a martingale framework,” in /[EEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP
2016), Shanghai, China, March 2016, pp. 5195-5199.

Z.Huang, J. Epps, and E. Ambikairajah, “An investigation of emo-
tion change detection from speech,” in Interspeech 2015, Dresden,
Germany, September 2015, pp. 1329-1333.

F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified
embedding for face recognition and clustering,” in /IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR 2015),
Boston, MA, June 2015, pp. 815-823.

J. Huang, Y. Li, J. Tao, and Z. Lian, “Speech emotion recognition
from variable-length inputs with triplet loss function,” in Inter-
speech 2018, Hyderabad, India, September 2018, pp. 3673-3677.

R. Lotfian and C. Busso, “Building naturalistic emotionally bal-
anced speech corpus by retrieving emotional speech from existing
podcast recordings,” IEEE Transactions on Affective Computing,
vol. To appear, 2019.

A. Burmania, S. Parthasarathy, and C. Busso, “Increasing the re-
liability of crowdsourcing evaluations using online quality assess-
ment,” IEEE Transactions on Affective Computing, vol. 7, no. 4,
pp- 374-388, October-December 2016.

B. Schuller, S. Steidl, A. Batliner, A. Vinciarelli, K. Scherer,
F. Ringeval, M. Chetouani, F. Weninger, F. Eyben, E. Marchi,
M. Mortillaro, H. Salamin, A. Polychroniou, F. Valente, and
S. Kim, “The INTERSPEECH 2013 computational paralinguis-
tics challenge: Social signals, conflict, emotion, autism,” in Inter-
speech 2013, Lyon, France, August 2013, pp. 148-152.

F. Eyben, M. Wollmer, and B. Schuller, “OpenSMILE: the Munich
versatile and fast open-source audio feature extractor,” in ACM In-
ternational conference on Multimedia (MM 2010), Florence, Italy,
October 2010, pp. 1459-1462.

C. Busso and T. Rahman, “Unveiling the acoustic properties that
describe the valence dimension,” in Interspeech 2012, Portland,
OR, USA, September 2012, pp. 1179-1182.

K. Sridhar, S. Parthasarathy, and C. Busso, “Role of regularization
in the prediction of valence from speech,” in Interspeech 2018,
Hyderabad, India, September 2018, pp. 941-945.



