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CLIMATOLOGY

Air-sea disequilibrium enhances ocean carbon storage

during glacial periods

S. Khatiwala'*, A. Schmittner?, J. Muglia®*

The prevailing hypothesis for lower atmospheric carbon dioxide (CO,) concentrations during glacial periods is
an increased efficiency of the ocean'’s biological pump. However, tests of this and other hypotheses have been
hampered by the difficulty to accurately quantify ocean carbon components. Here, we use an observationally
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constrained earth system model to precisely quantify these components and the role that different processes
play in simulated glacial-interglacial CO, variations. We find that air-sea disequilibrium greatly amplifies the
effects of cooler temperatures and iron fertilization on glacial ocean carbon storage even as the efficiency of
the soft-tissue biological pump decreases. These two processes, which have previously been regarded as minor,
explain most of our simulated glacial CO, drawdown, while ocean circulation and sea ice extent, hitherto

considered dominant, emerge as relatively small contributors.

INTRODUCTION

The ocean is the largest reservoir of carbon readily exchangeable
with the atmosphere on millennial time scales. This is a consequence
of both the carbonate chemistry, which makes CO, highly soluble in
seawater, creating a large dissolved inorganic carbon (DIC) pool, and
physical and biological processes that transport carbon from the surface
to the deep ocean (1). Air-sea gas exchange and the temperature-
dependent solubility of CO, concentrate carbon in the cold polar waters
that fill the deep ocean, giving them a high “preformed” (C,.r) DIC
concentration (Fig. 1), a process known as the “solubility pump” (2).
The “biological pump” further intensifies subsurface storage through
the sinking and regeneration of biologically fixed particulate organic
(Coofis “soft-tissue”) and inorganic (Cg,eo3; calcium carbonate or “hard
tissue”) carbon, subject to the rate at which ocean circulation and air-sea
exchange re-equilibrate the dissolved carbon with the atmosphere.

A number of different mechanisms involving changes in these
“pumps” (3) have been proposed to explain the observed ~90 parts
per million (ppm) glacial atmospheric CO, (pCO3™) drawdown. While
cooler ocean temperatures should lead to higher concentrations of dis-
solved CO, in the glacial ocean, this effect, quantified using box models
and assuming that CO, is in equilibrium between the ocean and atmo-
sphere, has typically either been regarded as a minor contribution (16 to
30 ppm) to the full glacial-interglacial difference in CO, (1, 4-6) or
ignored altogether (3, 7). Most theories have therefore invoked a glacial
increase in the efficiency of the soft-tissue biological pump, i.e., an in-
crease in Cyo. One proposed mechanism for this is through a more
sluggish, stratified, and isolated glacial deep ocean where C,g can accu-
mulate (3, 4, 6-11). This idea is supported by recent radiocarbon recon-
structions indicating that whole deep ocean '*C ages, a measure of the
time of separation from the atmosphere, during the Last Glacial Max-
imum [LGM; ~19 thousand years before present (ka BP)] were several
hundred years older than during the Holocene. Assuming air-sea equi-
librium or a fixed relationship between radiocarbon and respired carbon,
this apparent aging has been estimated to explain as much as half (11) or
more (9) of the glacial-interglacial CO, change. Another process that
would increase Cqq, is enhanced biological productivity due to increased
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iron input via dust deposition (12). However, the efficacy of “iron fertil-
ization” in lowering pCO3™ remains quite uncertain at between 5 and
28 ppm (6), and some recent iron models suggest a small effect (13). Last,
it has been suggested that an expansion of sea ice cover off Antarctica
would decrease outgassing of respired CO,, which, based on box model
calculations, could explain as much as 67 ppm of the CO, change (14).

An important caveat with previous studies invoking a glacial in-
crease in the efficiency of the soft-tissue biological pump is that an ac-
curate and complete quantification of the various carbon pumps remains
lacking even for the modern ocean. One reason for this is that the car-
bonate chemistry of seawater buffers oceanic pCO, changes and causes
slow equilibration (~1 year) with the atmosphere. Consequently, most
surface waters exhibit substantial under- or oversaturation, whose effect
on the interior distribution of DIC (Fig. 1) cannot be easily separated
from regenerated CO, in either observations or models, and a widely
used approximation based on apparent oxygen utilization (AOU) is typ-
ically used to estimate respired CO, (1, 15, 16). Here, we develop and
apply a novel decomposition of ocean DIC to an observationally con-
strained Earth System Model to confirm that AOU-based estimates sub-
stantially overestimate the inventory of respired CO, (17-19) and thus
underestimate the importance of disequilibrium in carbon storage in
both the modern and glacial ocean. Our results suggest that the inven-
tory of Cyo Was lower during the LGM. However, ocean biological and
physical carbon storage was enhanced largely due to an increase in air-
sea disequilibrium because of temperature and iron fertilization effects,
while circulation and sea ice changes played smaller roles.

To quantify carbon storage, we decompose DIC (Fig. 1A) into pre-
formed (C,ref) and regenerated (C,eg) components (I, 20, 21). Cpe is
further split (Fig. 1B) into a component Cg, that is in solubility equilib-
rium with the ambient atmosphere, and a residual disequilibrium com-
ponent Cy;. Cgis, in turn, is a balance between disequilibrium induced by
physical (Cyisphy) and biological (Cgispio) processes. At high latitudes,
ignoring biological processes, poleward-moving surface waters experi-
ence heat loss and carbon gain from the atmosphere (22). Because of
slow air-sea gas exchange of CO,, further hindered by sea ice, the carbon
gain is incomplete, i.e., Caisphy < 0. Thus, polar waters that sink into the
deep ocean are, in the absence of biology, depleted in carbon relative to
equilibrium. Cgjsphy therefore reduces carbon storage. Biology, on the
other hand, tends to increase deep ocean DIC by Cg, defined as carbon
that has accumulated in a water parcel during its journey from the sur-
face to the interior. Upwelling and mixing at high latitudes, particularly
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Fig. 1. Schematic of ocean carbon decomposition. (A) The concentration of DIC in the ocean interior is determined by surface (“preformed”) carbon (Cpref) trans-
ported passively by ocean circulation and regenerated carbon (Creg = Csorc + Ccaco3) that has accumulated in a water parcel since it was last at the surface. Typically, the
efficiency of the biological pump is measured as the total amount of Cq in the ocean, which is dominated by C.. (B) However, biology (shown in green) also affects
surface DIC by limited outgassing of upwelling regenerated carbon at high latitudes, which increases C . over its equilibrium value (C,,) to create a positive dis-
equilibrium (Cgispio). Likewise, carbon removal from the surface through photosynthesis and slow ingassing creates a negative Cgispio in low-latitude oligotrophic
regions of the ocean. Physical processes (black) such as surface heat fluxes (red) similarly lead to disequilibrium (Cgis phy). North Atlantic Deep Water (NADW) is relatively
well equilibrated with the atmosphere because of its long surface exposure before sinking, whereas Antarctic Bottom Water (AABW) and Antarctic Intermediate Water

(AAIW) exhibit larger disequilibria due to short surface exposure before sinking.

around the Antarctic Divergence, brings this biogenic CO, close to the
surface, where, again due to slow gas exchange and sea ice, carbon loss
due to outgassing to the atmosphere is incomplete, causing oversat-
uration (Cgjspio > 0). This positive Cyis pio propagates into the interior
(23) and enhances carbon storage. Cgjs pio thus amplifies the biological
pump (24). We reiterate that Cy;s i is biogenic CO, that is (conven-
tionally) not included in C,.

We apply this decomposition to an ocean biogeochemical model
[Model of Ocean Biogeochemistry and Isotopes (MOBI)-Transport
Matrix Method (TMM)] driven by circulation and forcing fields from
two different configurations of the University of Victoria Earth System
Climate Model (UVic ESCM) representing present-day [preindustrial
control (PT)] and LGM conditions (see Materials and Methods and
the Supplementary Materials) (25). UVic ESCM was tuned to fit a variety
of present-day physical and biogeochemical observations and com-
plementary isotopes (§'°C, A"C, and §'°N) from LGM sediments
(25).Its LGM state is characterized by colder temperatures [global mean
AT = -2.5°C, consistent with —2.6°C from ice core noble gas measure-
ments (26) and sea surface temperature (SST) reconstructions (27, 28)];
a shallower and ~50% weaker Atlantic Meridional Overturning Circu-
lation (AMOC) (fig. S1), which was the only configuration of the several
tested to reproduce the observed 5"°C distribution and ~600-year-older
AMC deep ocean ages (fig. S1) (9, 11); and enhanced soluble iron fluxes
into the Southern Ocean surface, which are required to reproduce ob-
served 8'°C (fig. S1) and 3N (fig. S2) data. For each state, MOBI-
TMM was “spun-up” to equilibrium using a fixed pCO}™ (277 ppm
for PI and 189 ppm for LGM) and constant phosphorous and alkalinity
inventories.

To accurately partition DIC into its components, we explicitly
simulate preformed DIC, nutrients, and alkalinity. Physical and bio-
logical contributions are separated by carrying out a parallel set of runs
with the biological terms switched off.

RESULTS
The spatial patterns of the disequilibrium components (Fig. 2, D to I)
are consistent with previous work (22, 23). The total surface dis-
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equilibrium Cg; (fig. S3) is positive in the tropics and Southern Ocean,
and negative in the subtropics, subpolar North Atlantic, and Arctic. The
propagation of this Cg;s, which is higher in Southern Ocean-sourced
waters than North Atlantic Deep Water, by the circulation into the
ocean interior has a large impact on DIC concentrations there (21, 29).

The total inventory (Fig. 2A) of Cog in our PI simulation is, at
971 PgC, substantially smaller than the 1672 PgC estimated from ob-
servations (1) using the AOU approximation. In the latter, Csof =
Rc.0(O5 60t — O3), where Reo is a constant stoichiometric carbon-to-
oxygen ratio, and O, and O, are the temperature-dependent satura-
tion and in situ concentrations, respectively, of dissolved oxygen. This
approximation assumes that the surface O, concentration is in equilib-
rium with the atmosphere. However, substantial disequilibrium for sur-
face O, at high latitudes during wintertime (fig. S4) propagates into the
interior, leading to large errors in AOU-based Cqg estimation (fig. S5)
(17-19), a problem that may have been exacerbated during the LGM by
more extensive sea ice, consistent with other model results (30) and a
reconstructed decrease in upper ocean oxygen concentrations there
(31). AOU applied to our model output gives 1476 PgC, which is much
closer to the data-based estimate. We thus argue that previous studies
may have overestimated the inventory of respired organic carbon in the
ocean by as much as 50%. As a consequence, the inventory of dis-
equilibrium carbon, calculated as a residual between DIC and the
sum of estimated Cgy, Cyoft» and Ce,e03, may have been substantially un-
derestimated. Our direct calculation gives a Cg;s of 285 PgC, compared
with an (AOU-based) estimate of 38 PgC (1). Note that Cg;, is a balance
between two large counteracting terms: a positive biological dis-
equilibrium of +1079 PgC and a negative physical disequilibrium of
~794 PgC.

LGM versus Pl carbon pumps

The lower prescribed pCO3™ in the LGM run results in a smaller Cg,
inventory (fig. S3A) despite lower temperatures that tend to increase it.
There is also a ~20% decrease in Cyof; to 795 PgC (along with concom-
itant decreases in Cc,.,3 and regenerated PO,), indicating a weakening
of the biological pump [as conventionally defined (20)]. This is con-
sistent with the ~15% globally integrated reduction in export production
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Fig. 2. Carbon decomposition for the Pl equilibrium simulation. (A) Inventory of preformed equilibrium carbon (Cg,,) (left axis) and other components (right axis) of DIC in the
ocean. Note the different scales; (B and C) Atlantic and Pacific zonal mean meridional sections of C; (D to F) surface, and Atlantic and Pacific zonal mean Cis ohy; (G to I) surface,
and Atlantic and Pacific zonal mean Cg;spio. Black solid line is the zero contour. See fig. S3 for the corresponding LGM fields.

(EP) simulated by the model and also seen in other simulations (32).
The simulated pattern of change (fig. S2), in particular the “dipole”
in the Southern Ocean of increased production north of the Polar Front
and reduced to the south, is in good agreement with qualitative indica-
tors (33). The observed increase of nitrogen isotopes in the Southern
Ocean, which is affected by nutrient utilization, a variable closely linked
to EP, is well reproduced by the model (fig. S2). On the other hand,
using AOU (fig. S5), we obtain large increases in Cyo5 (to 1929 PgC)
and regenerated POy, and would (erroneously) conclude that the soft-
tissue biological pump was more efficient in the LGM. This overestimate
is consistent with observational evidence for oxygen depletion in near-
surface waters of the glacial Southern Ocean (31). The decrease in Cyoq is
more than compensated by a fourfold increase in Cg;, largely due to a
doubling of the biological disequilibrium term (fig. S3A).

To understand the cause of these changes in carbon storage, we
carried out a series of experiments with MOBI-TMM in which the PI
state is perturbed, one parameter (circulation, sea ice, temperature, and
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iron flux) at a time. In these runs, CO, is allowed to exchange freely
between the ocean and a single box atmosphere such that the total
amount of carbon in the combined system is conserved. In response
to the perturbation, the partitioning of carbon between the ocean and
atmosphere changes and evolves toward a new equilibrium state
(Fig. 3), for which we diagnose the carbon components as before. Note
that this experimental setup ignores changes in land and sedimentary
carbon storage and whole ocean alkalinity and phosphorous, which are
currently not well constrained (34).

Effect of circulation changes

A key finding from these sensitivity experiments is that even a large
reconfiguration of circulation to a slower and shallower AMOC
(fig. S1) leads to only a minor increase (~5 ppm) in pCO3™. This is
contrary to an extensive body of literature suggesting a large decrease
in CO, due to a sluggish glacial circulation (3, 4, 6-11, 35). For instance,
Brovkin et al. (8) attribute 43 ppm of the glacial CO, decrease to AMOC
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Fig. 3. Response of Pl ocean carbon cycle to LGM perturbations. Change in ocean carbon storage and atmospheric CO, (inset) in response to LGM perturbations to
the Pl equilibrium state. (Each perturbation experiment was run for 10,000 years; only the first 4000 years are shown in the inset.) “SI-CO," (“T-CO,") and “Sl-bio” (“T-bio”)
are sensitivity experiments in which sea ice (temperature) affects only air-sea CO, gas exchange or biology, respectively. The “All” experiment includes a 1-PSU increase

in ocean salinity corresponding to a 110-m lowering of sea level during the LGM.

shoaling, although they do not separate circulation from temperature
effects in their numerical model. The modern relationship between
AOQU-based C,or and radiocarbon age has also been applied to the
LGM by converting a reconstructed radiocarbon age increase in the
LGM of ~600 years to an implied increase in respired carbon concen-
trations (9, 11) and hence lower atmospheric CO, [by an estimated
67 ppm (11), ignoring air-sea disequilibrium]. While our model repro-
duces well the reconstructed pattern and magnitude of radiocarbon age
increase (11) as a result of circulation changes (fig. S1), our arguably
more accurate carbon decomposition (Figs. 3 and 4, B and C), which
does not rely on AOU, shows a decrease in Cgo of 201 PgC. This is likely
because a slower AMOC reduces upwelling of nutrients in the Indo-
Pacific region and thus EP (by 0.46 PgC/year in our experiment; Fig. 4A),
which is consistent with previous studies (32, 35). The decrease in Cqp
is compensated to some extent by an increase in Cy;s of 154 PgC, as a
weak AMOC reduces physical undersaturation in the North Atlantic
(ACgisphy = 94 PgC; Fig. 4, D to F), while also filling the ocean with
more high biologically disequilibrated water from the Southern Ocean
(ACgispio = 60 PgC; Fig. 4, G to I). Air-sea disequilibrium also provides
an explanation for the simulated increase in radiocarbon age, even as the
ideal mean age, a measure of transit time from the surface to the interior,
decreases slightly. Surface waters in the Southern Ocean are highly de-
pleted in radiocarbon, and the increased fraction of water sourced from
that region will lead to higher apparent ages (figs. S5 and S6) (36).
Notably, in a reverse set of experiments (fig. S7) in which the LGM
circulation is replaced by its PI counterpart, pCO5™ also increases (by
~13 ppm). This state dependence (30), in which the net impact of cir-
culation on CO, depends quantitatively on the direction of change,
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suggests that circulation is not a robust factor in glacial-interglacial
CO, variations, even though its individual qualitative effects on Cejsphy»
Cuispio> and Ceoi are robust.

Effect of sea ice changes

Our LGM configuration simulates 50% more sea ice area than in PL
With a maximum cover in the Southern Ocean of 3 x 10" m?, this is
slightly smaller compared with reconstructions (4 x 10" m?) (37). Re-
placing the PI sea ice field by the LGM one causes pCO5™ to increase by
16 ppm. This contrasts with a 67-ppm decrease reported by Stephens
and Keeling (14) based on box model simulations. Sensitivity experi-
ments, in which the perturbed sea ice is allowed to alternatively affect
only air-sea gas exchange (“SI-CO,”) or the penetration of light into the
ocean (“SI-bio”), reveal that in the Southern Ocean the direct physical
effect of sea ice on air-sea gas exchange (fig. S8) is to increase under-
saturation (decreased Cgjsphys Fig. 5, D to F) by preventing ingassing
of CO, while blocking outgassing of upwelling biologically respired
carbon (increased Cgjspio; Fig. 5, G to I) such that the net change in
Cais and, hence, atmospheric CO, is close to zero (Fig. 3). On the other
hand, sea ice blocks light, which reduces biological productivity
(AEP = —0.26 PgClyear; Fig. 5A) (32, 38), Cyor; (Fig. 5, B and C), and
Cispio (fig. S8) (24), resulting in a net change in CO, of +23 ppm. Neither
this (38) nor the effect of sea ice on Cphy Was considered by Stephens
and Keeling (14), which may explain the very large and perhaps un-
realistic decrease in atmospheric CO, in their model. Notably, in the
reverse LGM to PI experiments, CO, also increases (by ~11 ppm;
fig. S7), suggesting that, like circulation, the net effect of sea ice is also
state dependent and not robust.
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Fig. 4. Effect of circulation changes on carbon storage. Change in (A) EP, (B and C) Cyoft, (D to F) Cgis phy, and (G to 1) Cgis bio due to changes in circulation. Black solid

line is the zero contour.

Effect of temperature changes

The large pCO3™ decrease of 44 ppm due to cooling is the dominant
effect in our model and accounts for about half of the total observed
glacial-interglacial change. Sensitivity experiments similar to those for
sea ice reveal that 40 ppm of this decrease can be attributed to the direct
impact of temperature on solubility (“T-CO,”), whereas only 4 ppm re-
sult from effects on biology (“T-bio”) associated with reduced biological
production, respiration, and an increase in the remineralization depth,
leading to an overall increase in the respired carbon pool (fig. S9).

For oceanic DIC in equilibrium with the atmosphere, theory (1)
predicts a pCO3"™ decrease of 25 ppm for the observed ~2.5°C of
whole ocean cooling (26). [The global mean SST decrease in both
reconstructions (27, 28) and our model is, coincidentally, nearly
identical to this value.] This equilibrium effect has been confirmed
by an additional sensitivity experiment (“T-const”), in which we ap-
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ply a uniform cooling of 2.5°C and obtain a lowering of 24 ppm.

However, temperature changes are not uniform but show greater
cooling at mid-latitudes, peaking between ~40° and 60° north and
south, than at high latitudes, where SSTs are fixed at the freezing point
(Fig. 6A). This pattern, which is in good agreement with SST recon-
structions (27, 28) and other recent climate model simulations (39)
(which to our knowledge have not been used to study the effect of
cooling on CO,), weakens the meridional SST gradient and thus
surface heat fluxes at high latitudes in the LGM, especially in the
Southern Ocean south of 60°S where surface flow is poleward. This,
in turn, reduces undersaturation, which is driven by heat fluxes
(Fig. 2, D to F), and increases Cgispny (by 146 PgC; Fig. 6, B and
C) in Antarctic Bottom Water. Spatial variability in SST thus en-
hances carbon storage beyond what has been considered in previous
studies that have neglected the disequilibrium effect (1, 3-7). The
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Fig. 5. Effect of sea ice changes on carbon storage. Change in (A) EP, (B and C) Csof, (D to F) Cyisphys and (G to 1) Cyis bio due to expanded sea ice cover. Black solid

line is the zero contour.

temperature effect is qualitatively robust and quantitatively very con-
sistent (45 ppm in the LGM to PI experiment; fig. S7) with respect to
reversing the direction of change. The good agreement of modeled
temperature changes with reconstructions provides additional confi-
dence in this result.

Iron fertilization
Evidence from Antarctic ice and ocean sediments suggests that the
flux of soluble and bioavailable iron to the Southern Ocean during
the LGM may have been more than 10 times larger than at present (40).
Our LGM model configuration is thus forced with iron fluxes enhanced
by that factor south of 35°S (25). This results in a substantially smaller
misfit (25) between simulated and observed §'°C (fig. S1), 5'°N, and
AEP (fig. S2).

In response to this enhanced dust flux, the model generates a de-
crease in pCO3™ of 26 ppm (and an increase of 39 ppm for LGM to

Khatiwala et al., Sci. Adv. 2019;5:eaaw4981 12 June 2019

PI), which is larger than in other models (41, 42) [although similar to the
22 ppm obtained by another study (32)]. One possible reason for this is
that reconstructions of dust flux used in previous studies may have un-
derestimated the flux of bioavailable iron to the Southern Ocean. Not
only does the enhanced iron flux increase productivity (by 0.46 PgC/
year) and Cy (by 145 PgC; Fig. 6, E and F), but the direct impact of
this fertilization is amplified by a comparable increase of ~190 PgC in
biological disequilibrium carbon (fig. S9) (24), thus effectively more
than doubling the impact of biology on ocean carbon storage, although
the relationship between ACg;spio and AC,q is likely to be model and
state dependent (30).

Effect of all changes

Consistent with the equilibrium experiments (Fig. 2A and fig. S3A), the
combined effect of perturbing all variables is a large increase in Cg;s of
~856 PgC, with major contributions from circulation, temperature, and
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iron (Fig. 3). Caispio increases almost as much, mostly due to circulation,
sea ice, and iron changes, whereas overall Cgi, phy changes are small due
to compensating effects from circulation (ACgsphy > 0), temperature
(ACis phy > 0), and sea ice (ACgisphy < 0). Increased air-sea dis-
equilibrium due to sea ice and higher biological productivity driven
by enhanced iron flux, partly compensated by cooler temperatures
and a weaker overturning circulation, also explain the lower glacial deep
ocean dissolved oxygen concentrations simulated by our model and
seen in proxy-based reconstructions (fig. S10) (43).

DISCUSSION

The strength of the biological pump is traditionally defined in terms of
the regenerated carbon (Creg = Csot + Ceacos) that has accumulated in a
water parcel since it was last at the surface. The large decreases in Cyog
(by ~145 PgC) and C_,c,3 (by ~75 PgC), caused primarily by changes in
circulation and sea ice, would thus imply a weaker biological pump dur-
ing the LGM. However, this does not consider the effects of biology on
preformed carbon. Broadening the definition (24) to include those
effects (Fig. 1B), the biological contribution to carbon storage (Cp;o;
see the Supplementary Materials) increases by 95 PgC, twice that due
to physical processes (Cppy).

The biologically mediated increase in carbon storage leads to a
67-ppm decrease in atmospheric CO, (87 ppm increase for LGM to PL;
fig. S7), suggesting that the model explains more than about three
quarters of the observed glacial-interglacial CO, change. It is likely that
changes in land and sediment carbon and whole ocean alkalinity and
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phosphorous, which were not considered in our study, also affected gla-
cial ocean carbon storage and atmospheric CO,. Future studies should
focus on improved quantification of these effects without which the so-
lution of the glacial-interglacial CO, problem will remain incomplete.
The model-based estimates of carbon cycle changes presented here are
most likely affected by remaining model biases and uncertainties in cir-
culation, sea ice, and other variables. Quantifying and reducing these
uncertainties will be valuable objectives for future work.

We conclude that despite important contributions to individual
carbon components, circulation and sea ice changes had only a modest
and unrobust net effect on glacial ocean carbon storage and atmospheric
CO,, whereas temperature and iron were more important than previ-
ously thought due to their effects on disequilibrium carbon storage.
Spatial variations in temperature increase Cgjsphy by reducing under-
saturation and thus amplify the impact of overall cooler temperatures,
which accounts for about half of the total glacial-interglacial CO,
change. This may explain the tight coupling of CO, with Antarctic tem-
peratures observed in ice cores (44).

MATERIALS AND METHODS

MOBI is a biogeochemical model with dissolved nitrogen, phos-
phorous, and iron as limiting nutrients; two phytoplankton func-
tional groups; one zooplankton class; dissolved and particulate
organic matter; DIC, O,, and alkalinity (16); and a prognostic iron
cycle externally driven by inputs from atmospheric dust, sediments,
and hydrothermal vents. Carbon and nitrogen isotopes are tracked
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through all the model components. MOBI is coupled to the TMM,
a computationally efficient framework for offline tracer simulations
(see the Supplementary Materials for additional details).

MOBI-TMM is driven by circulation, temperature, salinity, sea ice,
and surface winds from UVic ESCM, a three-dimensional ocean general
circulation model (1.8° x 3.6° x 19 layers) coupled to a dynamic-
thermodynamic sea ice, one-layer atmospheric energy-moisture ba-
lance, and land surface models. We used PI and LGM simulations as
described in (25). Briefly, the LGM simulation was forced with orbital
parameters and atmospheric CO, corresponding to 19 ka BP, a present-
day climatological wind stress field to which a multimodel mean LGM
anomaly from the Paleoclimate Model Intercomparison Project Phase
3 (PMIP3) was added, a continental ice sheet reconstruction from
PMIP3, and a global 1-PSU (practical salinity unit) addition to salinity
to account for the sea level drop. Figure S1 shows the meridional over-
turning circulation in the PI and LGM simulations. A detailed compar-
ison by Muglia et al. (25) of the equilibrium solutions with observations
shows consistency of simulated large-scale tracer distributions for tem-
perature, salinity, PO,, NO;, dissolved iron, DIC, dissolved O,, c,
8"C, and 8"N (figs. S1 and S2).

Preformed tracers were simulated by propagating MOBT’s instanta-
neous, annually repeating surface fields of DIC, Cg,, Cgis = DIC — Cgyy,
POy, O,, and alkalinity (A) as conservative tracers into the interior with
the TMM. We then diagnose Cyoe = Rep(PO4 — PO4pre) and Ceueoz =
0.5(pAt — pArpre), where Rep is a constant carbon-to-phosphorus
stoichiometric ratio and potential alkalinity pAt = At + 16 PO,.

We decompose DIC into physical (Cy,py) and biological (Cy;,) com-
ponents such that DIC = C,p,y + Cpjo. The physical component is
defined as Cppy = Ceaephy + Caisphys and the biological one as Cy;, =
Csatpbio T Cisbio T Cooft + Ceacos- (Csarpio 1s the biological contribution
to equilibrium carbon. Formation of calcium carbonate shells removes
alkalinity from the surface ocean, which lowers the equilibrium concen-
tration of DIC from the value it would have in the absence of biology.
Caatpio I thus generally negative. In the PI simulation, Cypio = —292 PgC,
compared with Cphy = 36,209 PgC.)

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/6/eaaw4981/DC1

Supplementary Methods

Comparison of surface carbon and oxygen with observations

Fig. S1. Circulation and carbon isotope distribution in the Pl and LGM simulations.

Fig. S2. Nitrogen isotope distribution and EP in the LGM.

Fig. S3. Carbon decomposition for the LGM equilibrium simulation.

Fig. S4. Comparison of simulated and observed air-sea disequilibrium.

Fig. S5. Simulated AOU and radiocarbon age.

Fig. S6. Effect of circulation changes on radiocarbon (I'c) and ideal mean (I') age.

Fig. S7. Response of LGM ocean carbon cycle to Pl perturbations.

Fig. S8. Physical and biological impacts of sea ice changes on carbon storage.

Fig. S9. Effect of temperature and iron changes on carbon storage.

Fig. $10. Change in dissolved oxygen concentration (AO,) in the Pl-to-LGM perturbation
experiments.
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