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KEY FACTS:
CA was first described in 1902.
F. diplosiphon, isolated from a
Connecticut lake in 1952, was deposited
at the University of Texas, then added to
the Pasteur Culture Collection and
designated Tolypothrix PCC 7601.

The sensory capacity of F. diplosiphon
appears to be one of the most complex
known in prokaryotes. Over 10 000
coding sequences are predicted in its
genome, including 305 two-component
system proteins and 27 different
phytochrome superfamily members for
light color sensing, the most in any
known organism. Phytochrome family
proteins are important photoreceptors
in plants, fungi, and bacteria.

RcaE also controls development and cell
size, shape, and filament length, and
regulates the amount of another
phytochrome family member called IflA,
which becomes six times more
abundant when cells are switched from
red to green light. IflA senses the red:far
red light ratio, increasing growth when
the light environment is enriched with
red light.
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Fremyella diplosiphon is a freshwater filamentous cyanobacterium known for chromatic acclimation (CA), F. diplosiphon has an additional set of

genes encoding phycocyanin that are
transcribed only when sulfate levels in
the environment are low, producing
light-harvesting antennae that function
as well as those with the phycocyanin
made in nutrient-replete conditions.
However, in low-sulfate-expressed phy-
cocyanins, all methionines and the cys-
teines not required for chromophore
dramatic shifts between green and red phenotypes due to ambient light color changes. The color shifts within
F. diplosiphon filaments during CA reflect changes in the chromoproteins of photosynthetic light-harvesting an-
tennae. In red light, the chromoprotein phycocyanin is produced, absorbing red light and making cells blue-
green. In green light the chromoprotein phycoerythrin is made, which absorbs green light and makes cells
red. Chromoprotein production is controlled by the phytochrome superfamily photoreceptors RcaE and DpxA.
Both are light-regulated histidine kinases of two-component systems. RcaE is activated in red light and
inactivated in green light, while DpxA is activated in yellow and inactivated in teal light. The coordinate regulation
of light-harvesting antennae biogenesis reveals the complex interactions between phytochrome family photore-
ceptors in bacteria.
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TAXONOMY AND CLASSIFICATION:

Kingdom: Bacteria
Phylum: Cyanobacteria
Order: Nostocales
Family: Tolypothrichacae
Genus: Fremyella
Species: diplosiphon

attachment are absent. This
'elemental-sparing' response saves
approximately 1000 sulfur atoms per
light-harvesting antenna.
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Photograph showing tubes of liquid cultures of F. diplosiphon cells after growth in green light (left) or red light (right) superimposed on a photograph of mutant
(green) and wild-type (red) colonies after growth on agar plates in green light: image by Roger Hangarter and Allissa Haney.
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