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Introducing Boolean Semilattices

Clifford Bergman

The study of Boolean algebras with operators (BAOs) has been a consistent theme in
algebraic logic throughout its history. It provides a unifying framework for several
branches of logic including relation algebras, cylindric algebras, and modal alge-
bras. From a purely algebraic standpoint, a class of BAOs provides a rich field of
study, combining the strength of Boolean algebras with whatever structure is im-
posed on the operators.

In fact, with all this structure, one might expect that analyzing a variety of BAOs
would border on the trivial. The variety of Boolean algebras, after all, is generated
by a primal algebra. As such, it is congruence-distributive, congruence-permutable,
semisimple, equationally complete, has EDPC,. . . , the list goes on. And yet it turns
out that for all but the most degenerate operators, the analysis is anything but simple.
The explanation is in the intricate and unexpected interplay between the Boolean
operations and the additional operators that arise from standard constructions.

In this paper we consider Boolean algebras with one very simple operator,
namely an (almost) semilattice operation, that is, a binary operation that is asso-
ciative, commutative, and (almost) idempotent. The qualification on idempotence
will be explained below. We shall develop some of the arithmetic of these algebras,
discuss some representation questions, and pose some problems. While there are
no deep results in this work, we hope that it will stimulate further research in this
interesting class of algebras.

Peter Jipsen is responsible, for better or worse, for introducing me to represen-
tation questions for BAOs. Several of the results presented here are due to him, or
jointly to the two of us. Other theorems described here are the result of joint work
with Wim Blok in the early 1990s. My interest in algebraic logic in general stems
from my long working relationship with Don Pigozzi. Don was my first mentor as a
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2 Clifford Bergman

professional mathematician. He has played a large role in my subsequent develop-
ment.

Our universal algebraic terminology and notation follows the book [1]. That ref-
erence should be consulted for any notions not defined here. Jipsen’s thesis [9], and
Jónsson’s survey article [12] provide a good introduction to the subject of Boolean
algebras with operators. Goldblatt’s paper [6] is a detailed study of the complex
algebra construction.

1 Complex algebras

We begin with a motivating construction. Let G = 〈G, ·〉 be an algebra with a single
binary operation (a groupoid, in common parlance). We form a new structure, the
complex algebra of G by G+ = 〈Sb(G),∩,∪,∼,�,∅,G〉. Here, Sb(G) is the family
of all subsets of G, “∩” and “∪” are the usual operations of intersection and union,
∼X = G−X is the complement of the subset X , and X�Y = {x · y : x ∈ X ,y ∈ Y }.

The operation “�” is called a complex operation. In practice, it seems unneces-
sary to use different notation for an operation and its induced complex operation, so
we will generally write X ·Y in place of X�Y . We want to stress that there is nothing
special about one binary operation. The complex algebra construction makes sense
for any number of operations of any rank. We restrict our attention to groupoids be-
cause it already captures the intricacies of the situation. Generalization to arbitrary
algebraic structures is straightforward.

The complex algebra is, of course, an expansion of a Boolean algebra. The new
operation satisfies several additional identities, namely

X ·∅=∅, ∅ ·X =∅
X · (Y ∪Z) = (X ·Y )∪ (X ·Z), (Y ∪Z) ·X = (Y ·X)∪ (Z ·X) .

The first pair of identities assert that the complex operation is normal, the latter
pair that it is additive. We can actually say a bit more, although not in a first-order
manner. The Boolean algebra is complete and atomic and the complex operation
distributes over arbitrary union, not just finite union.

This is our “ur-example” of a BAO. We formalize it as follows.

Definition 1.1. A Boolean groupoid is an algebra B = 〈B,∧,∨, ′, ·,0,1〉 such that
〈B,∧,∨, ′,0,1〉 is a Boolean algebra and “·” is an additional binary operation satis-
fying the identities

x ·0≈ 0 · x≈ 0
x · (y∨ z)≈ (x · y)∨ (x · z)
(y∨ z) · x≈ (y · x)∨ (z · x).

(1)

We shall often use the notation B0 to denote the Boolean algebra reduct of the
Boolean groupoid B and write B = 〈B0, ·〉.



Introducing Boolean Semilattices 3

Since it is defined equationally, the class of Boolean groupoids forms a variety,
(that is, a class of algebras closed under subalgebra, homomorphic image, and prod-
uct) which we denote BG. From our observations above, the complex algebra of
every groupoid lies in BG. It is natural to wonder whether the converse could be
true: is every Boolean groupoid a complex algebra? A moment’s reflection shows
that this is impossible on cardinality grounds. There is no complex algebra of car-
dinality ℵ0, but it is easy to see that there are indeed Boolean groupoids that are
countably infinite.

More generally, we can ask whether the complex algebras generate BG as a vari-
ety. The answer turns out to be “yes” as we discuss in Sect. 3. In order to demonstrate
this, we must develop a technique to extend an arbitrary Boolean groupoid to one
that is complete and atomic. We do this in Sect. 2.

Before continuing, we introduce some terminology that we use in the sequel. In
the language of Boolean algebras, we write x− y in place of x∧ y′ and

x⊕ y = (x− y)∨ (y− x).

With this definition we obtain a ring 〈B,⊕,∧,0,1〉 of characteristic 2 from the
Boolean algebra B0.

One important consequence of additivity in a Boolean groupoid is monotonicity:
if x1 ≤ x2 then x1 · y≤ x2 · y and y · x1 ≤ y · x2.

Definition 1.2. Let p(x1,x2, . . . ,xn) and q(x1,x2, . . . ,xn) be terms in the language of
groupoids.

1. The identity p(x1, . . . ,xn)≈ q(x1, . . . ,xn) is linear if each variable occurs exactly
once in each of p and q.

2. The identity p(x1, . . . ,xn)≈ q(x1, . . . ,xn) is semilinear if p has no repeated vari-
ables and every variable of q occurs in p. (But q can have repeated variables.)

3. The identity p(x1, . . . ,xn)≈ q(x1, . . . ,xn) is regular if exactly the same variables
appear in p and q. (But each variable may occur any number of times.)

Note that semilinearity is nonsymmetric, that is, p≈ q semilinear does not imply
q ≈ p semilinear, unless the identity is actually linear. The significance of linear
and semilinear identities is delineated in the following proposition whose proof is a
simple verification. Regular identities will be addressed in Sect. 2. Figure 1 shows a
few familiar identities and their relationship to these properties.

linear semilinear regular
x(yz)≈ (xy)z 3 3 3

xy≈ yx 3 3 3

x≈ x2 3 3
xy≈ x 3

(xy)y≈ (yx)y 3

Fig. 1 Some linear, semilinear, and regular identities
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Proposition 1.3 (Shafaat [18], Grätzer-Whitney [7]). Let G be a groupoid and
p≈ q an identity.

1. If p≈ q is linear then G � p≈ q ⇐⇒ G+ � p≈ q.
2. If p≈ q is semilinear then G � p≈ q ⇐⇒ G+ � p≤ q.

By a partial groupoid we mean a set with a partially defined binary operation. For
example, every subset of a groupoid inherits a partial groupoid structure. We shall
say that a partial groupoid, P, satisfies an identity p(x1, . . . ,xn)≈ q(x1, . . . ,xn) if, for
every a1 . . . ,an ∈ P, we have p(a1, . . . ,an) is defined in P if and only if q(a1, . . . ,an)
is defined in P, and in that case, the two quantities coincide.

2 Duality

In this section we explore the passage from an object to its complex algebra. In
particular, we are interested in reversing the process. In order to do this we must, on
the groupoid side, expand our attention to ternary relational structures, and on the
complex side, extend a Boolean groupoid to one that is complete and atomic.

To begin with, observe that it is quite easy to recover the structure of a groupoid
from its complex algebra. For a groupoid G and a,b ∈ G, we have a ·b = c in G if
and only if {a}�{b} = {c} in G+. Speaking abstractly, the singletons {a}, {b},
and {c} are atoms of the Boolean algebra G+

0 . In the complex algebra, the product
of two atoms is always an atom.

Unfortunately, an arbitrary Boolean groupoid may not have any atoms, and even
when it does, the product of two atoms need not be an atom. Thus, when we attempt
to generalize the passage from complex algebra to groupoid, we obtain, not an al-
gebra, but a ternary relational structure. By a ternary relational structure we simply
mean a pair 〈H,θ〉 in which H is a set and θ is a subset of H3.

Definition 2.1. Let B = 〈B0, ·〉 be a Boolean groupoid. The atom structure of B is
the ternary relational structure B+ = 〈A,θ〉 in which A is the set of atoms of B0 and
θ =

{
(x,y,z) ∈ A3 : z≤ x · y

}
.

To each groupoid G = 〈G, ·〉 we can associate the ternary relational structure
G� = 〈G,θ〉 in which θ = {(x,y,x · y) : x,y ∈ G}. It is easy to verify that G� ∼=
(G+)+. In fact, we can extend this association to any partial groupoid P. Notice that
in this case, if x,y ∈ P with x · y undefined, then there will be no triple in P� of the
form (x,y,z) for any z. Put another way, in the complex algebra P+ we will have
{x}�{y}=∅.

To proceed further, we must extend the complex algebra construction to ternary
relational structures.

Definition 2.2. Let H = 〈H,ψ〉 be a ternary relational structure. The complex alge-
bra of H is the Boolean groupoid H+ = 〈Sb(H),∩,∪,∼,�,∅,H〉 in which

X�Y = {z ∈ H : (∃x ∈ X)(∃y ∈ Y ) (x,y,z) ∈ ψ } .
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It is not difficult to verify that for a ternary relational structure H, (H+)+ ∼= H, and
dually, for a complete and atomic Boolean groupoid B, (B+)

+ ∼= B.
We still have the problem of a lack of atoms in an arbitrary Boolean groupoid.

This was addressed in 1951 by Jónsson and Tarski [13] as an extension of the Stone
representation theorem. We do this in two steps. Start with a Boolean groupoid, B.
Let B∗ denote the set of ultrafilters (i.e., maximal filters) of B0. We impose a ternary
relational structure on B∗ by defining

θ =
{
(U,V,W ) ∈ (B∗)3 : W ⊇ {u · v : u ∈U, v ∈V }

}
.

Finally we define Bσ to be 〈B∗,θ〉+.
In his exposition [12], Jónsson summarizes the relationship between B and Bσ

as follows (specialized to the case of Boolean groupoids).

Theorem 2.3. Let B be a Boolean groupoid. There is a unique Boolean groupoid
Bσ , called the canonical extension of B such that

1. Bσ
0 is a complete and atomic extension of B0;

2. For all distinct atoms p and q of (Bσ ), there exists a ∈ B such that p ≤ a and
q≤ a′;

3. Every subset of B that joins to 1 in Bσ has a finite subset that also joins to 1;
4. For atoms p,q of Bσ, p · q =

∧
{a ·b : a,b ∈ B, a≥ p, b≥ q}. The product is

extended completely additively to the remainder of Bσ .

As an example computation, let B be a Boolean groupoid, A denote the set of
atoms of Bσ

0 , and let p ∈ A. Then using Theorem 2.3(4) we compute

p ·1 =
∨
q∈A

p ·q =
∨
q∈A

∧
a≥p

∧
b≥q

a ·b =

∧
a≥p

∨
q∈A

∧
b≥q

a ·b =
∧

a≥p

∨
q∈A

a ·q =
∧

a≥p

a ·1 . (2)

In practice, it is unnecessary to make reference to B∗. We start from an arbitrary
Boolean groupoid B, move first to the canonical extension, Bσ, and then to the atom
structure Bσ

+. This ternary relational structure must serve as an approximation to a
groupoid induced by B. The utility of this approximation varies depending upon the
particular situation at hand.

A class, or property, preserved by canonical extensions, is called canonical. A
Boolean groupoid term is called strictly positive if it does not involve complemen-
tation. One of the deep theorems on the subject is the following.

Theorem 2.4 (Jónsson and Tarski, [13]). Let s, t, and u be strictly positive terms.
Then each of the following is canonical.

s≈ t

s≈ 0→ t ≈ u

s 6≈ 0→ t ≈ u .
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Consider now two ternary relational structures 〈G,θ〉 and 〈H,ψ〉. A function
h : G→H induces a complete Boolean algebra homomorphism ~h : H+

0 →G+
0 given

by ~h(X) = {g ∈ G : h(g) ∈ X }. A necessary and sufficient condition for ~h to be
a Boolean groupoid homomorphism is that h be a bounded morphism, as in the
following definition.

Definition 2.5. A function h : G→ H is a bounded morphism between the ternary
relational structures 〈G,θ〉 and 〈H,ψ〉 if

(i) (∀x ∈ G3) x ∈ θ =⇒ h(x) ∈ ψ and
(ii) (∀z ∈ G)(∀y1,y2 ∈ H) (y1,y2,h(z)) ∈ ψ =⇒

(∃x1,x2 ∈ G) h(x1) = y1, h(x2) = y2, (x1,x2,z) ∈ θ .

It is straightforward to verify that h is an injective bounded morphism if and only
if ~h is a surjective Boolean groupoid homomorphism, and h is surjective iff ~h is
injective. Let us study those two special situations a little more closely.

Suppose first that 〈G,θ〉 and 〈H,ψ〉 are ternary relational structures, with G⊆H.
If the inclusion map is a bounded morphism, we call 〈G,θ〉 an inner substructure of
〈H,ψ〉. Unwinding Definition 2.5, we have the following characterization.

Lemma 2.6. 〈G,θ〉 is an inner substructure of 〈H,ψ〉 if G⊆ H and

(i) θ = ψ ∩G3 and

(ii) (∀z ∈ G)(∀y1,y2 ∈ H) (y1,y2,z) ∈ ψ =⇒ y1,y2 ∈ G .

When these conditions hold, 〈G,θ〉+ is a homomorphic image of 〈H,ψ〉+.

Based on the first of the two conditions in the lemma, we often refer to G as an
inner substructure of 〈H,ψ〉 without explicitly mentioning θ .

Now suppose that G is a groupoid. A subset K is called a sink if

(x ∈ K & y ∈ G) =⇒ (x · y ∈ K & y · x ∈ K) .

(It is common to call K an ideal of G, but we wish to avoid conflict with the use of
“ideal” in the Boolean algebra context.) Consider G as a ternary relational structure
G� = 〈G,θ〉. It follows immediately from Lemma 2.6 that a subset H will be an
inner substructure of G� if and only if G−H is a sink.

We now turn to bounded morphic images of a partial groupoid. These correspond
to certain quotient structures. Let P be a partial groupoid, and α an equivalence
relation on P. For an element a ∈ P we write a/α for the equivalence class of a
modulo α . We call α a bounded equivalence if for all a,b ∈ P the image of the
partial map p : a/α×b/α → P given by p(x,y) = x · y is a union of α-classes. The
bounded equivalence α induces a ternary relational structure 〈P/α,ψ〉 in which
ψ = {(a/α, b/α, c/α) : c = a ·b}.

Lemma 2.7. Let α be a bounded equivalence on the partial groupoid P. Then the
natural map q : P�→ P/α is a surjective bounded morphism.
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Proof. We must check the two conditions in Definition 2.5. The first condition is
simply the definition of the relation ψ on P/α . For the second, let z ∈ P, y1/α ,
y2/α ∈ P/α and suppose that (y1/α, y2/α, z/α) ∈ ψ . Then there are x1,x2,w such
that x1 α y1, x2 α y2, w α z, and x1 · x2 = w. By assumption, the image of the partial
map p on y1/α × y2/α is a union of α-classes. Since w lies in that image and
z α w, we must have z = p(u1,u2) = u1 · u2. Hence q(u1) = y1/α , q(u2) = y2/α ,
and (u1,u2,z) ∈ θ . ut

The converse of lemma 2.7 is true as well: the kernel of a surjective bounded
morphism is a bounded equivalence.

The correspondence G 7→ G+ and B 7→ B+, together with the bounded mor-
phisms and homomorphisms, form the basis of a dual equivalence between the
categories of ternary relational structures and of complete and atomic Boolean
groupoids. This duality is explored in great detail in [6]. We need only one addi-
tional aspect of the duality, which is quite easy to verify.

The coproduct of a family
〈
〈Gi,θi〉 : i ∈ I

〉
of ternary relational structures is

simply the disjoint union
〈⋃. i Gi,

⋃. i θi
〉
. The complex algebra of a disjoint union is

isomorphic to the direct product of the complex algebras of the components:(⋃
•

i∈I

Gi

)+
∼= ∏

i∈I
G+

i . (3)

The isomorphism maps the complex, X , of the disjoint union, to the I-tuple, 〈X∩Gi :
i ∈ I〉, in the product. We leave the details to the reader.

Let P be a partial groupoid. We can extend P to a total groupoid P by adjoining
a new element, ∞, to P, and defining x · y = ∞ whenever x,y ∈ P and their product
is undefined in P. This construction is surprisingly robust. It preserves associativity,
commutativity, idempotence; in fact, any regular identity, as in Definition 1.2. See
[17] for the importance of these identities.

It is immediate from Lemma 2.6 that P� is an inner substructure of P�. Thus,
every partial groupoid is an inner substructure of a groupoid. And conversely, every
inner substructure of a groupoid is itself a partial groupoid.

Now suppose that 〈Gi : i∈ I〉 is a family of groupoids (or even partial groupoids).
Then the disjoint union is a partial groupoid, G, which can be extended to a total
groupoid, G. Taking complex algebras, and applying the duality principles that we
have developed, we have a surjective Boolean groupoid homomorphism, h:

G+ h−−→
(⋃
•

i∈I

Gi

)+
∼= ∏

i∈I
G+

i .

We summarize these observations as a theorem.

Theorem 2.8. Let Σ be a set of regular identities and K be the variety of groupoids
defined by Σ .

1. Every partial groupoid that satisfies Σ can be embedded as an inner substructure
of a groupoid in K .

2. P(K +)⊆H(K +).
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3 Representation of Boolean Groupoids

We now return to our examination of the relationship between the finitely based
variety, BG, of Boolean groupoids, and the class of complex algebras of groupoids.
Our discussion is lifted almost verbatim from [9, Theorem 3.20].

Lemma 3.1. Every Boolean groupoid, B, can be embedded into P+ for some partial
groupoid, P.

Proof. In light of Theorem 2.3, we can assume that B is complete and atomic. Let
〈A,ψ〉= B+. Thus A is the set of atoms of the Boolean algebra B0 and

ψ =
{
(u,v,w) ∈ A3 : w≤ u · v

}
.

Let P = A×A. Fix a surjection g : P→ P, and let p1 : P→ A denote the first
projection, i.e., p1(x,y) = x. We define a partial binary operation on P by

(a,b) · (c,d) = g(b,d) if p1g(b,d)≤ a · c .

In this definition, both the computations of a ·c and p1g(b,d)≤ a ·c take place in B.
We claim that p1 : P→ A is a surjective, bounded morphism. If this is so, then

by our observations following Definition 2.5, ~p1 embeds B = A+ into P+, proving
the lemma.

Clearly p1 is surjective. To verify the two conditions in Definition 2.5, observe
that if (a,b) · (c,d) = (u,v) then u = p1g(b,d) ≤ a · c. Consequently, (a,c,u) ∈ ψ .
Thus the first requirement holds.

For the second, let (u,v) ∈ P, a,c ∈ A, and (a,c,u) ∈ ψ . By the definition of ψ ,
u≤ a ·c. By the surjectiveness of g, there is a pair (b,d)∈P such that g(b,d)= (u,v).
Then p1(a,b) = a, p1(c,d) = c, and (a,b) · (c,d) = (u,v) as desired. ut

Theorem 3.2. Every Boolean groupoid, B, lies in SH(G+) for some groupoid G. If
B is finite, then G can be taken to be finite as well.

Proof. By Lemma 3.1, B can be embedded into P+ for a partial groupoid, P. By
Theorem 2.8, P is an inner substructure of a total groupoid G. Therefore P+ is a
homomorphic image of G+. Thus B ∈ SH(G+). If B is finite, then, in the proof of
Lemma 3.1, A is finite, so P, hence G, is finite as well. ut

As a result, we see that the variety generated by all complex algebras of groupoids
is axiomatized by the identities of Boolean algebras, together with those of (1.1). In
particular, it is a finitely based variety. If we write G for the variety of groupoids,
and G+ for the class of complex algebras of groupoids, we can state this relationship
succinctly as follows.

Corollary 3.3. BG= SH(G+) = V(G+).

A Boolean groupoid is commutative if the binary operator is commutative. We
have analogous statements to the results above for the commutative case.
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Theorem 3.4. Every commutative Boolean groupoid lies in SH(G+) for some com-
mutative groupoid, G. Consequently, the variety of commutative Boolean groupoids
is generated by the complex algebras of all commutative groupoids.

Proof. The construction of the partial groupoid P in Lemma 3.1 must be modified
to make it commutative. Let A be the set of atoms as before. Choose a set W of
cardinality 2 |A|. (If A is infinite, we can simply take W = A.) Let P = A×W . Fix
a surjective function g : W ×W → P such that g(x,y) = g(y,x). (This is possible
because |P| ≤ 1

2 |W ×W |.) Now we define the partial binary operation on P just as
before

(a,b) · (c,d) = g(b,d) if p1g(b,d)≤ a · c

but note that now, a and c lie in A, while b and d lie in W . Thus p1g(b,d) ∈ A. The
remainder of the argument now proceeds as before. ut

These last two results can be looked at in a couple of different ways. On the one
hand, two fairly natural varieties of BAOs (Boolean groupoids and commutative
Boolean groupoids) are shown to be generated by an easy-to-characterize class of
complex algebras. Following Jónsson, [12], we might call the complex algebras of
groupoids the primary models of the system defined in Definition 1.1. Viewed this
way, Theorems 3.2 and 3.4 are generation theorems: the variety of (commutative)
Boolean groupoids can be generated by the complex algebras of all (commutative)
groupoids.

On the other hand, we can consider the two theorems of this section to be pro-
viding a finite axiomatization for two naturally occurring varieties of algebras,
namely the varieties generated by complex algebras of groupoids and of commu-
tative groupoids. And not just any axiomatization. The axiom sets consist of only
the identities that “must” be included: the axioms for Boolean algebras, additivitiy,
normality, and (in the commutative case), the commutative law. Note that the com-
mutative law is linear. According to Proposition 1.3 it is preserved by the passage to
complex algebras so it must be present in the axiomatization.

The simplicity of this axiomatization tells us that in the passage to the complex
algebra of a groupoid, there are no “unexpected” interactions between the complex
operation and the Boolean operations. Peter Jipsen first presented this topic to the
author in a seminar in 1991, in the context of semigroups, rather than groupoids.
Note that the associative law is also linear. Thus, “of course,” this author thought,
“there will be no unexpected interactions between the semigroup operation and the
Boolean ones, besides associativity.”1 How wrong that was!

Theorem 3.5 (Jipsen, [11]). The variety generated by all complex algebras of semi-
groups is not finitely based.

Jipsen’s theorem is in striking contrast to Corollary 3.3. Not only do “unex-
pected” interactions exist, but there are infinitely many. In fact, at the time this paper

1 This author also recalls Don Pigozzi rolling his eyes and proclaiming “You have no idea what
you are getting yourself into.”
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is being written it is unknown whether the variety generated by all complex algebras
of semigroups even has a decidable equational base.

Somewhat stronger than a generation theorem is a representation theorem. Let V
be a variety of Boolean groupoids, and K a finitely axiomatizable class of ternary
relational structures. We say V is representable by K if V = SP(K +). At this
time it is not known whether Corollary 3.3 or Theorem 3.4 can be strengthened to
representations.

Thus we are presented with a wealth of possible problems that we can pose in
the following general framework. Let V denote a finitely based variety of Boolean
groupoids, and K a finitely axiomatizable class of ternary relational structures
(preferably groupoids).

A generation problem. Given V, find a class K so that V = V(K +).
A representation problem. Given V, does there exist a class K so that V =
SP(K +)?
A finite basis/decidability problem. Given K, is V(K +) finitely based/decidable?

Problem 3.6. Is BG represented by the class of all groupoids?

We have positive answers to these questions in a couple of other interesting cases.

Theorem 3.7. 1. (Bergman) Let Lz denote the variety of left-zero semigroups. Then
V(Lz+) is finitely based. This variety is representable by left-zero semigroups.

2. (Jipsen) Let Rb denote the variety of rectangular bands. Then V(Rb+) is finitely
based. This variety is representable by rectangular bands.

We were surprised to discover that the two varieties of complex algebras in the
above theorem are term-equivalent to the varieties of diagonal-free cylindric alge-
bras of dimensions 1 and 2, respectively. Note also that both Lz and Rb satisfy the
associative law. So it is not the associative law per se that is responsible for destroy-
ing the finite axiomatizability of the complex algebras in Theorem 3.5. The situation
is apparently more subtle. Recently, Peter Jipsen announced the following theorem.

Theorem 3.8. Let IG (respectively CIG) denote the variety of idempotent (respec-
tively commutative and idempotent) groupoids. Then V(IG+) coincides with the
variety of Boolean groupoids satisfying the additional identity x ≤ x2. Similarly,
V(CIG+) is equal to the variety of commutative Boolean groupoids satisfying x≤ x2.

Motivated by all of this, a natural next class to investigate is that of complex
algebras of semilattices. This turns out to be a rich field of study in and of itself,
and constitutes the remainder of this paper. The doctoral dissertation [16] contains
a similar analysis of the variety generated by complex algebras of semigroups. We
close this discussion with several open problems.
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4 Boolean semilattices

We now turn to our primary object of study, namely complex algebras of semilat-
tices. Let Sl denote the variety of semilattices, that is, groupoids satisfying

x · (y · z)≈ (x · y) · z
x · y≈ y · x
x · x≈ x .

These are the identities of associativity, commutativity, and idempotence respec-
tively. As before, we can form the complex algebra of any semilattice, and consider
the variety generated by all such complex algebras: HSP(Sl+). Once again, we are
faced with fascinating questions about this variety: Can we find an axiomatization?
Is it finitely axiomatizable? Is the equational theory even decidable?

Unfortunately, we don’t know the answers to any of these questions. The evi-
dence suggests that they are all negative. As an approximation to the theory, we
assemble a short list of identities, all of which are easily seen to hold in Sl+, and
derive some interesting algebraic properties.

To begin with, we have the axioms for Boolean groupoids listed in (1). Guided by
Proposition 1.3 we add both the associative and commutative laws. They are linear,
so are inherited by the complex algebras. Idempotence is semilinear. Thus we add
the identity x≤ x · x, which is called the square-increasing law.

Definition 4.1. A Boolean semilattice is a Boolean groupoid (Definition 1.1) satis-
fying the additional axioms

bsl1 x · (y · z)≈ (x · y) · z
bsl2 x · y≈ y · x
bsl3 x≤ x · x

The variety of Boolean semilattices will be denoted BSl.

We introduce the term “Boolean semilattice” with no small amount of trepida-
tion. Is this the right definition for such a natural piece of terminology? Only time
will tell. Our axiomatization has the merit of being short, natural (in light of Propo-
sition 1.3), and equational. As we shall demonstrate in the next few pages, a number
of interesting consequences of these axioms can be derived that demonstrate the
strength and interest of this system. However, it is certainly possible that further
research will suggest additional identities that should be added to the above set.

Since every semilattice is idempotent, it is reasonable to expect that the term
“Boolean semilattice” should imply idempotence as well, that is, that bsl3 should
be replaced by the stronger identity x ≈ x · x. However it is not hard to see that
the complex algebra of a semilattice, S, satisfies this stronger identity if and only
if S is linearly ordered. In fact, as we show in Sect. 5, the variety defined by that
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stronger identity is generated by the complex algebras of all linear semilattices. For
this reason, we chose to define Boolean semilattice using the square-increasing law.

As we already noted, the complex algebra of every semilattice is a Boolean semi-
lattice. Thus we have V(Sl+) ⊆ BSl. Conversely, if G is a Boolean groupoid and
G+ ∈ BSl, then G must be a semilattice. To see this, note that in G+, the product
of two atoms is an atom. Thus, by bsl1 and bsl2, G is associative and commutative.
Further, if a,b ∈ G and a ·a = b, then, in G+ we have {a} ⊆ {b} by bsl3, so a = b.

It is easy to see that each of the 3 identities are independent from the others
by considering the complex algebra of a groupoid that is either associative or not,
commutative or not, etc.

We list next several additional identities and other formulae that are conse-
quences of the definition of Boolean semilattice. These are useful in practice.

Proposition 4.2. Every Boolean semilattice satisfies the following formulae.

1 ·1≈ 1 (4)
x∧ y≤ x · y (5)
x · y ·1≈ (x ·1)∧ (y ·1) (6)

x · ((x ·1)− x)≤ x2∨ ((x ·1− x)2 . (7)

In fact, bsl3 can be replaced by (5).

Proof. By the square-increasing law, 1≤ 1 ·1≤ 1, proving (4). In any Boolean semi-
lattice, x∧ y ≤ (x∧ y) · (x∧ y) ≤ x · y by monotonicity. Thus (5) holds. Conversely,
bsl3 can be derived from (5) by taking x = y.

For (6), first observe that x ·y ·1≤ x ·1 ·1 = x ·1 and similarly x ·y ·1≤ y ·1. Thus
x ·y ·1≤ (x ·1)∧ (y ·1). On the other hand by (5), (x ·1)∧ (y ·1)≤ x ·1 ·y ·1 = x ·y ·1
by bsl1–bsl3.

Let us derive (7). First, by monotonicity, x ·((x ·1)−x)≤ x ·1. Second, x ·1−x =
(x ·1)∧ x′ by definition. Note that

x∨ ((x ·1)∧ x′) = (x∨ (x ·1))∧ (x∨ x′) = x ·1 .

Hence x · ((x ·1)− x)≤ x∨ ((x ·1)− x)≤ x2∨ ((x ·1)− x)2. ut

As we have already noted, V(Sl+) ⊆ BSl. It was, of course, our hope that these
two varieties would coincide. Alas, that is not the case. We present two examples.
Consider first the identity

x∧ (y ·1)≤ x · y . (8)

This identity is easily seen to hold in S+, for any semilattice, S. However, let H
denote the ternary relational structure 〈{a,b},θ〉 in which

θ = {(a,a,a),(a,b,b),(b,a,b),(b,b,a),(b,b,b)} .

One can conveniently represent this relation with the multiplication table
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· a b
a a b
b b 1

This table can be thought of as a subset of the multiplication table for H+. Since this
particular complex algebra has two atoms, a∨b = 1. The remainder of the table can
be deduced from normality and additivity. H+ is easily checked to be associative,
commutative, and, square-increasing. We see that H+ fails to satisfy (8) with x = a
and y = b.

As a second example, let A be the 8-element Boolean groupoid, with atoms
{a,b,c} that multiply as follows:

a b c
a a a a
b a a∨b b∨ c
c a b∨ c 1

The algebra A satisfies bsl1–bsl3, so A ∈ BSl. In fact it also satisfies (8). However,
A fails to satisfy the identity

x · τ ≤ (x · z∧ v) · y∨ (x · z− v) · τ (9)

with τ shorthand for u∧ (y · z). It is a simple computation to verify that the complex
algebra of any semilattice satisfies equation (9). Thus A /∈ V(Sl+).

These examples were relatively easy to find, involving algebras with 2 or 3 atoms.
It certainly suggests to us that it will be possible to find longer and longer identities
that fail in larger and larger finite algebras. Based on this, we conjecture that the
answer to the following finite basis problem is ‘no’.

Problem 4.3. Is V(Sl+) finitely based? Is the equational theory decidable?

A useful source of tools for attacking Problem 4.3 might be [8]. Perhaps there is
more hope for a positive answer to one of the following problems. (But see Theo-
rem 7.2.)

Problem 4.4. Is either BSl or V(Sl+) generated by its finite members?

Problem 4.5. Is there a finitely axiomatizable class, K, of ternary relational struc-
tures, such that BSl= V(K +)?

Algebraic theory of Boolean semilattices

Let ↓x denote the term x ·1. Notice that for a semilattice S and X ⊆ S, the complex
↓X is the downset (i.e., the ideal) generated by X . (We view the semilattice operation
to be the greatest lower bound.) This operator plays a key role in the structure theory
of Boolean semilattices.
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Proposition 4.6. In any Boolean semilattice, ‘↓’ yields a closure operator, that is,
for B ∈ BSl and x,y ∈ B, x≤ ↓x = ↓↓ x, and x≤ y =⇒ ↓x≤ ↓y.

Proof. x≤ x · x≤ x ·1 = ↓x by bsl3 and monotonicity. Also

↓↓ x = (x ·1) ·1 = x · (1 ·1) = x ·1 = ↓x

by associativity and (4). Finally, if x ≤ y then ↓x = x · 1 ≤ y · 1 = ↓y, again, by
monotonicity. ut

An element x of a Boolean semilattice is called closed if x = ↓x. By normality,
we always have ↓0 = 0 and by identity (4), ↓1 = 1. Thus 0 and 1 are always closed
elements.

It is well-known that if θ is a congruence relation on a Boolean algebra B0, then
I = 0/θ is an ideal of B0. Conversely, every ideal, I, gives rise to a congruence by
defining θI =

{
(x,y) ∈ B2

0 : x⊕ y ∈ I
}

. This correspondence provides a lattice iso-
morphism between the congruences and ideals of B0. It can be extended to Boolean
groupoids, indeed, to BAOs in general, as follows.

Definition 4.7. Let B be a Boolean groupoid, and I an ideal of B0. Then I is a
congruence ideal of B if, for some θ ∈ Con(B), we have I = 0/θ .

Proposition 4.8 (Jipsen, [9]). Let B be a Boolean groupoid, and I and ideal of B0.
Then I is a congruence ideal of B if and only if x ∈ I implies x · 1 ∈ I and 1 · x ∈ I.
There is a lattice isomorphism between the congruences and the congruence ideals
of B.

Corollary 4.9. Let B be a Boolean semilattice.

1. Let I be an ideal of B0. Then I is a congruence ideal of B if and only if x ∈ I =⇒
↓x ∈ I.

2. Let a ∈ B. Then the smallest congruence ideal of B containing a is

(↓a] = {x ∈ B : x≤ ↓a} .

An element a such that (a] is a congruence ideal is called a congruence element.
It follows from the above corollary, that on a Boolean semilattice, the congruence
elements are precisely the closed elements. If S is a semilattice, then the congruence
elements of S+ are the downsets of S.

It is easy to see that if x and y are congruence elements in any Boolean semi-
lattice, then so are x ∨ y and x · y. In fact, in the lattice of congruence ideals,
(x]∨ (y] = (x∨ y] and (x]∧ (y] = (x · y], for congruence elements x and y. Thus the
principal congruence ideals form a sublattice of the lattice of all congruence ideals.

Recall from the discussion following Lemma 2.6 the definition of a sink in a
groupoid. We noted there that the inner substructures of a groupoid coincide with
the complements of the sinks. In the case of a semilattice, the sinks are precisely
the downsets, and the complements of the downsets are the upsets. We state this
formally.



Introducing Boolean Semilattices 15

Lemma 4.10. Let S be a semilattice. The inner substructures of S� are the upsets
of S.

We reiterate that every partial semilattice, P, is an upset, hence an inner substruc-
ture, of a semilattice, simply by adjoining a smallest element to P. Lemma 4.10 can
be generalized somewhat.

Proposition 4.11. Let B be a complete and atomic Boolean semilattice, and let c be
a closed element of B. Then U = {z ∈ B+ : z≤ c′ } is an inner substructure of B+.

Proof. Write B+ = 〈A,ψ〉. We need to check the condition in Lemma 2.6. Let z∈U
and y1,y2 ∈ A. The condition (y1,y2,z) ∈ ψ is equivalent to z≤ y1 ·y2. Suppose that
y1 /∈U . Then, since y1 is an atom, y1 ≤ c, hence z ≤ y1 · y2 ≤ c · 1 = c, since c is
closed. But this implies z≤ c∧ c′ = 0, which is false. Similarly, y2 ∈U . ut

In a landmark series of papers, [14, 2, 3, 4, 5], Don Pigozzi, together with Wilem
Blok and Peter Köhler, developed the notion of equationally definable principal con-
gruences (EDPC). Varieties with EDPC exhibit remarkable properties. The variety
of Boolean semilattices has EDPC, and provides a very interesting case study in its
application.

Definition 4.12. A variety, V, has EDPC if there are 4-variable terms pi(x,y,z,w),
and qi(x,y,z,w), for i = 1, . . . ,n, such that for every A ∈ V and every a,b,c,d ∈ A

(c,d) ∈ CgA(a,b) ⇐⇒ A � pi(a,b,c,d) = qi(a,b,c,d), for i = 1, . . . ,n .

Theorem 4.13. The variety BSl has EDPC.

Proof. Let B be a Boolean semilattice, a,b,c,d ∈ B. Then from the theory of
Boolean algebras we know that (c,d) ∈ CgB(a,b) iff (c⊕ d,0) ∈ CgB(a⊕ b,0).
From our observations above, in a Boolean semilattice, this latter condition is equiv-
alent to c⊕ d ≤ ↓(a⊕ b). Thus, in the definition of EDPC, we can take n = 1,
p1(x,y,z,w) = (z⊕w)∧ ((x⊕ y) ·1) and q1(x,y,z,w) = z⊕w. ut

Every variety with EDPC is congruence distributive and has the congruence ex-
tension property. Of course the first of these holds in any variety of BAOs. But the
second is significant.

Corollary 4.14. The variety BSl has the congruence extension property (CEP). That
is, for every C≤B ∈ BSl and θ ∈Con(C), there is θ̄ ∈ConB such that θ̄ ∩C2 = θ .

It is actually quite easy to see from Corollary 4.9 that BSl has the congruence
extension property. Suppose that C ≤ B. For a congruence ideal, I, on C, let J =
{x ∈ B : (∃y ∈ I) x≤ y}. It is easy to see that J is an ideal of B0 and that J∩C = I.
To apply Corollary 4.9, let x ∈ J. By definition, there is y ∈ I with x ≤ y. Then
↓x≤ ↓y ∈ I since I is assumed to be a congruence ideal.

An important application of the congruence extension property is the following
relationship which is useful in understanding the generation of varieties. The proof
is a straightforward verification.
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Corollary 4.15. Let K be a class of algebras with the congruence extension prop-
erty. Then HS(K ) = SH(K ).

Let us turn now to a consideration of subdirect irreducibility. Recall that an alge-
bra is subdirectly irreducible if it is nontrivial and has a smallest nontrivial congru-
ence, called the monolith. Subdirectly irreducible algebras form the basic building
blocks for analyzing varieties. The notion tends to disappear from view in the study
of Boolean algebras because the only subdirect irreducible is the 2-element algebra.
However the situation for Boolean semilattices is radically different.

Lemma 4.16. A Boolean semilattice is subdirectly irreducible if and only if it has a
smallest nonzero closed element.

Proof. Let B be a subdirectly irreducible Boolean semilattice and let I be the con-
gruence ideal associated with the monolith. Choose any a ∈ I, a 6= 0 and let c = ↓a.
Note that c is a nonzero closed element. Since I is a congruence ideal, c ∈ I, so
(c]⊆ I. But by the minimality of I, (c] = I. Now, if b is any nonzero closed element,
then (b] is a congruence ideal, so (c]⊆ (b], which is to say, c≤ b. ut

Proposition 4.17. Let S be a semilattice. Then S+ is subdirectly irreducible if and
only if S has a lower bound. In particular, every finite semilattice has a subdirectly
irreducible complex algebra.

Proof. Recall that the closed elements of S+ are the downsets of S. The smallest
nonempty downset of a semilattice (if it exists) will always be of the form {a},
where a is the lower bound. ut

It is usually easier to work with congruence ideals rather than congruences. We
will frequently consider the monolith to the the smallest nonzero congruence ideal
on a subdirectly irreducible Boolean semilattice.

Theorem 4.18. Let B be a subdirectly irreducible Boolean semilattice. Then Bσ is
subdirectly irreducible.

Proof. By Lemma 4.16, B has a smallest nonzero closed element, a. Thus, for every
x ∈ B−{0}, x · 1 ≥ a. Let y be an atom of Bσ . Since B is a subalgebra of Bσ , the
condition a = a ·1 continues to hold in Bσ . By Equation (2)

y ·1 =
∧
{x ·1 : y≤ x ∈ B} ≥ a .

Therefore a generates the monolith of Bσ . ut

Two concepts related to subdirect irreducibility are simplicity and finite subdirect
irreducibility. A nontrivial algebra A is simple if Con(A) has exactly 2 elements.
A is finitely subdirectly irreducible if, for any two congruences θ and ψ on A,
θ > 0 & ψ > 0 =⇒ θ ∧ψ > 0. Finally, we call a Boolean groupoid integral if
x > 0 & y > 0 =⇒ x · y > 0.

Proposition 4.19. Let B be a Boolean semilattice.
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1. B is finitely subdirectly irreducible if and only if it is integral.
2. B is simple if and only if x 6= 0 =⇒ ↓x = 1.
3. B simple implies Bσ simple.

Proof. Suppose that B is finitely subdirectly irreducible and that x · y = 0. Then
0 = x · y · 1 = (x · 1) · (y · 1) = ↓x · ↓y. Consequently (↓x]∧ (↓y] = (0]. Then by our
assumption, either ↓x = 0, which implies x = 0, or ↓y = 0, so y = 0. Thus B is
integral.

Conversely, suppose that B is integral and that I and J are nonzero congruence
ideals of B. Then there are nonzero closed elements x ∈ I and y ∈ J. We have x ·y≤
x · 1 = x ∈ I and similarly, x · y ≤ y · 1 ∈ J. By integrality, 0 6= x · y ∈ I ∩ J. This is
enough to show that B is finitely subdirectly irreducible.

Part (2) follows easily from Corollary 4.9. Part (3) follows from Theorem 2.4
since the terms in part (2) are all strictly positive. ut

Corollary 4.20. Let S be a semilattice. Then S+ is finitely subdirectly irreducible.
S+ is simple iff |S|= 1.

Proof. The complex algebra of a groupoid is always integral. If S+ is simple, then
the only downset of S is S itself, so S must be trivial. ut

In fact, this corollary, as well as Proposition 4.17 holds whenever S is a partial
semilattice.

Discriminator algebras

The discriminator on a set A is the ternary operation

dA(x,y,z) =

{
z if x = y
x if x 6= y.

A nontrivial algebra, A, is a discriminator algebra if dA is a term operation of A.
Discriminator algebras have powerful structure. They are simple, every nontrivial
subalgebra is again a discriminator algebra, and they generate an arithmetical vari-
ety. As an example, every finite field is a discriminator algebra.

A variety is called a discriminator variety if there is a single term that induces the
discriminator on every subdirectly irreducible member. The varieties of Boolean al-
gebras, relation algebras, and cylindric algebras (of a fixed dimension) are examples
of discriminator varieties.

The discriminator is a kind of “if-then-else” operation on a set. Because of its
connection to propositional logic, it is perhaps not surprising that on a Boolean
algebra with operators, there is a convenient shortcut to building a discriminator
term. We define the unary discriminator on a Boolean algebra B0 to be the function
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c(x) =

{
0 if x = 0
1 if x 6= 0.

The ternary and unary discriminators are interdefinable by

c(x) = d(0,x,1)′ and d(x,y,z) =
(
x∧ c(x⊕ y)

)
∨
(
z∧ c(x⊕ y)′

)
.

Thus, a Boolean algebra with operators has a term defining the (ternary) discrimi-
nator if and only if it has a term defining the unary discriminator.

Proposition 4.19 tells us that every simple Boolean semilattice is a discriminator
algebra, with unary discriminator c(x) = ↓x. The variety BSl, of all Boolean semi-
lattices, is not a discriminator variety since there are many subdirectly irreducible
algebras that are not simple. However, BSl has a largest discriminator subvariety,
which is easily described (see also [10, 15]).

Theorem 4.21. Let BSlD be the subvariety of BSl defined by the identity

(x ·1)′ ·1≈ (x ·1)′ . (10)

BSlD is a discriminator variety, in fact, it is the largest discriminator subvariety of
BSl. BSlD is generated by the class of all simple Boolean semilattices.

Proof. Let B be a subdirectly irreducible member of BSlD, with minimal nonzero
congruence ideal, M. Let a be a nonzero element of M. From equation (10), the
element b = (a · 1)′ is closed, consequently I = (b] is a congruence ideal. If b 6= 0,
then by the minimality of M, we must have M ⊆ I, so a≤ b. But then a ·1≤ b ·1 =
b = (a ·1)′ which is impossible as a > 0. Consequently, we must have b = 0, which
is to say, ↓a = 1. Thus by Proposition 4.21, B is simple. As we have already argued
that every simple algebra is a discriminator, we conclude that BSlD is a discriminator
variety.

On the other hand, let D be any discriminator subvariety of BSl. Then each of its
subdirectly irreducible algebras is simple. It is easy to see that every simple Boolean
semilattice satisfies equation (10). Consequently, D⊆ BSlD. ut

Equation (10) says that the complement of a closed element is closed. From
this we obtain another property that is characteristic of discriminator varieties—
numerous direct decompositions. If B∈BSlD and a is any closed element of B, then
we have the decomposition B∼= B/(a]×B/(a′].

Equation (10) also implies that if S is a nontrivial semilattice, then S+ /∈ BSlD.
For, the closed elements of S+ are the downsets of S. And the complement of a
downset is never a downset.

Thus we have to look harder for primary models for BSlD. Here is one interesting
class of such structures. Let Tot denote the class of all ternary relational structures
〈H,H3〉 (i.e., total relations) for any set H.

Theorem 4.22. Every member of Tot+ is a simple Boolean semilattice. V(Tot+)
is the subvariety of BSlD defined by the identity x · y · 1 ≈ x · y. This subvariety is
represented by Tot.
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Proof. It is straightforward to verify that any member of Tot+ satisfies bsl1–bsl3.
Let H ∈ Tot. Then for any a,b,c ∈H, we have (a,b,c) ∈H3, hence c≤ a ·b in H+.
Since c represents an arbitrary atom of the complete and atomic H+, we conclude
that a · b = 1. Since a and b are themselves arbitrary atoms we deduce that for any
x > 0 and y > 0 in H+, x ·y = 1. In particular, ↓x = 1, so by Proposition 4.19, H+ is
simple. Furthermore, we conclude that H+ � x · y ·1≈ x · y since if either x or y is 0
then both sides of the identity are 0.

Let W be the subvariety of BSlD defined by the identity x · y · 1 ≈ x · y. By the
previous paragraph and Theorem 4.21, V(Tot+) ⊆ W . We shall show that, con-
versely, W ⊆ SP(Tot+). suppose that A is a subdirectly irreducible member of
W . It is enough to show that A ∈ S(Tot+). Since BSlD is a discriminator variety
containing A, we must have A simple. Therefore, by Theorem 4.18, Aσ is simple,
hence Aσ ∈ BSlD. Since x · y · 1 ≈ x · y is a strictly positive identity satisfied by A,
by Theorem 2.4 we get Aσ � x · y ·1≈ x · y. Hence Aσ ∈W .

Now, for any three atoms a,b,c of Aσ , we have a ·b> 0 (since simple algebras are
integral), so a ·b = ↓(a ·b) = 1. Thus c≤ a ·b. This means that the ternary relational
structure (Aσ )+ is a total relation. Therefore Aσ ∈ Tot+. Since A is a subalgebra of
Aσ , we get A ∈ S(Tot+). ut

The class V(Tot+) is a proper subvariety of BSlD. The algebras B2 and B3 in
Figure 2 of Sect. 7 are both simple (so they lie in BSlD) but fail to satisfy the identity
x ·y ·1≈ x ·y with x = y = a. Thus the question of a nice class of generators for BSlD
remains open.

Problem 4.23. Is BSlD = V(K +) for some finitely axiomatizable class, K, of
ternary relational structures?

Finally, notice that equation (10) is not strictly positive. Thus we can not apply
Theorem 2.4 to conclude that BSlD is closed under canonical extension. However,
let B be a subdirectly irreducible member of BSlD. Then B is simple, hence Bσ is
simple, so Bσ ∈ BSlD. This suggests the following question.

Problem 4.24. Is BSlD canonical?

5 Linear Semilattices

It would seem, based on a rational naming convention, that a “Boolean semilattice”
should always satisfy the identity x · x ≈ x. However, as we explain in this section,
this identity is too strong to be of much use.

In fact, for a semilattice S, S+ � x2 ≈ x precisely when S is linearly ordered. To
see this, observe that for X ⊆ S, the condition X ·X = X is equivalent to X being a
subsemilattice of S. Thus S+ � x2 ≈ x says that every subset is a subsemilattice, and
this in turn holds exactly when S is linearly ordered.

We shall call a Boolean semilattice idempotent if it satisfies the identity x2 ≈ x.
Let LS denote the class of linearly ordered semilattices. We have just argued that
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every member of LS+ is idempotent. Thus every member of V(LS+) is idempotent.
In this section, we shall establish the converse. Let us write IBSl for the variety of
idempotent Boolean semilattices.

Lemma 5.1 (Bergman-Jipsen). The following identities hold in IBSl.

1. x∧ y≤ x · y≤ x∨ y;
2. x∧ (y ·1)≤ x · y;
3. x · y≈ (x∧ (y ·1))∨ (y∧ (x ·1)).

Proof. x∧y≤ x ·y holds in any Boolean semilattice, by Proposition 4.2(5). By idem-
potence and additivity,

x∨ y = (x∨ y)2 = x2∨ (x · y)∨ y2 ≥ x · y

proving (1).
For (2),

x∧ (y ·1) = x∧ y · (x∨ x′) = x∧ ((x · y)∨ (x′ · y))≤ x∧ ((x · y)∨ (x′∨ y))

= (x∧ (x · y))∨ (x∧ x′)∨ (x∧ y)≤ (x · y)∨ (x∧ y) = x · y

where (1) is used in the first inequality and the last equality.
Finally, (x∧ (y · 1))∨ (y∧ (x · 1)) ≤ x · y follows from (2). Conversely, by (1),

monotonicity, and distributivity

x · y≤ (x ·1)∧ (y ·1)∧ (x∨ y) =(
(x ·1)∧ (y ·1)∧ x

)
∨
(
(x ·1)∧ (y ·1)∧ y

)
= (x∧ (y ·1))∨ (y∧ (x ·1)) .

ut

The third identity in the above lemma can be written

x · y≈ (x∧↓y)∨ (y∧↓x). (11)

Thus an idempotent Boolean semilattice is term-equivalent to its closure-reduct.

Lemma 5.2. let B be an idempotent Boolean semilattice. Then for atoms a,b,

a ·b =


a if ↓a < ↓b
a∨b if ↓a = ↓b
b if ↓a > ↓b
0 otherwise.

Proof. Suppose that ↓a < ↓b. Then a < ↓b and b � ↓a so b∧↓a = 0, since b is an
atom. Consequently a · b = a by (11). The second and third alternatives are argued
similarly. Finally, if ↓a and ↓b are incomparable then a� ↓b and b� ↓a. Then from
(11), a ·b = 0. ut
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Lemma 5.3. Let B be an atomic, subdirectly irreducible, idempotent Boolean semi-
lattice. Then Con(B) is linearly ordered.

Proof. We shall first show that the closed elements of B are linearly ordered. Sup-
pose that b and c are incomparable, closed elements. By atomicity, there are atoms
b0 and c0 such that b0 ≤ b, b0 � c, c0 ≤ c, and c0 � b. If ↓b0 ≤ ↓c0 then (since c is
closed)

b0 ≤ ↓b0 ≤ ↓c0 ≤ c

which is a contradiction. Similarly ↓c0 � ↓b0, i.e., ↓b0 and ↓c0 are incomparable.
Therefore by Lemma 5.2, b0 ·c0 = 0. But B is subdirectly irreducible, hence integral
(by Proposition 4.19), which is a contradiction. Thus our original elements b and c
must be comparable.

Now we address the statement in the lemma. Because of the correspondence
between congruences and congruence ideals, it is enough to show that for any two
congruence ideals I and J, either I ⊆ J or J ⊆ I. So assume instead that there are
elements b ∈ I− J and c ∈ J− I. By Lemma 4.9, ↓b ∈ I and, since b≤ ↓b, we have
↓b /∈ J. Similarly ↓c ∈ J− I. By our deductions above, either ↓b ≤ ↓c or ↓c ≤ ↓b.
But then either ↓b ∈ J or ↓c ∈ I, which is a contradiction. ut

Theorem 5.4. Let B be a complete, atomic, idempotent Boolean semilattice, and
suppose that Con(B) is linearly ordered. Then B ∈ S(LS+).

Proof. Let A be the set of atoms of B0. Fix a linear ordering, E, on A. Let S =
{(↓a,n,a) : a ∈ A,n ∈ N} ordered lexicographically. That is

(↓a,n,a)< (↓b,m,b) if ↓a < ↓b computed in B, or
↓a = ↓b & n < m or
↓a = ↓b & n = m & a/b .

Because of our assumption on the congruence lattice of B, the closed elements
are linearly ordered. So with this definition, S becomes a linearly ordered meet-
semilattice.

Write S� = 〈S,θ〉 and B+ = 〈A,ψ〉. Recall that

θ = {(u,v,u · v) : u,v ∈ S}
ψ = {(a,b,c) : c≤ a ·b} .

Define h : S� → B+ by h(↓a,n,a) = a. Clearly h is surjective. We shall show
that h is a bounded morphism. From our comments in Sect. 2 it will follow that ~h
embeds B = (B+)

+ into S+, thereby proving the theorem.
We apply Definition 2.5. To verify the first condition, let (u,v,u · v) ∈ θ , say,

u = (↓a,n,a) and v = (↓b,m,b). Since S is linear, we can assume that u ≤ v, so
u ·v = u. Then (h(u), h(v), h(u ·v)) = (a,b,a). The condition u≤ v implies ↓a≤ ↓b.
By Lemma 5.2 we must have a≤ a ·b, so (a,b,a) ∈ ψ .

For the second condition in the definition of bounded morphism, let a,b ∈ A,
u = (↓c,n,c) ∈ S, and assume that (a,b,h(u)) ∈ ψ . This implies that c ≤ a · b. By
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Lemma 5.2 we must have c = a or c = b. If c = a then ↓a ≤ ↓b and u = (↓a,n,a).
Take v = u and w = (↓b,n+ 1,b). Then v ≤ w in S, so (v,w,u) ∈ θ , satisfies the
condition. On the other hand, if c = b, take v = (↓a,n+1,a), and w = u = (↓b,n,b).
Then w≤ v, so (v,w,u) ∈ θ again satisfies the condition. ut

Corollary 5.5 (Bergman-Blok). The variety of idempotent Boolean semilattices is
equal to SP(LS+).

Proof. At the beginning of the section we verified that LS+ is contained in IBSl,
from which one inclusion of the theorem follows. We must verify that every idem-
potent Boolean semilattice lies in V(LS+). For this, it suffices to show that every
subdirectly irreducible member of IBSl lies in S(LS+).

So let A be a subdirectly irreducible, idempotent Boolean semilattice, and let B=
Aσ . Since the identities defining IBSl are strictly positive, B is itself an idempotent
Boolean semilattice. By Theorem 4.18, B is subdirectly irreducible as well. And of
course B is complete and atomic.

Then by Lemma 5.3, Con(B) is linearly ordered, and therefore by Theorem 5.4,
B ∈ S(LS+). Since A is a subalgebra of B, the result follows. ut

Thus we have a satisfactory resolution to the representation problem: the finitely
based variety IBSl is represented by the (finitely axiomatizable) class of linearly
ordered semilattices. In fact, the variety IBSl is term-equivalent to the variety S4.3
of modal algebras via the interpretations ♦x = x · 1 and x · y = (♦x∧ y)∨ (x∧♦y).
From this equivalence it follows from known results that IBSl has only countably
many subvarieties, each of which is finitely axiomatizable and generated by its finite
members.

6 Semilattice Representability

Let us return to the relationship between the members of BSl and the complex al-
gebras of semilattices. An integral Boolean semilattice is called semilattice repre-
sentable if it can be embedded into S+ for some semilattice S. In this section we
shall simply say “representable” instead of “semilattice representable.” It may also
be of interest to determine whether a finite Boolean semilattice can be embedded
into the complex algebra of a finite semilattice. When this occurs we say that the
Boolean semilattice is finitely representable.

Lemma 6.1. Let B be a Boolean semilattice, and r ∈ B. Suppose that ↓r = 1. Then
for any homomorphism h : B→ S+ for a semilattice, S, the complex h(r) must con-
tain all maximal elements of S.

Proof. Let R = h(r)⊆ S. Then ↓r = 1 implies that the downset generated by R is all
of S. Thus if u is a maximal element of S, then for some x∈ R, u≤ x. By maximality,
u = x ∈ R. ut
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Corollary 6.2. Let B be a Boolean semilattice, r ∈ B. Suppose that ↓r = ↓(r′) = 1.
Then there is no homomorphism from B to S+ for any semilattice with a maximal
element. In particular B is not finitely representable.

Proof. Let h : B→ S+ be a homomorphism. By Lemma 6.1, both h(r) and h(r′) =
h(r)′ must contain all maximal elements. Since these sets are disjoint, S has no
maximal elements. ut

Corollary 6.3. No simple Boolean semilattice is finitely representable.

Proof. Follows from Proposition 4.19 and Corollary 6.2. ut

Recall that every partial semilattice is an inner substructure (i.e., an upset) of a
semilattice. It is easy to see that the proofs of Lemma 6.1 and Corollary 6.2 remain
valid when S is only a partial semilattice. Thus no simple Boolean semilattice can
be embedded into the complex algebra of an upset of a semilattice.

Finally, we make one observation that may be useful in addressing Problems 4.3
and 4.4. Since the identities defining semilattices are regular, we can apply Theo-
rem 2.8 to obtain P(Sl+)⊆H(Sl+) and then Corollary 4.15 yields

V(Sl+) =HSP(Sl+) =HS(Sl+) = SH(Sl+).

7 Varieties of Boolean semilattices

The lattice of subvarieties of BSl is itself a rich and complex structure. At this time,
we content ourselves with a few simple observations.

Because of normality and square-increasingness, {0,1} forms a subalgebra of
any nontrivial Boolean semilattice, in which 0 · 0 = 0 · 1 = 1 · 0 = 0 and 1 · 1 = 1.
This algebra can be represented as 1+, in which 1 represents a 1-element semilattice.
Consequently, this algebra generates the smallest nontrivial subvariety of BSl. This
subvariety is defined, relative to BSl, by the identity x ·y≈ x∧y. Thus, this subvariety
is term-equivalent to the variety of Boolean algebras.

There are seven 4-element Boolean semilattices. Two of them are 1+× 1+ and
2+, where 2 represents the 2-element semilattice. Figure 2 describes the product of
the two atoms, a and b on each of the 7 algebras.

The algebra A in the figure is identical to the complex algebra H+ discussed in
conjunction with equation (8). As we demonstrated at that time, A is not semilattice
representable. B1 can be embedded into S+, where S is the 3-element, nonlinear
semilattice. The remaining three algebras are not finitely representable, by Corol-
lary 6.2. However it is not hard to show that each can be represented on an infinite
semilattice.

1+×1+ of course lies in the variety generated by 1+. Both 2+ and B2 are idem-
potent, so they lie in IBSl. A, B2, B3, and B4 are simple, so they lie in BSlD. (In
fact, B4 ∈ Tot+, see Theorem 4.22.) Finally, since all six (except for 1+×1+ ) are
subdirectly irreducible and have the same finite size, by Jónsson’s lemma (see for
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a ·a b ·b a ·b
1+×1+ a b 0

2+ a b a
A a 1 b
B1 a 1 a
B2 a b 1
B3 a 1 1
B4 1 1 1

Fig. 2 The 4-element Boolean semilattices, with atoms a and b

example [1, Cor. 5.13]) they must generate pairwise incomparable varieties. All five
generate varieties that cover V(1+).

Problem 7.1. Determine all covers of V(1+) in the lattice of subvarieties of BSl.
Does every subdirectly irreducible, 8-element Boolean semilattice contain a 4-
element subalgebra?

We have already observed that the variety of Boolean semilattices has EDPC.
In [2], Blok and Pigozzi discuss the significance of quotients via compact congru-
ences. For a class K of algebras we write

Hω(K ) = {B/θ : B ∈K , θ a compact congruence of B} .

In a Boolean semilattice, compact congruences correspond precisely to closed
elements. In a semilattice, S, a closed element of S+ is precisely a downset, D, of S.
The complex S−D is an upset, which is to say, an inner substructure of S. The
resulting quotient, S+/[D) is isomorphic to the complex algebra (S−D)+.

Let A be a member of a fixed variety, V . The algebra A is called a splitting
algebra (relative to V ), if V has a largest subvariety excluding A. This variety, if
it exists, is denoted V /A, and is called the conjugate variety to A. The conjugate
variety is defined by a single equation (relative to V ) called the conjugate equation.
Blok and Pigozzi prove that if V has EDPC, then every finitely presented, subdi-
rectly irreducible algebra in V is a splitting algebra, with conjugate variety

V /A = {B ∈ V : A /∈ SHω(B)} . (12)

In particular, if V has finite similarity type, which is the case for Boolean semilat-
tices, then every finite subdirectly irreducible algebra is splitting.

As an application of this idea, we offer the following. Let Slfin denote the class
of finite semilattices.

Theorem 7.2. V(Slfin
+) 6= V(Sl+).

Proof. Let B2 be the 4-element algebra in Figure 2. We have already observed
that B2 is finite and simple, hence splitting. Suppose S is a semilattice and B2 ∈
SHω(S+). Then B2 is a subalgebra of C+ in which C is an inner substructure, i.e.,
an upset, of S. By the remark following Corollary 6.3, C, hence S, must be infinite.
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Therefore, by Equation (12), Sl+fin ⊆V(Sl+)/B2. Since the latter class is a variety,
V(Slfin

+) ⊆ V(Sl+)/B2. Since V(Sl+)/B2 obviously omits B2 itself, it must be a
proper subvariety of V(Sl+). ut

We close with a construction of 2ℵ0 distinct subvarieties of V(Sl+). Several other
constructions are known. For example, it is known that there are uncountably many
varieties of closure algebras, and this can be transformed into a construction for
Boolean semilattices.

For any positive integer n, let An denote an antichain of size n, and let Yn be the
semilattice obtained from An by adjoining a new least element, z. It is easy to see
that the only upsets of Yn are Yn itself and sets of the form Ak for some k ≤ n.

Clearly, a bounded morphic image of Ak is of the form Al for l ≤ k. Also,
no proper bounded morphic image of Yn is a semilattice. To see this, we use
Lemma 2.7. Suppose that α is a proper, nontrivial, bounded equivalence on Yn.
There must be distinct elements a,b,c with (a,b) ∈ α , (a,c) /∈ α and a ∈ An. If
b = z then the set a/α ·c/α is not a union of α-classes, since it contains b but not a.
This contradicts Lemma 2.7. Hence b 6= z, so the ternary relation on Yn/α contains
(a/α,a/α,z/α) which is impossible in a semilattice.

Since Yn is a lower-bounded semilattice, Y+
n is subdirectly irreducible (Proposi-

tion 4.17). Applying duality to the previous two paragraphs, we deduce that

n 6= m =⇒ Y+
m /∈ SH(Y+

n ). (13)

From this and the Blok-Pigozzi relationship (12), we obtain the following.

Proposition 7.3. Let S be a set of natural numbers and define VS =V{Y+
n : n ∈ S}.

Then Y+
m ∈ VS if and only if m ∈ S. Consequently, {VS : S⊆ N} forms an uncount-

able family of subvarieties of V(Sl+).

Proof. If m /∈ S then by (12) and (13), VS ⊆ V(Sl+)/Y+
m . Since Y+

m is finite and
subdirectly irreducible, it is a splitting algebra, so this latter class is a variety. ut

The proof of 7.3 actually shows something stronger. The variety V(Sl+fin) has
uncountably many subvarieties.
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