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Test Compaction by Test Removal under
Transparent-Scan

Irith Pomeranz

Abstract— This paper describes a new approach to test compaction
under transparent-scan. Transparent-scan achieves higher levels of test
compaction than possible with conventional scan-based tests by inter-
leaving scan shift cycles and functional clock cycles in arbitrary ways.
Earlier approaches relied on the computation of a single transparent-
scan sequence, and the omission of test vectors from it. However, a single
transparent-scan sequence can be prohibitively long. In the approach
described in this paper, a transparent-scan test set consists of several
sequences whose lengths are limited. Test compaction is achieved by
combining sequences into longer sequences that detect more faults, and
removing from the test set entire sequences that become unnecessary.
Experimental results for benchmark circuits demonstrate the ability of
the procedure to achieve test compaction without creating prohibitively
long transparent-scan sequences.

Index Terms— full-scan circuits, test compaction, test generation,
transparent-scan.

I. INTRODUCTION

Test compaction procedures reduce the number of tests that need
to be applied for the detection of target faults, thus reducing the test
application time and test data volume [1]-[4]. By using multicycle
tests it is possible to reduce the number of tests further compared
to single-cycle or two-cycle tests [5]-[11]. A multicycle test typically
has multiple functional clock cycles between its scan operations. The
reduction in the number of tests is achieved because each functional
clock cycle can activate and propagate additional faults, resulting in
a test that detects more faults. The test application time is reduced
because scan operations dominate the test application time, and fewer
tests require fewer scan operations.

Another approach to reducing the test application time is
transparent-scan [12]. Under transparent-scan, the scan enable and
scan chain inputs of a standard-scan circuit are considered as regular
primary inputs, and the scan chain outputs are considered as regular
primary outputs. As a regular primary input, the scan enable input is
allowed to assume arbitrary sequences of values. This allows, e.g.,
shorter scan operations (shorter runs of scan shift cycles) to be used
compared with a conventional scan-based test set. In general it allows
to create arbitrary sequences of scan shift and functional clock cycles.
This can be used for reducing the number of clock cycles that are
required for detecting a given set of faults.

In the procedure described in [12], a conventional scan-based test
set is first translated into a transparent-scan sequence. This is achieved
by translating every scan shift cycle and every functional clock cycle
of the test set into a corresponding clock cycle of the transparent-
scan sequence. The transparent-scan sequence is then compacted by
omitting clock cycles that are not necessary for the detection of target
faults. The omission of clock cycles creates runs of scan shift and
functional clock cycles that do not exist in the initial sequence. Test
compaction is achieved because the sequence requires fewer clock
cycles for test application.

To enhance the ability to omit clock cycles from a transparent-scan
sequence, the procedure described in [13] embeds broadside tests in
the transparent-scan sequence. This is achieved by replacing pairs of
scan shift cycles with pairs of functional clock cycles when these are
surrounded by additional scan shift cycles. After the modification,
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more clock cycles contribute to the detection of faults, and other
clock cycles can be omitted.

The procedure described in [14] achieves test compaction by
sharing transparent-scan sequences among different circuits. The
original primary inputs and outputs of every circuit are included in a
single scan chain together with its state variables. Consequently, every
circuit has two inputs. Every circuit also has its own conventional
scan-based test set. The procedure translates every test into a two-
bit transparent-scan sequence. All the sequences have a similar
format but possibly different lengths for different circuits. This allows
sharing of test sequences among different circuits.

This paper describes a new approach to test compaction for a single
circuit under transparent-scan that makes the following contribution.

Instead of computing a single transparent-scan sequence as in [12]
and [13], the procedure described in this paper computes a set of
shorter transparent-scan sequences where the length of a sequence is
limited. The importance of limiting the length of a transparent-scan
sequence results from the fact that this length can be prohibitive.
Let us consider a circuit with k state variables that are included in a
single scan chain. Suppose that a conventional single-cycle test set C
for the circuit contains m tests. The number of clock cycles required
for applying the test set C is (m+1)k+m. This number is obtained
by overlapping the scan-out operation of one test with the scan-in
operation of the next test. In this case, m tests require m + 1 scan
operations of k clock cycles, and m functional clock cycles. If C is
translated into a single transparent-scan sequence T , the length of T
is also equal to (m + 1)k + m. A test compaction procedure that
is applied to T needs to consider the set of target faults F under a
sequence of this length.

The procedure described in this paper first translates every test ci ∈
C into a transparent-scan sequence Si, and includes Si in a test set
that is denoted by S. The length of Si is equal to 2k+1 for a circuit
with k state variables that are included in a single scan chain. If all
the transparent-scan sequences in S are combined, by overlapping the
scan-out operation of one test with the scan-in operation of the next
test, a single transparent-scan sequence of length (m+1)k+m will
be obtained. However, the procedure limits the number of sequences
that it may combine into a single sequence by using a constant that
is denoted by µ. The number of clock cycles required for applying µ
conventional scan-based tests is (µ+1)k+µ. This is also the largest
length of a transparent-scan sequence that the procedure may create
by combining sequences in S. By keeping µ � m, the procedure
avoids the need to consider all the target faults under the (m+1)k+m
clock cycles of a single transparent-scan sequence.

Another important difference between the test compaction proce-
dure described in this paper and earlier ones is in the approach to
test compaction. To achieve test compaction, the procedures from
[12] and [13] rely on the omission of clock cycles from a transparent-
scan sequence. Instead, the procedure described in this paper removes
entire sequences from S. It is important to note in this regard that,
for the discussion in this paper, the conventional scan-based test
set C is already compact. Being compact, no test can be removed
from C without losing fault coverage. The test compaction procedure
combines transparent-scan sequences in S to obtain new transparent-
scan sequences of limited lengths, and modifies the sequences to
increase the numbers of faults they detect. This allows it to remove
other sequences from S.

In addition, in [13] as well as in works on the compaction of
functional test sequences, the omission of clock cycles, and the
modification of a sequence, are implemented by separate procedures.
This is appropriate since the goal of the modification in earlier works
is to enhance the ability to achieve test compaction. In the procedure
described in this paper, the goal is to increase the number of faults
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that a combined sequence detects in order to allow other sequences to
be removed. The omission of clock cycles can contribute to this goal.
Furthermore, it can contribute in ways that cannot be materialized if
the two procedures are applied separately. Therefore, the modification
of the sequence includes the omission of clock cycles in the procedure
described in this paper.

For simplicity of discussion, all the state variables of a circuit are
assumed to be included in a single scan chain of length k, with a scan
enable input sen, and a scan chain input sin. This affects only the
translation of a conventional scan-based test into a transparent-scan
sequence. A scan shift cycle has sen = 1, and a functional clock
cycle has sen = 0.

The conventional scan-based test set C consists of single-cycle
tests for single stuck-at faults. The use of two-cycle or multicycle tests
affects only the translation of C into an initial set S of transparent-
scan sequences. Different fault models can be accommodated by
using different fault simulation procedures.

To increase the opportunities for faults to be detected under
transparent-scan, original primary outputs and scan chain outputs are
observed at every clock cycle of a transparent-scan sequence. Output
compaction is appropriate for implementing this option. No other
hardware cost is associated with transparent-scan. The computational
cost of transparent-scan is related to the need to perform sequential
fault simulation for transparent-scan sequences. This cost is reduced
(but not eliminated) by limiting the lengths of the transparent-scan
sequences as suggested in this paper.

The paper is organized as follows. Section II discusses the
transparent-scan test set S that is obtained from a conventional scan-
based test set C. The test set S is the initial test set for the test
compaction procedure that is described in Section III. Section IV
provides experimental results.

II. INITIAL TEST SET

This section describes the derivation of an initial set of transparent-
scan sequences S from a given conventional single-cycle test set C.

A conventional single-cycle test ci ∈ C has the form ci = 〈pi, vi〉,
where pi is a scan-in state, and vi is a primary input vector. After
pi is scanned in, the primary input vector vi is applied during a
functional clock cycle. The test ends with a scan-out operation.

The test ci = 〈pi, vi〉 is translated into a transparent-scan sequence
of length 2k + 1 that includes k scan shift cycles for a scan-in
operation, a functional clock cycle, and k scan shift cycles for a
scan-out operation. A clock cycle of the sequence is denoted by u.
The sequence assigned to the original primary inputs is denoted by
Vi. The original primary input vector at clock cycle u is denoted by
Vi(u). The sequence assigned to the scan enable input sen is denoted
by ENi, with ENi(u) being the value of sen at clock cycle u. The
sequence assigned to the scan chain input sin is denoted by INi,
with INi(u) being the value of sin at clock cycle u. This notation
is illustrated by Table I. For Table I, ci = 〈00110, 01〉.

The transparent-scan sequence corresponding to ci is obtained as
follows. The scan-in operation is translated into k scan shift cycles
with 0 ≤ u ≤ k − 1, and ENi(u) = 1. INi(u) assumes the
corresponding bits of pi such that the circuit reaches state pi at
clock cycle k. In Table I, with pi = 00110, ENi(u) = 1 for
0 ≤ u ≤ 4, INi(0) = 0, INi(1) = 1, INi(2) = 1, INi(3) = 0 and
INi(4) = 0.

The functional clock cycle of the test is translated into ENi(u) = 0
and Vi(u) = vi for u = k. In Table I, ENi(5) = 0 and Vi(5) = 01.

The scan-out operation at the end of the test is translated into k
scan shift cycles where ENi(u) = 1, for k + 1 ≤ u ≤ 2k. In Table
I, ENi(u) = 1 for 6 ≤ u ≤ 10.

TABLE I
TRANSPARENT-SCAN SEQUENCE

(a) Initial Translation (b) Final Translation
u Vi(u) ENi(u) INi(u) Vi(u) ENi(u) INi(u)
0 xx 1 0 01 1 0
1 xx 1 1 01 1 1
2 xx 1 1 01 1 1
3 xx 1 0 01 1 0
4 xx 1 0 01 1 0
5 01 0 x 01 0 0
6 xx 1 x xx 1 x
7 xx 1 x xx 1 x
8 xx 1 x xx 1 x
9 xx 1 x xx 1 x

10 xx 1 x xx 1 x

Values that are not specified by ci are left unspecified (x) in Table
I(a). Some of these values are kept unspecified in order to allow
overlapping of Si with other transparent-scan sequences, while other
values are specified in order to increase the ability of the sequence to
detect target faults. The unspecified values are discussed next. Table
I(b) shows the final sequence that is included in S based on the
sequence from Table I(a).

The unspecified primary input vectors at clock cycles 0 ≤ u < k
are specified to be equal to vi, or Vi(u) = vi for 0 ≤ u < k.

The unspecified primary input vectors at clock cycles k+1 ≤ u ≤
2k are left unspecified. If another sequence is overlapped with Si,
the primary input vectors from this sequence will be used.

The unspecified value on INi(k) is assigned a zero value by
default. This value is not important for fault detection since clock
cycle u = k is a functional clock cycle.

Considering the unspecified values of INi(u), for k+1 ≤ u ≤ 2k,
these values are needed for overlapping Si with another sequence.
Therefore, they are left unspecified.

After the initial set of transparent-scan sequences S is obtained,
fault simulation with fault dropping is carried out for the set of target
faults F . Considering a transparent-scan sequence Si ∈ S, sequential
fault simulation is carried out for F to find the subset of target faults
that the sequence detects. This subset is denoted by Fi.

The tester memory required for transparent-scan is as follows.
The original primary inputs are held constant for the duration of
a subsequence that corresponds to a single-cycle test in C, and ends
with its functional clock cycle. Therefore, the number of original
primary input vectors that need to be stored is not increased relative
to C. The scan enable sequence needs to be stored together with
the scan chain input sequence. This doubles the amount of memory
for the scan chain input sequence when the circuit has a single scan
chain. With m ≥ 1 scan chains, the increase because of the scan
enable sequence is (m+1)/m ≤ 2. Test compaction may reduce the
number of original primary input vectors, the number of scan enable
and scan chain input sequences, and their lengths.

III. TEST COMPACTION PROCEDURE

This section describes the test compaction procedure. The proce-
dure is illustrated by Figure 1.

A. Combining Transparent-Scan Sequences

The test compaction procedure combines a pair of transparent-
scan sequences, Si ∈ S and Sj ∈ S, in order to obtain a longer
sequence. With a longer sequence, the procedure has more flexibility
to interleave functional clock cycles and scan shift cycles in ways
that increase the number of detected faults. Creating longer sequences
that detect more faults allows other sequences to be removed from
S. The combination of sequences is performed within the limit of
(µ+ 1)k + µ on the length of a transparent-scan sequence.
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[I = 0] construct S from C

remove unnecessary tests from S

[I = I +1] reorder the sequences in S by
descending number of detected faults

find a set of ta get faults Fmod

find the smallest indice 0 ≤ i < j < |S|
such that Li + L j − k ≤ (μ +1)k + μ

if i and j do not exist, stop

combine Si and S j

simulate F under S0, S1, . . ., Si
and fin Fi

modify Si based on Fi and Fmod

Fig. 1. Test compaction procedure

TABLE II
COMBINATION AND MODIFICATION OF TRANSPARENT-SCAN SEQUENCES

(a) Combination (b) Modification
u Vi(u) ENi(u) INi(u) Vi(u) ENi(u) INi(u) Ωi(u)
0 01 1 0 11 1 0 0
1 01 1 1 11 1 0 0
2 01 1 1 11 1 1 0
3 01 1 0 11 1 0 0
4 01 1 0 11 1 1 0
5 01 0 0 11 0 0 0
6 10 1 1 00 0 1 0
7 10 1 1 00 0 1 1
8 10 1 0 00 1 1 0
9 10 1 0 00 0 0 0
10 10 1 1 00 1 0 0
11 10 0 0 00 0 0 1
12 xx 1 x xx 1 x 0
13 xx 1 x xx 1 x 0
14 xx 1 x xx 1 x 0
15 xx 1 x xx 1 x 0
16 xx 1 x xx 1 x 0

To describe the combination of a pair of transparent-scan se-
quences, the length of Si is denoted by Li. The vector at clock
cycle u of Si is denoted by Si(u). We have that Si(u) =
Vi(u)ENi(u)INi(u).

When a pair of sequences, Si ∈ S and Sj ∈ S, is combined,
the length of the resulting sequence is Li + Lj − k (because of the
overlapping of the scan-out operation of Si with the scan-in operation
of Sj). The resulting sequence replaces Si. The new Si detects all
the faults that Si and Sj detect (all the faults in Fi and Fj). This
always allows Sj to be removed from S. The procedure combines
Si ∈ S and Sj ∈ S such that i < j and Li+Lj−k ≤ (µ+1)k+µ.

Table II(a) shows an example where two transparent-scan se-
quences Si ∈ S and Sj ∈ S are combined into a single sequence
that replaces Si. The sequences are obtained from the conventional
scan-based tests ci = 〈00110, 01〉 (whose transparent-scan sequence
is shown in Table I), and cj = 〈10011, 10〉. The combined sequence
can be further combined with another sequence.

In general, combining Si and Sj , and placing the result in Si, is
performed as follows.

(1) The first k clock cycles of Sj are copied into the last k clock
cycles of Si. This overlaps the scan-out operation of Si with the scan-

in operation of Sj . Because of the unspecified values in the last clock
cycles of Si, none of the values that are important for the application
of Si is lost. This is implemented by assigning Si(ui) = Sj(uj) for
(ui, uj) = (Li − k, 0), (Li − k + 1, 1), ..., (Li − 1, k − 1).

(2) The remaining clock cycles of Sj are concatenated to Si. This
is implemented by assigning Si(Li) = Sj(uj) and Li = Li + 1 for
uj = k, k + 1, ..., Lj − 1.

Fault simulation with fault dropping of F under S0, S1, ..., Si

updates the set of faults that Si detects after it is combined with Sj .

B. Modifying Si

Let Si be obtained by combining Si and Sj . Let Fi be the subset
of faults that Si detects after the combination. The test compaction
procedure modifies Si to increase the number of faults it detects
by targeting two subsets of faults. (1) The procedure requires Si to
continue detecting all the faults in Fi. (2) The procedure attempts
to ensure that Si would detect as many additional faults as possible.
The faults that the procedure targets are detected by sequences in S
with small numbers of detected faults. Such sequences are likely to
be the easiest to remove. The set of target faults is denoted by Fmod.
The derivation of Fmod is described later.

The procedure accepts modifications of Si where all the faults from
Fi are detected, and the number of detected faults from Fmod does
not decrease. Other modifications are not accepted.

A modification of Si must also ensure that Si can be overlapped
with other sequences. For this purpose, it is necessary to maintain
the scan-in operation at the beginning of Si, the scan-out operation
at the end of Si, and the unspecified values at the end of Si. Every
other bit of Si can be complemented. This includes the bits of Vi(u)
and INi(u) for 0 ≤ u < Li − k, and ENi(u) for k ≤ u < Li − k.

In addition, a clock cycle of Si can be omitted. As discussed earlier,
the modification of the sequence and the omission of clock cycles are
considered together since both can contribute to an increase in the
number of detected faults, and they may interact in ways that cannot
be utilized if they are considered separately.

For uniformity, the option of omitting a clock cycle from Si is
implemented by introducing a sequence that is denoted by Ωi. We
have that Ωi(u) = 0 if clock cycle u is retained in Si, and Ωi(u) = 1
if clock cycle u is omitted. After the modification of Si is complete,
clock cycle u is omitted from Si for every u such that Ωi(u) = 1.
Initially, Ωi(u) = 0 for 0 ≤ u < Li. The procedure may complement
Ωi(u), for k ≤ u < Li − k, in order to omit clock cycle u.

The possibility of complementing ENi(u) or Ωi(u), for k ≤
u < Li − k, contributes to test compaction that cannot be achieved
with conventional scan-based tests. The complementation of these
bits allows arbitrary subsequences of scan shift cycles and functional
clock cycles to be formed that are only possible under transparent-
scan. Complementing some of the other bits ensures that the overall
effect of using transparent-scan is as significant as possible.

When the procedure modifies Vi(u), it ensures that the number
of different original primary input vectors in Si does not increase.
This is achieved by considering a single original primary input for
modification, and complementing it for every clock cycle u such
that 0 ≤ u < Li − k. Denoting the number of original primary
inputs by n, and an original primary input by ap, for 0 ≤ p < n,
the set of bits that the procedure considers for complementation is
B = {ap : 0 ≤ p < n} ∪ {ENi(u) : k ≤ u < Li − k} ∪ {INi(u) :
0 ≤ u < Li − k} ∪ {Ωi(u) : k ≤ u < Li − k}.

Table II(b) shows a modified transparent-scan sequence that may
be obtained from the sequence in Table II(a). The modified sequence
is obtained by complementing a0, ENi(u) for u = 6, 7 and 9,
INi(u) for u = 1, 4, 8 and 10, and Ωi(u) for u = 7 and 11. Clock
cycles u = 7 and 11 need to be omitted to obtain the final sequence.
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The procedure considers the bits from B one at a time in a random
order. Before this process starts, Dmod,i = ∅ indicates that Si does
not detect any faults from Fmod−Fi. When a bit b ∈ B is considered,
the procedure complements it to obtain from Si a sequence that
is denoted by Si,b. The procedure performs fault simulation of Fi

under Si,b to determine whether all the faults in Fi are detected. If
they are, the procedure simulates Fmod − Fi under Si,b. Let the
subset of detected faults be Dmod,i,b. The procedure accepts the
complementation if |Dmod,i,b| ≥ |Dmod,i|. In this case, it assigns
Si = Si,b. Otherwise, it discards Si,b.

C. Additional Procedures and Computational Effort

The procedure from Figure 1 removes unnecessary sequences from
the initial test set S, and after it combines a pair of sequences. When a
test ci ∈ C is translated into a transparent-scan sequence Si ∈ S, the
original primary outputs and scan chain output are observed at every
clock cycle of Si. As a result, Si may detect more faults than ci.
Considering the initial transparent-scan test set S, a sequence Si ∈ S
may be unnecessary even though ci is necessary in C. In addition,
as the test compaction procedure combines and modifies sequences
in S to increase the numbers of faults they detect, other sequences
in S become unnecessary.

To identify sequences that can be removed from S, the test
compaction procedure performs fault simulation followed by forward-
looking reverse order fault simulation of S. A sequence that does not
detect any faults is removed from S by this process.

For the procedure to be as effective as possible, it is advantageous
if the sequences is combines, Si and Sj , detect the largest numbers
of faults in S. The test compaction procedure uses fault simulation
with fault dropping to reorder S such that sequences appear by order
of descending number of detected faults (third step in Figure 1). For
a sequence Si, the set of detected faults is denoted by Fi. If |Fi| <
|Fj | is obtained for i < j, reordering ensures that Sj appears in S
before Si. After reordering, the procedure repeats the fault simulation
process to recompute the sets of detected faults. Reordering and fault
simulation with fault dropping are performed until fault simulation
with fault dropping yields |F0| ≥ |F1| ≥ |F2| ≥ ....

In this order, the procedure combines Si and Sj , for the lowest
i and j, whose combined length does not exceed the limit given by
µ. By using the lowest possible values of i and j, the procedure
considers the sequences with the largest sets of detected faults.

The sequences that are the most likely to be removed from S are
the ones at the end of S, detecting the smallest numbers of faults. The
procedure defines the set Fmod of target faults for the modification
of Si based on these sequences (fourth step in Figure 1) as follows.

The procedure first assigns Fmod = ∅. For every sequence Sa ∈ S
with the smallest |Fa|, the procedure adds the faults from Fa to
Fmod. It should be noted that, even if fault simulation of S0, S1, ...,
Si (eighth step in Figure 1) updates Fi to include faults from Fmod,
the procedure still targets the faults in Fi and Fmod − Fi for the
modification of Si.

The worst-case computational effort of the test compaction proce-
dure is determined by the modification of combined sequences, as
follows. For a conventional scan-based test set C that contains m
tests, the procedure obtains an initial transparent-scan test set with
m sequences. The procedure combines a pair of sequences in every
iteration. Therefore, the number of iterations is O(m). This is also
the number of combined sequences that the procedure considers.

To modify a combined sequence, the procedure considers O(n+k)
bits in the set B. For every bit it simulates at most |Fi ∪ Fmod|
faults, or O(|F |) faults. With a constant for µ, the length of a
sequence is O(k). Overall, the computational effort of the procedure

is determined by the need to perform fault simulation for O(m(n+
k)k|F |) faults and clock cycles.

IV. EXPERIMENTAL RESULTS

The test compaction procedure from Figure 1 is applied to single
stuck-at faults in benchmark circuits using a compact scan-based test
set for C. The procedure is also applied to sequence detectors for
the all-one sequence of length 64, 128, 256 and 512 to illustrate its
performance for a functional unit as its size is increased.

The procedure is applied with µ = 4 to limit the length of a
transparent-scan sequence. Since the omission of clock cycles may
reduce the length of a sequence, it is possible for the procedure to
combine more than four sequences without exceeding this limit every
time k + 1 or more clock cycles are omitted.

The level of test compaction is measured by the number of clock
cycles that are required for applying S. This number is computed as
cyc = k+

∑{Li −k : Si ∈ S}, taking into consideration that scan-
out and scan-in operations will be overlapped for consecutive tests.
For ease of references, cycI is the number of clock cycles required
for applying the test set obtained in iteration I . The initial test set
corresponds to iteration I = 0, with cyc0 clock cycles.

The results are shown in Table III as follows. The first row for every
circuit describes the initial transparent-scan test set S. Additional
rows describe the test set S when the number of clock cycles,
cycI , is reduced to approximately 0.9cyc0, 0.8cyc0, .... The last row
describes the final test set.

After the circuit name, column sv shows the number of state
variables, k. Column iter shows the iteration of the test compaction
procedure. Column Fmod shows the fraction of faults in Fmod for
the iteration, |Fmod|/|F |.

Column seq shows the number of transparent-scan sequences in
S. Column max shows the maximum length of a transparent-scan
sequence. Column cycles shows the total number of clock cycles
cycI required for applying all the sequences in S. Column ratio
shows the ratio cycI/cyc0.

Column f.c. shows the fault coverage of S. The test compaction
procedure ensures that the fault coverage does not decrease. Column
ntime shows the normalized run time, where the cumulative run
time of the test compaction procedure is divided by the run time for
obtaining the initial transparent-scan test set S from C. This includes
only fault simulation with fault dropping and forward-looking reverse
order fault simulation of S.

The following points can be seen from Table III. There are many
circuits where the test compaction procedure reduces the number
of clock cycles required for applying the transparent-scan test set
significantly compared with the initial test set, and compared with a
compact conventional scan-based test set.

For some circuits, the first significant reduction in the number
of clock cycles is achieved after a small number of iterations. This
implies that sequences, other than the ones combined, can be removed
from the test set after a small number of iterations. For other circuits,
it takes several iterations before other sequences can be removed.

The normalized run time is similar for benchmark circuits of
different sizes. This indicates that the procedure scales similar to a
fault simulation procedure for transparent-scan sequences of minimal
length, as in the initial test set. In a large design, fault simulation is
expected to be applicable to logic blocks within the design. To further
demonstrate the scalability of the procedure, Figure 2 shows the nor-
malized run time as a function of the number of state variables when
the number of clock cycles is reduced to approximately 0.9cyc0.
Figure 2 demonstrates that the normalized run time does not increase
with the number of state variables, which is used for measuring the
circuit size. The sequence detectors further demonstrate the scalability
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TABLE III
EXPERIMENTAL RESULTS

circuit sv iter Fmod seq max cycles ratio f.c. ntime
s1423 74 0 - 26 149 2024 1.000 99.076 1.00
s1423 74 13 0.00198 10 371 1762 0.871 99.076 28.09
s1423 74 16 0.00132 6 371 1665 0.823 99.076 30.67
s5378 179 0 - 100 359 18179 1.000 99.131 1.00
s5378 179 14 0.00326 76 899 16191 0.891 99.131 35.16
s5378 179 29 0.00348 55 899 14330 0.788 99.131 52.04
s5378 179 43 0.00304 37 899 12634 0.695 99.131 65.15
s5378 179 61 0.00043 18 899 10993 0.605 99.131 78.53
s9234 228 0 - 111 457 25647 1.000 93.475 1.00
s9234 228 80 0.00029 27 1136 23352 0.911 93.475 98.31
s13207 669 0 - 183 1339 123279 1.000 98.462 1.00
s13207 669 4 0.00540 153 3344 105854 0.859 98.462 20.36
s13207 669 5 0.00448 138 3344 96474 0.783 98.462 22.44
s13207 669 8 0.00224 108 3346 78373 0.636 98.462 27.92
s13207 669 10 0.00153 98 3346 73011 0.592 98.462 30.55
s13207 669 15 0.00071 74 3346 60187 0.488 98.462 35.08
b04 66 0 - 42 133 2880 1.000 99.851 1.00
b04 66 7 0.00966 29 331 2464 0.856 99.851 21.20
b04 66 12 0.00817 21 331 2201 0.764 99.851 28.20
b04 66 18 0.00669 13 331 1990 0.691 99.851 33.51
b04 66 22 0.00149 8 331 1803 0.626 99.851 36.12
b14 247 0 - 327 495 81343 1.000 94.870 1.00
b14 247 33 0.01262 261 1234 72983 0.897 94.870 59.20
b14 247 71 0.01272 202 1234 67276 0.827 94.870 103.31
des area 128 0 - 115 257 14963 1.000 100.000 1.00
des area 128 13 0.00101 95 639 13386 0.895 100.000 34.79
des area 128 24 0.00101 82 639 11936 0.798 100.000 48.33
des area 128 35 0.00101 70 639 10441 0.698 100.000 60.23
des area 128 45 0.00101 57 639 8969 0.599 100.000 73.01
des area 128 54 0.00081 45 639 7430 0.497 100.000 79.34
des area 128 66 0.00101 33 639 5958 0.398 100.000 89.25
des area 128 78 0.00101 21 639 4468 0.299 100.000 99.30
des area 128 89 0.00040 9 639 2915 0.195 100.000 108.07
des area 128 92 0.00010 6 639 2574 0.172 100.000 111.01
i2c 128 0 - 45 257 5933 1.000 100.000 1.00
i2c 128 21 0.00214 20 641 5309 0.895 100.000 53.79
i2c 128 30 0.00043 10 641 4956 0.835 100.000 63.53
pci spoci ctrl 60 0 - 146 121 8966 1.000 99.942 1.00
pci spoci ctrl 60 84 0.01514 52 299 8003 0.893 99.942 94.40
pci spoci ctrl 60 102 0.00058 34 299 7908 0.882 99.942 108.32
sasc 117 0 - 22 235 2713 1.000 100.000 1.00
sasc 117 6 0.00059 14 578 2439 0.899 100.000 47.22
sasc 117 9 0.00356 8 578 2036 0.750 100.000 54.67
sasc 117 10 0.00237 6 578 1892 0.697 100.000 55.68
sasc 117 11 0.00119 4 578 1677 0.618 100.000 56.52
simple spi 131 0 - 36 263 4883 1.000 100.000 1.00
simple spi 131 11 0.00095 22 650 4333 0.887 100.000 45.69
simple spi 131 18 0.00143 15 650 3876 0.794 100.000 54.06
simple spi 131 24 0.00095 8 650 3383 0.693 100.000 59.13
spi 229 0 - 394 459 90849 1.000 99.985 1.00
spi 229 34 0.01185 321 1147 81708 0.899 99.985 55.24
spi 229 51 0.00985 265 1147 72631 0.799 99.985 69.61
spi 229 74 0.00785 198 1147 62342 0.686 99.985 85.01
spi 229 93 0.00446 140 1147 53181 0.585 99.985 94.23
systemcdes 190 0 - 78 381 15088 1.000 100.000 1.00
systemcdes 190 3 0.00030 65 928 13152 0.872 100.000 20.81
systemcdes 190 4 0.00045 58 928 11989 0.795 100.000 21.97
systemcdes 190 5 0.00106 48 928 10246 0.679 100.000 23.42
systemcdes 190 6 0.00030 38 928 8482 0.562 100.000 25.48
systemcdes 190 7 0.00151 31 928 7332 0.486 100.000 26.00
systemcdes 190 9 0.00061 20 928 5570 0.369 100.000 27.13
systemcdes 190 11 0.00061 12 928 4358 0.289 100.000 27.90
systemcdes 190 13 0.00015 5 928 3184 0.211 100.000 28.35
usb phy 98 0 - 32 197 3266 1.000 100.000 1.00
usb phy 98 10 0.00538 19 481 2889 0.885 100.000 38.13
usb phy 98 12 0.00385 14 481 2584 0.791 100.000 41.91
usb phy 98 16 0.00308 8 481 2222 0.680 100.000 46.81
usb phy 98 18 0.00077 6 481 2144 0.656 100.000 48.21
all1sd.64 63 0 - 65 127 4223 1.000 100.000 1.00
all1sd.64 63 1 0.00262 1 191 191 0.045 100.000 1.80
all1sd.128 127 0 - 129 255 16639 1.000 100.000 1.00
all1sd.128 127 1 0.00131 1 383 383 0.023 100.000 1.70
all1sd.256 255 0 - 257 511 66047 1.000 100.000 1.00
all1sd.256 255 1 0.00065 1 767 767 0.012 100.000 1.70
all1sd.512 511 0 - 513 1023 263167 1.000 100.000 1.00
all1sd.512 511 1 0.00033 1 1535 1535 0.006 100.000 1.76

of the procedure. For these circuits also, the normalized run time does
not increase as the circuit size is increased.
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Fig. 2. Scalability

V. CONCLUDING REMARKS

This paper described a new approach to test compaction under
transparent-scan. In this approach, a transparent-scan test set consists
of several transparent-scan sequences whose lengths are limited. As
sequences are combined into longer sequences that detect more faults,
without exceeding the length limit, test compaction is achieved by
removing entire sequences from the test set, and to a lesser extent,
omitting clock cycles from the combined sequences. Experimental
results for benchmark circuits demonstrated the ability of the proce-
dure to achieve test compaction without creating prohibitively long
transparent-scan sequences.
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