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Abstract. A flag is a nested sequence of vector spaces. The type of the
flag is determined by the sequence of dimensions of the vector spaces
making up the flag. A flag manifold is a manifold whose points param-
eterize all flags of a particular type in a fixed vector space. This paper
provides the mathematical framework necessary for implementing self-
organizing mappings on flag manifolds. Flags arise implicitly in many
data analysis techniques for instance in wavelet, Fourier, and singular
value decompositions. The proposed geometric framework in this paper
enables the computation of distances between flags, the computation of
geodesics between flags, and the ability to move one flag a prescribed
distance in the direction of another flag. Using these operations as build-
ing blocks, we implement the SOM algorithm on a flag manifold. The
basic algorithm is applied to the problem of parameterizing a set of flags
of a fixed type.

Keywords: Self-organizing mappings, SOM, flag manifolds, geodesic,
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1 Introduction

Self-Organizing Mappings (SOMs) were introduced as a means to see data in
high-dimensions [7–10]. This competitive learning algorithm effectively trans-
ports the notion of proximity in the data space to proximity in the index space;
this may in turn be endowed with its own geometry. This tool has now been
widely applied and extended [4]. The goal of the SOM algorithm is to produce
a topology preserving mapping in the sense that points that are neighbors in
high-dimensional space are also represented as neighbors in the low-dimensional
index space.

The geometric framework of the vanilla version of the SOM algorithm is Eu-
clidean space. In this setting, the distance between points is simply the standard
2-norm of the vector difference. The movement of a center towards a pattern
takes place on a line segment in the ambient space. The only additional ingre-
dient to the algorithm is a metric on the index space.

Motivated by the subspace approach to data analytics we proposed a ver-
sion of SOM using the geometric framework of the Grassmannian [15, 2, 16, 14].
This subspace approach has proven to be effective in settings where you have a
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collection of subspaces built up from a set of patterns drawn from a given fam-
ily. Given one can compute distances between points on a Grassmannian, and
move one point in the direction of another, it is possible to transport the SOM
algorithm on Euclidean space to an SOM algorithm on a Grassmannian [6, 11].

An interesting structure that generalizes Grassmannians and encodes addi-
tional geometry in data is known as the flag manifold. Intuitively, a point on a
flag manifold is a set of nested subspaces. So, for example, given a data vector,
a wavelet transform produces a set of approximations that live in nested scaling
subspaces [5]. The nested sequence of scaling subspaces is a flag and corresponds
to a single point on an appropriate flag manifold. Alternatively, an ordered basis,
v1, v2, . . . , vk for a set of data produced by principal component analysis induces
the flag S1 ⊂ S2 ⊂ · · · ⊂ Sk where Si is the span of v1, . . . , vi. In this paper
we extend SOM to perform a topology preserving mapping on points that cor-
respond to nested subspaces such as those arising, for instance, from ordered
bases or wavelet scaling spaces. To accomplish this we show how to compute the
distance between two points on a flag manifold, and demonstrate how to move
a flag a prescribed distance in the direction of another. Given these building
blocks, we illustrate how one may extend SOM to the geometric framework of a
flag manifold.

This paper is outlined as follows: In Section 2 we provide a formal definition of
the flag manifold and illustrate with concrete examples. In Section 3 we introduce
the numerical representation of flag manifolds. Here we indicate explicitly how
distances can be computed between flags, and further, how a flag can be moved
in the direction of another flag. In Section 4 we put the pieces together to
realize the SOM algorithm on flag manifolds. We demonstrate the algorithm
with a preliminary computational example. Finally, in Section 5 we summarize
the results of the paper and point towards future directions of research.

2 Introduction to flag manifold with data analysis
examples

Let us first introduce the flag manifold. A flag of type (n1, n2, . . . , nd;n) is a
nested sequence of subspaces in Rn where {0} ( V1 ( V2 ( · · · ( Vd = Rn,
dimVj = Σj

i=1ni and n1 +n2 + · · ·+nd = n. We let FL(n1, n2, . . . , nd;n) denote
the flag manifold whose points parameterize all flags of type (n1, n2, . . . , nd;n).
As a special case, the flag of type (1, 1, · · · , 1;n) is referred to as a full flag
and FL(1, 1, · · · , 1;n) is the full flag manifold in Rn. Figure 1 illustrates the
nested structure of the first three low-dimensional elements comprising a full
flag in Rn. A flag of type (k, n− k;n) is simply a k−dimensional subspace of Rn
(which can be considered as a point on the Grassmann manifold Gr(k, n)). Hence
FL(k, n − k;n) = Gr(k, n). The Grassmannian-SOM algorithm is developed in
[6, 11]. The idea that the flag manifold is a generalization of the Grassmann
manifold will be utilized later to introduce the geodesic formula on the flag
manifold. The nested structure inherent in a flag shows up naturally in the
context of data analysis.
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Fig. 1: Illustration of a nested sequence of subspaces corresponding to a point on
the flag manifold FL(1, 1, · · · , 1;n).

1. Wavelet analysis: Wavelet analysis and its associated multiresolution repre-
sentation produces a nested sequence of vector spaces that approximate data
with increasing resolution [12, 13, 1]. Each scaling subspace Vj is a dilation
of its adjacent neighbor Vj+1 in the sense that if f(x) ∈ Vj then a reduced
resolution copy f(x/2) ∈ Vj+1. The scaling subspaces are nested

· · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · ·

and in the finite dimensional setting can be considered as a point on a flag
manifold. The flag SOM algorithm provides a means to visualize relationships
in a collection of discrete wavelet transforms and organize the corresponding
sequences of nested subspaces in a coherent manner via a low-dimensional
grid.

2. SVD basis of a real data matrix: Let X ∈ Rn×k be a real data matrix
consisting of k samples in Rn. Let UΣV T = X be the thin SVD of X. The
columns of the n-by-d orthonormal matrix U is an ordered basis for the
column span of X. This basis is ordered by the magnitude of the singular
values of X. This order provides a straightforward way to associate to U a
point on a flag manifold. If U = [u1|u2| . . . |ud] then the nested subspaces
span([u1]) ( span([u1|u2]) ( · · · ( span([u1| · · · |ud]) ( Rn is a flag of type
(1, 1, . . . , 1, n−d;n) in Rn. After we introduce the distance metric on the flag
manifold in Section 3.2, one could consider computing the distance between
two flags, perhaps derived from a thin SVD of two different data sets, which
takes the order of the basis into consideration.

3 Numerical representation and geodesics

A point in the vector space Rn can be naturally represented by an n× 1 vector.
For a more abstract object like a Grassmann or flag manifold, we need a way
to represent points in such a way that we can do computations. In this section,
we describe how we can represent points and we describe how to determine and
express geodesic paths between points. Note that in this paper we are using exp
and log to denote the matrix exponential and the matrix logarithm.
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3.1 Flag manifold

The flag manifold FL(n1, n2, . . . , nd;n) consists of the set of all flags of type
(n1, n2, . . . , nd;n). The presentation in [3] describes how to view the Grassmann
manifold Gr(k, n) as the quotient manifold SO(n)/S(O(k)×O(n−k)). Similarly,
we can view FL(n1, n2, . . . , nd;n) as the quotient manifold SO(n)/S(O(n1) ×
O(n2)×· · ·×O(nd)) where n1 +n2 + · · ·+nd = n. Let P ∈ SO(n) be an n-by-n
orthogonal matrix, the equivalence class [P ], representing a point on the flag
manifold, is the set of orthogonal matrices

[P ] =

P

P1 0 · · · 0
0 P2 · · · 0
...

. . .
...

0 · · · Pd

 : Pi ∈ O(ni) , n1 + n2 + · · ·+ nd = n

 .

It is well known that the geodesic paths on SO(n) are given by exponential flows
Q(t) = Q exp(tA) where A ∈ Rn×n is any skew symmetric matrix andQ(0) = Q.
Viewing FL(n1, n2, . . . , nd;n) as a quotient manifold of SO(n), one can show
that geodesics on SO(n) continue to be geodesics on FL(n1, n2, . . . , nd;n) as
long as they are perpendicular to the orbits generated by S(O(n1) × O(n2) ×
· · · × O(nd)) (for a derivation on a Grassmann manifold, see [11]). This leads
one to conclude that the geodesic paths on FL(n1, n2, . . . , nd;n) are exponential
flows:

P (t) = P exp(tC̃) (1)

where C̃ is any skew symmetric matrix of the form

C̃ =


0n1

∗
0n2

. . .

−∗T 0nd

 , 0ni
= 0ni×ni .

3.2 Geodesic and distance between two points on flag Manifold

By Equation (1), one may trace out the geodesic path on a flag manifold ema-
nating from P in the direction of C̃. In this section we utilize Equation (1) to
solve the inverse problem:
Given two points Q1,Q2 ∈ SO(n), whose equivalence classes [Q1], [Q2] represent
flags of type (n1, n2, . . . , nd;n), obtain a factorization

Q2 = Q1 · exp(H) ·M (2)

for H and M where H and M are constrained to be of the form

H =


0n1 ∗

0n2

. . .

−∗T 0nd

 and M =


M1 0 · · · 0
0 M2 · · · 0
...

. . .
...

0 · · · Md


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Fig. 2: Illustration of Equation (2). The vertical lines represents the equivalence
classes [Q1] and [Q2] respectively. Q1 is mapped to an element in [Q2] by right
multiplication with exp(H) which is then sent to Q2 by multiplying with M .

where H is skew symmetric, Mi ∈ O(ni), and M ∈ SO(n). The distance
between [Q1] and [Q2] along the geodesic given by H is

d([Q1], [Q2]) =
√
Σl
i=1λ

2
i (3)

where the λi’s are the distinct singular values of H.
Equation (2) can be interpreted in the following way. First, we map Q1 to a
representative in [Q2] via the geodesic determined by the velocity matrix H.
Second, we map this element in [Q2] to Q2 via the matrix M . Figure 2 is a
pictorial illustration of the idea behind Equation (2). For FL(k, n − k;n) i.e.
the Grassmannian Gr(k, n), one can solve for H analytically. Please see [3] for
details. For the more general case, we will present an iterative algorithm to obtain
a numerical approximation of H and M in Section 3.3. Before we proceed to the
algorithm, let us further simplify Equation (2) by letting Q = QT1Q2. This allows
us to rewrite (1) as

Q = exp(H) ·M (4)

Here we defineW as the vector space of all n-by-n skew symmetric matrices. Let
p = (n1, n2, . . . , nd;n). We define Wp to be the set of all block diagonal skew
symmetric matrices of type p and its orthogonal complement W⊥p in W , i.e.

Wp = {G ∈ W | G =

G1 · · · 0
...

. . .
...

0 · · · Gd

}, W⊥p = {H ∈ W | H =

 0n1 ∗
. . .

−∗T 0nd

}.
Where, by definition, Gi ∈ Rni×ni is skew symmetric for all i. Instead of solving
Equation (4) directly, we propose to solve the following alternative equation:

Q = exp(H) · exp(G) (5)
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Algorithm 1: Iterative Alternating Exp-Log Algorithm

Input Data: Load matrices Q1, Q2 ∈ SO(n) from the flag manifold, desired
flag type p = (n1, n2, . . . , nd;n), initial G0 ∈ Wp

Output Data: Optimal skew symmetric matrices H ∈ W⊥p ,G ∈ Wp such that
QT

1 Q2 = exp(H) · exp(G)
Result: Geodesic path and geodesic distance between [Q1] and [Q2]
Initialization: Let Q = QT

1 Q2, set initial dH =∞
Define: Geodesic distance associated to H: dH =

√
Σl

i=1λ
2
i where λi’s are

distinct singular values of H.
1 for i = 1, · · · ,m do
2 Generate initial randomized G0

3 for k = 1, · · · , l do
Step 1: Hk = ProjH(log(Q · exp(Gk−1)T ))
Step 2: Gk = ProjG(log(exp(Hk)TQ))

4 end
5 if current H is associated to a smaller dH then
6 Update dH
7 Set current H and G as our output

8 else
9 continue

10 end

11 end

where G ∈ Wp and H ∈ W⊥p . It is important to note that in these computations,
we are implicitly working on the fully oriented flag manifold SO(n)/SO(n1) ×
SO(n2)×· · ·×SO(nd). There is a natural 2d−1 to 1 map from the fully oriented
flag manifold to the flag manifold. As the output of the algorithm, we must pick
the ”optimal” H with the shortest distance arising from this map.

3.3 Iterative Alternating algorithm

The idea of the Iterative Alternating algorithm is straightforward. Given an
initial guess G0 ∈ Wp, since Q and G0 are known, we can solve for H numerically.

Let Ĥ = log(Q · exp(G0)T ), since Ĥ is generally not of the desired form (Ĥ /∈
W⊥p ), we project Ĥ onto W⊥p to obtain the updated H. This projection zeros

out certain select entries in Ĥ, which is denoted by H1 = ProjW⊥p (Ĥ). Then we

start updating G. Let Ĝ = log(exp(H1)TQ) we project Ĝ onto Wp which zeros

out other select entries, i.e. G1 = ProjG(Ĝ). Now then iterate this process until
it converges. The pseudo code of our Iterative Alternating algorithm is presented
in Algorithm 1.

We walk through two examples as an illustration of the numerical compu-
tation of the geodesic formula and distance between two points from the flag
manifold. Here two types of flag manifold are utilized to illustrate the differ-
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Algorithm 2: Flag Manifold Self-Organizing Mapping

Input Data: Load class labeled orthonormal data matrices {Xi} ∈ Rn×k for
i = 1, · · · , P such that XT

i Xi = Ik where Xi is the nested
subspace of interest, k is the dimension of the most outer
subspace of interest, n is the dimension of the data, i is the matrix
index. Let {Yi} for i = 1, · · · , P be the corresponding label set.

Output Data: Final centers and indices of each data subspace.
Result: Representation of points on FL(n1, n2, · · · , nd;n) as indices of SOM

centers.
Initialization: Complete the orthogonal complement of Xi by computing the

QR-decompostion, i.e., Xi = QiRi, such that Qi ∈ SO(n).
Select number of centers and the structure of low dimensional
index set. Initialize centers {Ci} so that Ci ∈ SO(n)

Define: Geodesic distance dg on the flag manifold
Step 1: Present a random point(nested sequence of subspaces) to the network.
Step 2: Move all the centers Ci proportionally towards the presented nested

sequence of subspaces along the appropriate geodesic.
Step 3: Repeat until convergence.

ent geometry between a Grassmann and a flag manifold. Let X =


1 0
0 1
0 0
0 0

 and

Y =


1√
2

1√
3

0 1√
3

0 1√
3

− 1√
2

0

 be two data matrices of interest. LetX = Q1R1 and Y = Q2R2

be the full QR-decomposition of X and Y . Here we look at two different flag
structures:

1. Flag manifold of type p = (2, 2; 4): Let Q = QT1Q2 and the initial G0(or any

Gi in the iterative procedure) should be of the form Gi =


0 g1 0 0
−g1 0 0 0

0 0 0 g2
0 0 −g2 0

.

The output velocity matrix H(or any Hi) should be of the form Hi =
0 0 h1 h2
0 0 h3 h4
−h1 −h3 0 0
−h2 −h4 0 0

. The unique singular values of output H are λ1 = 1.0172,

λ2 = 0.5536 and the geodesic distance is therefore d([Q1], [Q2]) =
√
λ21 + λ22 =

1.1581. One thing to note is that FL(2, 2, ; 4) is equivalent to Gr(2, 4). It is
easy to verify that λ1, λ2 are exactly the principal angles between X and Y .
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2. Flag manifold of type p = (1, 1, 2; 4): For this example, the Gi’s and Hi’s

should be of the form Gi =


0 0 0 0
0 0 0 0
0 0 0 g1
0 0 −g1 0

 and Hi =


0 h1 h2 h4
−h1 0 h3 h5
−h2 −h3 0 0
−h4 −h5 0 0


respectively. The unique singular values of output H are λ1 = 1.0469, λ2 =
0.5404 and the geodesic distance is therefore d([Q1], [Q2]) = 1.1782. The
geodesic distance is larger than the previous example since we have imposed
more structure in this example.

4 SOM on flag manifolds

In this section we extend the SOM algorithm to the setting of flag manifolds.
The general setting of SOM starts with a set of training data x(µ) µ = 1, · · · , p
and an initial set of randomized centers {Ci} where the subscript i is associated
to the label of the low dimensional index ai. The standard SOM center update
equation is given by,

Cm+1
i = Cmi + εmh(d(ai, ai∗))(X − Cmi ).

The superscript m is indicating the m-th iteration in the SOM algorithm. Here
i∗ is the winning center of data point X, i.e.

i∗ = arg min ‖X − Ci‖2.

We also set the localization function as the standard

h(s) = e−s
2/σ2

and d is the metric which induces the geometry on the index set. Here we mainly
focus on the simple one,

d(ai, aj) = ‖ai − aj‖2

where the indices are enumerated by subscript, i.e. the index set contains a1, a2,
· · · , aN . In the following example, we use a1 = (1, 7), a2 = (1, 6),a3 = (1, 5),· · · ,
a49 = (7, 1). On the flag manifold, points are no longer living in a Euclidean
space thus cannot be moved using the standard update equation. For a given
data point X from a flag manifold of type p = (n1, n2, · · · , nd;n), we identify the
winning center, from the set of all nested subspaces of type p which represent
centers {Ci}, that is closest via

i∗ = arg min
i
dg(X,Ci)

where dg is defined in Equation (3). To move the centers towards the nested
subspace pattern X according to the SOM update we compute the geodesic,
using the Iterative Alternating algorithm described in Algorithm 1, between
each center Ci and nested subspace pattern X.
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Fig. 3: 8 data points are sampled uniformly along the geodesic curve in
FL(1, 1, 2; 4) and labelled in the ascending order from 1 to 8. We observe that
7× 7 2D lattice index sorts the label/order of the data points and preserves the
geometry of this geodesic line.

Our localization term now becomes

t = εnh(d(ai, ai∗)).

We now take
h(s) = exp(−s2/σ2)

where εn = ε0(1/ ln(e + n− 1)). The centers thus change along the geodesic by
moving from Ci(0) to Ci(t) where t is adjusted for the step size. The algorithm
for SOM on a flag manifold is summarized in Algorithm 2.

4.1 Numerical Experiment

In this section we present an illustrative example concerning a straight line on
a flag manifold. We select an initial position Q ∈ SO(n) from a flag manifold of
type p = (1, 1, 2; 4) and a velocity matrix H ∈ W⊥p . Then a set of 8 points are
uniformly sampled along the geodesic path emanating from P in the direction
H, i.e.,

Xi = Q · exp(tiH), i = 0, 1, 2, · · · , 7

where ti = 0.1i. We employ the 7× 7 2D grid index set described above for this
example. In Figure (3), we see that the square lattice index set captures the
geometry of the points living on a geodesic in the high dimensional flag manifold
and sorts the labels (subscripts of data points Xi’s) in the right order.

5 Conclusions and Future Work

We have presented algorithms for Self-Organizing Mappings on flag manifolds.
Techniques for computing the key ingredients of the SOM on flags are deter-
mining distances between flags and moving one flag a prescribed distance in the
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direction of another flag. The algorithm was tested on a sample problem that
involves computing an ordering of points on a flag manifold. In future work we
will explore the application of this flag SOM algorithm to real-world data sets.
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