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Surface reconstruction is one of the central problems in computer graphics.
Existing research on this problem has primarily focused on improving the
geometric aspects of the reconstruction (e.g., smoothness, features, element
quality, etc.), and little attention has been paid to ensure it also has desired
topological properties (e.g., connectedness and genus). In this paper, we
propose a novel and general optimization method for surface reconstruction
under topological constraints. The input to our method is a prescribed genus
for the reconstructed surface, a partition of the ambient volume into cells,
and a set of possible surface candidates and their associated energy within
each cell. Our method computes one candidate per cell so that their unionis a
connected surface with the prescribed genus that minimizes the total energy.
We formulate the task as an integer program, and propose a novel solution
that combines convex relaxations within a branch and bound framework.
As our method is oblivious of the type of input cells, surface candidates, and
energy, it can be applied to a variety of reconstruction scenarios, and we
explore two of them in the paper: reconstruction from cross-section slices
and iso-surfacing an intensity volume. In the first scenario, our method
outperforms an existing topology-aware method particularly for complex
inputs and higher genus constraints. In the second scenario, we demonstrate
the benefit of topology control over classical topology-oblivious methods
such as Marching Cubes.
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1 INTRODUCTION

Surface reconstruction from incomplete data (e.g., images, volumes,
points, curves, etc.) is one of the central topics in computer graph-
ics. To be useful for downstream tasks, the surfaces need to satisfy
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Fig. 1. Topologically correct, connected, genus zero reconstruction of a corn
root (right) from cross sections (left).

application-dependent requirements. One class of such requirements
concerns the surfaces’ topology, including its connectedness and
genus. Topological requirement often arises in biology and medicine,
as many natural objects (e.g., anatomical structures) have a known
topology; for example the corn roots whose reconstruction is shown
in Figure 1 are known to be connected, genus zero surfaces. Geomet-
ric processing tasks, such as parameterization and shape matching,
also prefer shapes with simple and consistent topology.

Despite the extensive research on surface reconstruction, few
works have addressed the topological correctness of their output.
The scarcity is in part due to the fact that topology is an inherent
property that is invariant of geometric deformations. Hence it is
difficult to change topology (without creating adverse impacts on
geometry), and even more difficult to enforce a prescribed topology.
To satisfy topological requirements, existing reconstruction methods
either rely on user interaction, which can be tedious and not suited
for batch processing, or resort to post-processing topology repair,
which generally has no knowledge of the input data from which the
surface is created and hence can make incorrect decisions.

In this work, we propose a solution for automatic topology-aware
reconstruction that outputs topologically correct surfaces without
the need for post-processing repair. Our method is inspired by the
recent works [Huang et al. 2017; Zou et al. 2015] which are among
the first topology-aware reconstruction methods. The methods are
designed for the problem of surface reconstruction from 2D cross-
section curves, and take a divide-and-conquer approach. Given a
partitioning of space into “cells” by the cross-section planes, they
first enumerate multiple candidate surfaces within each cell that
connect the curves on the cell boundary. They then solve a challeng-
ing combinatorial optimization problem to select one candidate per
cell so that their union surface has the prescribed topology while
minimizing a geometric energy. These methods are effective in meet-
ing the topological requirements and are rather efficient for simple
data sets consisting of a few planes. However, a simple optimization
method (dynamic programming) is used in these methods. Although
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optimal, dynamic programming scales poorly with the complexity
of the inputs, such as the number of planes, complexity of curves
on each plane, and the genus constraint.

Our work aims at developing an efficient, effective and general-
purpose combinatorial optimization method, which can enable topol-
ogy aware reconstruction not only from cross-sections but also from
any other data where the divide-and-conquer approach is applicable.
We formulate the candidate-selection task as an integer program-
ming problem, and show that the topological constraints on the
consistency, genus, and connectivity of the surface can be translated
into convex constraints in an integer valued vector x. By convexi-
fying the integer constraints we obtain convex relaxations for the
topology-aware reconstruction problem which leads to tight lower
bounds for the optimal value of the problem. These tight lower
bounds are exploited to solve the combinatorial optimization prob-
lem efficiently in a small number of branch and bound iterations.

We explore two reconstruction scenario that utilize our new op-
timization method. For the problem of reconstructing from cross-
sectional curves, our results show that our method is significantly
more scalable than dynamic programming, often finding optimal
results several orders of magnitude faster. The scalability allows
our algorithm to process much more complex inputs and higher
genus constraints that exceed the capability of methods like [Huang
et al. 2017; Zou et al. 2015]. In a second problem, we develop a
topology-aware iso-surfacing method for grid data. Unlike conven-
tional methods (e.g., Marching Cubes) that determines the patch
structure within each grid cell solely based on local information (e.g.,
signs at the grid points), our method is guided by global topologi-
cal constraints and hence is more likely to produce a topologically
correct iso-surface.

Of independent interest is the formulation of the connectivity
constraint on the surface as a convex constraint , which we re-
duce to the problem of constraining an appropriate graph to be
connected. We explore two convex formulations of graph connec-
tivity: edge-connectivity and algebraic connectivity. We show edge-
connectivity is strictly tighter (i.e., produce better lower bounds)
than algebraic connectivity and propose a cutting-plane-like algo-
rithm to efficiently incorporate edge-connectivity constraints by
iteratively solving a chain of linear programs. We use algebraic
connectivity as a safe-guard for rare cases where convergence of
the cutting plane algorithm is slow.

2 PREVIOUS WORK

Topology control in surface reconstruction. Topological control can
be achieved by either user interaction [Sharf et al. 2007; Yin et al.
2014] or template fitting [Bazin and Pham 2007; Zeng et al. 2008].
However, these methods are limited to the availability of human
resource or template structures. An alternative strategy is removing
topological errors from on an existing surface [Ju et al. 2007; Wood
et al. 2004] (see more in-depth discussion in the survey [Attene et al.
2013]). However, as these post-processing methods generally have
no knowledge of the data from which the surface is created, they
could make repair decisions that result in undesirable geometry that
deviate from the inputs (e.g., surface no longer interpolating the
input point clouds or cross-section curves).
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Only a few works have attempted to incorporate topology con-
straints within an automatic reconstruction algorithm. Sharf et al.
[Sharf et al. 2006] proposes an advancing-front method, designed
for point cloud inputs, which allows control over the genus of the
result. A divide-and-conquer approach is used in several works for
reconstructing 2D curves [Zhou et al. 2014], and, more recently,
3D surfaces [Huang et al. 2017; Zou et al. 2015]. These algorithms
first enumerate possible candidates within each cell of a spatial
subdivision and measure the suitability of each candidate as an
energy. Given a target topological goal (e.g., number of connected
components and/or genus), they solve a combinatorial optimization
problem that selects one candidate per cell to achieve the goal while
minimizing the total energy. While these methods differ in the di-
mensionality of the problem, the enumeration of candidates, and the
definition of energy, they all use dynamic programming (DP) in the
optimization step. Starting from an initial cell, DP sequentially adds
adjacent cells, keeping track of all topological possibilities as the
algorithm progresses. In each stage topological possibilities are dis-
carded if they have a larger number of handles than the prescribed
genus. The DP algorithm will eventually find the globally optimal
solution, but has worse case exponential time and space complexity.

Reconstruction from cross-sections. Surface reconstruction from
cross-section slices has been extensively studied for the past few
decades (see more in-depth reviews in [Bermano et al. 2011; Zou
et al. 2015]). While earlier methods are specialized for closed curves
on parallel cross-sections, more recent methods can handle non-
parallel, intersecting planes [Boissonnat and Memari 2007] and
even multi-labelled domains on each plane [Barequet and Vaxman
2009; Bermano et al. 2011; Liu et al. 2008]. The majority of these
methods rely on the spatial subdivision by the cross-section planes,
and focuses on surfacing within each cell to interpolate the curves
on the cell boundary. However, unlike [Huang et al. 2017; Zou et al.
2015], most existing methods create a single surface within each cell
that is determined locally, with no guarantee on the topology of their
union. An exception to this rule is the algorithm presented in [Amini
et al. 2013] which is guaranteed to achieve a correct topological
reconstruction for a sufficiently dense choice of intersection planes.
In contrast our algorithm is applicable for scenarios in which only
a sparse input is given.

Iso-surfacing. Polygonalizing iso-surfaces is another well-studied
problem in computer graphics and visualization. We refer readers to
a recent survey [De Aradjo et al. 2015] on this topic. Arguably, the
most successful iso-surfacing method is the Marching Cubes algo-
rithm [Lorensen and Cline 1987], which creates triangles within each
cubic cell based on the signs at the cell corners. Significant effort has
been made to improve Marching Cubes, particularly for capturing
the topology of the analytical iso-surface defined by some inter-
polant (e.g., trilinear) of the values at the cell corners [Chernyaev
1995; Cignoni et al. 2000; Custodio et al. 2013; Velasco et al. 2008].
However, all existing grid-based iso-surfacing algorithms determine
a unique choice of surface within each grid cell using only local
information (e.g., signs and values at cell corners). On the other
hand, our algorithm is guided by a global topological constraint,
and explores multiple candidates per cell to seek a surface that meets
the constraint.



Graph connectivity. Our algorithm reduces the surface connec-
tivity problem to a graph connectivity problem, and then enforces
graph connectivity using convex constraints. Several papers in dif-
ferent fields have used semi-definite programming (SDP) to enforce
positive algebraic connectivity on graphs. [Qian et al. 2014] use SDPs
to optimize a given energy over all connected subgraphs of a given
graph. [Das and Mesbahi 2005] use SDP relaxations to optimize
over the set of k-connected graphs. In [Ghosh and Boyd 2006] SDP
relaxations are used to find k edges to add to the graph such that the
algebraic connectivity of the graph is maximized. The latter paper
seems to be the only one to propose a lower bound for the algebraic
connectivity of a graph, a lower bound which we use as well. This
bound is based on the seminal paper by Fiedler on bounding the
algebraic connectivity [Fiedler 1973], and establishing connections
between algebraic connectivity, vertex connectivity and edge con-
nectivity. In our case we show theoretical and empirical evidence to
the fact that enforcing edge connectivity can significantly enhance
the accuracy of graph connectivity relaxations.

3 METHOD
3.1 Problem definition.

We consider a cell complex C = {C;}}_; decomposition of a given
domain Q ¢ R3. That is, a collection of (not necessarily bounded)
convex polyhedral cells C;, such that Q = U;C;, and any two cells
either do not intersect, or their intersection is a sub-polyhedron
(vertex, edge, or a polyhedral face). We assume that we are given
a sampling of the surface on the cell boundaries, represented by
segments I' = {yx }[" |, eg., the red curves and points in the inset.
Note these are not necessarily entire intersections of surfaces with
cells’ boundaries. Each segment is connected and resides in one or
more polyhedral faces of the cell complex.

In each cell C; we are looking
for a surface patch S; out of a col-
lection of ¢; (topologically different)
possible valid triangulated surface
patches {S,-l, Sio, ... ,Sici} interpo-
lating the segments y; which reside
in the boundary of this cell. By valid
surface patches we mean that each S;; is a surface, whose intersec-
tion with the boundary of C; is a finite collection of closed curves.
By interpolating the segments we mean that every segment y; of
a cell is contained in every candidate surface patch. Furthermore,
we require that the intersection of every surface patch S;, with
the sub-cells of its cell (i.e., the cell itself, or faces, edges or points
in the cell) contains at-least a part of a segment y; in every con-
nected component of the intersection. For example, the inset shows
in green a potential surface patch candidate S;;, that interpolates
the red segments in a cell.

The task is to choose a single surface patch per cell such that a
fair connected manifold surface S of some prescribed topology is
achieved.

PrROBLEM 1. Find a manifold compact surface triangulation S =
(VS,ES FS), where T C S, by choosing a surface patch per-cell so
that S is connected, matches a prescribed topology go and minimizes
an appropriate convex energy.
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3.2 Approach

The first step of our approach for solving Problem 1 is formalizing
it as an optimization problem.

We begin by defining the unknowns. Per cell C;, i = 1,...,n
we define an indicator unknown vector x; = [xj1,xi2,...,Xic; ],
responsible for choosing the surface patch S; € {Sil, . Sic,»} at cell
C; out of ¢; possible predefined (topologically different) options,

Ci
inj =1 (1a)
Jj=1

Xij € {0,1} (1b)
The reconstructed surface is defined to be
n Ci
S=S(x)= U injsij.
i=1j=1

Problem 1 can be formulated as the optimization problem:

mxin E(x) (2a)
s.t.  x satisfies (1) (2b)
S(x) is well defined across cells (2¢)
S(x) is of genus go (2d)
S(x) is connected (2e)

We show that the topological constraints (2c)-(2e) can be formu-
lated as convex constraints in the variable x. Once this is achieved,
Problem 1 is an integer program that can be convexified by simply
relaxing the 0/1 constraint to the constraint

0<x;;<1 (3)

Our experiments show that this convex relaxation is very tight, and
in most cases can be used to globally optimize Problem 1 in a small
number of branch and bound iterations.

3.3 Convex formulation of topological constraints

In this section we consider Problem (2) (with integer variables x)
and formulate (2c), (2d), (2e) as convex constraints in x.

Consistency. The constraint (2c) amounts to the requirement that
if C; and Cy. are two adjacent cells such that B = B(i,k) = C; N
Ck is non-empty, then the surface patches selected for the two
cells will agree on their common boundary. The surface patches
define a finite number of possibilities for the intersection of the
reconstructed surface S with B, which we denote by by, £ = 1,. .., L.
For x satisfying (1), the reconstructed surface S(x) will be consistent
if and only if x satisfies the linear constraints

2, K= ),

j:SijﬂB=b[ J: SkjﬂB=bp

for all i, k, . 4)

Genus constraint. The constraint (2d) is equivalent to requiring
the Euler characteristic of S(x) to be yo = 2 — 2¢gp. If a surface patch
Sij is selected, and v is a vertex in this surface patch which is on
the boundary of the cell C;, then by the consistency constraints v
will also be a member of all surface patches selected for the other
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cells which contain v. Denoting by n(v) the number of cells which
contain v, we have that the number of vertices in S(x) is given by

Vi= > x| D) ng'@)].
ij ‘UES,’j
Using a similar argument to count the edges and faces of S(x), we
obtain that (2d) can be phrased using the linear constraint

= x| Y mte- Y mt@+ ] )
ij UESU eES,-j fES,‘j
where the r.h.s. is the Euler formula for the reconstructed surface

S(x). Note that in practice since we require surface patches to be
valid, we always have ne(f) = 1.

Connectivity. For a fixed integer valued vector x, we define a
graph G(x) = (V, &), where & = &(x) so that S(x) is a connected
surface if and only if G(x) is a connected graph. Each vertex uy € V
of the graph corresponds to an input segment from I' = {yk}km:1
(ug can be imagined as a point in yy ), therefore |'V| = m. The edges
& of the graph are defined by considering each surface patch S;;
for which x;; = 1, and connecting pairs of vertices u,ug € V if
they belong to the same connected component of S;;. We prove the
following theorem in the appendix:

THEOREM 3.1. S(x) is connected if and only if G(x) is connected.

The connectivity of G(x) can be enforced algebraically in two
related, but different ways: using the edge connectivity and the al-
gebraic connectivity. Both are functions of the Laplacian L(x) of
G(x).

To define the Laplacian of G(x) as a function of x, consider for
each S;j the sub-graph G;; = (V, €;j) obtained by selecting only
the edges induced by this surface patch. The Laplacian LY € R™*™
of Gjj is a constant (i.e., independent of x) matrix defined by

deg(ur) ur =u; € Sjj

L7 =414

= up # uj are connected by S;; .

0 otherwise

where deg(uy ) is the number of vertices attached to uy in G;j. Note
that by construction L1 = 0. The Laplacian matrix of G(x) is then

L(x) = Z xijLij.
ij

Edge connectivity. Note that G(x) is disconnected if and only if
there is some J C V such that there are no edges connecting J and
V \ J. Accordingly G(x) is connected if and only if for all J ¢ V

e(x,]) = Z —Lgr(x) 21, (6)
qel,ré]
Or equivalently if
e(x) > 1, 7)
where e(x) is the edge connectivity of G(x) which is defined as
e(x) = ]n;lzl(r‘il/ e(x, J). 8)

We note (6) is convex (in the variables x;;) since it is defined by
2™~1 — 1 linear inequality constraints.
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Algebraic connectivity. A tractable convex connectivity constraint
can be achieved by using a classical result in spectral graph theory
[Chung 1997] which states that the graph G(x) is connected iff
A2(x) > 0, where A2(x) is the second smallest eigenvalue of the
Laplacian L(x). This motivates the definition of A5(x) as the algebraic
connectivity of the graph G(x). The relation of the algebraic and
edge connectivity are given by the next inequality [Fiedler 1973]

A2(x) = e(x)A, where A = 2 (1 — cos Z) (9)
m

and since for connected graphs G(x) we have that e(x) > 1 we see
that G(x) is connected if and only if A2 > A. As shown in [Ghosh
and Boyd 2006], this constraint is convex and can be enforced by a
positive-semidefinite constraint: Since the minimal eigenvector of
the Laplacian is always a constant vector, A2(x) > A, iff

Lix)=L=1 (1 - l11T) ) (10)
m

3.4 Convex relaxations

We saw that Problem 1 can be formulated as the integer program-
ming problem of optimizing the energy E over all 0/1 solutions
satisfying a collection of convex constraints. We will relax this prob-
lem by replacing the 0/1 constraint with its convex hull (3). For 0/1
variables x both connectivity constraints, i.e., edge (7) and algebraic
(10) are equivalent. However when relaxing the 0/1 constraints to (3),
the edge-connectivity is in-fact tighter as can be understood from
(9) which holds also for weighted graphs. Our convex relaxation is
therefore

mxin E(x) (11a)
s.t.  x satisfies (1a), (3), (4), (5) (11b)
G(x) is edge connected (7) (11¢)

We denote this convex optimization
problem Py, To further quantify the gap
between edge connectivity and algebraic
connectivity, consider the matrix L from
(10): a direct computation shows that
its edge connectivity is e(L) = O(m™2)
while its algebraic connectivity is A2(L) = 1; i.e., the corresponding
weighted graph is algebraic connected but pretty far from being
edge connected. Another consequence is that algebraically discon-
nected graphs can be made algebraically connected by changing the
edge weights by O(m™?) (the magnitude of off-diagonal elements in
L). Our comparison of algebraic and edge connectivity is illustrated
in the inset, and is summarized in the following Theorem (proved in
the appendix): Let £ = L(m) be the set of laplacians of weighted
graphs, that is,

L={L|L=LT,11=0, and Lgr < 0forall g # r}.

Note that £ is a convex cone, and in all of the relaxations we consider
L(x) € L . In the following we set

L = > 1Ll
ij



THEOREM 3.2. There is a constant ¢ > 0 such that

(1) ForallL € L, ife(L) > 1 then A2(L) > A.

(2) There exists an L € L such that A3(L) > A but e(L) < cm™2.

(3) ForallLy € L, there exists an L € L such that Ao(L) > A and
IIL = Loll; < 2em™L.

Relaxation chain. Our goal is to solve Pyop to achieve a good
lower bound (and hopefully an exact solution) for (2). Since the
edge connectivity constraint (7) cannot be formulated efficiently
we use a variant of the cutting plane method to solve Piop. The idea
is to completely remove the edge connectivity constraint (7) from
Piop, solve the resulting linear program and iteratively improve the
solution, as follows. Given a current solution x° that does not satisfy
the edge connectivity constraint, namely

e(x*) < 1

a cutting plane is found which separates x° and all edge connected x
satisfying e(x) > 1. Then a linear inequality forcing x to lay on the
side containing the edge-connected x is added to the relaxation and it
is solved again to produce x!. If e(x!) > 1 the algorithms terminates
(it found the optimal solution to Pop), otherwise it continues to add
cutting plane inequalities.

Finding a cutting plane for x° amounts
to computing the global min-cut Jj of the
weighted graph G(x0), i.e., e(x?, Jo) = e(x°). "o edge
This can be done using the Stoer-Wagner
algorithm [Stoer and Wagner 1997] which
computes the global min cut in O(|'V||E]| +
|'V|2log |V|) time . The linear inequality e(x, Jo) > 1 would then
exclude x° from the feasible edge-connected set as illustrated in the
inset. The effectiveness of even a single cutting plane constraints
in comparison with algebraic connectivity constraints is illustrated
by comparing the third claim in Theorem 3.2 with the following
lemma which is proven in the appendix:

6(.’1}, JO) >1

LEMMA 3.3. Assume x° has e(x°) < 1 and J is the minimal cut of
L(x%). Then for all x with e(x, J) > 1,

IL(x) = L)l = 2(1 - e(x))

The cutting plane process continues until a solution xk with
e(xk) > 1 - 107% is obtained, or until a maximal number of iter-
ations (50 in our implementation) is reached. We denote by J =
{Jos Jis - .-, Ji} the collection of cutting plane cuts, J] ¢ YV, found
so far, and by Piop(.J) the linear program solved with these cutting
plane constraints. If the algorithm is terminated before convergence
we add algebraic connectivity constraint (10) to Ptop(.J) and solve
again to obtain our final lower bound. Before we solve we first check
the value of A5(x¥) and if it is larger that A there is no need to solve,
we already have the optimal solution at hand. We note that almost
always the number of linear programs solved until the stopping cri-
terion is reached is small (i.e., up to 10 iterations), and the algebraic
connectivity is indeed larger than 1. This means that we are able
to solve Pop using only a small number of linear programs, and
without solving any expensive semi-definite programs.

The relaxation chain algorithm is summarized in Algorithm 1.
Note that we allow to input the algorithm a set of predefined cuts;
this is used in the branch and bound algorithm explained next.
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Algorithm 1: Relaxation chain

Input: The linear energy to be minimized,;
initial set of cuts J (default is J = 0).
set k = 0 stop=false;
while (not stop) and (k < 50) do
k=k+1;
xk = argmin Pyop(J);
compute Ji the global min-cut of G(xk);
J =9 V{kh
if e(xk, Ji.) > 1 - 1070 then
L stop=true;

if 13(x¥) < A then
L xk = argmin Prop () with (10);

Output: x = xk and cutting planes 7.

Energy. Since (2) is a combinatorial problem there could be a
large number of feasible solutions. We would like to pick one that
is in some sense "the best". For example, the minimal/maximal area
solutions S(x). This will be formulated as a linear energy in x:

E(x) = Zx,-j area(S;;).
ij
In our experiments we used this energy as well as two other energies
which will be described in the results section.

Branch and bound. In several cases the relaxation chain described
above returns an integer solution, which is thus the optimal solu-
tion of Problem 1. However to guarantee an optimal solution for
Problem 1 in all cases we use a branch and bound approach, see
Algorithm 2.

We begin with solving the relaxation chain as described in Al-
gorithm 1 with J = 0, to obtain a solution x(0) which minimizes
Prop(Jo) with energy LBy, which is a lower bound to the optimal
solution of Problem 1. We round this solution to an integer solution
x(0) and compute its energy to obtain an upper bound UB to Prob-
lem 1 (if x(0) doesn’t fulfill the constraints then we set UB = inf ).
If LBy = UB, as indeed happens quite often, then x(0) is the optimal
solution and we can terminate the algorithm. Otherwise, we select
a cell C; for which the probability vector x;(0) has maximal entropy,
and branch on cell i. That is, solve the relaxation chain again c; times,
with the additional constraint that x;; = 1,1 < j < ¢;, and starting
from the set of cuts Jp, to obtain new solutions x(1), ..., x(c;) and
lower bounds LBj, ..., LB, . We also compute an upper bound for
each solution by rounding and updating UB if the new upper bound
is lower than all previous upper bounds. Now for each 1 < j < ¢;
we check whether LB; > UB. If so then we can stop investigating
all solutions with x;; = 1. Otherwise, we choose another cell C; and
solve ¢;» problems to obtain solutions x(j, j’), 1 < j* < ¢;» obtained
by solving the relaxation chain while setting x;j, x;/j» = 1.

The branch and bound algorithm is guaranteed to achieve the
global optimum of Problem 1. In general, this can occur only after
all possible [ c; possibilities were explored. The efficiency of the
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Algorithm 2: Branch and Bound

Input: Linear energy to be minimized.

UB = +c0, node = zeros(1, n), Xopt = NaN
Jo = 0, list = {node, Jo};
while list isn’t empty do
(node, Jo)=pop(list);
Solve relaxation chain initialized by o and fixing non-zero
node coordinates to attain a partition list J and
x = argmin Prop(J);
LB = E(x);
X = round(x);
if (% is feasible) and (E(x) < UB) then
L UB = E(x);
Xopt = X3
if LB > UB then
| do nothing (no need to explore this node).
else
Find cell C; for which x(i) has maximal entropy;
forj=1:¢; do
L node(i) = j;
push(list{node, J})

Output: x,p¢, the global minimizer of Problem 1.

algorithm depends on the successfulness of the convex relaxation
in producing high quality lower bounds which can eliminate large
branches of the tree of possibilities without exploring them. As our
experiments will show, our algorithm is often (but not always) able
to obtain global solutions in reasonable time.

Graph reduction. In every stage of the branch and bound algo-
rithm, several entries of x are fixed, which corresponds to a fixed
selection of surface patches for some of the cells. As a result, certain
vertices of the graph G(x) may now be already connected by the
fixed surface patches. We can therefore merge each known con-
nected component of the graph to a single vertex, to obtain a new,
smaller graph which is connected if and only if the previous graph,
with the known fixed edges, is connected.

4 RESULTS
4.1 Reconstruction from cross sections

We applied our BnB (branch and bound) algorithm to the prob-
lem of surface reconstruction from cross sections, and compared
it with the DP algorithm of [Zou et al. 2015], and with its ex-
tended version for multi-labeled materials from [Huang et al. 2017].
In all problems we used the cell partition,

surface patches, and linear energy provided

by the algorithm of [Huang et al. 2017; Zou

et al. 2015], and we only compared the opti- g

mization method. For two-labelled domains,

the surface patches are constructed as level sets of a scalar function
at a set of scalar levels chosen to yield different surface topologies.
For multi-labelled domains, the level sets are replaced by so-called
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Fig. 2. Running time comparison of BnB and DP algorithms, as a function of
the number of planar cross sections, the number of materials, and the genus
of the surface. Both algorithms were terminated after ten minutes if they did
not converge. Square labels mean the algorithm returned a feasible, but not
necessarily globally optimal solution. Triangle label means the algorithm
did not find a feasible solution in the allotted ten minutes. In contrast with
DP, the timing of BnB is not significantly affected by a large number of
intersecting planes, or high genus problems. Large multi-label problems are
difficult for both algorithms, but BnB is able to achieve a feasible solution
for these problems while DP runs out of memory.

interface sets of a vector function, which are surface networks pa-
rameterized by vectors. The inset shows a candidate surface patch
for the chicken heart reconstruction problem we discuss below. Note
that the surface patch has nontrivial topology- it is non-contractible
and has two connected components. Our method is readily extended
to the multi-label surface reconstruction scenario by imposing the
genus and connectivity constraints on each constrained sub-surface
separately.

Synthetic data. We generated synthetic examples to evaluate the
dependence of the algorithms’ complexity on genus, the number of
cross sections, and the number of labels. Our results are shown in
Figure 2. Our algorithm converged in a few seconds for the problems
with changing genus and number of planes, often several orders of
magnitude faster than DP which deteriorates in terms of computa-
tion time and memory usage as genus or plane number is increased.
For the changing number of planes and genus we set 10 minutes as
a time limit, and DP reached this limit in the changing number of
planes experiment without achieving an optimal solution.

For problems with changing numbers of materials, both algo-
rithms encountered difficulties as the number of materials was in-
creased. BnB was significantly faster for problems with 2-4 materials.
For five materials both algorithm reached the ten minute limit, but
BnB was able to return a feasible solution while DP did not find a
feasible solution in the alloted time. For six materials (not shown in
the graph) both algorithm could not even find a feasible solution
in ten minutes, but BnB could find a feasible solution within 18.5
minutes while DP ran out of memory after running for two hours.

Figure 4 shows two examples from the multi-material problem set:
(a) and (b) shows the input for the 4 and 6 material examples; and
(c)-(d) show their reconstruction by BnB. In this case the 4 material
problem was solved in less than two minutes, while DP was stopped



Sillicon reconstruction

Planes Genus Paralle]? BnB(s) DP(s) energy gap
25 93 yes 43.16 446.51 0

33 124  yes 66.95 1729.72 0

41 155 yes 2.72 588.09 0

49 189 yes 602.65 636.45 5.00E-04

57 217 yes 603.21 571.34 2.20E-04

65 248  yes 422.9 615.64 0

9 31 no 0.25 267.38 0

9 free no 131 294.54 0

Table 1. Timing comparison of the BnB and DP algorithms for reconstruc-
tion of the crystal structure of silicon.

after ten minutes without achieving an optimal solution. The energy
gap (normalized difference between energy) between their solution
and the optimal result achieved by our solution was 0.72. Figure 4
(d) shows the feasible, sub-optimal solution found by BnB for the
6 material problem. As mentioned above DP was not able to find a
feasible solution for this problem.

Real-life data. We ran our algorithm on the real life examples from
[Zou et al. 2015], and on the multi-labeled examples from [Huang
et al. 2017]. In all these examples, both DP and BnB converge in
less than a second. Our algorithm finds the correct integer solution
after only one linear program solve. We note that in [Huang et al.
2017] DP was reported to solve the chicken heart reconstruction
problem in 56 seconds, but in fact this relatively slow solution was
due to the fact that a suboptimal method for traversing the cells was
selected in the implementation of their algorithm. Once this error
was repaired DP solves this problem as well in less than a second.

We applied our algorithm to cross-sections of the crystal structure
of silicon, which has a diamond cubic crystal structure (consists of
two inter-penetrating face centered cubic lattices). This data is more
challenging due to its high genus and large number of contours
and variables. Figure 3 shows an example of the input data (top)
and our reconstructed surfaces (bottom). We compare timing and
objective values with DP in Table 1 for several different silicon data
inputs with varying number of planes (parallel and non-parallel)
and target genus. In most examples parallel planar cross sections
were used, while in the last two experiments in the table the cross
sections were non-parallel (e.g., Figure 3, right). In all examples
when a global solution was found by our algorithm it was faster
than DP, sometimes by two orders of magnitude. The difference
between the methods was especially significant for non-parallel
examples, where BnB converged within a second while DP took
more than 250 seconds. Both algorithms were stopped if they ran
for (approximately) ten minutes, and in this case the best objective
value obtained up to this point was reported. BnB reached the time
limit twice, and DP reached the time limit in five examples. In the
examples where both BnB and DP reached the time limit the energy
obtained by DP was marginally better (the normalized difference
between energies was less that 1073). We note that when both
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Fig. 3. Reconstruction of the crystal structure of silicon (bottom) from its
cross section (top). The bottom left model has genus 167 while the bottom
right has genus 31.

algorithms converge the energy values are always the same since
both algorithm are guaranteed to solve Problem 1 globally.

We then applied our algorithm to a stack of cross-sections of a
4-week old corn root imaged by CT. This data is particularly chal-
lenging due to the large number of cross sectional curves: 317 cross
sections on 26 parallel planes. The energy we used is the minimal to-
tal length of the branches. Figure 1 shows the reconstructed surface
(right) as well as the cross section data (left). Solving this problem
took 103 seconds. Figure 5 (a) shows an overlay of all the possi-
ble connections of cross sections; (b) shows the globally optimal
reconstruction result with a genus zero constraint; (c) shows the
unconstrained solution (i.e., solving (11) without the topological
constraints), note the disconnected branch and loops; (d) shows the
optimal reconstruction with genus 20.

4.2 lsosurface reconstruction

Isosurface reconstruction deals with the problem of finding the zero
level set of a smooth function f : R> — R. This level set is indeed a
surface provided that zero is a regular value of f. We assume the
zero level set of f is bounded in the unit cube (0, 1)3, and partition
the unit cube into a grid of cubes (cells in our former terminology).

ACM Transactions on Graphics, Vol. 11, No. 1, Article 46. Publication date: January 2018.
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(CY

Fig. 4. Multi-material synthetic reconstruction: (a) and (b) show cross sec-
tion input for 4 and 6 material reconstruction problems, respectively; (c)
and (d) shows the reconstructions found by our algorithm; (c) is the optimal
solution while (d) is a feasible, not optimal solution.

We are given an evaluation of f on the vertices of the cubes, and our
goal is to reconstruct £1(0) from this information. The celebrated
marching cube (MC) algorithm and its variants solve this problem
locally in each cube, without taking into account global information
such as topological constraints. For a given sign configuration on
the vertices of a cube, MC assigns a unique surface patch. While this
approach is very successful for densely sampled functions, it may
cause topological errors for sparsely sampled functions. In contrast,
our approach can find a globally correct solution, providing that
the family of surface patches per cells is rich enough to allow for a
correct global solution. Our method for choosing surface patches
per cell is described in the appendix.

In figure 6 we show two examples where our algorithm achieves
a topologically correct result and MC does not. On the left we show
a torus with a small handle, which the MC algorithm "doesn’t no-
tice". We note that in this example the MC algorithm will attain
a topologically correct solution if the resolution of the cube parti-
tion is increased. The remainder of figure 6 show reconstructions
produced by the MC algorithm and the BnB algorithm of a coned
surface with two cone points, at three different resolutions. It can
be easily shown that at any resolution the MC algorithm will fail to
achieve a connected solution, since the intersection of the surface
with cubes sufficiently close to the cone point will result in a sign
configuration which causes MC to choose a disconnected solution.
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Fig. 5. Reconstruction of corn roots from cross sections. (a) shows all pos-
sibilities (in brown) of connecting the cross section contours (in silver). (b)
shows our globally optimal genus zero connected solution. (c) shows the
non connected solution obtained from the unconstrained linear relaxation
(i.e., best solution in each cell), and (d) shows a genus 20 reconstruction of
the corn roots.

In contrast to the MC algorithm, our algorithm reconstructs both
surfaces correctly by allowing for additional topological possibil-
ities per cell and forcing genus and connectivity constraints. For
the highest resolution surface on the far right of Figure 6 our recon-
struction took 3 seconds while MC took half a second. For the other
three surfaces in the figure MC was faster as well, although both
algorithms required less than a second.

5 CONCLUSION AND FUTURE WORK

We devise an algorithm for solving the topology-aware surface
reconstruction problem. Our key insight is that the topological con-
straints can be formulated as convex constraints over the unknown
integer variables. In turn, when these variables are relaxed a tight
convex relaxation is achieved. We use the relaxation in a branch
and bound framework to solve the reconstruction problem, often
after a small number of steps and several order of magnitude faster
than competing methods.

The main limitation of our approach is that each computation of
a lower bound requires solving (in the worst-case) up-to 50 linear
programs and a semidefinite program. Although the lower bound
can be tight and provide the solution very fast, we have found
instances, e.g., five material problem (see Figure 2, bottom left) where
we were not able to find an optimal solution in reasonable time.



Fig. 6. Isosurface reconstruction by BnB (top) and MC (bottom). BnB cor-
rectly reconstructs both surfaces, while MC returns a surface with incorrect
genus (left) and a disconnected surface (next three surfaces, which show the
same surface reconstructed at three different resolutions). For the second
surface the MC algorithm will return a disconnected surface, regardless of
the resolution considered.

One very interesting future work direction is to incorporate qua-
dratic energies into this framework. Quadratic energies can be used
to encourage smooth output surfaces and other pairwise penalty
terms. Another direction for future work is topological reconstruc-
tion of surfaces with k > 1 connected components.
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6 APPENDIX

Proor oF THEOREM 3.1. Assume G(x) is connected, we want to
show that S(x) is connected. By construction of G(x), there is a path
in S(x) connecting any two segments y; and y;. Given an arbitrary
point in S(x), it is a member of one of the surface segments S;;, and
thus by our requirements on the surface segments must be connected
to one of the surface segments y;. Thus S(x) is connected.

Now assume S(x) is connected, we want to prove G(x) is con-
nected. We choose arbitrary vertices in the graph corresponding
to the surface segments yy, y1, we want to show that they are con-
nected by the edges of G(x). We begin with a path § : [0, 1] — S(x)
connecting p € yp and q € y1, whose existence is guaranteed
by the connectivity of S(x). Next we choose a minimal partition
0=ty <t <...t =1ofthe unitinterval, such that the restriction
of j to each subinterval is contained in a single surface patch. By
the minimality of the partition, each f(#;), 0 < i < k belongs to the
intersection of two surface patches S1NSa € C1 NC2 in the common
boundary of the cell C; containing S(ti_1, t;) and a distinct cell Cy
containing f(#;, t;+1). The assumption on the surface patches inter-
polating the segments I' implies that in each connected components
of S; N Sy there is at-least a part of some segment which we denote
by yt; € I. Therefore by construction of G, yy is connected to yy,
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which is connected to y;, and so forth until y;,_, which is connected

toyy =n.
m}

PrROOF OF THEOREM 3.2. Part (1) of the theorem follows directly
from (9) which is valid also for weighted graphs.
For part (2) of the theorem, note that 1 = f(xm™!) for

f(x) = 2(1 - cos(x)) < x2.

Therefore A = f(xm™!) < cm™2 for ¢ = 7%. Now consider L de-
fined in (10); it can be seen as the Laplacian of a full graph. Direct
computation shows that A5(L) = A and

<cm™2.

e(l) = 12
For part (3) of the theorem, we choose for any given Ly a new
laplacian L = Lo + L. Then

Ao(L) = min o Ly > min oTIo=21I) =1

o] |lv]l=1, v11 ol |lv||=1, vLi1

and
IL - Lolly = ILll; = A2(m — 1) < 2cm™
m}

PRrOOF OF LEMMA 3.3. For x, x° and J satisfying the conditions of
the lemma we have

2% - L), = 2 Z |Lji(x%) - Lji(x)| (12a)
JjeJ,i¢]

22| 3 (L) - 1<) (12b)
j€J,i¢]

= 2]e(x, J) — e(x?)| > 2(1 - e(x?)) (12¢)

O

Surface patch selection for isosurface reconstruction. For every sign
assignment to a cube’s vertices, we select a number of possible
surface patches, which are constructed in three stages as follows:

Stage (0): We define the surface patches uniquely on the edges of
the cube: On each edge of the cube, we add a point to the candidate
surface patch if the two vertices of the edge are assigned opposite
signs.

Stage (1): We define the surface patches on each of the six faces
of the cubes. Each face has been assigned 0, 1, 2 or 4 points to its
four edges in stage (0). If a face contains two points then they are
connected by an edge, and if the face contains four points then
we connect two pairs of points by an edge each. This results in an
ambiguity: There are two ways to select these edges so that they do
not intersect. Thus for each face we have two possible interpolations
(if there are four points in the face), or a unique interpolation (if the
face contains two vertices or less).

Stage (2): At the conclusion of stage (1) we have one or two
candidates per face, and so in total up to 2° reconstruction options
for the boundary of the cube. For each fixed reconstruction on
the boundary, we find the connected components By, ..., B of
the reconstruction. We then consider all possibilities of connecting
By, ..., Bg. Each connection possibility partitions the k sets into
J < k connected components, and the total number of possibilities
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is the number of partitions of the set {1,. .., k}, which is known
as the k™ bell number. This number is double exponential in k,
however for any fixed reconstruction of the boundary k will never
be larger than four, and thus the bell number is bounded by fifteen.
This is because in Stage (0) at most twelve points are added to the
surface, and each B; will contain at least three of these points. Once
a connection scheme is selected, we complete it to a surface patch
using the triangulation algorithm of [Zou et al. 2013].



