IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2001X 1

Motion Segmentation via Generalized Curvatures

Robert T. Arn, Student Member, IEEE, Pradyumna Narayana, Tegan Emerson, Bruce A. Draper, Member, IEEE,
Michael Kirby, Member, IEEE, Chris Peterson, Member, IEEE

Abstract—New depth sensors, like the Microsoft Kinect, pro-
duce streams of human pose data. These discrete pose streams
can be viewed as noisy samples of an underlying continuous ideal
curve that describes a trajectory through high-dimensional pose
space. This paper introduces a technique for generalized curva-
ture analysis (GCA) that determines features along the trajectory
which can be used to characterize change and segment motion.
Tools are developed for approximating generalized curvatures at
mean points along a curve in terms of the singular values of local
mean-centered data balls. The features of the GCA algorithm are
illustrated on both synthetic and real examples, including data
collected from a Kinect II sensor. We also applied GCA to the
Carnegie Mellon University Motion Capture (MoCaP) database.
Given that GCA scales linearly with the length of the time series
we are able to analyze large data sets without down sampling. It
is demonstrated that the generalized curvature approximations
can be used to segment pose streams into motions and transitions
between motions. The GCA algorithm can identify 94.2% of the
transitions between motions without knowing the set of possible
motions in advance, even though the subjects do not stop or pause
between motions.

Keywords—Generalized Curvature Analysis, Local SVD, Motion
Segmentation, Video Segmentation.

I. INTRODUCTION

Recent advances in depth sensor technology have created a
new type of signal to be analyzed: streams of high-dimensional
pose data. The best-known examples are in the Microsoft
Kinect family of devices [1] due to their popularity in the
computer game industry. Other, similar devices include the
Asus Xtion Pro Live [2], which also produces real-time body
poses, and the LeapMotion [3] and Intel RealSense [4] which
produce detailed hand poses. The Microsoft Kinect II, which is
the device used in this paper, produces (z, y, z) coordinates for
25 body parts at approximately 30 frames per second. Figure 1
shows example poses extracted by the Microsoft Kinect II (left
side) and Intel RealSense (right side).

Streams of body poses are usually analyzed in terms of
motions, while hand poses are analyzed for gestures. In both
cases, the goal is to determine when motions occur and what
motions occur. This often requires segmenting pose streams
into motions and classifying the motions. When the set of
possible motions is known a priori, segmentation and clas-
sification can be solved jointly, as in [5]-[8]. However, there
are applications where the motions are not known in advance.
Examples include labeling tools, where the goal is to segment
a stream prior to labeling, and some health care applications,
where the goal is to measure the frequency, duration and
magnitude of motions rather than to identify specific motions
or actions. In these cases, pose streams must be segmented
into sets of unknown motions.

Fig. 1. Example poses. The left side shows 25 body pose points extracted
by a Microsoft Kinect II. The right side shows 44 hand points (22 per hand)
extracted by the Intel RealSense.

This paper presents an algorithm for segmenting uncon-
strained pose streams into arbitrary motions. It is based on two
fundamental observations. The first observation is that human
motions have three distinct stages: initialization, transport,
and conclusion. The initialization and conclusion stages are
relatively brief, but involve complex changes in direction. The
transport stage is longer but involves comparatively smooth
trajectories. The second observation is that the trajectory of a
body’s joints over time can be viewed as a curve in a high-
dimensional space. 3D sensors like the Microsoft Kinect are
therefore devices which sample points along high-dimensional
curves, albeit with noise. Together, these observations suggest
that pose streams can be segmented by separating the low-
curvature transport phases of motions from the high-curvature
transitions between motions. Moreover, this approach to mo-
tion segmentation should work even when subjects do not
pause or slow down between actions, thereby combining the
conclusion of one motion with the initialization of the next.

To go into more detail, the body parts tracked by a sensor
can be used to define a pose space. For example, the Microsoft
Kinect II tracks 25 body points in 3 dimensions. By stacking
these 25 3-dimensional coordinates, every pose can be iden-
tified with a point in a 75 dimensional space. As the subject
moves, their poses trace out a curve in 75 dimensions. The
poses recorded by the Kinect are therefore discrete samples of
a curve, lying in R™, corrupted by sensor noise.

The proposed algorithm segments pose curves into discrete
motions by estimating generalized curvatures along the curve
and dividing it at local curvature maxima. The technical
challenge is to robustly estimate generalized curvatures from
a series of noisy samples in a high dimensional space. Several
traditional approaches rely on estimating local derivatives from
point differences and are highly susceptible to noise. We

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2001X 2

approach the problem differently with the goal of estimating
the curvature using the local singular value decomposition
which can be shown to provide rigorous estimates for curvature
while simultaneously reducing the susceptibility to noise.

Given a curve in an n-dimensional Euclidean space, the kth
extrinsic curvature is a measure of the rate of separation of the
curve from the (k — 1)-dimensional osculating linear space. In
a recent theoretical study, it has been shown that the values of
these generalized curvatures can be expressed in terms of local
singular values along the curve [9]. In addition, the ordered set
of local left singular vectors correspond to the well-known
Frenet frame of the curve [10]. We extend the theoretical
framework developed in [9] to produce a computationally
robust algorithm for estimating generalized curvatures. In
this current approach the curvatures are estimated at mean
values of local windows, or balls, of data rather than on
the ideal theoretical curve. Again, the local singular value
decomposition is center stage but the resulting formula for the
generalized curvatures must be modified. The result is a ro-
bust local-SVD based algorithm for approximating generalized
curvatures along a discretely sampled noisy representation of
an ideal curve. At the heart of the computations is the need
to automatically adapt the window size to determine the data
in the local ball. We propose two methods for adjusting the
local data ball independently for each generalized curvature.
The result is a Generalized Curvature Analysis (GCA).

In summary, the main contributions of this paper are the
development of an algorithm for adaptive curvature approxi-
mation, and the application of the algorithm to motion seg-
mentation of pose trajectories. The algorithm has two major
components. First, we formulate a curvature computation to
estimate the curvature at a local center of sampled data. This
involves approximating points on a presumed underlying curve
with the centers of data within local balls of adaptive size. The
sequence of points associated with the centroids of these local
balls provides a proxy for the underlying curve. The second
component of the algorithm is an adaptive window used to
determine the extent of the local ball for the computation of
the centers and the computation of curvature.

The result is an SVD-based algorithm for estimating curva-
tures from noisy data sampled in high-dimensions. The algo-
rithm provides a new tool for analyzing curvatures from noisy
time data, such as data collected from the Microsoft Kinect
II. In sample applications, the algorithm exhibits sufficient
robustness to noise as to allow segmentation of pose curves.

This paper is organized as follows: Section II summarizes
related work and motivates the need for GCA. Section III
introduces generalized curvature formulae for a sampled mean
curve in terms of the local singular value decomposition; the
details of the derivation may be found in the appendix. Section
IV presents two techniques for automatically adapting the local
data region. Section V evaluates the ability of GCA to estimate
generalized curvatures on a synthetic curve for which ground
truth curvatures are known. Section VI evaluates the ability
of GCA to segment human motions in streams of Kinect II
and Motion Capture data. Section VII concludes and provides
instructions for downloading the algorithm (written in Python)
and data.

II. RELATED WORK

We briefly discuss human motion below, with the goal
of clarifying our terminology. We then discuss different ap-
proaches to temporal segmentation, the role of differentiable
curves in computer vision, and curvature estimation techniques
from computational geometry.

A. Segmenting Motions

Many applications require segmenting motions and labeling
the resulting segments. When the set of motions (or actions)
is finite and known in advance, segmentation and labeling can
be solved jointly, as in [5]-[8]. When the motions are not
known in advance, the problem gets harder. There are two
basic approaches to open-set motion segmentation. One is to
look for minima in kinetic energy [11], [12]. The other is to
segment the motion into fragments that cluster, in order to
detect repeated motions [13]-[18]. Along these lines, Zhou et
al. 2008 pose temporal clustering as an energy minimization
problem and use dynamic time warping (DTW) as the distance
measure [19]. Zhou et al. 2013 extend this work to hierarchical
decompositions at multiple scales [20]. Kruger et al. propose
unsupervised segmentation based on self-similar structures
using neighborhood graphs [21], [22]. Koppula et al. use the
sum of Euclidean distances between skeleton joints as edge
weights for graph-based segmentation [23].

Segmentation techniques that rely on minima in Kkinetic
energy assume that subjects pause or slow down between
motions. This may not always be true, particularly for motions
that combine to form familiar actions. Techniques that rely on
clustering work well for repeated, rhythmic motions within
actions such as steps within walking, but may not work well
for less cyclical motions. The approach proposed here uses
curvature to segment motions, even in situations where there
are no pauses between non-repeated motions.

B. Differentiable Curves in Computer Vision

Differentiable curves have a long history in computer vision.
Generally, differentiable curves in R3 are described in terms
of their curvatures in a local frame of reference, called the
Frenet frame, defined by the tangent, normal, and binormal
vectors. Koenderink analyzed Frenet frames in the context
of computer vision [24], and Faugeras further developed this
analysis [25]. Zucker gives the most thorough explication of
the role of differential geometry in computer vision [26],
including the differential geometric description of curves in
more than 3 dimensions. Generalized cylinders were a pop-
ular representation defined in terms of smooth differentiable
curves, for example Pegna [27], Bronsvoort & Klok [28],
and Zerroug & Navatia [29]. Wagner & Ravani described
rational generalized cylinder models as Frenet curves [30].
Differentiable curves have also been used to describe the
motion of cameras through stationary environments [31], the
motion of tools as seen from stationary cameras [32], and the
motion of moving cameras in complex domains [33]. More
recently, Kim et al. analyzed space-time curves in terms of
curvature and torsion [34]. Differentiable curves have also been

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2001X 3

used to compare trajectories. Chern [35] and Qu [36] solved
kinematics using Frenet frames. Wang ef al. [37] and Vochten
et al. [38] propose invariant trajectory descriptors based on
Frenet-Serret formulae.

C. Equations for Curvature and Torsion

Generalized curvatures for curves residing in n-dimensional
space have not attracted a lot of attention, primarily because
they are hard to compute accurately. It is more usual to
examine curves in three dimensions, where the quantities of
curvature x and torsion 7 are defined. Curvature is a measure
of the rate of change of the tangent vector along a curve while
torsion measures the rate at which the curve is leaving the
osculating plane. Together, they fully characterize the shape
of any curve in 3-dimensions. The formula for computing
curvature is given by
[lé < é]

k(s) =

where ¢(s) is the parametrically defined curve. For torsion we
have the equation

ey

¢l

(¢x¢)-¢
)= Texcap @

One can extend these ideas to determine formulae for
generalized curvatures in n-space. However, the k*" gener-
alized curvature j, depends on the k + 1t derivative of the
curve making this approach impractical for computation in the
presence of noise.

Alvarez-Vizoso et al. [9] provide a theoretical starting point
for the practical computation of generalized curvatures for
curves in n-dimensions. They derived explicit formulae for
generalized curvatures for points on the curve in terms of
local singular values in the setting of noise-free samples. In
addition, they showed that the local left singular vectors are
equivalent to the Frenet frame. In this paper we extend this
approach to the practical problem of estimating generalized
curvatures from noisy sampled data. We reformulate the prob-
lem to estimate curvature at mean values of the curve. The
mean curve approach employed here is a non-iterative method
which generates a proxy for the presumed “central curve”
through the data, and has similar goals to the principal curve
algorithm [39]. We note that Solis also proposed that curvature
could be estimated from local singular values [40] but did not
provide explicit formulae for their computation.

III. CURVATURE FROM EIGENVALUES

The curvature of a curve C' C R™ at a point P on C' may
be determined by finding the circle of best fit to C' in an
infinitesimally small neighborhood of P. This approximation is
known in differential geometry as the osculating circle [10].
It resides in the osculating plane of best fit to the curve at
P. The task to be addressed in what follows is how to convert
Equation (5) into a robust algorithm for computing generalized
curvatures from data, possibly in the presence of noise. Of key
importance is determining the local region for computing the
eigenvalues at each point on the curve.

A. The Generalized Curvature Formulae

Given data on a curve in a local ball of radius € it is shown
in the appendix that the curvature at the mean value of the
points in the ball may be computed using

A
2 . 2
K] =5 lgg%)\—% 3)
and the second generalized curvature (i.e., the torsion if n = 3)
by

“

where the \; are the eigenvalues of the covariance matrix of
the data in the local e ball, or equivalently, the squares of the
singular values; see [41] for additional details.
Further, the k' generalized curvature for a curve in n-
dimensions is given by
Akt1

(2k +1)(2k +3) .
1
3 20 M)

Ky =

fork=1,...,n—1.

We note that Equation (5) determines generalized curvatures
at mean values on the curve. In our previous work [9] it is
assumed that the curvature was being computed at a point
exactly on the curve. In that case we proved

kE+1 4k+1)2 -1 Ipy1
-2 +
= | 6
M Lt (LR 3 WY
for the generalized curvatures k = 1,...,n — 1.! Note that

the basic form of the equation does not change, i.e., ratios of
eigenvalues, from [9], but the leading coefficient does.

In the appendix we derive these equations by first consider-
ing curves of constant curvature in two and three dimensions,
i.e., the circle and the helix. Considering these canonical curves
is sufficient for estimating curvature at a point on an arbitrary
curve since we are computing the generalized curvatures in the
limit as e — 0.

In the next section we outline how to adapt Equation (5) to
a practical algorithm for determining the curvature of a curve
lying in an n-dimensional space.

B. The Curvature Algorithm

Equation (5) provides a formula for the generalized curva-
tures Ky from the view of the local mean of data sampled
from the curve. The formulae for the generalized curvatures
is derived in the setting of a shrinking e-ball about a point on
the curve identified by to, i.e., z(tp) where the domain of the
curve is a continuous variable. In practice, however, we can’t
actually achieve ¢ — 0 given data sampled from the curve
at discrete times. This is not a major obstacle though given
that the formula for curvature is in terms of the eigenvalues
of the covariance matrix which may be readily computed from
sampled data using principal component analysis, or the related
singular value decomposition.

'We use 4y, to emphasize the difference from the x;, computed above in
Equation (5).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2001X 4

We assume that we have M samples of the curve x(t)
collected at times ¢;,i = 1,...,M? and denote the indices
of the first and last points in the i*" ball (or time-window)
by /; and r;, respectively, corresponding to times ¢;, and ¢,.,.
At the sample point z(¢;) we compute the curvature about the
local mean of the points at time ¢;, i.e., Z(¢;), and not at the
point x(¢;). We define the local mean-centered data matrix as

X(ti) = [x(t) —2(ta)] - - () = 2(t)] - [a(tr,) — 2(t:)]-

In the next section we discuss an automated algorithm for
locating the boundary indices in the local ball. Once [; and r;
have been determined, we may compute the singular values o;
of the matrix X (t;), or the eigenvalues of the matrix

Clti) = X (t:) X (t:)" /M

The formula for the k" generalized curvature sy at time ¢;
requires eigenvalues Ay, A\, and Ax41. The singular values of
the SVD of X are related to the eigenvalues of C' via \; = 2.

IV. ADAPTING DATA WINDOWS

We have outlined a procedure above for approximating the
curvature of a curve that requires the computation of the
singular values associated with data in a local ball. In practice,
we anticipate that the optimal size of a discrete data ball
will depend on the local curvatures, relative to the level of
noise. If the rate of change of the curvature is small near a
point z(¢;), then we expect to be able to include more data
by extending the radius of the ball, thereby compensating for
the noise. In contrast, if the curvature is changing rapidly, the
size of the ball needs to be small to prevent data away from
the point from corrupting the estimate of the local curvature.
Experiments suggest that adapting the size of the data ball to
reflect curvature variance and noise improves the performance
of GCA. Hence, instead of using a fixed window size, we
develop automated methods for computing a window size for
each point on the curve.

A. An approach based on projections

GCA allows for the possibility that the number of points
included in the ball may be different to the left or right of the
center, given that curvature may vary non-uniformly in any
ball. This is potentially useful when the data is not equally
sampled in time, or if the velocity of the curve changes.
Hence, our goal is to determine the integer values [} and
77 which will be used in the formation of a local window
[z(tiz)] - .- [z(t:)] ... |z(tr2)] to be used in the local SVD after
mean subtraction.

We determine the optimal window-size for computing each
ki by projecting the mean-centered data on the curve onto
the first & dimensions in the local coordinate system E(t;) =
[e1(ti)|...|en(t;)] provided by the singular value decompo-
sition of the data window X (¢;), i.e.,

X(t;) = E(t:)S(t:) (F(t:)"

2Note that, in general, there is no requirement that these times ¢; be
equispaced.

We grow the window size around the point z(t;) and
compute the basis F(t;) = [e1(¢;)]...]|ex(t;)]. The span of
this subspace is the best k-dimensional linear approximation
to the data in the ball. The projector onto this space is
then P = E,E!l and we compute the ratio ||Z||/||z| where
we employ the notation & = (I — P)x to represent the
complementary projection of a vector. We stipulate that if
IIZ||/llz|| > - then the point on the curve is deviating too
much from the linear space and the local region should stop
growing.

Algorithm 1: The Generalized Curvature Analysis (GCA)
algorithm with Singular Vector Window Estimation. In
practice, we set w = 30, r = 20 and p = 25.
Input: k_list
Output: GC
1 N = frames
2 foreach point € [0, N) do

> list of k curvatures to calculate

3 singularVectorList = []
4 foreach grow € [0, w) do
5 start = point-grow > break if start<0
6 end = point+grow > break if end>=N
7 window = data[start:end]
8 uList = []
9 foreach random € [0, r) do
10 sampledWindow = Sample p points from
window with replacement
11 Mean subtract sampledWindow
12 U,S,V = svd(sampledWindow)
13 uList.append(U[k_list])
14 end
15 Align singular vectors in same direction
16 U = mean(uList)
17 singularVectorList.append(U)
18 end
19 foreach k € k_list do
20 angleList = dot product of adjacent vectors in
singularVectorList[k]
21 Smooth angleList
22 optimallndex = index(max(angleList))
23 optimalWindow = optimallndex*2+3
24 start = point-optimalWindow/2
25 end = point +optimalWindow/2
26 window = data[start:end]
27 Mean subtract window
28 [U,S,V] = svd(window)
29 GC[point,k] =
tant * v/optimalWind SIH]
constant x \/optimalWin OwS[k)
30 end
31 end

For a given sampled point on the curve x(t¢;), candidate
boundary points for the i*" interval are the times ¢; and t,.
For each t;, define the line segments

p=x(t)) — 2(t;), pr=2x(t,) — 2(t;)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2001X 5

where optimal values for [and r are to be determined.

Now for each curvature xj; we construct the projection
matrix onto the best k-dimensional subspace. In practice, the
optimal indices {*,r* may be found by solving the optimiza-
tion problems

ol 51| .y
Py | Py |

Here v > 0 is an ad hoc cutoff parameter which ensures that
the set of points {x(¢;*),...,z(t,.*)} represents a local region
of the curve x. Through extensive empirical tests, we have
found that values of «y in the range 0.05 < v < 0.5 produce
robust bounding intervals. Once we have the appropriate
window size for each point along the curve the eigenvalues
are recomputed and the curvatures at time ¢;, i.e. the ky(¢;),
are estimated.

|, r*=arg min

[* = arg min
1>

I<i

B. An approach based on singular vectors

The projection method described above captures the geo-
metric intuition that is useful to define a local region, but ex-
perimentation has shown that its performance can be impacted
by noise when there is limited data. The second method we
propose exploits information associated with the left singular
vectors of the data ball and is robust to higher levels of noise.

Here we consider the effect of a growing ball on the
direction of the left singular vectors of the data and use this
information to determine window size. For the data point
x(t;) sampled on the curve we form the sequence of (mean-
subtracted) data matrices

BW = [z(t;_1) | o(t;) | 2(tis1)]
B® = [a(ti2) [a(ti-1) | @(ts) | 2(tio1) |2 (tis2)]
and in general
BY = [x(ti)|t | | 2(tivg)] 7

where the number of points in the j*" data matrix is 25 + 1.
For each data matrix we compute the left singular vectors. We
denote u;k) to be the k' left singular vector of data matrix
7 (associated with point ¢ which is not explicitly represented).
As the ball grows we compute the measure of change of the
k" singular vector direction via the dot product
(k) _ k) (k)

djjpn = U5 Ui ®)
When this value d(-{cj) 1 peaks as a function of j we conclude
that the optimal window size has been reached, i.e.,

. (k)

Jjr = argmaxd;; &)

k Gt
determines the optimal index j;; for each sampled point on the
curve, and hence determines the best size of the window for
estimating the k' generalized curvature ry,. For values j < j*
there is insufficient data relative to the level of noise, and the
vectors approximating the Frenet frame, i.e., the left singular
vectors, are still changing direction. For 7 > j* the ball is
becoming too large resulting in a change in direction of the

frame vectors. For j = j* we obtain maximal alignment of
the Frenet frame over the sequence of data matrices.

In practice, adding points to the data matrix has diminishing
impact on the direction of the singular vectors because they
represent a decreasing fraction of the total variance of the
data. To overcome this problem we sample the data in a
given window with replacement creating a fixed size data
matrix, regardless of the value of j. In practice, we take
25 samples per window and then compute the left singular
vectors. This process is repeated 20 times and the resulting
singular vectors are averaged. This approach, while ad hoc,
uses random sampling to produce stable directions for the
singular vectors in the presence of noise.

C. Complexity Analysis

The Generalized Curvature Analysis (GCA) algorithm de-
scribed in Section III with the adaptive window size method
presented in Section IV-B is shown in Algorithm 1. The
complexity of computing the first k£ generalized curvatures
for n points is O(nwr(d®*p + p*)), where 2w + 1 is the
maximum window size, d is the dimensionality of the points,
r is the number of times each data window is resampled, and
p is the number of points randomly selected when resampling
windows. In practice, we treat w, r and p as constants, and set
w = 30, » = 20, and p = 25, values we have never needed
to change. When w, r and p are treated as constants, the data
complexity is O(nd?), i.e. squared in the number of feature
dimensions, but linear in the number of points to be computed.

The complexity of calculating k& curvatures at a single point
z(t;) is O(wr(d?p+ p*)). It is dominated by the body of the
foreach loop that begins on line 4 of Algorithm 1 and ends on
line 18. For every point z(¢;), we generate the sequence of data
matrices B() through B("), as described in Equation 7. All
of these matrices are the same size, namely d x p, since every
column is a d dimensional point, and we sample p points (with
replacement) every time we resample a window. According to
[42], computing the SVD of a d x p matrix is O(d?p + p?).
We repeat this r times, so the complexity of computing k
curvatures at z(t;) is O(wr(d?p + p?)). If w, r and p are
treated as constants, this simplifies to O(d?).

Note that the complexity of GCA is dominated by the cost
of the SVDs in the search for the best window size, not the
calculation of the curvatures themselves, and the SVDs do
not have to be recalculated for each value of k. The foreach
loop code from lines 19 to 30 in Algorithm 1 is repeated k
times, but the code in this loop is independent of all the other
variables, and since by definition k < d, the overall complexity
is O(nd?).

In one example, we computed the first five generalized
curvatures for 4579 points in 90-dimensions points from the
CMU MoCaP data set (from the first MoCap video; see
below). Using the parameters w = 30, » = 20 and p = 25
the calculation took 913 seconds (= 5 points per second)
on a 4-core, 2.2GHz machine, running in Python with no
parallelization or other code optimizations.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2001X 6

04 =&= 0% Noise
20% Noise
== 50% Noise
—54
o
ks
% —104
[
=3
©
>
2 -154
o
£
2]
—-204
—-254
0 1 2 3 4 5 6 7 8 9
Singular Value Index
Fig. 2. Mean singular values averaged over 1000 windows for the 10

dimensional helix used in Table I. The blue curve connects singular values
computed with no noise, while the orange curve shows the singular values
with 20% data noise and the green curve shows the singular values with 50%
data noise. Since the kth curvature depends on the (k+1)th eigenvalue, this
explains the breakdowns in Table I.

V. SYNTHETIC EXPERIMENTS

Sections III and IV present a novel technique for estimating
generalized curvatures of high-dimensional curves, given a se-
quence of noisy, discrete samples. This technique is captured as
an algorithm in Algorithm 1. In this section we evaluate GCA
(Algorithm 1) on noisy data samples drawn from synthetic
curves, where the goal is to determine how well GCA estimates
generalized curvature. The next section will then come full
circle and test GCA’s ability to segment human motions in
data from depth sensors.

A. Constant Curvature

We begin by evaluating GCA on synthetic curves for which
the true generalized curvatures are known, and where we can
control the amount of added noise. The first question we want
to answer is how many generalized curvatures can be estimated
before numerical stability issues make the results unreliable,
and how does this change in the presence of noise?

To explore this question we create a 10-dimensional helix
with constant curvatures, where x; = 4,7 = 1,...,9. As shown
in Table I, when no noise is added to a curve with constant
curvature, GCA computes the first 8 curvatures accurately and
consistently. The 9th curvature k9, which should have a value
of 9, is instead estimated at 9.32, suggesting that data sampling
and numerical round-off are starting to introduce error.

Table I also shows the estimated curvatures when noise with
a standard deviation equal to 20% of the distance between the
sample points is added. At 20% noise, the first 3 curvatures are
estimated accurately, although a little variance is introduced
into the estimate of the 3rd curvature. The 4th through 9th
curvature estimates, however, are now grossly in error. At 50%
noise, the breakdown point is earlier. The first 2 curvatures are
estimated accurately, but the 3rd is in error.

Fig. 3. A synthetically generated 3D curve using the curvature and torsion
given in Equation 11. The curve is sampled at 500 points from s = 0 to
s = 30. Color is used to encode velocity. The dark blue parts of the curve
are where the sampled points are closest together, while the red parts of the
curve show where they are farthest apart.

What explains this behavior? When noise is added to a
curve, it can be shown that the eigenvectors are unchanged,
but the eigenvalues are shifted upwards by the variance of the
noise a2, i.e., R

Xi =\ +a? (10)

(see [41] for a derivation). Figure 2 shows the eigenvalues for
the helix at different levels of noise. The blue line represents
the eigenvalues when no noise is added, resulting in 9 roughly
accurate, generalized curvature estimates. The orange line
shows the eigenvalues when 20% noise is added. The first
3 eigenvalues are accurate, which explains why the first 2
curvature estimates in Table I are accurate. The 4th eigenvalue
is somewhat off, explaining the small error in the estimate of
the 3rd curvature. All the eigenvalues after that are dominated
by the noise, however, explaining why the curvatures above 3
are gross errors. The green line shows the eigenvalues at 50%
noise. In this case, the first 3 eigenvalues are accurate, so only
the Ist and 2nd curvatures are reliable. All higher generalized
curvature estimates are dominated by the noise.

B. Synthetic Data Results

The helix in the previous section had constant curvatures.
To look at the impact of changes in curvature, we return to
the 3D synthetic curve shown in Figure 3, whose 1st and 2nd
curvatures (k1 and ko) are defined by

1

sin?(s) + 9 cos2(s) + 0.1
1n

k1(s) =sin(s) + 2, ka(s) =

The associated curve in R? is shown in Figure 3.

For the numerical experiment we integrated the system using
Runge-Kutta-Fehlberg and a local truncation error of O(1e~19)
which produced 500 unevenly sampled points in the range from

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2001X

TABLE 1.

ESTIMATED CURVATURES FOR 10-DIMENSIONAL HELIX SUCH THAT THE TRUE ¢TH-CURVATURE IS ¢. CURVATURES ARE ESTIMATED FOR
EVERY POINT ON THE HELIX, AND THEN AVERAGED (SINCE THE TRUE CURVATURES ARE CONSTANT). WITHOUT NOISE, THE FIRST 8 CURVATURES ARE
HIGHLY ACCURATE, BUT NUMERICAL STABILTY EFFECTS BEGIN TO INTRODUCE NOISE AT THE 9TH CURVATURE. WITH 20% NOISE, THE FIRST 3

CURVATURES ARE ACCURATE. AT 50% NOISE, ONLY THE FIRST TWO ARE ACCURATE.

k=1 k=2 =3 =4 k=5 k=6 k=7 k=8 k=9
True 1 2 3 4 5 6 7 8 9
0% noise 1.00 £ 0.00 1.99 +£0.02 | 2.99 £+ 0.01 3.98 £+ 0.02 4.98 £+ 0.02 5.97 £ 0.02 6.97 £+ 0.02 7.95 £+ 0.02 9.33 + 0.03
20% noise | 0.99 £ 0.00 1.97 + 0.01 3.06 £+ 0.03 10.63 +0.22 | 41.82 £0.70 | 49.94 £ 0.72 | 57.51 £ 0.54 | 64.08 + 1.10 | 71.14 £ 0.64
50% noise | 0.99 + 0.00 | 2.00 &+ 0.01 5.81 £ 0.15 3298 £+ 1.04 | 42.75 £ 0.61 50.19 £ 0.68 57.62 £ 0.61 64.63 £ 0.55 71.11 £ 1.08
o Noise: 0% 0 Noise: 30% L= predicted Noise: 0% Noise: 30% L= predicted
35 3.5l 2.0t 1 2.0t
3.0 3.0 1.5} { 15}
=25 2.5 ~
L 20 2.0 4 1of { 10f
1.5 1.5¢
0.54, { osf
1.0 1.0+
0.5 ‘ : ‘ : 0.5 : : ‘ : 0.0 : : : : 0.0 ‘ ‘ ‘ ‘
0 100 200 300 400 500 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
40 Noise: 60% 40 Noise: 90% Noise: 60% Noise: 90%
3.5
3.0
=25
i
~ 2.0
15
1.0 .
OS L L L L O.R L L L L 00 L L L L 00 L L L L
0 100 200 300 400 500 100 200 300 400 500 0 100 200 300 400 500 O 100 200 300 400 500
Time Time Time Time
Fig. 4. The true and approximated first curvatures (x1) for the synthetic Fig. 5. The true and approximated second curvatures (x2) for the synthetic

data curve given in Equation 11 and Figure 3. The true curvatures is shown
in blue, while the estimated curvatures are shown in green. The four subplots
corresponds to varied amounts of uniform noise added. Uniform noise added
is at 0%,30%,60%,90% of the mean distance between points.

s = 0 to s = 30. (Note that in our example the sampling
is not uniform due to the adaptive step size intrinsic to the
Runge-Kutte-Fehlberg algorithm.) The data was subsequently
corrupted by adding varying levels of noise. We corrupted the
data samples by adding 3D uniformly distributed noise over
a fixed range, where the range is expressed as a percent of
the average distance between consecutive data samples. We
estimate curvatures for four levels of added noise: 0%, 30%,
60% and 90%.

Figure 4 shows the true 1st curvature (x;) in blue and the
estimated 1st curvature in green for all four noise levels. With
0% noise, the difference between the true and estimated first
curvature is small, as shown in the upper left quadrant of
Figure 4. The small amount of error that does appear is small,
and occurs where the curvature is changing rapidly and the data
samples are spread out (see Figure 3). Because these errors are
the result of having to take too large an epsilon ball relative
to the rate of change of the true curvature, they can lead to
underestimates.

The upper right quadrant of Figure 4 shows the true and
estimated k7 values when 30% noise is added. At 30% noise,
the estimate k1 values still estimate the true x; values very
well, but there are some changes. The noise adds a little to
the first two eigenvalues as in Equation 10, leading to slight

data curve given in Equation 11 and Figure 3. As in Figure 4, the true second
curvature is shown in blue, and the estimated in green. The four subplots
corresponds to varied amounts of uniform noise added. Uniform noise is added
of 0%,30%,60%,90% of mean distance between points.

overestimates in terms of curvature. Also, we begin to see
some more variance in estimates from point to point, creating
a green line that wiggles a little bit. Nonetheless, the estimates
remain highly accurate.

When the noise is raised to £60% of the distance between
the samples, the error increases, particularly where both the
curvature and the rate of change in the curvature are high, and
the error is always an overestimate. At £90% error this trend
continues, with bigger errors and higher overestimates. Even at
+90% error, however, the shapes of the blue and green curves
are similar, suggesting that the estimates continue to reflect the
true shape of the curve.

Figure 5 shows the equivalent true and estimated values for
the second curvature, xo. When no noise is added (beyond
the round-off error inherent in generating sampled data), the
estimated ko approximates the true ko closely. This is similar
to the result for x1, and once again errors occur only where the
curvature is both high and changing rapidly, at which points
Ko is slightly underestimated.

The other three panels of Figure 5 show the true and esti-
mated values of x9 for 30%, 60% and 90% noise, respectively.
As we would expect, ko is more sensitive to noise than ;.
At 30% noise, it consistently overestimates the true values of
ko because of Equation 10. The general shape of the curve

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2001X 8

Noise: 0%

Noise: 30%

1
1
1
1
1
[1
1
1
1
1
1

3 1119273543515967759

Noise: 60% Noise: 90%

Cosine angle between singular vectors

\\\\\ 1 L L L L L L L
3 111927 35435159 67 75 83 91 99
Window size

i | FENT I R EE—— e 1))
3 111927 3543515967 75839199

Fig. 6. Cosine of the angle between singular vectors (k1 and k2) for the
synthetic data curve given in Equation 11 and Figure 3. The angles for <1 is
shown in blue, while the angles for k2 are shown in green. The dashed blue
line represents the peak in 1 and is the optimal window selected by GCA for
1. The dashed green line represents the peak in k2 and is the optimal window
selected by GCA for k2. The four subplots corresponds to varied amounts of
uniform noise added. Uniform noise added is at 0%,30%,60%,90% of the
mean distance between points.

is preserved, however; the estimates of ko peak where they
should and have local minima where they should. The same is
true at 60% and 90% noise, but more exaggerated. Note that
these errors could be removed by adjusting the eigenvalues, if
a model of the noise was known in advance.

Another question is how well the technique described in
Section IV-B works for estimating window sizes. This tech-
nique works by maximizing the stability of the left singular
eigenvectors as the size of the data window around a point
grows. Figure 6 shows the change in angle in the eigenvectors
as a function of window size as described in Equation 8§ for
a point on the same synthetic curve as above, with the same
four levels of noise (0%, 30%, 60% and 90%) as above. The
blue curves shows the changes in angle for the 2nd eigenvector
(used to select the window size for 1), while the green curves
show the changes in angle for the 3rd eigenvector (used to
compute x2). The dashed vertical lines show the peaks in the
curves, which are the window sizes that the algorithm will
select.

Figure 6 shows that at 0% noise, the technique in Section
IV-B selects the smallest possible window sizes, namely a
window size of 3 for k1 and a window size of 5 for 5. This
makes sense, because with no noise there is no advantage to
bringing in additional data samples. In fact it hurts, because
the additional samples are farther away and the curvature of
the underlying curve is changing with distance. As the noise
level increases, both the x; and ko data windows get larger
to bring in more samples to smooth over the noise. The xo
windows are always larger than the x; windows, because ko
is more sensitive to noise.

VI. MOTION SEGMENTATION

Human motions can be divided into three phases. The
initial phase recruits muscles to overcome the inertia of a
previous state, whether that state was “at rest” or involved
a previous motion. Once a motion is initiated, the majority of
the movement, sometimes called the transport phase is smooth.
This is followed by a conclusion, where the body either stops
moving or transitions to the next motion. Motions are different
from actions. A motion is a single set of coordinated muscle
movements, for example taking a step. An action is a goal-
directed sequence of motions. Thus, while a step (or stride) is
a motion, walking is an action composed of many steps.

Section V measured the ability of GCA to estimate gen-
eralized curvatures from noisy discrete samples, at least for
synthetic curves. We now explore the use of generalized
curvature to segment human motions. Modern depth sensors
can detect human body poses, and these poses can be rep-
resented as points in a high-dimensional space. As people
move, their poses trace out a high-dimensional curve. At the
initialization and conclusion of any motion, multiple body parts
accelerate or decelerate, creating high curvature sections of
the curve, whereas the middle transport phase of the motion
is relatively smooth, leading to low curvature portions of the
curve. Therefore we should be able to segment pose curves
into individual motions by dividing the curve at local curvature
maxima.

To test GCA’s ability to segment human motions, we need
a depth data set of human motions with three properties: (1)
state of the art signal-to-noise ratio, (2) continuous motions,
without pauses in between, and (3) ground truth labels at the
level of motions, not actions. Unfortunately, no standard data
sets meet these criteria. In a recent survey by Firman [43],
none of the depth data sets included were collected using a
Kinect v2 sensor. All were collected using a Kinect v1, which
is much noisier than the v2. In addition, almost all of the data
sets surveyed by Firman were labeled at the level of actions,
not motions.

To overcome these problems. we evaluate GCA on two
different data sets. The first set of experiments are on PALKA,
a data set we collected. Every video in PALKA shows a
person performing three activities with no break in between.
More importantly, the videos were collected using a Kinect v2
sensor and have ground truth labels at the level of motions,
not actions. The second set of experiments are on the CMU
MoCaP data set [19], [20]. This data set is older, but the
pose data was captured using highly sensitive motion capture
technology, so the signal to noise ratio is comparable to the
Kinect v2 (perhaps better), and the subjects move seamlessly
from one activity to another. Unfortunately, the ground truth
labels are at the level of actions, not motions, which restricts
our analysis. However, the MoCaP data set has been widely
used, so these experiments may help readers compare GCA to
other algorithms.

A. Experiments on the PALKA data set

The PALKA data set contains pose data for 234 videos of
three subjects recorded with a Kinect v2 sensor. Each video

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2001X 9

1 T j i :3 4

l 5 | 6 7 8
Fig. 7. Frames from Kinect v2 Skeleton data of part of one PALKA video.
This video fragment shows four motions: (1) raising arms, (2) lowering arms,
(3) raise hands to the eyes ("goggles”) and (4) returning the hands to a neutral

position. The figure shows 8 of the poses in the video. The poses are color
coded to match points in Figure 8

shows a person performing three actions (in general, more than
three motions) drawn from the MSRC-12 [44] action set, with
no pauses between actions. The videos are scripted to make
sure that every possible transition between actions occurs the
same number of times, and the videos are hand-labeled to mark
the start and end of every motion within each action. Videos
from the first two subjects are used as training data, while
videos of the third subject are held out as a test set.

Figure 7 shows Kinect v2 skeletons extracted from a seg-
ment of one of the PALKA videos. This example contains
two MSRC-12 actions, but four motions. The first MSRC-12
action, wave arms, iS a combination of two motions: arm rais-
ing and arm lowering. Similarly, the second MSRC-12 action,
goggles, is two motions: raising the hands to the eyes, and
bringing them back down. Figure 8 shows the 75-dimensional
pose curve projected onto the first two eigenvectors (computed
from all the poses in the video). Low curvature sections of the
curve (as estimated by GCA) are colored blue, while high
curvature sections are colored red. The numbered points on
the curve in Figure 8 correspond to the poses in Figure 7
with matching indices. Discarding the endpoints of the video,
motion transitions occur around poses 3, 5, and 7.

Figure 9 shows the estimated 1st curvature (x;, shown in
blue) and estimated 2nd curvature (k2, shown in red) for the
video fragment whose poses were shown in Figure 7 and
whose projected curve was shown in Figure 8. The four interior
white regions in the figure correspond to the four motions
(arms up, arms down, hands up, hands down) as determined by
the ground truth segmentation. The shaded regions in between
correspond to transitions between motions. (The exterior white
regions correspond to the initial and ending standing positions.)

1

Fig. 8. Projection of the 75-dimensional pose curve from Figure 7 onto its first
two eigenvectors. Low curvature sections are shown in blue and correspond
to motions, while high curvature sections are shown in red and correspond
to transitions between motions. The indices 1-8 are color coded to match the
poses in Figure 7 in the projected trajectory. Discarding the endpoints of the
video, motion transitions occur around poses 3, 5, and 7.

25 50
20 40
15 o
A4 hV4
10 20
5 (\ 10
O(I)_U - J’\so 0

50 100 150 200

Frames

Fig. 9. Curvatures k1 and k2 computed using GCA on the PALKA video
whose projection is shown in Figure 8. The white areas show motions (raising
or lowering arms, kicking outward or bringing the leg back). The gray areas
show transitions between motions. As hypothesized, curvatures are low during
motions and high during transitions, although some transitions show up more
clearly in x1, while others show up more clearly in k2.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2001X 10

100 140
120
80
100
™ &0 g0 ¥
I I
N4 4
40 60
40
20
>~v"J J \V) -
.
00 5‘0 160 150 200 0
Frames

Fig. 10. Similar to Figure 9, this figure shows the third (x3) and fourth (x4)
curvatures for the same video. Once again, although there are differences
among the various curvatures, all tend to be high during transitions and low
during motions.

Remember the premise being tested: transitions between
motions should have high curvature, while the motions them-
selves should have low curvatures. At least in this example, the
premise is true. Both x; and ko peak on every transition, and
are relatively flat during the motions. This is true even though
there is more kinetic energy during the motions, because
the body parts are moving faster. The motions are smooth,
however, so the curvature is low. The transitions, on the other
hand, may be fast or slow, but always have higher curvature.

We are not limited to x; and x5, however. The Kinect v2
sensor captures the 3D positions of 25 body parts, resulting in
a 75 dimensional curve. In principle there are 74 curvatures
(k1 through x74), although most would be nothing but noise.
Figure 10 shows the 3rd (k3, in blue) and 4th (k4, in red)
estimated curvatures. As with the first two, they peak during
transitions and are small during the motions themselves. x5 and
k4 are not just copies of the first two curvatures, however. Each
curvature seems to respond differently to different transitions,
and the correlation of x; to k4, for example, is only 0.736.
Looking at the source video, it seems as though the Ist and
5th transitions are smooth and fast, whereas the changes in
direction for transitions 2 through 4 cause the subject to slow
down and almost pause. Interestingly, xq barely peaks on
transitions 1 and 5, while the other three curvatures peak at all
five transitions. Each curvature is a feature of the curve, and
we are only beginning to understand what information each
holds and how best to combine them.

Figures 7 through 10 are based on a single example video.
Our goal is to evaluate the use of GCA to segment human
motions across the PALKA data set. In particular, we use GCA
(using both methods of selecting window sizes) and traditional
numeric derivatives to estimate the first curvature for every
frame in a video. We then use a traditional peak detection
algorithm® to identify (1) the peaks and (2) the troughs on

3Python peakutils library. This algorithm takes two parameters: the mini-
mum peak height and minimum distance between two peaks

TABLE II. A COMPARISON OF SEGMENTATION RESULTS ON PALKA
DATASET. GCA IS BASED ON THE LOCAL SINGULAR VALUES WHILE
NUMERICAL DIFFERENTIATION DIRECTLY COMPUTES CURVATURES AND
TORSION NUMERICALLY FROM EQUATIONS (1) AND (2). USING GCA
WITH METHODS A. AND B. FROM SECTION V. ARE DENOTED GCA V.A
AND GCA V.B, RESPECTIVELY.

Motion Transition Total Transitions
Frame Frame Accuracy Detected
Accuracy Accuracy
Numeric Derivatives 99.9% 1.2% 63.6% 3.1%
GCA VA. 91.4% 70.5% 83.8% 90.0%
GCA V.B. 91.3% 73.7% 84.9% 94.2%

both sides of each peak. Frames lying between the troughs
of a peak are identified as transition frames. Frames that are
not part of a peak are motion frames. We then evaluate how
well each curvature estimation technique segments videos into
motion and transition frames.

The PALKA data set contains 156 training videos and 78 test
videos. We use the training images to find the peak detection
parameters for each algorithm through an exhaustive search of
parameter space. We then evaluate each curvature estimation
technique with its best peak detection parameters on the test
images.

Table II shows the results. The first column gives the
name of the curvature estimation algorithm. We tested three
algorithms: traditional numeric derivatives, as described in
Section II-C, GCA with projection-based dynamic windows as
described in Section IV-A, and GCA with singular vector based
dynamic windows, as described in Section IV-B. The second
column shows the labeling accuracy for motion frames, while
the third column shows the accuracy for transition frames.
The fourth column is the overall frame-level accuracy, while
the fifth column is the percent of transitions that contain at
least one detected peak. As a point of comparison, the trivial
algorithm that labels every frame as a motion frame has a total
accuracy of 63.2%.

As shown in Table II, estimating curvatures using traditional
numerical derivatives yields an accuracy of only 63.6%, just
slightly better than the accuracy of labeling every frame as
a motion frame. When GCA is used to estimate curvature,
the total accuracy becomes much better. When the projection
method is used to select the dynamic window size, the total
accuracy is 83.8%, and 90% of all transitions contain at least
one peak. The projection method is best when the data points
are finely sampled in time, which is not the case with a 30fps
Kinect v2 sensor. When the singular vector technique is used
to select the dynamic window size, the total accuracy rises to
84.9%, and 94.2% of all transitions contain at least one peak.

The CMU MoCaP data set was released in 2008, and
contains 3D position data for 41 body parts [19]. MoCap
predates modern time-of-flight depth sensors; the data was
collected using a traditional marker-based multi-view motion
capture system. Motion capture is expensive and invasive, but
the data is highly accurate with little apparent noise, and is
therefore well suited to curvature analysis. It is also sampled
densely in time at 120 fps.

Each video shows a subject performing a connected se-
quence of roughly 10 natural activities such as walking,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2001X 11

punching, drinking, and running. MoCaP therefore contains
high-quality data of continuous motions, and has the added
advantage of being widely known and cited. Unfortunately,
MoCap was designed to support research in activity segmen-
tation, not motion segmentation as defined here. Therefore the
provided ground truth data is at the level of activities, not
motions. For example, punching is labeled as a single activity.
Each instance of punching is actually a sequences of punches,
and each punch is a combination of two motions: (1) throwing
the punch, and (2) retracting the arm afterward. As a result,
the MoCaP data set contains many, many more motions and
transitions between motions than it does labeled activities and
transitions between labeled activities.

We applied GCA to the 16 videos with ground truth data in
MoCaP (see supplementary material). Everywhere the ground
truth data suggests a transition between actions, GCA detects
a transition between motions. This is to be expected, since any
action transition is also a motion transition. Unfortunately, the
vast majority of motion transitions are not action transitions,
so there is no way to verify or refute the majority of motion
transitions detected by GCA on MoCaP data.

To gain an intuition as to whether the motion transitions
detected by GCA in MoCaP data are meaningful, we need
to look at an example in more detail. Figure 11 shows the
first and second curvatures estimated by GCA for a MoCap
video. Looking at the bottom of Figure 11, the horizontal
axis is once again time, represented as frame numbers. The
green, teal, and gray regions represent activities in the ground
truth data, namely jumping, punching, and kicking. The white
regions are examples of the walking activity, except for the
last white regions, where the subject throws a punch.

The blue curve in Figure 11 is «; as estimated by GCA;
the red curve is k9. The identified peaks in ki and ko are
marked with colored dots, and the pose of the subject during
the identified peaks are shown above in the matching color. By
visual inspection, the peaks line up with transitions between
motions in the activities, for example jumping, landing, and
then jumping again. We can count the number of punches
thrown in the teal region by counting the peaks that correspond
to transitions between punch and retract, and between retract
and punch. We did not mark the peak during walking activities,
but again there is a series of distinct (albeit smaller) peaks that
correspond to strides.

VII. CONCLUSIONS

This paper proposes Generalized Curvature Analysis (GCA)
for estimating generalized curvatures of curves lying in an
n-dimensional space. We derive expressions for generalized
curvatures at the mean of an e-ball of data in terms of the
singular values. The Frenet frame is approximated by the left
singular vectors. Two adaptive algorithms are proposed for
automatically determining the local data set for computing
the singular values and vectors. The complexity of these
algorithms is O(nd?), where n is the number of sampled
data points and d is the dimensionality of the points. The
first several generalized curvatures appear to be stable in the
presence of noise and hence this local SVD approach provides

a robust alternative to numerical differentiation for estimating
curvature in high dimensions.

We illustrate that the generalized curvatures allow us to
segment pose streams into motions without knowing the set
of motions in advance. The beginnings and endings of human
motions are marked by high curvatures, while the main part
of the motion — the so-called transport phase — is character-
ized by low curvature. This observation leads to a simple,
curvature-based temporal segmentation algorithm that divides
pose streams into motions with intervening transitions, without
assuming that subjects pause between motions or that all
motions rhythmically repeat.

There are many open questions relating to understanding
and characterizing the motion signatures in terms of curvature.
The application of machine learning approaches to feature
vectors of curvatures could provide a powerful approach to
understanding motion in data streams. The construction of
complete actions out of a dictionary of motions is also of
potential interest. Further, the temporal evolution of the Frenet
frame has not been exploited in this study and may provide
additional features to characterize the curve.

To encourage other researchers to explore generalized cur-
vature analysis, we are releasing unrestricted GCA source code
written in Python. The code can be downloaded * and used to
estimate generalized curvatures for any set of N-dimensional
points sampled in time from an underlying curve. The same
site also includes the PALKA data set, including both the raw
data and hand-labeled ground truth data, and videos based on
Figure 11 that illustrate how x; and k9 vary over the course
of a PALKA and MoCaP video.

APPENDIX
DERIVATION OF CURVATURE EQUATIONS

In this appendix we derive the expressions for the general-
ized curvatures k1, ko that serve to illustrate the computation
for higher dimensions. We begin by describing the general
setting. A curve in n-dimensions is a map

x:[a,b] = R"”

In two dimensions we consider the circle parameterized by ¢
via the function
z: [0,27] — R?

where (z1(t),z2(t)) = (acos(at),asin(at)) and the helix
three dimensions is x(t) = (acos(at),asin(at),bt). More-
over, these closed form solutions can be readily extended to
n-dimensional curves with constant curvature [45].

The mean value of an arbitrary curve in an e-ball about the
point 7 is given by

1 T+e€
T=— t)dt.

T % e z(t)
Without loss of generality we can shift the origin of the
parameterization by setting s = ¢ — 7. Thus, for the circle 7 =
(asin(we)/ae, 0) and for the helix T = (asin(ae)/ae,0,0).

4Code available at the URL site https://www.cs.colostate.edu/~vision/gecat_
toolset

https://www.cs.colostate.edu/~vision/gecat_toolset
https://www.cs.colostate.edu/~vision/gecat_toolset

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2001X 12

Tiefed SREHT A

il

Frames

Fig. 11.

First and second curvatures on the first video from the MoCaP data set. The horizontal axis on the bottom represents time, measured in frames (at

120 fps). The shaded areas represent jumping, punching and kicking. The first three white areas represent walking activities, whereas last white area represents
punching. The peaks representing transitions between motions are identified with colored dots. For each dot, there is a skeleton pose in the same color above.
This shows the body position when the curvature peaked, and suggests that the peaks represent transitions between motions. There is also a regular pattern of
smaller peaks in the waking activities, representing individual steps. The last white area corresponds to a second punching activity and has high curvature peaks.
A video representation of this figure showing curvatures and poses over time is available at https://www.cs.colostate.edu/~vision/gecat_toolset

The components of the curve-mean centered covariance
matrix C' defined along the interval s € [—e¢, €] can be written
as

1 €

Cij=§

(zi(s) = Ti)(z;(s) —T;)ds

where x;(s) is the component of the vector z(s) representing
a point on the curve. Hence,

Ciale) = 2i€/ <acos(as) _ Mfds

e o713

1 €
/ a® sin?(as)ds.

Cn(€) = 2e J_.

The off-diagonal terms are Ci15 = C% = 0. since the
integrand is an odd function. Given that the covariance matrix
is diagonal for n = 2, the eigenvalues of the Karhunen-
Loeve transformation are given by Cy; and Ch,. We follow
the usual convention of ordering the eigenvalues by decreasing
magnitude so

1 1
A= §a2a262 +0(eh), = Ea2a4e4 + O(%)

from which it follows

. Ao 11

61—I>I(1))\% " 5a2
where we observe that the scale a cancels out from the
equation, i.e., this equation holds for arbitrary «. Hence, given
the curvature of a circle is k; = 1/a, we obtain the expression
for curvature in terms of the eigenvalues of the covariance
matrix in the limit, i.e.,

Now taking n = 3 the curve-mean covariance matrix for the
helix along the interval [—e, €] is

= a*et 0 0
_ 1,22 1,24 1 32 1 34
C = 0 3 a%e s a‘e’ 3 abe 35 abe
1,302 1 3.4 1122
0 3ab6 3Oabe 3b6

up to the order O(e®) terms which have been truncated. The
Taylor Series for the eigenvalues are then computed to be

1 1
A = §(cﬂ +02)e? + O(e*), Ay = Ea%‘* + O(€%)

https://www.cs.colostate.edu/~vision/gecat_toolset

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2001X 13

1 a’b?

Ay = —— L7
3T a2+ 02°

*+0()

Observing that

lim Az _ i o
e—0 A1 T35 (Cl2 + b2)2

we conclude that

ﬁlim A3
3 e—0 AIAQ

where we have used k1 = a/(a® + b%) and Ky = b/(a® + b?),
respectively.

Employing the equation for the helix in n-dimensions and
proceeding analogously as above, we have the general form
for the k' generalized curvature

2 _
Koy =

s (2E+1D)(2k+3) . Agt1
= 1
i 3 0 Mg
for k=1,...,n —1 for curves residing in n-dimensions.

ACKNOWLEDGMENT

This paper is based on research partially supported by
the National Science Foundation under Grant No. DMS-
1322508, and the Defense Advanced Projects Research
Agency (DARPA) and the U.S. Army Research Laboratory
(ARL) under contract W911NF-15-1-0459. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[11 Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE MulitMedia,
vol. 19, pp. 4-10, 2012.

[2] ASUS Xtion PRO LIVE, https://www.asus.com/us/3D-Sensor/Xtion_
PRO_LIVE/.

[3] Leap Motion, https://www.leapmotion.com/.

[4] Intel RealSense Technology, https://www.intel.com/content/www/us/en/
architecture-and-technology/realsense-overview.html.

[5] C. Tang, W. Li, C. Hou, P. Wang, Y. Hou, J. Zhang, and P. O. Ogunbona,
“Online action recognition based on incremental learning of weighted
covariance descriptors,” arXiv preprint arXiv:1511.03028, 2015.

[6] W. Ding, K. Liu, F. Cheng, and J. Zhang, “Learning hierarchical
spatio-temporal pattern for human activity prediction,” Journal of Visual
Communication and Image Representation, vol. 35, pp. 103-111, 2016.

[71 G. Zhu, L. Zhang, P. Shen, and J. Song, “An online continuous human
action recognition algorithm based on the Kinect sensor,” Sensors,
vol. 16, no. 2, p. 161, 2016.

[8] G. Yu,Z. Liu, and J. Yuan, “Discriminative orderlet mining for real-time
recognition of human-object interaction,” in Computer Vision-ACCV
2014. Springer, 2014, pp. 50-65.

91 X. Alvarez—Vizoso, R. Arn, B. Draper, M. Kirby, and C. Peterson,
“Geometry of curves in R™, Singular Value Decomposition, and
Hankel determinants,” arXiv preprint arXiv:1511.05008v2, 2017.

[10] M. Spivak, “Differential geometry, volume 1.” Inc.,, 1979.

[11] H. Shuzi, Y. Jing, and C. Huan, “Human actions segmentation and
matching based on 3d skeleton model,” in Control Conference (CCC),
2013 32nd Chinese. 1EEE, 2013, pp. 5877-5882.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]
[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

J. Shan and S. Akella, “3d human action segmentation and recognition
using pose kinetic energy,” in Advanced Robotics and its Social Impacts
(ARSO), 2014 IEEE Workshop on. 1EEE, 2014, pp. 69-75.

L. Xia, C.-C. Chen, and J. Aggarwal, “View invariant human action
recognition using histograms of 3d joints,” in Computer Vision and Pat-
tern Recognition Workshops (CVPRW), 2012 IEEE Computer Society
Conference on. 1EEE, 2012, pp. 20-27.

F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy, “Sequence of
the most informative joints (SMIJ): A new representation for human
skeletal action recognition,” Journal of Visual Communication and
Image Representation, vol. 25, no. 1, pp. 24-38, 2014.

M. Barnachon, S. Bouakaz, B. Boufama, and E. Guillou, “Ongoing
human action recognition with motion capture,” Pattern Recognition,
vol. 47, no. 1, pp. 238-247, 2014.

I. Lillo, A. Soto, and J. Niebles, “Discriminative hierarchical modeling
of spatio-temporally composable human activities,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2014, pp. 812-819.

L. Miranda, T. Vieira, D. Martinez, T. Lewiner, A. W. Vieira, and M. F.
Campos, “Online gesture recognition from pose kernel learning and
decision forests,” Pattern Recognition Letters, vol. 39, pp. 65-73, 2014.

M. Raptis, D. Kirovski, and H. Hoppe, “Real-time classification of
dance gestures from skeleton animation,” in Proceedings of the 2011
ACM SIGGRAPH/Eurographics symposium on computer animation.
ACM, 2011, pp. 147-156.

F. Zhou, F. Torre, and J. K. Hodgins, “Aligned cluster analysis for
temporal segmentation of human motion,” in Automatic Face & Gesture
Recognition, 2008. FG’08. 8th IEEE International Conference on.
IEEE, 2008, pp. 1-7.

F. Zhou, F. De la Torre, and J. K. Hodgins, “Hierarchical aligned cluster
analysis for temporal clustering of human motion,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 35, no. 3, pp. 582—
596, 2013.

B. Kriiger, A. Vogele, T. Willig, A. Yao, R. Klein, and A. Weber,
“Efficient unsupervised temporal segmentation of motion data,” arXiv
preprint arXiv:1510.06595, 2015.

A. Vogele, B. Kriiger, and R. Klein, “Efficient unsupervised temporal
segmentation of human motion.” in Symposium on Computer Animation.
Citeseer, 2014, pp. 167-176.

H. S. Koppula, R. Gupta, and A. Saxena, “Learning human activities
and object affordances from RGB-D videos,” The International Journal
of Robotics Research, vol. 32, no. 8, pp. 951-970, 2013.

J. J. Koenderink, Solid Shape. Cambridge, MA: MIT Press, 1990.

O. Faugeras, Cartan’s moving frame method and its application to the
geometry and evolution of curves in the Euclidean, affine and projective
planes. Berlin: Springer, 1994.

S. W. Zucker, “Differential geometry from the Frenet of view: Boundary
detection, stereo, texture and color,” in Handbook of Mathematical
Models in Computer Vision. Springer US, 2006, pp. 357-373.

J. Pegna, Variable sweep geometric modeling. UMI, 1988.

W. E. Bronsvoort and F. Klok, “Ray tracing generalized cylinders,” ACM
Transactions on Graphics (TOG), vol. 4, no. 4, pp. 291-303, 1985.
M. Zerroug and R. Nevatia, “Quasi-invariant properties and 3-d shape
recovery of non-straight, non-constant generalized cylinders,” in Com-
puter Vision and Pattern Recognition, 1993. Proceedings CVPR’93.,
1993 IEEE Computer Society Conference on. IEEE, 1993, pp. 96—
103.

M. G. Wagner and B. Ravani, “Curves with rational Frenet-Serret
motion,” Computer Aided Geometric Design, vol. 15, no. 1, pp. 79—
101, 1997.

Z. Duric, A. Rosenfeld, and L. S. Davis, “Egomotion analysis based on
the Frenet-Serret motion model,” in International Journal of Computer
Vision. Citeseer, 1995.

Z. Duric, E. Rivlin, and A. Rosenfeld, “Understanding object motion,”
Image and vision computing, vol. 16, no. 11, pp. 785-797, 1998.

https://www.asus.com/us/3D-Sensor/Xtion_PRO_LIVE/
https://www.asus.com/us/3D-Sensor/Xtion_PRO_LIVE/
https://www.leapmotion.com/
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.

[33]

(341

[35]

[36]

(371

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

Z. Duric, R. Goldenberg, E. Rivlin, and A. Rosenfeld, “Estimating
relative vehicle motions in traffic scenes,” Pattern Recognition, vol. 35,
no. 6, pp. 1339-1353, 2002.

K.-R. Kim, P. T. Kim, J.-Y. Koo, and M. R. Pierrynowski, “Frenet-
Serret and the estimation of curvature and torsion,” Selected Topics in
Signal Processing, IEEE Journal of, vol. 7, no. 4, pp. 646-654, 2013.

S. Chern, “Moving frames,” The Mathematical Heritage of Elie Cartan
(Lyon, 1984), Astérique, vol. 1985, pp. 67-77, 1985.

C. Qu, “Invariant geometric motions of space curves,” in Computer
Algebra and Geometric Algebra with Applications. ~ Springer, 2005,
pp. 139-151.

W.-C. Wang, P.-C. Chung, H.-W. Cheng, and C.-R. Huang, “Trajectory
kinematics descriptor for trajectory clustering in surveillance videos,”
in Circuits and Systems (ISCAS), 2015 IEEE International Symposium
on. IEEE, 2015, pp. 1198-1201.

M. Vochten, T. De Laet, and J. De Schutter, “Comparison of rigid body
motion trajectory descriptors for motion representation and recognition,”
in 2015 IEEE International Conference on Robotics and Automation,
2015.

T. Hastie and W. Stuetzle, “Principal curves,” Journal of the American
Statistical Association, vol. 84, pp. 502-526, 1989.

F. J. Solis, “Geometry of local adaptive Galerkin bases,” Applied
Mathematics and Optimization, vol. 41, pp. 331-342, 2000.

M. Kirby, Geometric data analysis: an empirical approach to dimen-
sionality reduction and the study of patterns. John Wiley & Sons, Inc.,
2000.

G. H. Golub and C. F. Van Loan, Matrix computations. JHU Press,
2012, vol. 3.

M. Firman, “RGBD datasets: Past, present and future,” in IEEE Con-
ference on Computer Vision and Machine Intelligence, 2016.

S. Fothergill, H. M. Mentis, P. Kohli, and S. Nowozin, “Instructing
people for training gestural interactive systems,” in CHI, J. A. Konstan,
E. H. Chi, and K. H66k, Eds. ACM, 2012, pp. 1737-1746.

W. Kiihnel, Differential geometry: curves-surfaces-manifolds. Ameri-
can Mathematical Soc., 2006, vol. 16.

Robert Arn received his Ph.D. from the Department
of Mathematics, Colorado State University in 2016.
His dissertation was entitled ”On the Formulation
and Uses of SVD Based Generalized Curvatures”.
He was hired after graduation by Northrop Grumman
Corporation.

Pradyumna Narayana received his B.S. in Infor-
mation Technology from Jawaharlal Nehru Techno-
logical University, Hyderabad, India in 2011 and
M.S. from the Department of Computer Science,
Colorado State University in 2014. He is working
towards his Ph.D. and is expected to receive his
degree from Colorado State University in 2018. His
research interests include gesture recognition, action
recognition and image recognition.

. X, NO. X, JANUARY 2001X 14

Tegan Emerson received her B.S. in Mathematics
from Oregon State University in 2011 and her M.S.
and Ph.D. in Mathematics at Colorado State Uni-
versity in 2013 and 2017. Currently, she is a Karle
Fellow working as a Mathematician at the Naval
Research Laboratory. Her research interests include
geometric and topological data analysis, dimension-
ality reduction, algorithms for image and video pro-
cessing, and optimization. She won “Best Paper” at
the 2016 Workshop on Hyperspectral Imaging and
Signal Processing: Evolutions in Remote Sensing.

Bruce Draper received his B.S. from Yale Uni-
versity in 1984, and his M.S. and Ph.D. from the
University of Massachusetts (Ambherst) in 1987 and
1993, respectively. He has been on the faculty at
Colorado State University since 1996, and a full
professor since 2011. An active computer vision
researcher, he is a member of the IEEE who has been
actively involved in community, including serving as
the General Co-chair for CVPR in 1999.

Michael Kirby received his S.B. degree in Math-
ematics from the Massachusetts Institute of Tech-
nology and Ph.D. from the Division of Applied
Mathematics, Brown University. He is currently a
Professor in the Department of Mathematics, Col-
orado State University with a joint appointment in
the Department of Computer Science. His research
interests include low dimensional modeling, geomet-
ric models for data and optimization. He authored
the textbook Geometric Data Analysis. He was an
Alexander von Humboldt Fellow at the Institute for

Information Verarbeitung at the University of Tuebingen, Germany. He also
was awarded an IBM Faculty Fellowship, and the College of Natural Sciences
Award for Graduate Education.

Chris Peterson received the Ph.D. degree in
Mathematics from Duke University (Durham, North
Carolina) in 1994. He is currently a professor in the
Department of Mathematics at Colorado State Uni-
versity (Fort Collins, Colorado). Previously he held
postdoctoral research positions at The University of
Notre Dame and Washington University in Saint
Louis. His research interests include pure and applied
algebraic geometry, optimization, and geometric data
analysis.

	Introduction
	Related Work
	Segmenting Motions
	Differentiable Curves in Computer Vision
	Equations for Curvature and Torsion

	Curvature from Eigenvalues
	The Generalized Curvature Formulae
	The Curvature Algorithm

	Adapting Data Windows
	An approach based on projections
	An approach based on singular vectors
	Complexity Analysis

	Synthetic Experiments
	Constant Curvature
	Synthetic Data Results

	Motion Segmentation
	Experiments on the PALKA data set

	Conclusions
	Appendix: Derivation of Curvature Equations
	References
	Biographies
	Robert Arn
	Pradyumna Narayana
	Tegan Emerson
	Bruce Draper
	Michael Kirby
	Chris Peterson

