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Frenet-Serret frame and the local singular vectors agree at
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Hankel determinants using the theory of monic orthogonal
polynomials and moment sequences.
© 2019 Published by Elsevier Inc.

1. Introduction

Principal component analysis is typically derived invoking a criterion from statistics,
i.e., determine a k-dimensional subspace that captures the most statistical variance in
a data set. Data analysts with a more geometric inclination view PCA as containing
both statistical and geometric information. For example, it has been shown that local
PCA provides information that can be used to determine the topological dimension of a
manifold [1,2]. This paper, the first in a series, demonstrates how PCA, and the related
singular value decomposition (SVD), rigorously characterizes the geometric information
in n-dimensional curves. Here we focus on generalized curvatures and how data sam-
pled from these curves can be used to reconstruct the curves using the SVD. In later
work we will show that the philosophy of these ideas carry over to data sampled from
hypersurfaces and manifolds [3-5].

We begin this presentation by briefly reviewing the relationship between Principal
Component Analysis (PCA) and the Singular Value Decomposition; see also [6]. Recall
that PCA is a tool derived in statistics for determining an optimal change of basis,
i.e., each coordinate direction captures the maximum variance [7]. This basis inherits
its ordering from the amount of variance captured. The first basis vector captures the
maximum variance possible for a one-dimensional subspace, the second basis vector cap-
tures, in conjunction with the first, the maximum amount of variance possible for a
two-dimensional subspace, and so on. The closely related singular value decomposition
(SVD) captures the same information as PCA but has the theoretical starting point as
the system of equations

Av =ou

ATy = ov
These equations have an associated matrix factorization
A=UxvT

where the U matrix consists of the left singular vectors, and the o4 > 09 >--- >0, >0
are the non-zero singular values where A has rank r. These vectors U are also the
solutions to

AATy = M\
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and hence we recognize them as the principal components. The eigenvalues of PCA and
the singular values of the SVD are connected via

A= o2

Although the information captured by the SVD and PCA is effectively the same,
the numerical linear algebraic algorithms used for computing them are very different.
Most importantly, the matrix AA7 is formed in the computation of PCA while this is
not the case with SVD. The formation of either the outer product, or inner product,
matrices may result in the loss of significant numerical precision. So, in practice it is
generally better to compute the principal components in PCA using the SVD [8]. For
this reason we choose to refer to the SVD, rather than PCA, although theoretically (but
not numerically) we view these as interchangeable.!

The shape of a curve in n-dimensional Euclidean space can be characterized mathe-
matically in terms of its generalized curvatures. These are essentially the features defined
at each point on the curve that encode its trajectory. The fundamental theorem of curves
connects the shape of a curve to its curvatures. A curve is equivalent to its curvatures
in the sense that each can be obtained from the other, at least up to rigid rotations
and translations. In three dimensions the curvature x and torsion 7 are the curvatures.
Well-known formulae for x and 7 exist which involve the computation of second and
third derivatives, respectively. The geometric characterization of curves in R™ may be
done via the formula for the generalized curvatures. A drawback to this approach is
that the formula for the jth generalized curvature requires the estimation of the j + 1
derivative at each point on the curve. Thus it is of interest in the study of curves to de-
velop additional analytical and computational tools for characterizing these generalized
curvatures.

The Frenet-Serret frame is given by the application of the Gram-Schmidt or-
thogonalization procedure to the derivatives of the curve (¢t) € R"™ denoted by
A (1), ...,y (t) € R". Again, the fundamental theorem of curves holds and the shape
of the curve in n dimensions is encoded by the n — 1 generalized curvatures denoted
k;(t). There are well-known exact expressions for the associated generalized curvature
K; in terms of the 7 + 1 derivatives of the curve.

In this paper we show that given a curve y(t) C R™ for any n € N then the generalized
curvatures may be expressed as

o;(t)

Fima(t) = @iy s s

with

L Of course, we recognize that for some very large data problems, it is not even possible to load the data

matrix A into computer memory while it is possible to compute one of AAT or AT A. For these problems
the principal components are determined using the algorithms for PCA.
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i 42 — 1
i+ (—1) 3

Aj—1 =

for each ¢ between 2 and m where the o;(¢) are the singular values. In addition, the
left-singular vectors, i.e., the principal components of the curve, provide the Frenet-Serret
frame. Our approach in this paper is theoretical, i.e., our primary purpose is to derive
the result stated above. Issues related to approximation accuracy, and the impact of
noise in data, are outside the scope of this paper and will be treated elsewhere.

This paper is organized as follows: in Section 2 we summarize the background material
on generalized curvatures. In Section 3 we demonstrate the complications of computing
curvatures for dimensions three to six using local approximations, an idea we pursue in
Section 4 to demonstrate the central results of this paper. In Section 5 we illustrate the
application of the results with a basic example and draw conclusions in Section 6. The
Appendices contain the details of the proof of the main result including some interesting
new lemmas concerning Hankel matrices required to establish the result.

2. Generalized curvatures

Consider an interval I C R and a vector valued function v : I — R™. If ~ is k times
differentiable, with continuous derivatives, then 7 is said to be a parametric curve of
class C*. Let v*) denote the kth derivative of ~. If for each ¢t € I, the set of vectors
(YD), 7y@(t),...,7") ()} are linearly independent in R”, then v is said to be regular
of order r. If ||7/(t)|| = 1 for each ¢ € I then ~ is said to be parameterized by arc length.

Let v : I — R™ be a parametric curve of class C"*1, regular of order n, parameterized
by arc length. At any point v(t) € v(I), the Frenet-Serret frame is determined by apply-
ing the Gram-Schmidt process to the vectors 41 (¢), 7 (t), ..., 7™ (). Thus the Frenet-
Serret frame at (t) is the ordered sequence of orthonormal vectors ey (t), ea(t), .. ., en(t),
where

i—1
eilt) = — with &(t) =D (t) =Y <D (t), ex(t) > ex(t) for 1<i<n.
k=1

The generalized curvature functions of v are defined by
ki(t) = < ej(t),eir1(t) > for 1<i<n-—1.

With this definition, x;(t) > 0 for all 4. The frame functions e; (¢), e2(t), . . ., e, (t) together
with the generalized curvature functions k1(t),...,kn—1(¢) is called the Frenet-Serret
apparatus of . The Frenet-Serret apparatus of a curve characterizes the curve up to
translation and rotation.

By the definition of the e;(t), we have

ei(t) € span{yP(t),...,.yD(t)} for i=1,...,n—1.
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Thus,
ei(t) € span{y M (), ..., vV @)} = span{e(t), ..., eis1(1)}.
As a consequence,
< €j(t),ej(t) > = 0 whenever j>i—+2.
If we differentiate the expression < e;(t),e;(t) > = 1 then we obtain
<ei(t),e(t) >+ <eit),ei(t) >= 0,
from which we can conclude that
<ei(t),ei(t)>= 0 for 1<i<n.

In a similar manner, if ¢ # j then we differentiate the expression < e;(t),e;(t) > = 0 to
obtain

from which we can conclude that
<ei(t),e(t) > = — < ej(t),eit) > .

Let E denote the orthonormal matrix whose columns are ey (t),...,e,(t). The above
formulas show that E7E’ = K with K a tridiagonal skew symmetric matrix. Since F is
orthonormal (thus EET = I), we can multiply on the left by E to arrive at the expression
E’' = EK. Recalling that ;(t) = < €}(t),e;11(t) > we can express K as:

0  —ri(t) 0 0 0
K1(t) 0 —Ka(t) 0 0
K= 0 Ko (t) 0 0
0 0 0 —Fn-1(t)
0 0 0 Fn_i(t) 0
If the generalized curvature functions 1 (t), ..., k,—1(¢) in the matrix K are constant,

then the solution to the differential equation, B/ = EK, can be shown to be (up to
translation and rotation) of the form
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a1 cos(aqt)]
ay cos(aqt) o1 sin(art)
ay sin(a;t) ! !

=] o =] CO;(akt) (2.1)
a, cos(ayt) ax sin(oxt)

bt

a, sin(ayt)

with the first equation, 7.(t), covering the case when n is even with k¥ = n/2 and the
second equation covering the case when n is odd with &k = (n — 1)/2 [9].

3. Local approximation

Consider a curve v(t) in R™. Recall that if v(¢) is parameterized by arc length then
~(t) is a solution to the differential equation £’ = EK. We would like to understand
the associated frame e;(t),...,e,(t) and curvature functions k;(t),...,kn—1(t) from a
different point of view. Specifically, consider points on the curve within an e-ball centered
at a point so = y(tp). The tangent line at sq is approximated by taking the span of two
points on y(t) in an e-ball centered at sg while the osculating plane at sq is approximated
by taking the span of three points on v(¢) in an e-ball centered at sg. However, points on
the curve in a small e-ball are nearly linear. The value of k1 (o) can be seen as a measure
of the failure of the linearity of such points. In a similar manner, the value of the second
curvature function, ko(tp) is a measure of the failure of planarity of points in an e-ball on
the curve. This point of view will be considered more closely in the next section through
the local singular value decomposition. In order to make this connection, it is helpful to
replace the curve with an idealized version which agrees, to high order, with the curve

at y(to)-
3.1. Local approximation of curves in R3 and R*

Consider a curve v(¢) in R3. The helix of best fit to v at 7(¢¢) is the solution to the
differential equation £’ = FK;, where K;, denotes the curvature matrix K evaluated
at tg. Thus the curvature functions for the helix will be constants k1 = k1(tg) and
ko = Ka(tg). In R3, the general solution, g(t), to the differential equation, £’ = FK,,,
has the form

g(t) = (acos(at), asin(at), bt) + Constant.
The helix of best fit to v(t) at (o) is given by
h(t) = g(t) — g(to) + 7(to)-

If |7 (t)|| = 1 then we get the condition that
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a’a® + 0% =1.

The relationship between the curvature functions of the helix and the parameters a, b,
is:

K} = a’a?,
k3 = b*a’.

In a similar manner, if we solve the differential equation E' = FKj, for a curve ()
in R* then we obtain a toroidal curve of best fit at v(tg) of the form

h(t) = g(t) — g(to) + (to),
where
g(t) = (acos(at),asin(at),bcos(f5t), bsin(pt)) + Constant.

We can relate a, b, a, 8 to the curvature functions as

2,2 _ 2.6 3226 _ 4
K1k = a”a® + b*B° — KT,

Kikaks = a’a® + b2 B° — k1(KT 4 K3)?,
where again we have assumed that the curve is parameterized by arc length so
a’a® +b%B% =1.

These equations are derived for K1, ko, k3 in [9]. Next we give the corresponding equations
for curves in R? and R®. The derivation is straightforward but tedious.

3.2. Curvature relations in R® and R

If we solve the differential equation E' = EK;, for a curve v(t) in R® then we obtain
a curve of best fit at y(¢) of the form

h(t) = g(t) = g(to) +~(to),
where
g(t) = (acos(at),asin(at),bcos(ft), bsin(Bt), ct) + Constant.

We can relate a, b, ¢, a, 8 to the curvature functions as
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1 = a?a® +?B% + 2
Kp2 — 2ot + p28
K12k — a2ab + b25 — iyt
k1’ko?ks? = a?a® + 0?38 — kI(Kk} + K3)?

512I€22I{32I£42 = a?at0 + 2810 — k2((k? + K2 + K3)(K3 + K3) + K3K3).
In R® the curve of best fit has
g(t) = (acos(at),asin(at), bcos(Bt), bsin(St), c cos(t), csin(dt)) + Constant.

Letting Gy, = a?a® + b?B* + ¢26%, we can relate a,b, ¢, o, 3,9 to the curvature functions

as
1 = Go
K2 =G
1 - 4
Ii121{22 = G6 - 14314
2,2, 2 _ 2,2 2\2
K1°K2"K3 = Gg — K{(K] + K3)
2.2.2.2 _ 20(,.2 2 2\(,.2 2 2.4
K1°Ro k3ka® = Gio — K7((K] + K5 + K3) (K5 + K3) + K5K3)

k12Kk22K32k4% k52 = Gra — Gro(K3 + K3 + K3 + Kk3) + Fs(k362% + K3K3 + K3K3).
4. The local singular value decomposition

Broomhead et al. showed that the local singular value decomposition could be used
to compute the topological dimension of a manifold from sampled points lying on the
manifold [2]. This provided a powerful tool for many applications that involved modeling
data on manifolds. The original setting of [2] concerned the reconstruction of a manifold,
via Takens’ theorem, from scalar valued time series statistics of a dynamical system on
the manifold. The local singular value decomposition is also useful for applying manifold
learning algorithms for geometric data analysis, e.g., local models such as charts [10], or
global models based on Whitney’s embedding theorem [11]. A more detailed discussion
may be found in [6,12].

Recall that at each point y(t) € v(I), the Frenet-Serret frame is determined by ap-
plying the Gram-Schmidt orthogonalization process to the set of vectors v(M)(t),y(2)(¢),
o™ (t) (where 4F)(t) denotes the kth derivative of v evaluated at t). We denote
this ordered orthonormal basis e1(t), ..., e,(t) and let E denote the orthonormal matrix
whose columns are the e;(t). The main intuition behind a local singular value analysis
(and related PCA) is to exploit the idea that the Frenet-Serret frame may be viewed
as finding the subspace of best fit at a point on the curve. We consider the canonical
solution of the Frenet-Serret formula where k; is assumed to be constant, i.e., the so-
lutions to B/ = EK given by Equation (2.1) where K is constant. We use an integral
formulation of the principal component analysis, often referred to as the Karhunen-Loeéve
transformation, at a given point on the curve. We then use a Taylor series approxima-
tion for v(t) to determine particular eigenvalues of the Karhunen-Loéve transformation
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in the e-ball. These relationships can be combined with the relationships between the
curvature constants and the curve parameters to determine a formula for computing k;
locally from the eigenvalues of the Karhunen-Loeve transformation, or, equivalently, the
singular values squared of the local SVD.

4.1. Formulation

Following [1,2], the mean centered covariance matrix of y(¢) at ¢ is the matrix

t+e

T =5 [ 60 = 7.0)(5) = 7.0) s
where
1 t+e
70 =5 [ ds

However, we will consider the closely related on the curve covariance matrix

t+e

[ 09 2@ (s) = 2(0)7ds. (@)

t—e

1

By the eigenvalue decomposition, we have a factorization
Ce(t) = Ue(t)Be()US (1)

where we assume that the diagonal elements in ¥.(¢) are in monotone decreasing order.
The columns of U (t) are the eigenvectors of C¢(t). Let U(t) = lim._,o Uc(t). The columns
of U(t), written uy (t), ..., u,(t), are also the local left singular vectors at (¢). In a similar
manner, one can define the local singular vectors @y (¢), ..., %, (t) at v(¢) by considering
the limiting behavior of the singular vectors in the singular value decomposition of C(t)
as € tends towards zero.

Theorem 4.1. Let v : I — R™ be a parametric curve of class C" Y, reqular of order n.
Let e1(t),...,en(t) denote the Frenet-Serret frame at ~v(t). Let ui(t),...,u,(t) denote
the local left singular vectors at v(t). Then for i =1,...,n, e;(t) = Lu,;(t).

Proof. Let I'(t) denote the matrix whose columns are v (¢),...,~v(™ (t). The Frenet-
Serret frame, e1(t),...,e,(t), is obtained by applying the Gram-Schmidt process to the
columns of T'(t). Thus e;(t) is a unit vector orthogonal to the span of (1) (¢), ..., 4=V (¢)
but lying within the span of vV (¢),...,v(®(t). Let v be the n x 1 vector whose kth com-
ponent is (s —t)*/k!. Then I'(¢)v is the nth order Taylor series expansion for (s) — (t)
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at t. Replacing ~(s) — v(t) with its Taylor series expansion leads to the nth order ap-
proximation

t+e t+e

[0 =266 = o) ds = o [ @OwTEm?T ds

—€

1
T 2
t

Ce(t)

We rewrite this as

t+e
I'(t) 2% / wldsT(t)T =T(t) £ T ().

By the definition of £, we compute that
et
gi,j = m le-l-_] iS even and gi,j = 0 1f’L+] iS Odd

We can express ['(t) £ T'(t)T in terms of the columns of I'(t) and the entries of £ as

2k—1
2 4 €2k 1

e+ e e Lo er Loy o
3 (cre1) + 3 (60103 + e t+ 60301)+ + 1 ; 2k =)

™

T
CiCop_yi ..

where ¢; = v (t). As € tends towards zero, this expression behaves more and more like

the rank one matrix %clclT. Noting that ¢; = (M (¢), thus is a multiple of e;(t), we get

uy(t) = %ey(t). Let Py = I —e1(t)e1(t)T. Pre and post multiplying I'(¢) £ T'(¢)T with P
deflates away all terms involving ¢;. More precisely,

64 1 62k 2k—2 1
PiT@) ETH)T PL=—(=PicsctP) + - Pie;eh P+ ...
1 T@#) ET(R) P 5(4 1cacy Pr) + +2k+lzi!(2k—i)! 1CiCap_ P1 +

=2

As € tends towards zero, this deflated matrix behaves more and more like the rank one
matrix %(iPlcQCQTPl). Noting that Picy = P1y®)(t), we see that Pjc; is orthogonal to
7 (t) and is in the span of v (t), v (¢) thus is a multiple of ey (t). This leads to ug(t) =
+ey(t). We now pre and post multiply Py T'(¢) £ T'(t)T P, with Py = I —ea(t)ea(t)T. Note
that since e;(t) is orthogonal to ey (t), we have PoP; = I — ey (t)er(t)T — ea(t)ea(t)T. As
€ tends towards zero, this doubly deflated matrix behaves more and more like the rank
one matrix ?(%nglcgcgﬂplpg). Notlng that P2P103 = P2P1’-Y(3)(t)7 we see that P2P163
is orthogonal to the span of v (), (¢) but in the span of v (¢),7®)(¢), 73 (¢) thus
is a multiple of e3(t). This leads to us(t) = tez(t). Continuing to deflate away previously
found singular vectors, we obtain the relationship e;(t) = +wu;(¢) for all i. Note that for
this to work, &; ; must be non-zero and P FP;_ - -- P17(i+1)(t) must be non-zero for each
1. These conditions are satisfied since &;; = ﬁ and ~y is regular of order n thus

YD (t),...,y™(t) are linearly independent. 0O
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The previous theorem considered the relationship between the local singular vectors
of a curve and the Frenet-Serret frame of a curve. We now consider the relationship
between the local singular values of a curve and values of the curvature functions. More
precisely, in the eigenvalue decomposition

Ce(t) = Ue(t)Ae(t)UeT(t)

we considered the limiting behavior of Uc(t), as € tends towards zero, in order to obtain
the local principal components, or equivalent, the left singular vectors of the data matrix.
We now consider the limiting behavior of A.(t) as € tends towards zero. Note that the
entries of A.(t) tend towards zero as e tends towards zero. Let A;.(t) denote the ith
diagonal entry of A.(t). We show that for some constant ¢;, we can write

Aie(t) = e +0 (62“'2) )
The local singular values of y(¢) are then defined as o;(t) = \/c;€'.

In Section 2, we have explicitly expressed the curvature, for curves with constant
curvature functions, in terms of the parameters of the curves. We now express the leading
terms of the eigenvalues \; (¢) in terms of the parameters of the curves. This allows us
to derive a relationship of the form

Xit1,e(t)

O e DD (4.2)

where a; is a constant with known value. From this we obtain

oiy1(t)

rilt) = Vi

4.2. Two dimensions

Consider a two dimensional curve with constant curvature k1 = 1/a. This will be
a circle of radius a. Up to translation and rotation, its parameterized form is v(s) =
(acos(as),asin(as)). If we assume that the circle is parameterized by arc length then
we obtain the constraint a?a? = 1. The components of the covariance matrix C.(0) are:

1 €
Ci = % /(a cos(as) — a)’ds,
€

1 €
Coy = 5% /a2 sin?(aus)ds,

—€

with
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1 €
Cio =Co = % /(a cos(as) — a)sin(s)ds = 0

—€

since the integrand is an odd function.

We follow the usual convention of ordering the eigenvalues by decreasing magnitude
S0

1
A,e(0) = §a2a262 + 0(64),

1
)\275(0) == 2*()

lim A2e(0) 9
0 A2 (0) 2002

a?ate + O(eY),

Given that the curvature k1 = 1/a, we obtain the following expression for x; in terms
of the local singular values of the circle:

20 g2 - \/20 g2

R1 = —_ = — .
2 2
9 o 3 o3

4.8. Three and four dimensions

Here we consider curves in R with constant x1, k3. Up to translation and rotation,
such a curve will have the form

v(s) = (acos(as), asin(as), bs).

Assuming the curve is parameterized by arc length we have a?a? + > = 1. The
covariance matrix, C¢(t), is a 3 x 3 matrix with eigenvalues

1
A\ = §€2+O(64)
R T 6
)\2—20040[6 + O(e”)

_ L 5 6006 8
)\3—1575aab6 + O(e%)

Recalling from Section 2 the equations for k1, ks in terms of the parameters a, a, b,
we obtain

2 _ 20 Jac(t) o 105 A3.e(t)

TN @ "2 B MDA ()

This leads to the expression of k1, ko in terms of the singular values as:



192 J. Alvarez-Vizoso et al. / Linear Algebra and its Applications 571 (2019) 180-202

V20 o9 V105 o3
— and Ky = ——

K1 = — .
3 cr% 2 0109

Similarly for curves in R*, using elimination theory we establish the following repre-
sentations of the x; in terms of the local singular values:

V20 o9 V105 o3 V336 o4

——, Ky = ——— Ky = —— .
3 U%’ 2 o109’ 5 0103

K1 =
4.4. Higher dimensions

Given that many of the entries of Cc(0) are odd functions, the covariance matrix has
a special structure with many zero entries. For instance, the structure of the covariance
matrix for n = 6 is

Chn 0 Ciz 0 Ci5 O
0 Cyun 0 Ciu 0 Oy

C3y 0 Cs3 0 Cs5 0
0 Cio 0 Cyu 0 Cg

Csi 0 Css 0 Cs5 O
0 Ce2 0 Coa 0  Coe |

We can permute the columns and rows of this matrix an even number of times to
obtain the block matrix

Chn Ciz3 Ci5 0 0 O

C31 Cz3 C35 0 0 0

Cs1 Cs3 Cs5 0 0 0
0 0 0 (o Coy Coy
0 0 0 Co Cy Cg
0 0 0 Cyx Ci Cesl

Thus we observe the more computationally efficient approach to computing the eigen-
values by computing the eigenvalues of the block submatrices.
For curves in R® we obtain:

V20 o2 V105 o3 V336 04 V825 o5
R1 = —5, k2= y R3 = y R4 = : (43)
3 o3 2 o109 5 0103 4 o104

And for curves in RS the same expressions for ki, ko, ks, ka hold plus the additional
relationship
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vV 1716 J6

7 0'10'5.

Ky = (4.4)

Throughout this section, we have assumed the curve to be parameterized with respect
to arc length. The local computations can still be made without this assumption. What
would change in the formulas in the previous section is that we would replace the assump-
tion that ||y (to)|| = 1 with ||y (¢o)|| = r. We obtain the same connection between
the higher curvature functions and ratios of singular values. We summarize these results
in the following theorem whose general proof for all dimensions is given in Appendix B:

Theorem 4.2. Let vy : I — R™ be a parametric curve of class C"1, reqular of order n for
any n € N. Let k;(t) denote the jth curvature function of v evaluated at t and let o;(t)
denote the jth local singular value of v at t. For each t € I and each j < n,

aj41(t) j )2 4% -1

kj(t) = \/a_jm with aj—1 = (j (1) 3 (4.5)

The formula straightforwardly reproduces the results obtained above for the coeffi-
cients
20 105 336 825 1716
a1 =—, 0= —, a3 = ——, G4 = ——, A5 = ——.
1 9 , U2 4 , U3 25 , 4 16 ,» U5 49
The proof of the general case requires the theory of Hankel determinants using orthogonal
polynomials, which is reviewed in Appendix A. Perhaps surprisingly, the numerator of
this series arises in the number of Kekulé structures in benzenoid hydrocarbons [13] and
the degrees of projections of rank loci [14].

5. An example

We consider the twisted cubic curve in R? given parametrically as v(t) = [t,t2,t3].
The Frenet-Serret frame can be shown to be:

1 t(249¢%) 32
V14+4t249t1 V14+4t249t4/1+9t24-9t% Vit9t2+9¢

| 2t ___ _ 1-9¢* _ —3t
eil(t) = | VirivTor ex(t) = V1At 1984/ 11962+ 0 es(t) = V1198219t
__ 3t 3t+66° 1
V14+4t249t4 V1+4t219t3/1+9t2+9¢4 V149t24+9¢4

while the functions k1 (¢), k2(t) can be shown to be

2v/1 + 912 4 9t4 a(t) = 3
(1+ 42 + 9t4)3/2 T T por ot

Ki(t) =

Let € = .001 and let ¢ = 3. If we consider the singular value decomposition C(t) =
U (t)Z(t)UZ(t) for v(t) then we can consider the singular vectors of C.(t) as a proxy
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for the local singular vectors of y(t) at t = 3 and compare to the exact value for e;(¢) at
t = 3. For instance, comparing the first singular vector to the first frame vector, we get

036131465 036131468
up.(3) = |.216788800 |  e1(3) = |.216788812 | .
975549656 975549654

The other singular vectors, ug ((3), us (3) are similarly close to e2(3), e3(3). If we consider

Ja VAig1,e(t)
VAL ) i ()

then we obtain the following estimates:

011 t
as a proxy for k; = ‘/ai#a(-()t)
(2

k1(3) = .0026865640, £2(3) =~ .0036991369,
whereas using the exact formulas, we can compare these values to
k1(3) = .0026865644..., k2(3) = .0036991368...

For these approximations, we used € = 1072, With a choice of ¢ = 1076, for this example,
we observed about 13 digits of accuracy. This example illustrates how the theorems
of the previous section can be used to obtain very good approximations of both the
Frenet-Serret frame and values of the curvature functions by considering small values
of e.

6. Conclusions

In this paper, we established the close connection between the Frenet-Serret apparatus
and the local singular value decomposition of regular curves in R™. The local singular
value decomposition was defined as the limit of the singular value decomposition of a
family of covariance matrices defined on the curve. In particular, we showed in Theo-
rem 4.1 that the Frenet-Serret frame and the local singular vectors of regular curves
in R™ agree (up to a factor of +1). In addition we showed in Theorem 4.2 that values
of each of the curvature functions can be expressed in terms of ratios of local singular
values for regular curves in R" for any dimension, with a proportionality coefficient that
was obtained exactly through its relation to Hankel determinants via monic orthogonal
polynomials. With this, the techniques allow for highly accurate approximations of the
Frenet-Serret apparatus in terms of local SVD computations.
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Appendix A. Hankel matrices and orthogonal polynomials

After the previous explicit examples were worked out, we conjectured the formula
4.2 for a; and numerically verified the result for rg,x7, ks by generating curves with
prescribed non-constant curvature and solving the system E’ = EK numerically; then,
the local singular values were numerically approximated from the numerically generated
curves. The general proof is based on the following key result by F.J. Solis [15] for the
expansions to leading order of the singular values:

Lemma Appendix A.1. Let v(t) be a reqular curve in R™, and let Py be a point on the
curve, then the eigenvalues associated with C. at Py are given by

AL = pre’ + 0(64),

(1{1.../@,_1)2 . ) .
A = ijegj + O(e¥712), ji=2,...,n
and the eigenvectors are given by the Frenet frame at Py. The k;’s are the higher curva-
tures of the curve and py, is the k-th (k =1,...,n) pivot of the n x n matriz A,, defined

by

1 oo .. .
P k===t if i+ j is even;
ij = .
0 otherwise.

From his proof, a small typo is corrected for the denominator of A; in the final state-
ment. With this result we can express the curvatures x; in terms of the singular values by
expressing the pivots as quotients of the determinants B; of A;, that is p; = B;/B;_1,
so that:

Ajy1 9 BjyiBja

I = K2 .
eSONAE I (j 1 1)2B, B

(A1)

The determinants B; are of Hankel type for the sequence {1, }52, = {%, 0, %, 0, %, .

Ho  p1 p2 v M1
1 1 ,
) 1y 3 0 £ H1  p2 H3 Hj
Bi=g Be=|3 1| Bs=|0 5 0 Bj=| K2 M g dun
0 & 1o 1 . . . .

5 7
Mj—1 M Hj+1 o H25-2

Then to get our coefficient in 4.2 amounts to showing that the aforementioned Hankel
determinants satisfy the following recurrence relation:



196 J. Alvarez-Vizoso et al. / Linear Algebra and its Applications 571 (2019) 180-202

BiBj_y _ (j+(~1)))?
(Bj,l)2 452 -1

(A.2)

This is indeed the case after we realize that such a recurrence relation appears in
the theory of monic orthogonal polynomials generated from {z™}2° , by Gram-Schmidt
orthogonalization with respect to a measure giving our sequence pu,, as the integral mo-
ments. Indeed, choose a nondecreasing function A(z) on R having finite limits at +oo
such that it induces a positive measure d\ with finite moments to all orders

tn (dN) :/:c"d)\(x), n=0,1,2,..
R

then apply the Gram-Schmidt orthogonalization procedure to {2} ; using the scalar
product

w(e).q(a)) = [ ple)alz)ane)

R

to obtain a sequence of monic orthogonal polynomials P,(z) (without normalization).
If the given scalar product is positive-definite, such a sequence is infinite and unique,
and this is the case if B,, > 0 for all n € N, see Gautschi [16, th. 1.2, 1.6]. Moreover, in
this case, the infinite sequence of monic orthogonal polynomials obtained in this manner
obeys the recursion relation [16, th. 1.27]:

P_1(z)=0, Py(z) =1, Ppyi1(z) = (x — an)Pu(x) — fnPr_1(z) (A.3)

where

(P, zPy)
(Pn, Py)

<Pn—17Pn—1> HP)’ﬂ—l(x)HQ7

ay = Bn = forn=1,2,...

The importance of this result is that the recursion coefficients 3, are precisely the re-
cursion coefficients of the Hankel determinants B,, for the sequence u,, as it is proved
in [16, eq. 2.1.5]

B;B;_o
Biii =22 forn=23,... A4
! (Bj-1)? (A4)
so finding a measure to reproduce our sequence as its moments and a way to compute the
norms of the corresponding polynomials will yield our coefficient formula. There is a fun-
damental determinantal representation of the monic orthogonal polynomials generated
in the previous way [16, th. 2.1]
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Ho s Hn
H1 M2 oo fngd
1 : : : Bt
Paa)=5| i L IP@IP = 5
" Un—-1 Hn ... H2n—1 n
1 T z"

that yields Heine’s integral representation formula [17, p. 288] by essentially pulling the
integrals of each moment out of the determinant and expanding

P, (x) = B, / /H T — ;) H (zr — 21)2d\(z1) - - - d(zy,).

Rn = 1 1<I<k<n

Since the polynomials are monic, B, can be solved equating to 1 the leading coefficient
of the previous equation

B, = — I (@ —=z)%d\(@1) - dA(zn) (A.5)
n.Rn 1<l<k<n

which is a closed formula for all Hankel determinants of any sequence as long as this can
be written as moments of a positive measure.

Appendix B. Proof of Theorem 4.2

Using the theory above for Hankel determinants of particular type we arrive at the
following key result.

1 oo
Theorem Appendix B.1. For any inverse arithmetic sequence { = ﬂ} , where
an
=0
a, B € Ry, the corresponding Hankel determinants "

1 1 _1 . 1

? a-{-,@‘ 20z1+,8 (n—11)a+/3
Fo(a, B) = 2a+p 3a+p8 da+p T nADa+p (B.1)

1 1 1 U S

(n—1)a+B na+B (nt+l)a+ps 2n—2)a+p

are given by
-1 n—1
(B/a+k)(k)* 17 a
Fo(a,8) = an p = — [T xn? ‘ , (B.2)
o W T/ ry ~ o L L6575

and satisfy the recursion relation



198 J. Alvarez-Vizoso et al. / Linear Algebra and its Applications 571 (2019) 180-202

FoFps _ o® (a(n—2) + B)* (n —1)° (B.3)
i (a2n—2)+B8) (a(2n—3)+8)* (a(2n —4) + 8)’

1 o’
y ) F = — F = .
starting with Fy Ik 2 32a+ B)(a+ B)?

Proof. Choose the function \(z) = x#/% /3 which is always nondecreasing in the interval
[0,1] for 8/a > 0, then the corresponding positive measure

xﬁ/afl

dA(z) = X0,1 dz,

where Y7 is the characteristic function of a measurable set I C R, yields moments

1
anta 1
nJrﬂ an+

1

1 1
Hn = / nd/\ — /l’n—i_é_ldx = —
a a

R 0

0

Notice that this solves the Stieltjes moment problem uniquely for these sequences be-
cause our measure is infinitely supported on [0, 00), and its moments satisfy Carleman’s
condition [18, th. 1.10]. From this, the necessary condition F;, > 0 is guaranteed to hold
for any dimension n [18, th. 1.2], so the induced inner product is positive definite and
thus the sequence of monic orthogonal polynomials P, () is infinite and unique. Thus
their recurrence relations (A.3) hold for any n € N, so we can compute the determinants
F,(a, B) of any dimension. This is done by computing equation (A.5)

n

1 1 B _
1 a
= = x’ (v — a7)%dxy - - - day,
n! «
0 0

i=1 1<l<k:<n

by means of Selberg’s integral formula [19, 8.1.1], an extension of Euler’s Beta function
which has applications in different fields within mathematics and physics:

/ﬁ 1—xl b—1 H lzp — 27[*day - - - dx,

[0 1]7:. =0 1<I<k<j

1:[ a+kg)T'(b+ kg)T'(1+ (k+1)g)
b (a+b+(n+k—1Dg)T'(1+g)

when Re(a) > 0,Re(b) > 0 and Re(g) > —min{l/n,Re(a)/(n ) e(b)/(n — 1)}.
These conditions are satisfied for our case a = §/a > 0, and b = g = 1. Therefore by
substitution of these values

1 T DB/atkPA+ TR +k) 1 Tr D(B/a+ k) (k)2
Fula ) = n!a"kl;[ I(B/a+n+k)T(2) N a”kl;[() Ir(B/a+n+k)’
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where the Gamma functions can be simplified by the factorial property I'(z41) = 2T'(2)
to get a closed formula:

1 n—1 —
Fn(ayﬁ) Otn ];[ 1;[ ki—f—]

Finally, the recursion equation (A.4) can be worked out by telescoping the products of
Gamma functions:

FoFy s 1 7p DE+ R 1H +n—1+k>
Fy ar ot F( +n+k) k) (k)2
-2
an_l”H L& +nf1+k n12 SR
W TELHE? o +n—2+k)

P +n-nm-1r ! 1 n-2 g
L% +n—2)(n-2)2 1};[()(§+n—1+k)F(§+n—l+k) ,E)F<E+”_1+’“>'
n—2

n—3
H<§+n—2+k>l“(§+n—2+k)n !

=0 b0 T (2+n—2+k)

n—2

CE4n-2)(n-1)T(E +2n—4) B, .
_ R H< +n—1+k)H<a+ 2+k>

E+n-202mn-1)7
(Et2n—2)(2 +2n-3)2(2 +2n 1)

which yields the stated formula upon multiplying numerator and denominator by o*. O

140
4
where 3 are those of the classical monic Jacobi polynomials of type (E —1,0). These

Remarkably, this means that our polynomial recursion coefficients satisfy 3, =

are generated by the measure x_y 1)(1 — :r:) ~ldz, which induces a completely different
moment sequence and set of orthogonal polynomials.

Our actual determinants B,, have alternating 0’s in the even positions of the moment
sequence, so a block decomposition is needed to get them into the form of the theorem.

1 o0
Corollary Appendix B.2. For any sequence of type { 3 } with a, B € Ry,

=0
where zeros alternate every other position, the corresponding Hankel determinants B,
are given by the following block decomposition for even m = 2m or odd n = 2m — 1
dimenston, m € N:

B2m = Fm(aaﬁ)Fm(a7ﬁ + Oé), B2m—1 - Fm(aaﬁ)Fm—l(avﬁ + Oé),
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and obey the recurrence relations:

BomBam—2 _ (a(m —1) + B)?
(Bam-1)2  (a(2m —1) + B)(a(2m —2) + B)’ (B.4)
Bom—1Bom-3 a?(m—1)32
(Bam—2)2  (a(2m —2) + B)(a(2m —3) + B)’ (B.5)
. . _ l _ 1
starting with B; = 5 B, 45(& r

Proof. The Hankel determinants with 0’s at every even position of the first row can be
decomposed into blocks by the procedure mentioned in Section 4.4 without altering the
overall sign. Notice that the second block has as Hankel sequence the original one but
shifted in index by +1, so the blocks are F,,, := F,,(a, ) and E,, := F, (o, + «).
Analogously for n = 2m — 1, but in this case the number of 0’s is now m — 1, so the size
of the second block is (m — 1)? whereas the first is still m?. Thus

B2m = FmEm7 Bmel = FmEmfl-

Whence the recursion coefficients for the induced polynomials are, for even n,

BQmBQ(m—l) _ Em Fo—1
By Bme1 Fn

ﬁn—l = /62m—1 =

and for odd n:

Bom—1Bom-1)-1 _ Em—2 Fpy
Br-1 = Bam-2 = 2 =T 7
2(m—1) m—14m—1

Therefore using (B.2), that the corresponding 8/« for the E,, blocks is 5/a+ 1 and the
factorial property of the Gamma function, the products can be simplified in the same
way as in our previous proof:

BomBaim-1) 1 L(B/a+ 1+ k)(k!)? -l I(B/a+m+k)
7—071_[ T ) Hr

B2 . Bla+1+m+k) oo T(B/a4 14 k) (K!)?

—2
(B)a+ k) (k)2 m I‘(ﬂ/a+m+k)
am—1 HI‘B/a+m—1+k o kl_[OF(B/a—i-k YRDE

m—1 m—2

1

_ (B/a+m—1)2
(B/a+2m —1)(B/a+2m —2)
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Similarly,

Boy—1Boim_1)— L(B/a+ 1+ k)(k!)? o I'(B/a+m+k)
2m—1D52( 1)1:am2H 1H T

B3y T(B/a+m—1+k) Ja+1+k)(k!)?
LT D(B/a+ k()2 mlH D/atm—1+5) _
am L T(B/a+m+k) T(B/a+k)(E)?
~ (m—-1)Pr(B/a+m—1)(8/a+2m — 3) _
 (m =220 (B/a+m—1DI'(B/a+2m—1)

) (m — 1)?
(B/a+2m —2)(B/a+2m —3)’

O

Finally the coefficient formula of Section 4.2 is obtained from this using (A.1).

Corollary Appendix B.3. The Hankel determinants of size n X n

1 oo - ..
e Wi+ s even;

Bn = det(An)a (An)zj = AR .

0 otherwise,

satisfy the recurrence relation

B, Bp— - (n—l— (_1)n)2
(Bn_l)g =T (B.6)

Proof. Notice the matrix entry at (A,);; is precisely the element of the sequence

1 oo
{m, 0} where n = i+j—2. Thus substituting a = 2 and § = 3 into the equations
n

n=0
(B.4), (B.5) above, the result follows straightforwardly when simplifying the theorem for-
mulas after indices are written in terms of the dimension, m = n/2 or m = (n+1)/2 for
the even and odd cases respectively. O

References

[1] D. Broomhead, R. Jones, G.P. King, Topological dimension and local coordinates from time series
data, J. Phys. A: Math. Gen. 20 (9) (1987) L563.

[2] D. Broomhead, R. Indik, A. Newell, D. Rand, Local adaptive Galerkin bases for large-dimensional
dynamical systems, Nonlinearity 4 (2) (1991) 159.

[3] J. Alvarez-Vizoso, M. Kirby, C. Peterson, Manifold curvature from covariance analysis, in: (SSP
2018) 2018 IEEE Statistical Signal Processing Workshop, 2018.

[4] J. Alvarez-Vizoso, M. Kirby, C. Peterson, Integral invariants from covariance analysis of embedded
Riemannian manifolds, preprint, arXiv:1804.10425, submitted for publication.

[5] J. Alvarez-Vizoso, M. Kirby, C. Peterson, Manifold curvature descriptors from hypersurface integral
invariants, preprint, arXiv:1804.04808, submitted for publication.

[6] M. Kirby, Geometric Data Analysis: An Empirical Approach to Dimensionality Reduction and the
Study of Patterns, John Wiley & Sons, Inc., 2000.

[7] L. Jolliffe, Princ 1pal Component Analysis, Sprlnger7 New York, 1986.


http://refhub.elsevier.com/S0024-3795(19)30061-8/bib62726F6F6D6865616431393837746F706F6C6F676963616Cs1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib62726F6F6D6865616431393837746F706F6C6F676963616Cs1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib62726F6F6D68656164313939316C6F63616Cs1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib62726F6F6D68656164313939316C6F63616Cs1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib416C4B695065323031386161s1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib416C4B695065323031386161s1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib416C4B6950653230313861s1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib416C4B6950653230313861s1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib416C4B6950653230313862s1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib416C4B6950653230313862s1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib6B697262793230303067656F6D6574726963s1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib6B697262793230303067656F6D6574726963s1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib6A6F6C6C696666655F31393836s1

202 J. Alvarez-Vizoso et al. / Linear Algebra and its Applications 571 (2019) 180-202

[8] L.N. Trefethen, I. David Bau, Numerical Linear Algebra, STAM, Philadelphia, PA, 1997.
[9] W. Kiihnel, Differential Geometry: Curves-Surfaces-Manifolds, vol. 16, American Mathematical
Soc., 2006.

[10] D. Hundley, M. Kirby, R. Miranda, Empirical dynamical system reduction II: neural charts, in: K.
Coughlin (Ed.), Semi-Analytic Methods for the Navier-Stokes Equations, Montreal, 1995, in: CRM
Proc. Lecture Notes, vol. 20, Amer. Math. Soc., Providence, RI, 1999, pp. 65-83.

[11] D. Broomhead, M. Kirby, A new approach for dimensionality reduction: theory and algorithms,
SIAM J. Appl. Math. 60 (6) (2000) 2114-2142.

[12] A.V. Little, J. Lee, Y.-M. Jung, M. Maggioni, Estimation of intrinsic dimensionality of samples
from noisy low-dimensional manifolds in high dimensions with multiscale SVD, in: Statistical Signal
Processing, 2009. SSP’09. IEEE/SP 15th Workshop on, IEEE, 2009, pp. 85-88.

[13] S.J. Cyvin, I. Gutman, Kekulé Structures in Benzenoid Hydrocarbons, vol. 46, Springer Science &
Business Media, 2013.

[14] P. Aluffi, Degrees of projections of rank loci, arXiv preprint, arXiv:1408.1702.

[15] F.J. Solis, Geometry of local adaptive Galerkin bases, Appl. Math. Optim. 41 (2000) 331-342.

[16] W. Gautschi, Orthogonal Polynomials, Computation and Approximation, Oxford University Press,
2004.

[17] H.E. Heine, Handbuch der Kugelfunctionen, vol. I, Berlin, Georg Reimer, 1861.

[18] J. Shohat, J. Tamarkin, The Problem of Moments, American Mathematical Soc., 1943.

[19] G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, 1999.


http://refhub.elsevier.com/S0024-3795(19)30061-8/bib74726566657468656Es1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib6B75686E656C32303036646966666572656E7469616Cs1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib6B75686E656C32303036646966666572656E7469616Cs1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib6B697262795F3139393673756232s1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib6B697262795F3139393673756232s1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib6B697262795F3139393673756232s1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib6B697262795F3139393861s1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib6B697262795F3139393861s1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib6C6974746C6532303039657374696D6174696F6Es1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib6C6974746C6532303039657374696D6174696F6Es1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib6C6974746C6532303039657374696D6174696F6Es1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib637976696E323031336B656B756C65s1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib637976696E323031336B656B756C65s1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib616C756666693230313464656772656573s1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib736F6C6973s1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib6761757473636869s1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib6761757473636869s1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib6865696E65s1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib73686F686174s1
http://refhub.elsevier.com/S0024-3795(19)30061-8/bib616E6472657773s1

	Geometry of curves in Rn from the local singular value decomposition
	1 Introduction
	2 Generalized curvatures
	3 Local approximation
	3.1 Local approximation of curves in R3 and R4
	3.2 Curvature relations in R5 and R6

	4 The local singular value decomposition
	4.1 Formulation
	4.2 Two dimensions
	4.3 Three and four dimensions
	4.4 Higher dimensions

	5 An example
	6 Conclusions
	Acknowledgements
	Appendix A Hankel matrices and orthogonal polynomials
	Appendix B Proof of Theorem 4.2
	References


