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We establish a connection between the local singular value 
decomposition and the geometry of n-dimensional curves. In 
particular, we link the left singular vectors to the Frenet-
Serret frame, and the generalized curvatures to the singular 
values. Specifically, let γ : I → Rn be a parametric 
curve of class Cn+1, regular of order n. The Frenet-Serret 
apparatus of γ at γ(t) consists of a frame e1(t), . . . , en(t) and 
generalized curvature values κ1(t), . . . , κn−1(t). Associated 
with each point of γ there are also local singular vectors 
u1(t), . . . , un(t) and local singular values σ1(t), . . . , σn(t). This 
local information is obtained by considering a limit, as ε goes 
to zero, of covariance matrices defined along γ within an 
ε-ball centered at γ(t). We prove that for each t ∈ I, the 
Frenet-Serret frame and the local singular vectors agree at 
γ(t) and that the values of the curvature functions at t can 
be expressed as a fixed multiple of a ratio of local singular 
values at t. To establish this result we prove a general formula 
for the recursion relation of a certain class of sequences of 
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Hankel determinants using the theory of monic orthogonal 
polynomials and moment sequences.

© 2019 Published by Elsevier Inc.

1. Introduction

Principal component analysis is typically derived invoking a criterion from statistics, 
i.e., determine a k-dimensional subspace that captures the most statistical variance in 
a data set. Data analysts with a more geometric inclination view PCA as containing 
both statistical and geometric information. For example, it has been shown that local 
PCA provides information that can be used to determine the topological dimension of a 
manifold [1,2]. This paper, the first in a series, demonstrates how PCA, and the related 
singular value decomposition (SVD), rigorously characterizes the geometric information 
in n-dimensional curves. Here we focus on generalized curvatures and how data sam-
pled from these curves can be used to reconstruct the curves using the SVD. In later 
work we will show that the philosophy of these ideas carry over to data sampled from 
hypersurfaces and manifolds [3–5].

We begin this presentation by briefly reviewing the relationship between Principal 
Component Analysis (PCA) and the Singular Value Decomposition; see also [6]. Recall 
that PCA is a tool derived in statistics for determining an optimal change of basis, 
i.e., each coordinate direction captures the maximum variance [7]. This basis inherits 
its ordering from the amount of variance captured. The first basis vector captures the 
maximum variance possible for a one-dimensional subspace, the second basis vector cap-
tures, in conjunction with the first, the maximum amount of variance possible for a 
two-dimensional subspace, and so on. The closely related singular value decomposition 
(SVD) captures the same information as PCA but has the theoretical starting point as 
the system of equations

Av = σu

AT u = σv

These equations have an associated matrix factorization

A = UΣV T

where the U matrix consists of the left singular vectors, and the σ1 ≥ σ2 ≥ · · · ≥ σr > 0
are the non-zero singular values where A has rank r. These vectors U are also the 
solutions to

AAT u = λu
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and hence we recognize them as the principal components. The eigenvalues of PCA and 
the singular values of the SVD are connected via

λ = σ2

Although the information captured by the SVD and PCA is effectively the same, 
the numerical linear algebraic algorithms used for computing them are very different. 
Most importantly, the matrix AAT is formed in the computation of PCA while this is 
not the case with SVD. The formation of either the outer product, or inner product, 
matrices may result in the loss of significant numerical precision. So, in practice it is 
generally better to compute the principal components in PCA using the SVD [8]. For 
this reason we choose to refer to the SVD, rather than PCA, although theoretically (but 
not numerically) we view these as interchangeable.1

The shape of a curve in n-dimensional Euclidean space can be characterized mathe-
matically in terms of its generalized curvatures. These are essentially the features defined 
at each point on the curve that encode its trajectory. The fundamental theorem of curves 
connects the shape of a curve to its curvatures. A curve is equivalent to its curvatures 
in the sense that each can be obtained from the other, at least up to rigid rotations 
and translations. In three dimensions the curvature κ and torsion τ are the curvatures. 
Well-known formulae for κ and τ exist which involve the computation of second and 
third derivatives, respectively. The geometric characterization of curves in Rn may be 
done via the formula for the generalized curvatures. A drawback to this approach is 
that the formula for the jth generalized curvature requires the estimation of the j + 1
derivative at each point on the curve. Thus it is of interest in the study of curves to de-
velop additional analytical and computational tools for characterizing these generalized 
curvatures.

The Frenet-Serret frame is given by the application of the Gram-Schmidt or-
thogonalization procedure to the derivatives of the curve γ(t) ∈ R

n denoted by 
γ(1)(t), . . . , γ(n)(t) ∈ R

n. Again, the fundamental theorem of curves holds and the shape 
of the curve in n dimensions is encoded by the n − 1 generalized curvatures denoted 
κi(t). There are well-known exact expressions for the associated generalized curvature 
κi in terms of the i + 1 derivatives of the curve.

In this paper we show that given a curve γ(t) ⊂ R
n for any n ∈ N then the generalized 

curvatures may be expressed as

κi−1(t) = ai−1
σi(t)

σ1(t)σi−1(t)

with

1 Of course, we recognize that for some very large data problems, it is not even possible to load the data 
matrix A into computer memory while it is possible to compute one of AAT , or AT A. For these problems 
the principal components are determined using the algorithms for PCA.
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ai−1 = i

i + (−1)i
·
√

4i2 − 1
3

for each i between 2 and n where the σi(t) are the singular values. In addition, the 
left-singular vectors, i.e., the principal components of the curve, provide the Frenet-Serret 
frame. Our approach in this paper is theoretical, i.e., our primary purpose is to derive 
the result stated above. Issues related to approximation accuracy, and the impact of 
noise in data, are outside the scope of this paper and will be treated elsewhere.

This paper is organized as follows: in Section 2 we summarize the background material 
on generalized curvatures. In Section 3 we demonstrate the complications of computing 
curvatures for dimensions three to six using local approximations, an idea we pursue in 
Section 4 to demonstrate the central results of this paper. In Section 5 we illustrate the 
application of the results with a basic example and draw conclusions in Section 6. The 
Appendices contain the details of the proof of the main result including some interesting 
new lemmas concerning Hankel matrices required to establish the result.

2. Generalized curvatures

Consider an interval I ⊂ R and a vector valued function γ : I → R
n. If γ is k times 

differentiable, with continuous derivatives, then γ is said to be a parametric curve of 
class Ck. Let γ(k) denote the kth derivative of γ. If for each t ∈ I, the set of vectors 
{γ(1)(t), γ(2)(t), . . . , γ(r)(t)} are linearly independent in Rn, then γ is said to be regular 
of order r. If ‖γ′(t)‖ = 1 for each t ∈ I then γ is said to be parameterized by arc length.

Let γ : I → R
n be a parametric curve of class Cn+1, regular of order n, parameterized 

by arc length. At any point γ(t) ∈ γ(I), the Frenet-Serret frame is determined by apply-
ing the Gram-Schmidt process to the vectors γ(1)(t), γ(2)(t), . . . , γ(n)(t). Thus the Frenet-
Serret frame at γ(t) is the ordered sequence of orthonormal vectors e1(t), e2(t), . . . , en(t), 
where

ei(t) = ẽi(t)
‖ẽi(t)‖

with ẽi(t) = γ(i)(t) −
i−1∑
k=1

< γ(i)(t), ek(t) > ek(t) for 1 ≤ i ≤ n.

The generalized curvature functions of γ are defined by

κi(t) = < e′
i(t), ei+1(t) > for 1 ≤ i ≤ n − 1.

With this definition, κi(t) > 0 for all i. The frame functions e1(t), e2(t), . . . , en(t) together 
with the generalized curvature functions κ1(t), . . . , κn−1(t) is called the Frenet-Serret 
apparatus of γ. The Frenet-Serret apparatus of a curve characterizes the curve up to 
translation and rotation.

By the definition of the ei(t), we have

ei(t) ∈ span{γ(1)(t), . . . , γ(i)(t)} for i = 1, . . . , n − 1.
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Thus,

e′
i(t) ∈ span{γ(1)(t), . . . , γ(i+1)(t)} = span{e1(t), . . . , ei+1(t)}.

As a consequence,

< e′
i(t), ej(t) > = 0 whenever j ≥ i + 2.

If we differentiate the expression < ei(t), ei(t) > = 1 then we obtain

< e′
i(t), ei(t) > + < ei(t), e′

i(t) > = 0,

from which we can conclude that

< e′
i(t), ei(t) > = 0 for 1 ≤ i ≤ n.

In a similar manner, if i �= j then we differentiate the expression < ei(t), ej(t) > = 0 to 
obtain

< e′
i(t), ej(t) > + < ei(t), e′

j(t) > = 0,

from which we can conclude that

< e′
i(t), ej(t) > = − < e′

j(t), ei(t) > .

Let E denote the orthonormal matrix whose columns are e1(t), . . . , en(t). The above 
formulas show that ET E′ = K with K a tridiagonal skew symmetric matrix. Since E is 
orthonormal (thus EET = I), we can multiply on the left by E to arrive at the expression 
E′ = EK. Recalling that κi(t) = < e′

i(t), ei+1(t) > we can express K as:

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −κ1(t) 0 0 0
κ1(t) 0 −κ2(t) 0 0

0 κ2(t) 0
. . . 0

0 0
. . . 0 −κn−1(t)

0 0 0 κn−1(t) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

If the generalized curvature functions κ1(t), . . . , κn−1(t) in the matrix K are constant, 
then the solution to the differential equation, E′ = EK, can be shown to be (up to 
translation and rotation) of the form
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γe(t) =

⎡
⎢⎢⎢⎢⎢⎣

a1 cos(α1t)
a1 sin(α1t)

...
ak cos(αkt)
ak sin(αkt)

⎤
⎥⎥⎥⎥⎥⎦ or γo(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 cos(α1t)
a1 sin(α1t)

...
ak cos(αkt)
ak sin(αkt)

bt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.1)

with the first equation, γe(t), covering the case when n is even with k = n/2 and the 
second equation covering the case when n is odd with k = (n − 1)/2 [9].

3. Local approximation

Consider a curve γ(t) in Rn. Recall that if γ(t) is parameterized by arc length then 
γ(t) is a solution to the differential equation E′ = EK. We would like to understand 
the associated frame e1(t), . . . , en(t) and curvature functions κ1(t), . . . , κn−1(t) from a 
different point of view. Specifically, consider points on the curve within an ε-ball centered 
at a point s0 = γ(t0). The tangent line at s0 is approximated by taking the span of two 
points on γ(t) in an ε-ball centered at s0 while the osculating plane at s0 is approximated 
by taking the span of three points on γ(t) in an ε-ball centered at s0. However, points on 
the curve in a small ε-ball are nearly linear. The value of κ1(t0) can be seen as a measure 
of the failure of the linearity of such points. In a similar manner, the value of the second 
curvature function, κ2(t0) is a measure of the failure of planarity of points in an ε-ball on 
the curve. This point of view will be considered more closely in the next section through 
the local singular value decomposition. In order to make this connection, it is helpful to 
replace the curve with an idealized version which agrees, to high order, with the curve 
at γ(t0).

3.1. Local approximation of curves in R3 and R4

Consider a curve γ(t) in R3. The helix of best fit to γ at γ(t0) is the solution to the 
differential equation E′ = EKt0 where Kt0 denotes the curvature matrix K evaluated 
at t0. Thus the curvature functions for the helix will be constants κ1 = κ1(t0) and 
κ2 = κ2(t0). In R3, the general solution, g(t), to the differential equation, E′ = EKt0 , 
has the form

g(t) = (a cos(αt), a sin(αt), bt) + Constant.

The helix of best fit to γ(t) at γ(t0) is given by

h(t) = g(t) − g(t0) + γ(t0).

If ||γ(1)(t0)|| = 1 then we get the condition that
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a2α2 + b2 = 1.

The relationship between the curvature functions of the helix and the parameters a, b, α
is:

κ2
1 = a2α4,

κ2
2 = b2α2.

In a similar manner, if we solve the differential equation E′ = EKt0 for a curve γ(t)
in R4 then we obtain a toroidal curve of best fit at γ(t0) of the form

h(t) = g(t) − g(t0) + γ(t0),

where

g(t) = (a cos(αt), a sin(αt), b cos(βt), b sin(βt)) + Constant.

We can relate a, b, α, β to the curvature functions as

κ2
1 = a2α4 + b2β4,

κ2
1κ2

2 = a2α6 + b2β6 − κ4
1,

κ2
1κ2

2κ3
3 = a2α8 + b2β8 − κ2

1(κ2
1 + κ2

2)2,

where again we have assumed that the curve is parameterized by arc length so

a2α2 + b2β2 = 1.

These equations are derived for κ1, κ2, κ3 in [9]. Next we give the corresponding equations 
for curves in R5 and R6. The derivation is straightforward but tedious.

3.2. Curvature relations in R5 and R6

If we solve the differential equation E′ = EKt0 for a curve γ(t) in R5 then we obtain 
a curve of best fit at γ(t0) of the form

h(t) = g(t) − g(t0) + γ(t0),

where

g(t) = (a cos(αt), a sin(αt), b cos(βt), b sin(βt), ct) + Constant.

We can relate a, b, c, α, β to the curvature functions as
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1 = a2α2 + b2β2 + c2

κ1
2 = a2α4 + b2β4

κ1
2κ2

2 = a2α6 + b2β6 − κ1
4

κ1
2κ2

2κ3
2 = a2α8 + b2β8 − κ2

1(κ2
1 + κ2

2)2

κ1
2κ2

2κ3
2κ4

2 = a2α10 + b2β10 − κ2
1((κ2

1 + κ2
2 + κ2

3)(κ2
2 + κ2

3) + κ2
2κ4

3).

In R6 the curve of best fit has

g(t) = (a cos(αt), a sin(αt), b cos(βt), b sin(βt), c cos(δt), c sin(δt)) + Constant.

Letting Gk = a2αk + b2βk + c2δk, we can relate a, b, c, α, β, δ to the curvature functions 
as

1 = G2
κ2

1 = G4
κ1

2κ2
2 = G6 − κ1

4

κ1
2κ2

2κ3
2 = G8 − κ2

1(κ2
1 + κ2

2)2

κ1
2κ2

2κ3
2κ4

2 = G10 − κ2
1((κ2

1 + κ2
2 + κ2

3)(κ2
2 + κ2

3) + κ2
2κ4

3)
κ1

2κ2
2κ3

2κ4
2κ5

2 = G12 − G10(κ2
1 + κ2

2 + κ2
3 + κ2

4) + F8(κ2
1κ2

3 + κ2
4κ2

1 + κ2
4κ2

2).

4. The local singular value decomposition

Broomhead et al. showed that the local singular value decomposition could be used 
to compute the topological dimension of a manifold from sampled points lying on the 
manifold [2]. This provided a powerful tool for many applications that involved modeling 
data on manifolds. The original setting of [2] concerned the reconstruction of a manifold, 
via Takens’ theorem, from scalar valued time series statistics of a dynamical system on 
the manifold. The local singular value decomposition is also useful for applying manifold 
learning algorithms for geometric data analysis, e.g., local models such as charts [10], or 
global models based on Whitney’s embedding theorem [11]. A more detailed discussion 
may be found in [6,12].

Recall that at each point γ(t) ∈ γ(I), the Frenet-Serret frame is determined by ap-
plying the Gram-Schmidt orthogonalization process to the set of vectors γ(1)(t), γ(2)(t),
. . . , γ(n)(t) (where γ(k)(t) denotes the kth derivative of γ evaluated at t). We denote 
this ordered orthonormal basis e1(t), . . . , en(t) and let E denote the orthonormal matrix 
whose columns are the ei(t). The main intuition behind a local singular value analysis 
(and related PCA) is to exploit the idea that the Frenet-Serret frame may be viewed 
as finding the subspace of best fit at a point on the curve. We consider the canonical 
solution of the Frenet-Serret formula where κi is assumed to be constant, i.e., the so-
lutions to E′ = EK given by Equation (2.1) where K is constant. We use an integral 
formulation of the principal component analysis, often referred to as the Karhunen-Loève 
transformation, at a given point on the curve. We then use a Taylor series approxima-
tion for γ(t) to determine particular eigenvalues of the Karhunen-Loève transformation 
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in the ε-ball. These relationships can be combined with the relationships between the 
curvature constants and the curve parameters to determine a formula for computing κi

locally from the eigenvalues of the Karhunen-Loève transformation, or, equivalently, the 
singular values squared of the local SVD.

4.1. Formulation

Following [1,2], the mean centered covariance matrix of γ(t) at t is the matrix

Cε(t) = 1
2ε

t+ε∫
t−ε

(γ(s) − γε(t))(γ(s) − γε(t))T ds

where

γε(t) = 1
2ε

t+ε∫
t−ε

γ(s) ds.

However, we will consider the closely related on the curve covariance matrix

Cε(t) = 1
2ε

t+ε∫
t−ε

(γ(s) − γ(t))(γ(s) − γ(t))T ds. (4.1)

By the eigenvalue decomposition, we have a factorization

Cε(t) = Uε(t)Σε(t)UT
ε (t)

where we assume that the diagonal elements in Σε(t) are in monotone decreasing order. 
The columns of Uε(t) are the eigenvectors of Cε(t). Let U(t) = limε→0 Uε(t). The columns 
of U(t), written u1(t), . . . , un(t), are also the local left singular vectors at γ(t). In a similar 
manner, one can define the local singular vectors u1(t), . . . , un(t) at γ(t) by considering 
the limiting behavior of the singular vectors in the singular value decomposition of Cε(t)
as ε tends towards zero.

Theorem 4.1. Let γ : I → R
n be a parametric curve of class Cn+1, regular of order n. 

Let e1(t), . . . , en(t) denote the Frenet-Serret frame at γ(t). Let u1(t), . . . , un(t) denote 
the local left singular vectors at γ(t). Then for i = 1, . . . , n, ei(t) = ±ui(t).

Proof. Let Γ(t) denote the matrix whose columns are γ(1)(t), . . . , γ(n)(t). The Frenet-
Serret frame, e1(t), . . . , en(t), is obtained by applying the Gram-Schmidt process to the 
columns of Γ(t). Thus ei(t) is a unit vector orthogonal to the span of γ(1)(t), . . . , γ(i−1)(t)
but lying within the span of γ(1)(t), . . . , γ(i)(t). Let v be the n ×1 vector whose kth com-
ponent is (s − t)k/k!. Then Γ(t)v is the nth order Taylor series expansion for γ(s) − γ(t)
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at t. Replacing γ(s) − γ(t) with its Taylor series expansion leads to the nth order ap-
proximation

Cε(t) = 1
2ε

t+ε∫
t−ε

(γ(s) − γ(t))(γ(s) − γ(t))T ds ≈ 1
2ε

t+ε∫
t−ε

(Γ(t)v)(Γ(t)v)T ds.

We rewrite this as

Γ(t) 1
2ε

t+ε∫
t−ε

vvT ds Γ(t)T = Γ(t) E Γ(t)T .

By the definition of E , we compute that

Ei,j = εi+j

i!j!(i + j + 1) if i + j is even and Ei,j = 0 if i + j is odd.

We can express Γ(t) E Γ(t)T in terms of the columns of Γ(t) and the entries of E as

ε2

3 (c1cT
1 ) + ε4

5 (1
6c1cT

3 + 1
4c2cT

2 + 1
6c3cT

1 ) + · · · + ε2k

2k + 1

2k−1∑
i=1

1
i!(2k − i)!cic

T
2k−i + . . .

where ci = γ(i)(t). As ε tends towards zero, this expression behaves more and more like 
the rank one matrix ε2

3 c1cT
1 . Noting that c1 = γ(1)(t), thus is a multiple of e1(t), we get 

u1(t) = ±e1(t). Let P1 = I − e1(t)e1(t)T . Pre and post multiplying Γ(t) E Γ(t)T with P1
deflates away all terms involving c1. More precisely,

P1 Γ(t) E Γ(t)T P1 = ε4

5 (1
4P1c2cT

2 P1) + · · · + ε2k

2k + 1

2k−2∑
i=2

1
i!(2k − i)!P1cic

T
2k−iP1 + . . .

As ε tends towards zero, this deflated matrix behaves more and more like the rank one 
matrix ε4

5 ( 1
4P1c2cT

2 P1). Noting that P1c2 = P1γ(2)(t), we see that P1c2 is orthogonal to 
γ(1)(t) and is in the span of γ(1)(t), γ(2)(t) thus is a multiple of e2(t). This leads to u2(t) =
±e2(t). We now pre and post multiply P1 Γ(t) E Γ(t)T P1 with P2 = I −e2(t)e2(t)T . Note 
that since e1(t) is orthogonal to e2(t), we have P2P1 = I − e1(t)e1(t)T − e2(t)e2(t)T . As 
ε tends towards zero, this doubly deflated matrix behaves more and more like the rank 
one matrix ε6

7 ( 1
36 P2P1c3cT

3 P1P2). Noting that P2P1c3 = P2P1γ(3)(t), we see that P2P1c3
is orthogonal to the span of γ(1)(t), γ(2)(t) but in the span of γ(1)(t), γ(2)(t), γ(3)(t) thus 
is a multiple of e3(t). This leads to u3(t) = ±e3(t). Continuing to deflate away previously 
found singular vectors, we obtain the relationship ei(t) = ±ui(t) for all i. Note that for 
this to work, Ei,i must be non-zero and PiPi−1 · · · P1γ(i+1)(t) must be non-zero for each 
i. These conditions are satisfied since Ei,i = ε2i

(2i+1)i!i! and γ is regular of order n thus 
γ(1)(t), . . . , γ(n)(t) are linearly independent. �
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The previous theorem considered the relationship between the local singular vectors 
of a curve and the Frenet-Serret frame of a curve. We now consider the relationship 
between the local singular values of a curve and values of the curvature functions. More 
precisely, in the eigenvalue decomposition

Cε(t) = Uε(t)Λε(t)UT
ε (t)

we considered the limiting behavior of Uε(t), as ε tends towards zero, in order to obtain 
the local principal components, or equivalent, the left singular vectors of the data matrix. 
We now consider the limiting behavior of Λε(t) as ε tends towards zero. Note that the 
entries of Λε(t) tend towards zero as ε tends towards zero. Let λi,ε(t) denote the ith
diagonal entry of Λε(t). We show that for some constant ci, we can write

λi,ε(t) = ciε
2i + O

(
ε2i+2)

.

The local singular values of γ(t) are then defined as σi(t) =
√

ciε
i.

In Section 2, we have explicitly expressed the curvature, for curves with constant 
curvature functions, in terms of the parameters of the curves. We now express the leading 
terms of the eigenvalues λi,ε(t) in terms of the parameters of the curves. This allows us 
to derive a relationship of the form

κ2
i (t) = ai lim

ε→0

λi+1,ε(t)
λ1,ε(t)λi,ε(t)

, (4.2)

where ai is a constant with known value. From this we obtain

κi(t) =
√

ai
σi+1(t)

σ1(t)σi(t)
.

4.2. Two dimensions

Consider a two dimensional curve with constant curvature κ1 = 1/a. This will be 
a circle of radius a. Up to translation and rotation, its parameterized form is γ(s) =
(a cos(αs), a sin(αs)). If we assume that the circle is parameterized by arc length then 
we obtain the constraint a2α2 = 1. The components of the covariance matrix Cε(0) are:

C11 = 1
2ε

ε∫
−ε

(a cos(αs) − a)2ds,

C22 = 1
2ε

ε∫
−ε

a2 sin2(αs)ds,

with
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C12 = C21 = 1
2ε

ε∫
−ε

(a cos(αs) − a) sin(s)ds = 0

since the integrand is an odd function.
We follow the usual convention of ordering the eigenvalues by decreasing magnitude 

so

λ1,ε(0) = 1
3a2α2ε2 + O(ε4),

λ2,ε(0) = 1
20a2α4ε4 + O(ε6),

lim
ε→0

λ2,ε(0)
λ2

1,ε(0) = 9
20a2 .

Given that the curvature κ1 = 1/a, we obtain the following expression for κ1 in terms 
of the local singular values of the circle:

κ1 =
√

20
9

σ2

σ2
1

=
√

20
3

σ2

σ2
1

.

4.3. Three and four dimensions

Here we consider curves in R3 with constant κ1, κ2. Up to translation and rotation, 
such a curve will have the form

γ(s) = (a cos(αs), a sin(αs), bs).

Assuming the curve is parameterized by arc length we have a2α2 + b2 = 1. The 
covariance matrix, Cε(t), is a 3 × 3 matrix with eigenvalues

λ1 = 1
3ε2 + O(ε4)

λ2 = 1
20a2α4ε4 + O(ε6)

λ3 = 1
1575a2α6b2ε6 + O(ε8)

Recalling from Section 2 the equations for κ1, κ2 in terms of the parameters a, α, b, 
we obtain

κ2
1 = 20

9 lim
ε→0

λ2,ε(t)
λ2

1,ε(t)
, κ2

2 = 105
4 lim

ε→0

λ3,ε(t)
λ1,ε(t)λ2,ε(t)

.

This leads to the expression of κ1, κ2 in terms of the singular values as:
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κ1 =
√

20
3

σ2

σ2
1

and κ2 =
√

105
2

σ3

σ1σ2
.

Similarly for curves in R4, using elimination theory we establish the following repre-
sentations of the κi in terms of the local singular values:

κ1 =
√

20
3

σ2

σ2
1

, κ2 =
√

105
2

σ3

σ1σ2
, κ3 =

√
336
5

σ4

σ1σ3
.

4.4. Higher dimensions

Given that many of the entries of Cε(0) are odd functions, the covariance matrix has 
a special structure with many zero entries. For instance, the structure of the covariance 
matrix for n = 6 is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 0 C13 0 C15 0

0 C22 0 C24 0 C26

C31 0 C33 0 C35 0

0 C42 0 C44 0 C46

C51 0 C53 0 C55 0

0 C62 0 C64 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We can permute the columns and rows of this matrix an even number of times to 
obtain the block matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C13 C15 0 0 0

C31 C33 C35 0 0 0

C51 C53 C55 0 0 0

0 0 0 C22 C24 C26

0 0 0 C24 C44 C46

0 0 0 C26 C46 C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Thus we observe the more computationally efficient approach to computing the eigen-
values by computing the eigenvalues of the block submatrices.

For curves in R5 we obtain:

κ1 =
√

20
3

σ2

σ2
1

, κ2 =
√

105
2

σ3

σ1σ2
, κ3 =

√
336
5

σ4

σ1σ3
, κ4 =

√
825
4

σ5

σ1σ4
. (4.3)

And for curves in R6 the same expressions for κ1, κ2, κs, κ4 hold plus the additional 
relationship
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κ5 =
√

1716
7

σ6

σ1σ5
. (4.4)

Throughout this section, we have assumed the curve to be parameterized with respect 
to arc length. The local computations can still be made without this assumption. What 
would change in the formulas in the previous section is that we would replace the assump-
tion that ||γ(1)(t0)|| = 1 with ||γ(1)(t0)|| = r. We obtain the same connection between 
the higher curvature functions and ratios of singular values. We summarize these results 
in the following theorem whose general proof for all dimensions is given in Appendix B:

Theorem 4.2. Let γ : I → R
n be a parametric curve of class Cn+1, regular of order n for 

any n ∈ N. Let κj(t) denote the jth curvature function of γ evaluated at t and let σj(t)
denote the jth local singular value of γ at t. For each t ∈ I and each j < n,

κj(t) = √
aj

σj+1(t)
σ1(t)σj(t) with aj−1 =

(
j

j + (−1)j

)2 4j2 − 1
3 . (4.5)

The formula straightforwardly reproduces the results obtained above for the coeffi-
cients

a1 = 20
9 , a2 = 105

4 , a3 = 336
25 , a4 = 825

16 , a5 = 1716
49 .

The proof of the general case requires the theory of Hankel determinants using orthogonal 
polynomials, which is reviewed in Appendix A. Perhaps surprisingly, the numerator of 
this series arises in the number of Kekulé structures in benzenoid hydrocarbons [13] and 
the degrees of projections of rank loci [14].

5. An example

We consider the twisted cubic curve in R3 given parametrically as γ(t) = [t, t2, t3]. 
The Frenet-Serret frame can be shown to be:

e1(t) =

⎡
⎢⎢⎣

1√
1+4t2+9t4

2t√
1+4t2+9t4

3t2
√

1+4t2+9t4

⎤
⎥⎥⎦ e2(t) =

⎡
⎢⎢⎢⎣

t(2+9t2)√
1+4t2+9t4

√
1+9t2+9t4

1−9t4
√

1+4t2+9t4
√

1+9t2+9t4

3t+6t3
√

1+4t2+9t4
√

1+9t2+9t4

⎤
⎥⎥⎥⎦ e3(t) =

⎡
⎢⎢⎣

3t2
√

1+9t2+9t4

−3t√
1+9t2+9t4

1√
1+9t2+9t4

⎤
⎥⎥⎦

while the functions κ1(t), κ2(t) can be shown to be

κ1(t) = 2
√

1 + 9t2 + 9t4

(1 + 4t2 + 9t4)3/2 , κ2(t) = 3
1 + 9t2 + 9t4 .

Let ε = .001 and let t = 3. If we consider the singular value decomposition Cε(t) =
Uε(t)Σε(t)UT

ε (t) for γ(t) then we can consider the singular vectors of Cε(t) as a proxy 
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for the local singular vectors of γ(t) at t = 3 and compare to the exact value for ei(t) at 
t = 3. For instance, comparing the first singular vector to the first frame vector, we get

u1,ε(3) =
[

.036131465

.216788800

.975549656

]
e1(3) =

[
.036131468
.216788812
.975549654

]
.

The other singular vectors, u2,ε(3), u3,ε(3) are similarly close to e2(3), e3(3). If we consider

√
ai

√
λi+1,ε(t)√

λ1,ε(t)
√

λi,ε(t)
as a proxy for κi =

√
ai

σi+1(t)
σ1(t)σi(t)

then we obtain the following estimates:

κ1(3) ≈ .0026865640, κ2(3) ≈ .0036991369,

whereas using the exact formulas, we can compare these values to

κ1(3) = .0026865644..., κ2(3) = .0036991368...

For these approximations, we used ε = 10−3. With a choice of ε = 10−6, for this example, 
we observed about 13 digits of accuracy. This example illustrates how the theorems 
of the previous section can be used to obtain very good approximations of both the 
Frenet-Serret frame and values of the curvature functions by considering small values 
of ε.

6. Conclusions

In this paper, we established the close connection between the Frenet-Serret apparatus 
and the local singular value decomposition of regular curves in Rn. The local singular 
value decomposition was defined as the limit of the singular value decomposition of a 
family of covariance matrices defined on the curve. In particular, we showed in Theo-
rem 4.1 that the Frenet-Serret frame and the local singular vectors of regular curves 
in Rn agree (up to a factor of ±1). In addition we showed in Theorem 4.2 that values 
of each of the curvature functions can be expressed in terms of ratios of local singular 
values for regular curves in Rn for any dimension, with a proportionality coefficient that 
was obtained exactly through its relation to Hankel determinants via monic orthogonal 
polynomials. With this, the techniques allow for highly accurate approximations of the 
Frenet-Serret apparatus in terms of local SVD computations.
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Appendix A. Hankel matrices and orthogonal polynomials

After the previous explicit examples were worked out, we conjectured the formula 
4.2 for aj and numerically verified the result for κ6, κ7, κ8 by generating curves with 
prescribed non-constant curvature and solving the system E′ = EK numerically; then, 
the local singular values were numerically approximated from the numerically generated 
curves. The general proof is based on the following key result by F.J. Solis [15] for the 
expansions to leading order of the singular values:

Lemma Appendix A.1. Let γ(t) be a regular curve in Rn, and let P0 be a point on the 
curve, then the eigenvalues associated with Cε at P0 are given by

λε
1 = p1ε2 + O(ε4),

λε
j = (κ1 · · · κj−1)2

(j!)2 pjε2j + O(ε2j+2), j = 2, . . . , n

and the eigenvectors are given by the Frenet frame at P0. The κi’s are the higher curva-
tures of the curve and pk is the k-th (k = 1, . . . , n) pivot of the n × n matrix An defined 
by

Aij =
{

1
i+j+1 , if i + j is even;
0 otherwise.

From his proof, a small typo is corrected for the denominator of λε
j in the final state-

ment. With this result we can express the curvatures κj in terms of the singular values by 
expressing the pivots as quotients of the determinants Bj of Aj , that is pj = Bj/Bj−1, 
so that:

lim
ε→0

λε
j+1

λε
1λε

j

= κ2
j

Bj+1Bj−1

(j + 1)2B1B2
j

. (A.1)

The determinants Bj are of Hankel type for the sequence {μn}∞
n=0 = { 1

3 , 0, 15 , 0, 17 , ...}

B1 = 1
3 , B2 =

∣∣∣∣∣
1
3 0
0 1

5

∣∣∣∣∣ , B3 =

∣∣∣∣∣∣∣
1
3 0 1

5
0 1

5 0
1
5 0 1

7

∣∣∣∣∣∣∣ , Bj =

∣∣∣∣∣∣∣∣∣∣∣∣

μ0 μ1 μ2 · · · μj−1
μ1 μ2 μ3 · · · μj

μ2 μ3 μ4 · · · μj+1
...

...
...

...
μj−1 μj μj+1 · · · μ2j−2

∣∣∣∣∣∣∣∣∣∣∣∣
.

Then to get our coefficient in 4.2 amounts to showing that the aforementioned Hankel 
determinants satisfy the following recurrence relation:
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BjBj−2

(Bj−1)2 = (j + (−1)j)2

4j2 − 1 . (A.2)

This is indeed the case after we realize that such a recurrence relation appears in 
the theory of monic orthogonal polynomials generated from {xn}∞

n=0 by Gram-Schmidt 
orthogonalization with respect to a measure giving our sequence μn as the integral mo-
ments. Indeed, choose a nondecreasing function λ(x) on R having finite limits at ±∞
such that it induces a positive measure dλ with finite moments to all orders

μn(dλ) =
∫
R

xndλ(x), n = 0, 1, 2, ...

then apply the Gram-Schmidt orthogonalization procedure to {xn}∞
n=0 using the scalar 

product

〈p(x), q(x)〉 =
∫
R

p(x)q(x)dλ(x)

to obtain a sequence of monic orthogonal polynomials Pn(x) (without normalization). 
If the given scalar product is positive-definite, such a sequence is infinite and unique, 
and this is the case if Bn > 0 for all n ∈ N, see Gautschi [16, th. 1.2, 1.6]. Moreover, in 
this case, the infinite sequence of monic orthogonal polynomials obtained in this manner 
obeys the recursion relation [16, th. 1.27]:

P−1(x) = 0, P0(x) = 1, Pn+1(x) = (x − αn)Pn(x) − βnPn−1(x) (A.3)

where

αn = 〈Pn, xPn〉
〈Pn, Pn〉 , βn = 〈Pn, Pn〉

〈Pn−1, Pn−1〉 = ||Pn(x)||2
||Pn−1(x)||2 , for n = 1, 2, . . .

The importance of this result is that the recursion coefficients βn are precisely the re-
cursion coefficients of the Hankel determinants Bn for the sequence μn, as it is proved 
in [16, eq. 2.1.5]

βj−1 = BjBj−2

(Bj−1)2 , for n = 2, 3, . . . (A.4)

so finding a measure to reproduce our sequence as its moments and a way to compute the 
norms of the corresponding polynomials will yield our coefficient formula. There is a fun-
damental determinantal representation of the monic orthogonal polynomials generated 
in the previous way [16, th. 2.1]
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Pn(x) = 1
Bn

∣∣∣∣∣∣∣∣∣∣∣

μ0 μ1 . . . μn

μ1 μ2 . . . μn+1
...

...
...

μn−1 μn . . . μ2n−1

1 x
... xn

∣∣∣∣∣∣∣∣∣∣∣
, ||Pn(x)||2 = Bn+1

Bn
,

that yields Heine’s integral representation formula [17, p. 288] by essentially pulling the 
integrals of each moment out of the determinant and expanding

Pn(x) = 1
n!Bn

∫
· · ·

∫
Rn

n∏
i=1

(x − xi)
∏

1≤l<k≤n

(xk − xl)2dλ(x1) · · · dλ(xn).

Since the polynomials are monic, Bn can be solved equating to 1 the leading coefficient 
of the previous equation

Bn = 1
n!

∫
Rn

∏
1≤l<k≤n

(xk − xl)2dλ(x1) · · · dλ(xn) (A.5)

which is a closed formula for all Hankel determinants of any sequence as long as this can 
be written as moments of a positive measure.

Appendix B. Proof of Theorem 4.2

Using the theory above for Hankel determinants of particular type we arrive at the 
following key result.

Theorem Appendix B.1. For any inverse arithmetic sequence 
{

1
αn + β

}∞

n=0
, where 

α, β ∈ R>0, the corresponding Hankel determinants

Fn(α, β) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
β

1
α+β

1
2α+β · · · 1

(n−1)α+β
1

α+β
1

2α+β
1

3α+β · · · 1
nα+β

1
2α+β

1
3α+β

1
4α+β · · · 1

(n+1)α+β

...
...

...
...

1
(n−1)α+β

1
nα+β

1
(n+1)α+β · · · 1

(2n−2)α+β

∣∣∣∣∣∣∣∣∣∣∣∣∣
(B.1)

are given by

Fn(α, β) = 1
αn

n−1∏
k=0

Γ(β/α + k)(k!)2

Γ(β/α + n + k) = 1
αn

n−1∏
k=0

(k!)2
n−1∏
j=0

α

α(k + j) + β
, (B.2)

and satisfy the recursion relation
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FnFn−2

F 2
n−1

= α2 (α(n − 2) + β)2 (n − 1)2

(α(2n − 2) + β) (α(2n − 3) + β)2 (α(2n − 4) + β)
, (B.3)

starting with F1 = 1
β

, F2 = α2

β(2α + β)(α + β)2 .

Proof. Choose the function λ(x) = xβ/α/β which is always nondecreasing in the interval 
[0, 1] for β/α > 0, then the corresponding positive measure

dλ(x) = χ[0,1]
xβ/α−1

α
dx,

where χI is the characteristic function of a measurable set I ⊂ R, yields moments

μn =
∫
R

xndλ(x) = 1
α

1∫
0

xn+ β
α −1dx = 1

α

[
xn+ β

α

n + β
α

]1

0

= 1
αn + β

.

Notice that this solves the Stieltjes moment problem uniquely for these sequences be-
cause our measure is infinitely supported on [0, ∞), and its moments satisfy Carleman’s 
condition [18, th. 1.10]. From this, the necessary condition Fn > 0 is guaranteed to hold 
for any dimension n [18, th. 1.2], so the induced inner product is positive definite and 
thus the sequence of monic orthogonal polynomials Pn(x) is infinite and unique. Thus 
their recurrence relations (A.3) hold for any n ∈ N, so we can compute the determinants 
Fn(α, β) of any dimension. This is done by computing equation (A.5)

Fn(α, β) = 1
n!

1∫
0

· · ·
1∫

0

n∏
i=1

x
β
α −1
i

α

∏
1≤l<k≤n

(xk − xl)2dx1 · · · dxn

by means of Selberg’s integral formula [19, 8.1.1], an extension of Euler’s Beta function 
which has applications in different fields within mathematics and physics:

∫
[0,1]n

n∏
i=0

xa−1
i (1 − xi)b−1

∏
1≤l<k≤j

|xk − xl|2gdx1 · · · dxn

=
n−1∏
k=0

Γ(a + kg)Γ(b + kg)Γ(1 + (k + 1)g)
Γ(a + b + (n + k − 1)g)Γ(1 + g) ,

when �e(a) > 0, �e(b) > 0 and �e(g) > − min{1/n, �e(a)/(n − 1), �e(b)/(n − 1)}. 
These conditions are satisfied for our case a = β/α > 0, and b = g = 1. Therefore by 
substitution of these values

Fn(α, β) = 1
n!αn

n−1∏ Γ(β/α + k)Γ(1 + k)Γ(2 + k)
Γ(β/α + n + k)Γ(2) = 1

αn

n−1∏ Γ(β/α + k)(k!)2

Γ(β/α + n + k) ,

k=0 k=0
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where the Gamma functions can be simplified by the factorial property Γ(z +1) = zΓ(z)
to get a closed formula:

Fn(α, β) = 1
αn

n−1∏
k=0

(k!)2
n−1∏
j=0

α

α(k + j) + β
.

Finally, the recursion equation (A.4) can be worked out by telescoping the products of 
Gamma functions:

FnFn−2

F 2
n−1

= 1
αn

n−1∏
k=0

Γ( β
α + k)(k!)2

Γ( β
α + n + k)

· αn−1
n−2∏
k=0

Γ( β
α + n − 1 + k)

Γ( β
α + k)(k!)2

·

αn−1
n−2∏
k=0

Γ( β
α + n − 1 + k)

Γ( β
α + k)(k!)2

· 1
αn−2

n−3∏
k=0

Γ( β
α + k)(k!)2

Γ( β
α + n − 2 + k)

=

=
Γ( β

α
+ n − 1)(n − 1)!2

Γ( β
α

+ n − 2)(n − 2)!2

n−1∏
k=0

1
( β

α
+ n − 1 + k)Γ( β

α
+ n − 1 + k)

n−2∏
k=0

Γ
(

β

α
+ n − 1 + k

)
·

n−2∏
k=0

(
β

α
+ n − 2 + k

)
Γ

(
β

α
+ n − 2 + k

) n−3∏
k=0

1
Γ

(
β
α + n − 2 + k

) =

=
( β

α + n − 2)(n − 1)2Γ( β
α + 2n − 4)

Γ( β
α + 2n − 2)

n−1∏
k=0

1(
β
α + n − 1 + k

) n−2∏
k=0

(
β

α
+ n − 2 + k

)

=
( β

α + n − 2)2(n − 1)2

( β
α + 2n − 2)( β

α + 2n − 3)2( β
α + 2n − 4)

which yields the stated formula upon multiplying numerator and denominator by α4. �
Remarkably, this means that our polynomial recursion coefficients satisfy βn = 1

4βJ
n , 

where βJ
n are those of the classical monic Jacobi polynomials of type ( β

α − 1, 0). These 

are generated by the measure χ[−1,1](1 − x) β
α −1dx, which induces a completely different 

moment sequence and set of orthogonal polynomials.
Our actual determinants Bn have alternating 0’s in the even positions of the moment 

sequence, so a block decomposition is needed to get them into the form of the theorem.

Corollary Appendix B.2. For any sequence of type 
{

1
αn + β

, 0
}∞

n=0
with α, β ∈ R>0, 

where zeros alternate every other position, the corresponding Hankel determinants Bn

are given by the following block decomposition for even n = 2m or odd n = 2m − 1
dimension, m ∈ N:

B2m = Fm(α, β)Fm(α, β + α), B2m−1 = Fm(α, β)Fm−1(α, β + α),
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and obey the recurrence relations:

B2mB2m−2

(B2m−1)2 = (α(m − 1) + β)2

(α(2m − 1) + β)(α(2m − 2) + β) , (B.4)

B2m−1B2m−3

(B2m−2)2 = α2(m − 1)2

(α(2m − 2) + β)(α(2m − 3) + β) , (B.5)

starting with B1 = 1
β

, B2 = 1
β(α + β) .

Proof. The Hankel determinants with 0’s at every even position of the first row can be 
decomposed into blocks by the procedure mentioned in Section 4.4 without altering the 
overall sign. Notice that the second block has as Hankel sequence the original one but 
shifted in index by +1, so the blocks are Fm := Fm(α, β) and Em := Fm(α, β + α). 
Analogously for n = 2m − 1, but in this case the number of 0’s is now m − 1, so the size 
of the second block is (m − 1)2 whereas the first is still m2. Thus

B2m = FmEm, B2m−1 = FmEm−1.

Whence the recursion coefficients for the induced polynomials are, for even n,

βn−1 = β2m−1 =
B2mB2(m−1)

B2
2m−1

= Em

Em−1

Fm−1

Fm
,

and for odd n:

βn−1 = β2m−2 =
B2m−1B2(m−1)−1

B2
2(m−1)

= Em−2

Em−1

Fm

Fm−1
.

Therefore using (B.2), that the corresponding β/α for the Em blocks is β/α + 1 and the 
factorial property of the Gamma function, the products can be simplified in the same 
way as in our previous proof:

B2mB2(m−1)

B2
2m−1

= 1
αm

m−1∏
k=0

Γ(β/α + 1 + k)(k!)2

Γ(β/α + 1 + m + k) · αm−1
m−2∏
k=0

Γ(β/α + m + k)
Γ(β/α + 1 + k)(k!)2

1
αm−1

m−2∏
k=0

Γ(β/α + k)(k!)2

Γ(β/α + m − 1 + k) · αm
m−1∏
k=0

Γ(β/α + m + k)
Γ(β/α + k)(k!)2 =

= (β/α + m − 1)
m−1∏
k=0

1
(β/α + m + k) ·

m−2∏
k=0

(β/α + m + k − 1) =

= (β/α + m − 1)2

(β/α + 2m − 1)(β/α + 2m − 2) .
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Similarly,

B2m−1B2(m−1)−1

B2
2(m−1)

= 1
αm−2

m−3∏
k=0

Γ(β/α + 1 + k)(k!)2

Γ(β/α + m − 1 + k) · αm−1
m−2∏
k=0

Γ(β/α + m + k)
Γ(β/α + 1 + k)(k!)2

1
αm

m−1∏
k=0

Γ(β/α + k)(k!)2

Γ(β/α + m + k) · αm−1
m−2∏
k=0

Γ(β/α + m − 1 + k)
Γ(β/α + k)(k!)2 =

= (m − 1)!2Γ(β/α + m − 1)Γ(β/α + 2m − 3)
(m − 2)!2Γ(β/α + m − 1)Γ(β/α + 2m − 1) =

= (m − 1)2

(β/α + 2m − 2)(β/α + 2m − 3) . �
Finally the coefficient formula of Section 4.2 is obtained from this using (A.1).

Corollary Appendix B.3. The Hankel determinants of size n × n

Bn = det(An), (An)ij =
{

1
i+j+1 , if i + j is even;
0 otherwise,

satisfy the recurrence relation

BnBn−2

(Bn−1)2 = (n + (−1)n)2

4n2 − 1 . (B.6)

Proof. Notice the matrix entry at (An)ij is precisely the element of the sequence {
1

2n + 3 , 0
}∞

n=0
where n = i +j−2. Thus substituting α = 2 and β = 3 into the equations 

(B.4), (B.5) above, the result follows straightforwardly when simplifying the theorem for-
mulas after indices are written in terms of the dimension, m = n/2 or m = (n + 1)/2 for 
the even and odd cases respectively. �
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