10

11

12

13

14

15

16

17
18
19
20
21

22
23

What is the Predictability Limit of Midlatitude Weather?

Fuqing Zhang and Y. Qiang Sun

!Department of Meteorology and Atmospheric Science, and *Center for Advanced Data
Assimilation and Predictability Techniques, The Pennsylvania State University,

University Park, Pennsylvania.

Linus Magnusson and Roberto Buizza

European Center for Medium Range Weather Forecasting, Reading, United Kingdom.

Shian-Jiann Lin and Jan-Huey Chen
Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, New Jersey.

Kerry Emanuel

Lorenz Center, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Journal of the Atmospheric Science
Accepted, December 2018

*Correspondence to: fzhang@psu.edu; smilesyq@gmail.com.




24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Abstract

Understanding the predictability limit of day-to-day weather phenomena such as
midlatitude winter storms and summer monsoonal rainstorms is crucial to numerical
weather prediction (NWP). This predictability limit is studied using unprecedented high-
resolution global models with ensemble experiments of the European Center for Medium
Range Weather Forecasting (ECMWF, 9-km operational model) and identical-twin
experiments of the US next-generation global prediction system (NGGPS, 3-km). Results
suggest that predictability limit for mid-latitude weather may indeed exist and is intrinsic to
the underlying dynamical system and instabilities even if the forecast model and the initial
conditions are nearly perfect. Currently, a skillful forecast lead time of midlatitude
instantaneous weather is around 10 days, which serves as the practical predictability limit.
Reducing the current-day initial-condition uncertainty by an order of magnitude extends
the deterministic forecast lead times of day-to-day weather by up to 5 days, with much less
scope for improving prediction of small-scale phenomena like thunderstorms. Achieving
this additional predictability limit can have enormous socioeconomic benefits but requires
coordinated efforts by the entire community to design better numerical weather models, to
improve observations, and to make better use of observations with advanced data

assimilation and computing techniques.
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1. Introduction

Weather forecasting has improved dramatically since the introduction of numerical
weather prediction (NWP) nearly six decades ago (Bauer et al. 2015). This has been
accomplished through ever-increasing computing power, improved models running at ever
increasing resolution with more accurate representation of atmospheric physical processes,
and more sophisticated four-dimensional data assimilating algorithms that can better ingest
ever increasing volumes and quality of in-situ and remotely acquired observations (WMO
2015). A widely-used measure of global NWP forecast quality is the anomaly correlation
coefficient (ACC) of 500-hPa geopotential height between the forecasts and observations.
In practice, 60% is usually used as a threshold for measure of skillful synoptic-scale
weather forecast. Examining the evolution of ACC (Fig. 1), useful deterministic forecasts
by arguably the most advanced NWP model at the European Center for Medium Range
Weather Prediction (ECMWF) could at best be made up to around 10 days: this number
was 7 days 30 years ago (Simmons and Hollingsworth 2002, Bauer et al. 2015). More
improvements can be seen in the Southern Hemisphere where the traditional observing

network is sparser but which has now been densely covered by satellite observations.

Improved NWP can have significant socioeconomic benefits by better predicting
the occurrence of natural disasters, saving lives, and protecting property. For example,
improved NWP is largely credited with the dramatic improvement in tropical cyclone
prediction worldwide. The present tropical cyclone track forecast accuracy at the U.S.
National Hurricane Center on average has gained almost a day lead time per decade (e.g.,

Zhang and Weng 2015): the yearly averaged 5-day lead-time track forecast error for the
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Atlantic Basin in 2016 is smaller than the 2-day lead-time forecast error in 1990, which

may have saved billions of dollars (Katz et al. 2015).

Yet, improvement of NWP has limits. From the perspective of predictability, this
concept of “atmospheric predictability limit” can be grossly categorized into intrinsic
versus practical predictability (Lorenz 1996; Melhauser and Zhang 2012). As discussed in
Ying and Zhang (2017), intrinsic predictability refers to “the ability to predict given nearly
perfect representation of the dynamical system (by a forecast model) and nearly perfect
initial/boundary conditions, an inherent limit due to the chaotic nature of the atmosphere
and cannot be extended by any means” (Lorenz 1963, 1969; Zhang et al. 2003, 2007; Sun
and Zhang 2016). Practical predictability, also commonly referred to as our weather
prediction skill, is “the ability to predict given realistic uncertainties in both the forecast
model and initial and boundary conditions” (Lorenz 1982, 1996; Zhang et al. 2002, 2006).
This practical predictability can be extended through reduction in key limiting factors of
the forecast errors, including initial-condition errors, boundary condition errors, and model
errors. All these factors, especially the initial condition errors, have been greatly and could
be further reduced with better NWP models ingesting high-accuracy observations using
advanced data assimilation approaches along with advanced computing power (e.g., Zhang
et al. 2009; Zhang and Weng 2015; Emanuel and Zhang 2016). Nevertheless, given our
desire for better weather forecasting at all temporal and spatial scales, it is natural to ask
whether an intrinsic predictability of the mid-latitude weather exists. If yes, what is this
inherent limit given nearly perfect NWP models with nearly perfect initial conditions? This
is a crucial question that meteorologists have sought to answer ever since the beginning of

NWP (e.g., Thompson 1957; Lorenz 1969; Leith 1971). Answering this question could
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provide guidance to society in decisions to enhance observing networks, improve models,

and to better assimilate observations into the forecast models.

Excellent work on this subject area has been pioneered by Lorenz who first
introduced the concept of “butterfly effect”, which described the existence of the intrinsic
predictability limit using a spectral turbulence model (Lorenz 1969). Lorenz showed that,
for flow whose spectral slope is shallower than -3, error-doubling time decreases with
decreasing scales, which led to an upscale error spreading and could provide an effective
intrinsic limit to the predictability of the flow. For flow with a slope steeper than -3,
unlimited predictability might be achieved. This “butterfly effect” concept also inspires
many subsequent studies using a hierarchy of turbulence models, which further confirmed
Lorenz’s theory (e.g., Leith and Kraichnan 1972; Rotunno and Snyder 2008; Durran and
Gingrich 2014). While it remains unclear how these turbulence model results relate to our
real atmosphere, it 1s widely accepted that the real atmosphere very likely also has an

intrinsic limit of predictability (Palmer et al. 2014).

Estimates of this intrinsic predictability limit for a deterministic forecast can be
made based on numerical integrations of model equations from two (identical twin
experiments) or more rather similar or even identical initial states (Lorenz 1963, 1969).
The limit will occur at a time when the spread between these nearly identical runs starts to
saturate and becomes as much as the spread among some randomly selected, but
dynamically and statistically possible states. The accuracy of this kind of estimate is
dependent on the accuracy of the forecast model used (Lorenz 1996). Earlier studies have
used models of increasing complexity to investigate this intrinsic predictability and the

error growth behavior of our atmosphere (e.g., Leith 1971; Daley 1981; Zhang et al. 2003,
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2007; Mapes et al. 2008; Morss et al. 2009; Ngan et al. 2009). While these studies all agree
the existence of an intrinsic predictability limit for the respective weather systems, detailed
error growth behavior differs among different models and different weather systems being
studied. For example, in addition to an error cascade from smaller to larger scales (upscale
growth; e.g., Lorenz 1969; Morss et al. 2009), some recent studies also show errors could
grow spontaneously at all scales (up-magnitude) without saturating at smaller scales (e. g.,

Mapes et al. 2008; Durran and Gingrich 2014).

Given there is a degree of model dependency, many studies now tend to explore
atmospheric predictability under more realistic frameworks with either regional (e.g.,
Zhang et al. 2003, 2007; Selz and Craig 2015; Ying and Zhang 2017) or global (e.g.,
Simmons and Hollingsworth 2002; Tribbia and Baumhefner 2004; Froude et al. 2013)
NWP models. Regional models, which require boundary conditions, generally constrain
longer-term error growth and propagation within the domain boundaries. Previous global
predictability studies, on the other hand, usually do not have sufficient model resolutions
to explicitly resolve mesoscale processes and moist convections, which have been shown
to be critical for the initial error growth (Zhang et al. 2003, 2007; Selz and Craig 2015; Sun
and Zhang 2016). Indeed, there has been increasing evidence that mesoscale error growth
shows similarity with the turbulence case under shallower -5/3 kinetic energy spectrum,
which is not well simulated in most of coarse resolution global NWP models (Augier and

Lindborg 2013; Sun and Zhang 2016; Weyn and Durran 2017).

With recent advancement in computing capability, we now have entered a new era
of global convection-permitting NWP models (Putman and Suarez 2011; Skamarock et al.

2014). Mapes et al. (2008) examined the predictability behavior of the atmosphere using
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global 7-km aqua-planet identical-twin simulations, with a focus in the tropics. Judt (2018)
studied the atmospheric predictability through a pair of convection-permitting identical-
twin simulations with the newly developed global model for prediction across scales
(MPAS, Skamarock et al. 2014). Building on the findings of previous theoretical and
modeling studies, our work here seeks to estimate the intrinsic limit of day-to-day weather
predictability using ensemble simulations with the most advanced global NWP models at
both ECMWF and U.S. NOAA. Our particular emphasis will be synoptic-scale weather
systems dominated by baroclinic instability in the midlatitudes, where most of the world
population resides. In particular, we showcase the practical versus intrinsic predictability
limits of the global midlatitude weather during two periods in boreal winter and summer,
respectively. These periods also endured two recent hazardous regional weather events: a
wintertime cold surge event affecting northern Europe in early January 2016, and a
summertime rainfall-flooding event in China during July 2016. The choice of these two
events are rather subjective and somewhat random with the intent to represent the typical
midlatitude predictability while in the meantime covering some notable weather events in
recent years. Nevertheless, neither of these two cases fall into the “forecast-bust™ cases
using the criteria identified by Rodwell et al. (2013). Moreover, to the best of our
knowledge, there were no severe weather outbreaks during these two periods in the
midlatitude atmosphere of the Southern Hemisphere whose predictability will be
simultaneously examined and compared with the Northern Hemispheric midlatitudes that

have notable weather events.

Section 2 of this paper introduces the experiment design of our work, including the

model we used and the perturbations added for each ensemble. Analysis for the ensemble
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spread from different perspectives are given in section 3, physical interpretation based on
the results and hence the estimated predictability limit is also provided. Discussions on the

limitations of current work and concluding remarks are presented in section 4.

2. Experimental Design

This study adopted established methodologies introduced in the introduction part
for studying atmospheric predictability using perfect-model, identical-twin experiments
where the ensemble members with minute initial condition differences are explored. A
series of ensemble simulations with the state-of-the-science global NWP model at ECMWF
(namely the Integrated Forecast System or IFS), and US next-generation global prediction
system (NGGPS) with finite volume (FV3) dynamical core are designed to address the
following two key questions: (1) what is the intrinsic predictability limit of multiscale
midlatitude weather assuming a perfect model with nearly perfect initial conditions? (2)
How much longer can the practical predictability be increased by reducing initial condition

uncertainties to different degree of accuracy?

2.1 Model details

2.1.a ECMWF /IFS model

The IFS control and ensemble forecasts presented herein uses the latest upgrade
(cycle 41r2) of ECMWEF, the highest-resolution (~9 km) ever global operational NWP
model. More details of this model upgrade can be found on the official website of ECMWF
(http://www.ecmwf.int/). Different from previous versions, this new ECMWF IFS model

implements a cubic octahedral reduced Gaussian grid (with spectral truncation denoted by
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Tcol279) instead of the linear reduced Gaussian grid. With this cubic reduced Gaussian
grid, the shortest resolved wave is represented by four rather than two grid points. The
octahedral grid is also globally more uniform than the linear reduced Gaussian grid. In the
vertical, ECMWF model has 137 levels and a model top at 0.01 hPa. This corresponds to

over 900 million grid points in total after this resolution upgrade.

In addition to resolution increase, the realism of the kinetic energy spectrum is also
significantly improved with more energy in the smaller scales due to a reduction of the
diffusion and removal of the dealiasing filter, enabled by the change to using a cubic
truncation for the spectral dynamics. The semi-Lagrangian departure point iterations used
to solve the primitive equations are also increased in the new model to remove numerical
instabilities. The integration time step upgraded accordingly to 450s. As intrinsic
predictability implies the upper limit for our weather prediction given a nearly perfect
model, no perturbation is applied to any model parameter and no stochastic physics scheme

is adopted.

2.1.b US fvGF'S system

The newly developed Geophysical Fluid Dynamics Laboratory (GFDL) fvGFS
modeling system (Zhou et al. 2018; Hazelton et al. 2018; Chen et al. 2018) is used to further
cross-examine the sensitivity of multiscale predictability to different model
parameterizations and resolutions under future global convection-permitting NWP. This
system was built during the next-generation global prediction system (NGGPS) phase II,
using the nonhydrostatic Finite-Volume Cubed-Sphere Dynamical core (FV3) coupled to
physical parameterizations from the National Center for Environmental Prediction's Global

Forecast System (NCEP/GFS). The GFDL FV3 was recently chosen as the dynamical core
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for the US NGGPS as detailed in the online report:

hitps://www.weather.gov/sti/stimodeling nggps _implementation_atmdynamics;, a report

on this NGGPS development can also be found in Voosen (2017). In this study, we used
the global uniform 3-km fvGFS configuration without ocean coupling. This model has 63
vertical layers and the model top is set at 0.6 hPa. The physical parameterizations include
the Rapid Radiative Transfer Model for GCMs (RRTMG; Iacono et al. 2008) and the
GFDL 6-class single-moment microphysics scheme (Chen and Lin 2011, 2013; Zhou et al.

2018). No cumulus scheme is adopted.

2.b Ensemble experiments: EDA and EDAQ.1

We first perform two types of ensemble experiments (denoted as EDA and EDAO.1
hereafter) with the current operational 9-km IFS model, running 10-member ensembles for
20 days beginning at 6 different times (three consecutive days of 24-26 December 2015,
and three consecutive days of 24-26 June 2016), respectively. All simulations are
initialized at 0000 UTC. The initial condition and perturbations for the EDA ensembles are
derived directly from the first 10 of 21 available operational ensemble 4DVar analyses
(Bonavita et al. 2012) that represent the current realistic initial condition uncertainties by
the best-performing global NWP model (i.e., IFS at ECMWF). The design of the EDA
ensemble using realistic initial condition uncertainties is to explore more on the practical
predictability side of the atmosphere as an assurance that the model used for this study
could capture synoptic-scale dynamics and has typical predictive skills during the event
periods selected for this study. Note that the EDA system uses the covariances derived
from a coarser resolution (TCo0639, ~16 km) ensemble forecast and thus small scales are

not strongly constrained by observations. When initializing the model at higher resolutions,
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there would be a transient adjustment process (within hours, see Skamarock et al. 2014) to
the small-scale energy spectrum. This adjustment process will potentially excite a spurious
cascade, which might bring faster initial error growth at these smaller scales. However, the
impact of this process is expected to be small at synoptic scales and will be neglected in

particular for the current study with a perfect-model assumption.

In comparison, the initial conditions for the EDAO.1 ensembles are perturbed with
only 10% of the initial perturbations in the corresponding EDA ensembles centered at the
control operational analysis of the IFS. With perturbation kinetic energy error only 1% of
the current-day state-of-the-science analysis uncertainties, the EDAO.1 ensembles can be
regarded as using nearly perfect initial conditions. The use of nearly perfect initial
conditions, along with the use of the same model without physics perturbations, is in the
spirit of perfect-model identical-twin experiments which are designed to understand the
intrinsic predictability limit of the atmosphere. Although the number of ensemble runs is
still limited, to the best of our knowledge, this is the first time such a high-resolution global-
model ensemble performing at the convection-permitting resolution is used for exploring

the intrinsic limit of atmospheric predictability.

For the NGGPS FV3 model experiment, at 3-km grid spacing, computational costs
permit us to run only one pair of identical-twin simulations starting at 0000 UTC 24
December 2015 for the Northern Hemispheric winter event. One initialized with the control
member from the IFS model and the other initialized with the same initial perturbations as

in member 1 of EDAO.1.

Although only one pair of identical-twin 3-km FV3 simulations can be afforded

computationally for this study, it does offer a direct comparison of the error growth to the

11
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same pair of identical-twin simulations using the operational IFS model that has a different
dynamical core and different resolution. In the meantime, for typical midlatitude synoptic
systems of 5000 km in horizontal wavelength, there are about 5-10 such concurrent
synoptic weather events in either hemisphere. In essence, this single pair of identical-twin
experiments could represent a predictability estimate of multiple events under more general

global statistics.

3. Predictability Limit

To exemplify the limit of intrinsic predictability of day-to-day weather, we first
select the January 2016 cold surge event during which most areas of northern Europe
experienced temperature anomalies below -5°C, as shown in the observational analysis
(Fig. 2a). Near-normal temperature is observed over most of the contiguous US and Canada
except for a moderate warm anomaly over the Great Lakes region. The corresponding 15-
day control forecast (Fig. 2b) by the ECMWF 9-km operational model IFS initialized at
0000 UTC 24 December 2015 failed to predict the Northern Europe cold anomaly while it
under-predicted the surface temperature over most of contiguous US and over-predicted

temperature over most of Canada.

A 10-member ensemble (“EDAO0.17), constructed by perturbing the control forecast
with minute initial perturbations that are an order of magnitude smaller than the current
analysis uncertainty, produced drastically different 15-day forecasts, each of which is
nearly indistinguishable from a random sample of the climatology of this day. For example,
member 1 of this reduced-perturbation ensemble (Fig. 2¢) initialized also at 0000 UTC 24

December 2015 predicted a slightly above normal temperature (instead of the observed

12
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cold surge) over Northern Europe while forecasting extremely cold conditions over most
of the contiguous U.S. (instead of the observed normal to slightly warmer anomalies). The
differences in predicted synoptic flow patterns between EDAO.1 member 1 and the
unperturbed control forecast are comparable to the differences between the control run and
the observational analyses represented by the sea-level pressure maps in Fig. 2, except for
the quasi-stationary planetary low-pressure centers over the northern Atlantic and Pacific
Oceans typical of climatological mean patterns. Failure of the control forecast (compared
to observational analysis), and drastic forecast divergence between the control forecast and
EDAO.1 ensemble member 1 that is perturbed with hypothetical minute initial
perturbations (likely beyond the reach of future analysis accuracy) suggests a complete loss
of predictability at the 15-day lead time ( i.e., the intrinsic limit of day-to-day midlatitude

weather predictability may not be extended beyond 2 weeks, at least in this case).

3.a Evolution of ensemble spread

As mentioned in the introduction, the forecast uncertainty and the limit of
predictability can be more systematically quantified by the evolution of the spread between
the ensemble members and the time when it starts to saturate. Figure 3 shows midlatitude
mean ensemble variance of the 500-hPa winds (a measure of ensemble kinetic energy
spread) from two ensemble hindcasts initialized on three consecutive days (24, 25 and 26
December). The choice of 500-hPa winds is because that it is directly linked to the kinetic
energy spectrum which will be discussed later. Nonetheless, metrics using geopotential
height give very consistent results (not shown here). The EDA ensemble sets in Fig. 3 are

initialized with the current realistic analysis uncertainties represented by the ECMWF

13
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ensemble of 4DVar analyses, while EDAO.1 ensemble sets are initialized with nearly
perfect initial conditions (initial kinetic energy error is 1% of that in EDA). As shown in
Fig. 3a (normalized results shown in Fig. 3c), the spread of the EDA ensembles with
realistic initial condition uncertainties grows nearly two orders of magnitude larger before
saturating at approximately 10—12 days, while the spread of the EDA0.1 ensembles, with
minute initial perturbations (i.e., nearly perfect initial conditions), grows nearly four orders
of magnitude larger before saturating at the same level as the EDA ensemble around 14—

15 days (as a strong indication of the intrinsic predictability limit).

Similar quantitative statistics, representing intrinsic versus practical predictability
limits assuming perfect model, can also be inferred from the same pairs of ensembles for
the Southern Hemisphere (Fig. 4), as well as from pairs of Northern Hemisphere
midlatitude 20-day 10-member global ensemble (Fig. 3b and Fig. 3d) initialized from three
consecutive summer days (24, 25 and 26 June) in 2016. During the 20-day simulation
period in June, vast areas of the Yangtze River Basin of China observed historical flooding

(NASA:https:/earthobservatory.nasa.gov/NaturalHazards/view.php?id=88467). Moreover,

calculation of the anomaly correlation coefficients (ACC) between the ensemble forecast
and the observations over the global midlatitudes also gives quantitatively similar estimates
for both the practical and intrinsic predictability limits (Fig. 5), with correlation dropping

to 60% at around 10 days for the EDA ensemble and 13-15 days for EDAO.1 ensemble.

The growth of the ensemble variance, representative of the forecast error, fits
surprisingly well with the simple error growth model that was originally proposed in
Lorenz (1982), modified later (Dalcher and Kalnay 1987; Reynolds et al. 1994) and here

as:
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de(t)

— = (ae(t) + B)(n—e(t)) (m)

Here ¢(t) is the normalized error where e~1 means it reaches the maximum or becomes
saturated, « is the synoptic-scale error growth rate. Previous studies (e.g., Magnusson and
Kaéllén 2013) usually use 8 as a measure for model error. Given that we are comparing
between different ensemble members using the same forecast model, § here represents the
error growth rate induced by the intrinsic upscale error propagation such as from small-
scale moist processes (e.g., convection) even when we have nearly perfect initial condition
(Sun and Zhang 2016). Figures 3c-d and 4c-d show the evolution of normalized error
averaged for both the winter and summer cases, respectively, as well as the fitted error

growth curves from equation (1).

Fig. 3 and Fig. 4 show that exponential error growth (quasi-linear line in the
logarithmic plot) dominates the first few days of the EDA ensembles, with a growth rate
determined by . The  term has little impact on the error growth curve for the EDA
experiment due to relatively large initial-condition error. However, compared with EDA,
much faster initial error growth is observed for the EDAO.1 ensembles. We can also deduce
that the error growth rate (slope of the error growth curve in Fig.3 and Fig. 4) in EDAO.1
will increase with decreasing &, implying that there will eventually be diminishing returns
from further reducing the initial condition errors. This “super-exponential” initial error
growth in EDAO.1 is caused by the presence of the f term (representing the intrinsic
upscale error growth and propagation from small scales) in equation (1). For example, the
green line in Figs. 3¢c-d shows the predicted error growth curve derived from equation (1)

when the initial condition error is reduced to 1.0e™'°. It is nearly identical to the blue line

15
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which means there is not much more room for improvement. In other words, if equation
(1) holds, further reduction in the initial-condition or model error would not help extend

our forecast lead time much longer (maybe only in hours or even minutes).

The errors in EDAOQ.1 grow to an amplitude similar to the EDA initial ensemble
spread in 3-4 days. Subsequent error growth and saturation in the EDAO.1 ensembles
mimic those of the EDA ensembles except for a 3-to-4-day delay in forecast lead times.
The overall reference error kinetic energy saturates (¢ ~ 1) at around 10-12 days for all the
EDA ensembles and 14-15 days for all the EDAO.1 ensembles. This remains true for
different initialization times and for both the winter and summer days of the Northern

Hemisphere and the Southern Hemisphere.

These unprecedented high-resolution 9-km global ensembles of a state-of-the-science
NWP model, initialized with both realistic and nearly-perfect initial condition
uncertainties, suggest that the ultimate limit of midlatitude day-to-day weather
predictability is about 2 weeks, but there is still a potential of 3-5 more days of additional
forecast lead time to be gained through improving the current practical predictability,
which is about 9-10 days. Such improvements may be gained from reducing initial
condition and model uncertainties through better observations, better data assimilation, and
better forecast models running at higher-resolution with ever-increasing computing

capability.

3.b Spectral analysis

While this 3-5 day serve as the estimated potential for extended weather forecast
lead time, the atmospheric predictability limit is also scale-dependent. For example, small

scale thunderstorms is much less predictable than the synoptic system in which they are
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embedded. Therefore, it is important to examine the scale dependence of predictability
limit. Spectral decomposition of perturbation kinetic energy across all zonal wavenumbers
averaged over the midlatitudes (40-60°N) for both winter and summer periods are
displayed in Fig. 6. The corresponding spectra for the Southern Hemisphere midlatitudes
(40-60°S) are shown in Fig. 7.

The kinetic energy spectrum here is calculated as in (Skamarock 2004). We have
chosen to compute the one-dimensional (1D) spectrum of the velocity fields along zonal
direction . The advantage of this 1D spectrum is that we could fully utilize the periodicity
of the global model in the zonal direction while focus on the midlatitude only. Let u; ; ,
and v; ;, denote the zonal and meridional velocity components for the nth ensemble
member, subtracting the ensemble mean fields first if we are calculating the kinetic energy
spectra for the perturbations. For the spectra in Fig. 8, the differences between the perturbed
run and the un-perturbed run are used. The Fourier transforms of the velocity components

il , (k) and 9 , (k) are then computed along the zonal direction for each ensemble member

and all the meridional j indices. Then the kinetic energy spectra density can be written as:

Ax -~ A ~ Ak
Ej (k) = I, [ ()7 1 (k) + B, (KD () | ()

where N, is the number of grid points along the zonal direction of the model. The asterisk
denotes the complex conjugate. We can then average E; ,, (k) over j and n to get the kinetic
energy spectrum for the full ensemble and the latitude band of interest (40-60°N for the
mid-latitude; the results are not very sensitive to this choice, 30-60°N average give very
similar plots). When the spectrum of the perturbation kinetic energy (amplitude of “noise”

at a given wavelength reaches the reference background spectral kinetic energy (signal to
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be predicted), it is saturated, after which no single deterministic forecast will have any

predictive skill.

Consistent with Fig. 3, Figure 6 also shows that it takes slightly more than 3 days
for the perturbation kinetic energy in the reduced-perturbation ensemble (EDAO.1) to grow
two orders of magnitude across all resolvable wavelengths to a level comparable with the
realistic analysis uncertainty represented by the EDA for the periods of the winter and
summer events, respectively. Also, Fig. 6 shows that the perturbation spectral kinetic
energy from the EDAOQ.1 ensemble saturates at the amplitude of the reference kinetic
energy across all synoptic scales by 15 days, again consistent with the overall intrinsic

predictability limit estimated from Fig. 3.

Moreover, saturation time for different scales is different. With reduced initial-
condition uncertainties, as in EDAOQ.1, forecast error first saturates at smaller scales, then
subsequently grows rapidly in magnitude and in scale, consistent with past regional
modeling studies (Zhang et al. 2007; Selz and Craig 2015; Sun and Zhang 2016). A simple
estimation from Fig. 6 shows that the forecast error saturation time (and thus intrinsic limit
of predictability) is less than 3 days for horizontal scales less than 200 km, less than 5 days
for horizontal scales less than 400 km, and less than 10 days for horizontal scales less than
1000 km. Also worth noting, Fig. 6 illustrates the synoptic-scale predictability in terms of
500-hPa horizontal winds. Much more limited predictability is expected for vertical
velocity and instantaneous precipitation rate forecasts (Bei and Zhang 2007, 2014), which

possesses very different reference energy spectra.

3.c. Sensitivity study using US NGGPS model
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Although we could only afford to perform one pair of 10-day forecasts using the
US NGGPS model based on the FV3 dynamical core with 3-km convection-permitting
horizontal grid spacing, the results (Fig. 8) show that for both winter and summer
hemispheric midlatitudes, such limits are rather insensitive to the forecast model or
resolution, and likely arise from the intrinsic dynamics of the atmosphere (Zhang et al.
2007; Rotunno and Snyder 2008; Sun and Zhang 2016). Due to the use of a higher
horizontal resolution, the NGGPS FV3 model better resolves the small-scale atmospheric
motions as can be seen by the extended background energy spectrum at smaller scales
(Fig. 8). Yet the evolution of the forecast error in the NGGPS FV3 model, as reflected by
the perturbation kinetic energy spectrum at 500 hPa, does not show significant differences
with that in the ECMWF model. Once again, we find that after 3—5 days the differences
between two initially nearly identical runs is comparable with our current operational

analysis uncertainty (Fig. 8).

This consistency between two completely different models (with different
dynamical cores, different physics and different resolutions) also strengthens our
confidence that these two state-of-the-science NWP models are “appropriate” to assess the
intrinsic predictability limit, at least for the periods examined in this study. It is safe to say
that minute uncontrollable initial-condition uncertainties originating from convective and
mesoscale instabilities can grow upscale and will eventually limit the predictability of
various weather systems at increasingly larger scales. The impacts of the background
governing dynamics and instabilities on the limits of intrinsic predictability may also be
inferred from the differences in equation (1) fitted values of a (synoptic-scale error growth

rate likely controlled by synoptic instabilities such as baroclinicity) and S (upscale error

19



430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

growth rate likely controlled by small-scale instabilities and moist physics including
convention). As denoted in Figs. 3c-d, a larger value of @ and a smaller value of 8 are
derived from the winter cold surge event than those derived from the summer flooding
event. This is consistent with stronger baroclinicity and weaker convective instability in
the winter than in the summer, although more research is needed to further quantify such

relationships (Reynolds et al. 1994; Magnusson and Kéllén 2013).

3.d. possible dynamic processes

Given both models agree on the forecast lead time we could gain from reducing
initial condition uncertainty, the question then arises as to what dynamic processes control
the error growth and eventually limits the predictability of midlatitude weather? While this
is surely an important question and needs future research (Rosinski and Williamson 1997;
Magnusson 2017), some details on the evolution of the ensemble spread during specific

cases may give us some insights and guidance into this question.

Figure 9 shows the evolution of the ensemble spread of 500-hpa meridional winds
for the first three days in EDAO.1 integrated from 0000 UTC 26 Dec 2015, especially focus
on a developing extratropical cyclone over the west coast of the United States. The blue
contour is the 500-hpa geopotential height and grey contour is the regions with 12 hour
precipitation greater than 0.1 mm. We can see that, at day 1 the ensemble spread first shows
up in the precipitating region. Then the spread increases and moves with the synoptic
system, propagating both upstream and downstream in the meanwhile. After 3 days, the
ensemble spread could be found anywhere in the mid-latitude bands, although with a
maximum in the synoptic storms. The key idea that minute perturbations will first generate

error in small scale moist convective systems and the errors then grow upscale is consistent
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with previous studies (Zhang et al. 2007; Sun and Zhang 2016). We could also take a first
look at the propagation of the ensemble spread using the Hovmdller diagram, which is
plotted in Fig. 10 for the EDAO.1 ensembles initialized at 0000 UTC 24 December 2015.
As marked subjectively by different type of arrows, there exist at least three characteristic
pathways for the error to evolve and grow through time globally. The dotted ones, mainly
shown up in the first few days, have an approximate eastward speed of 10-15 m/s and are
consistent with the phase speed of individual synoptic weather systems. The double dashed
arrows that have an approximate eastward speed of 25-30 m/s likely following the
downstream energy propagation of different baroclinic wave packets, and the bold solid
arrows with a slow westward progression signaling the error enhancement near the quasi-
stationary planetary-scale low-pressure centers. These error growth pathways expand
beyond the multi-stage error growth mechanisms identified in previous regional-scale
predictability study (Zhang et. al, 2007) and will be examined in more details in our future

study.

4. Concluding Remarks

The promising finding of the current study is that, assuming the current-generation
state-of-the-science NWP models could capture the most essential physical processes in
the real world, we can further improve the forecast accuracy of day-to-day weather events
such as the ones we discussed, by up to 5 days, if we reduce the initial condition
uncertainties by a factor of 10. In particular, we examined the predictability of weather
forecasts in two showcase studies, and we have looked at the multiscale midlatitude error

evolution across different spatial scales. Our study suggests that we are currently still quite
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far from the ultimate limit of predictability, and it is apparent that we have ample room for

further improvement in the day-to-day weather predictability likely for decades ahead.

More quantitatively, it can be inferred from Figs. 3 and 6 that reducing the current
initial-condition error represented by EDA by about 20% (~40% smaller in error kinetic
energy) can potentially lead to a gain of one more day, and reducing by about 50% for a
gain of two more days of additional predictable forecast lead time. Achieving this
additional predictability limit can greatly benefit society by saving lives and property but
requires continued coordinated efforts by the entire meteorology community and beyond
to design more accurate NWP models performing at refined resolutions, improve and
enhance the observing techniques and networks, and make better use of observations with

advanced data assimilation and computing techniques.

It is possible those two individual local weather events (cold surge and floods) have
slightly different predictability than more typical weather patterns but our findings here are
based on mean error growth statistics of the global midlatitudes averaged over many
wavelengths and multiple initialization times, not just the regions of the localized
hazardous events. Additional calculations that exclude these two local events show
consistent results (Fig. 11); so are the calculations in the opposing hemispheric midlatitudes
that have no remarkable severe weather events during the same periods examined.
Nonetheless, further research is needed to extend the findings to more case studies during
all seasons, and preferably with further refined, convection-permitting model resolutions
to capture more realistic rapid initial error growth from small-scale moist physics including
convection. Although limited sensitivity experiments suggest that the predictability

horizon of the day-to-day midlatitude weather is controlled by dynamics and instabilities
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of the atmosphere and are not particularly dependent on the specific numerical models, it
remains possible the estimates may change if future improved models have different
perturbation-growth’s characteristics. While it remains possible that the incorporation of
additional unresolved scales and phenomena could actually lead to an increase in the upper
bound of predictability (Lorenz 1982), it is generally acknowledged that improved models
will resolve more smaller scale instabilities and thus the error growth is likely to further
increase, at least in smaller scales, in which case the current estimate of intrinsic

predictability limit may be on the optimistic side.

Also, despite the use of ensembles, the current study focuses on whether a limit of
deterministic forecast longer than two weeks can be reached if we concentrate on the
instantaneous weather that we experience every day. If we define the ‘forecast skill
horizon’ as the lead time when ensemble forecasts cease to be, statistically, more skillful
than a climatological distribution, the predictability horizon can be longer than two weeks
for some variables at large synoptic and planetary scales and with longer periods and lower
frequencies (Buizza and Leutbecher 2015; Shukla 1998; Palmer 2017). It is beyond the
scope of this study to determine what is the intrinsic limit of the probabilistic prediction. It
is also beyond the limit of the current study what is predictability horizon for lower-
frequency oscillations such as the Madden-Julian Oscillations (Madden and Julian 1971;
Zhang 2005; Zhang et al. 2017) or the background mean weather regimes that potentially
have predictive skills at the season-to-intraseasonal timescales and beyond. Moreover,
even at the convection-permitting resolution, the current sets of ensemble experiments
might be insufficient to fully reproduce multiscale tropical waves coupled with moist

convection, and thus future studies on the error growth dynamics and predictability limits
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for tropical systems and their interactions with midlatitudes systems (e.g., Ying and Zhang

2017) are warranted.
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Fig. 1. Annual evolution the ECMWF NWP deterministic control forecast performance in terms
of anomaly correlation of 500-hPa height predictions. Shading in this plot indicates the different
forecast skill between NH and SH, which has almost gone in recent years. This plot is directly

adapted from ECMWEF official website

(https://www.ecmwf.int/en/forecasts/charts/catalogue/plwww_m_hr ccaf adrian_ts).
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Fig. 2. Sample 15-day numerical weather predictions versus observations. The 2-metre surface
temperature anomalies (colored) and the sea-level pressure (contoured every 4 hPa) and valid at
0000 UTC 8 January 2016 for (a) the ECMWF observational analysis, (b) the 9-km IFS 15-day-
lead-time control forecast initialized at 0000 UTC 24 December 2015 with the unperturbed EDA
analysis, and (c) 15-day forecast from a member of the ensemble (EDAO.1) perturbed with 10%
of the EDA ensemble perturbations that the current level of uncertainty in the EDA analysis. The
temperature anomalies are calculated from a climatology based on a 20-year, 10-member ensemble

reforecast dataset using the same model with a 15-day lead time.
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Fig. 3 Evolution of forecast uncertainty growth in terms of ensemble variance of 500-hPa winds
energy averaged over NH midlatitude (40-60°N) for 3 ensemble simulations with current-day
realistic initial condition uncertainties (red symbols) and the corresponding ensembles with minute
(1%) 1nitial condition errors (blue symbols) initialized at: a) three consecutive days for the winter
(24-26 December 2015; top) and b) three consecutive days in the summer (24-26 June 2016). c)
and d) show the evolution of normalized error variances (grey symbols) averaged for the winter
and summer cases, respectively, as well as the fitted error growth curves (red for EDA; blue for
EDAO.1) from equation (1). The units for a and B are day™'. Green lines in ¢) and d) show the error
growth curve according to fitted equation 1 if the initial condition error is further reduced to le-

10. Note the log scale of the perturbation energy.
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Fig. 5. Anomaly correlation coefficient (ACC) of the 500-hPa heights averaged over Northern
Hemisphere mid-latitude (30-60N) for (a) 2016 Jan case and (b) 2016 July summer case. Blue line
shows the ACC for all the EDA members, red line shows the results for EDA0O.1 members.
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Fig. 6 Forecast error growth and saturation for different horizontal scales. Evolution of ensemble mean error spectral kinetic energy
(colored lines) averaged over NH midlatitudes (40-60N) for three 9-km 10-member ECMWF IFS global ensemble simulations with
minute (1%) initial condition errors (solid gray lines) initialized on three consecutive days for (a) the winter period and (b) the summer
period. The reference background kinetic energy spectra are derived from the respective 20-day mean spectra of the control forecast
(dark dotted). The corresponding initial spread of the EDA ensemble with realistic analysis uncertainties are shown in light-gray dotted

lines for comparison. The two straight dotted line segments denote the spectral slopes of -3 and -5/3, respectively.
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Fig. 7. Similar as Figure 6 except for the Southern Hemisphere (SH, 40-60°S).
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Fig. 8 Sensitivity of error growth and saturation with the 3-km FV3 model. Evolution of perturbation spectral kinetic energy between
two forecasts (one initialized with the control EDA analysis and the other perturbed with the same initial perturbations as in EDAO.1
ensemble member 1 performed with the 3-km U.S. FV3 model for a) NH and b) SH. Computational costs permit us to run only one
pair of 10-day simulations starting at 0000 UTC 24 December 2015 for the winter event. Thin lines show results for EC model calculated
based on the differences between 10 perturbed EDAO.1 members and the ctrl run. The FV3 results lies well within the 10 ensembles
produced by the EC model. Note at small scales, different with the perturbation kinetic energy spectra in Fig. 6, the difference spectral

kinetic energy has a saturation level that is twice the background spectrum.



Fig. 9 Evolution of the ensemble spread of 500-hpa meridional winds (color shaded region) for
the first three days in EDAO.1 integrated from 0000 UTC 26 Dec 26 2015. Blue contour is the 500-
hpa geopotential height and grey contour is the regions with 12 hour precipitation greater than 0.1

mm. Red circles imply the movement of the developing low-pressure synoptic storms.
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Fig. 10 The longitude-time Hovmoller diagram for the mean ensemble spread in terms of root-
mean-square difference of kinetic energy (m/s) derived from the 9-km 20-day 10-member
ECMWEF IFS global ensemble initialized at 0000 UTC 24 December 2015, as a demonstration of
different modes of error propagation that lead to the error saturation and intrinsic predictability

limits (see text for details).
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Fig. 11: As in Fig. 3c and Fig. 3d except for separating the error statistics from the hazardous event
region versus the rest of the midlatitudes. Red and blue curves are the same fitted curve as in Fig.
3, implying the global averaged results. ‘+’ represents the hazardous event region (60-degree

longitude width). ‘o’ represents the non-hazardous-event region (300-degree longitude width).





