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Abstract 24 

Understanding the predictability limit of day-to-day weather phenomena such as 25 

midlatitude winter storms and summer monsoonal rainstorms is crucial to numerical 26 

weather prediction (NWP). This predictability limit is studied using unprecedented high-27 

resolution global models with ensemble experiments of the European Center for Medium 28 

Range Weather Forecasting (ECMWF, 9-km operational model) and identical-twin 29 

experiments of the US next-generation global prediction system (NGGPS, 3-km). Results 30 

suggest that predictability limit for mid-latitude weather may indeed exist and is intrinsic to 31 

the underlying dynamical system and instabilities even if the forecast model and the initial 32 

conditions are nearly perfect. Currently, a skillful forecast lead time of midlatitude 33 

instantaneous weather is around 10 days, which serves as the practical predictability limit. 34 

Reducing the current-day initial-condition uncertainty by an order of magnitude extends 35 

the deterministic forecast lead times of day-to-day weather by up to 5 days, with much less 36 

scope for improving prediction of small-scale phenomena like thunderstorms. Achieving 37 

this additional predictability limit can have enormous socioeconomic benefits but requires 38 

coordinated efforts by the entire community to design better numerical weather models, to 39 

improve observations, and to make better use of observations with advanced data 40 

assimilation and computing techniques. 41 

  42 
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1. Introduction 43 

Weather forecasting has improved dramatically since the introduction of numerical 44 

weather prediction (NWP) nearly six decades ago (Bauer et al. 2015). This has been 45 

accomplished through ever-increasing computing power, improved models running at ever 46 

increasing resolution with more accurate representation of atmospheric physical processes, 47 

and more sophisticated four-dimensional data assimilating algorithms that can better ingest 48 

ever increasing volumes and quality of in-situ and remotely acquired observations (WMO 49 

2015). A widely-used measure of global NWP forecast quality is the anomaly correlation 50 

coefficient (ACC) of 500-hPa geopotential height between the forecasts and observations. 51 

In practice, 60% is usually used as a threshold for measure of skillful synoptic-scale 52 

weather forecast. Examining the evolution of ACC (Fig. 1), useful deterministic forecasts 53 

by arguably the most advanced NWP model at the European Center for Medium Range 54 

Weather Prediction (ECMWF) could at best be made up to around 10 days: this number 55 

was 7 days 30 years ago (Simmons and Hollingsworth 2002, Bauer et al. 2015). More 56 

improvements can be seen in the Southern Hemisphere where the traditional observing 57 

network is sparser but which has now been densely covered by satellite observations.  58 

Improved NWP can have significant socioeconomic benefits by better predicting 59 

the occurrence of natural disasters, saving lives, and protecting property. For example, 60 

improved NWP is largely credited with the dramatic improvement in tropical cyclone 61 

prediction worldwide. The present tropical cyclone track forecast accuracy at the U.S. 62 

National Hurricane Center on average has gained almost a day lead time per decade (e.g., 63 

Zhang and Weng 2015): the yearly averaged 5-day lead-time track forecast error for the 64 
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Atlantic Basin in 2016 is smaller than the 2-day lead-time forecast error in 1990, which 65 

may have saved billions of dollars (Katz et al. 2015).  66 

Yet, improvement of NWP has limits. From the perspective of predictability, this 67 

concept of “atmospheric predictability limit” can be grossly categorized into intrinsic 68 

versus practical predictability (Lorenz 1996; Melhauser and Zhang 2012). As discussed in 69 

Ying and Zhang (2017),  intrinsic predictability refers to “the ability to predict given nearly 70 

perfect representation of the dynamical system (by a forecast model) and nearly perfect 71 

initial/boundary conditions, an inherent limit due to the chaotic nature of the atmosphere 72 

and cannot be extended by any means” (Lorenz 1963, 1969; Zhang et al. 2003, 2007; Sun 73 

and Zhang 2016).  Practical predictability, also commonly referred to as our weather 74 

prediction skill, is “the ability to predict given realistic uncertainties in both the forecast 75 

model and initial and boundary conditions” (Lorenz 1982, 1996; Zhang et al. 2002, 2006). 76 

This practical predictability can be extended through reduction in key limiting factors of 77 

the forecast errors, including initial-condition errors, boundary condition errors, and model 78 

errors. All these factors, especially the initial condition errors, have been greatly and could 79 

be further reduced with better NWP models ingesting high-accuracy observations using 80 

advanced data assimilation approaches along with advanced computing power (e.g., Zhang 81 

et al. 2009; Zhang and Weng 2015; Emanuel and Zhang 2016). Nevertheless, given our 82 

desire for better weather forecasting at all temporal and spatial scales, it is natural to ask 83 

whether an intrinsic predictability of the mid-latitude weather exists. If yes, what is this 84 

inherent limit given nearly perfect NWP models with nearly perfect initial conditions? This 85 

is a crucial question that meteorologists have sought to answer ever since the beginning of 86 

NWP (e.g., Thompson 1957; Lorenz 1969; Leith 1971). Answering this question could 87 
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provide guidance to society in decisions to enhance observing networks, improve models, 88 

and to better assimilate observations into the forecast models.  89 

Excellent work on this subject area has been pioneered by Lorenz who first 90 

introduced the concept of “butterfly effect”, which described the existence of the intrinsic 91 

predictability limit using a spectral turbulence model (Lorenz 1969). Lorenz showed that, 92 

for flow whose spectral slope is shallower than -3, error-doubling time decreases with 93 

decreasing scales, which led to an upscale error spreading and could provide an effective 94 

intrinsic limit to the predictability of the flow. For flow with a slope steeper than -3, 95 

unlimited predictability might be achieved.  This “butterfly effect” concept also inspires 96 

many subsequent studies using a hierarchy of turbulence models, which further confirmed 97 

Lorenz’s theory (e.g., Leith and Kraichnan 1972; Rotunno and Snyder 2008; Durran and 98 

Gingrich 2014). While it remains unclear how these turbulence model results relate to our 99 

real atmosphere, it is widely accepted that the real atmosphere very likely also has an 100 

intrinsic limit of predictability (Palmer et al. 2014). 101 

Estimates of this intrinsic predictability limit for a deterministic forecast can be 102 

made based on numerical integrations of model equations from two (identical twin 103 

experiments) or more rather similar or even identical initial states (Lorenz 1963, 1969). 104 

The limit will occur at a time when the spread between these nearly identical runs starts to 105 

saturate and becomes as much as the spread among some randomly selected, but 106 

dynamically and statistically possible states. The accuracy of this kind of estimate is 107 

dependent on the accuracy of the forecast model used (Lorenz 1996). Earlier studies have 108 

used models of increasing complexity to investigate this intrinsic predictability and the 109 

error growth behavior of our atmosphere (e.g., Leith 1971; Daley 1981; Zhang et al. 2003, 110 
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2007; Mapes et al. 2008; Morss et al. 2009; Ngan et al. 2009). While these studies all agree 111 

the existence of an intrinsic predictability limit for the respective weather systems, detailed 112 

error growth behavior differs among different models and different weather systems being 113 

studied. For example, in addition to an error cascade from smaller to larger scales (upscale 114 

growth; e.g., Lorenz 1969; Morss et al. 2009), some recent studies also show errors could 115 

grow spontaneously at all scales (up-magnitude) without saturating at smaller scales (e. g., 116 

Mapes et al. 2008; Durran and Gingrich 2014).  117 

Given there is a degree of model dependency, many studies now tend to explore 118 

atmospheric predictability under more realistic frameworks with either regional (e.g., 119 

Zhang et al. 2003, 2007; Selz and Craig 2015; Ying and Zhang 2017) or global (e.g., 120 

Simmons and Hollingsworth 2002; Tribbia and Baumhefner 2004; Froude et al. 2013) 121 

NWP models. Regional models, which require boundary conditions, generally constrain 122 

longer-term error growth and propagation within the domain boundaries. Previous global 123 

predictability studies, on the other hand, usually do not have sufficient model resolutions 124 

to explicitly resolve mesoscale processes and moist convections, which have been shown 125 

to be critical for the initial error growth (Zhang et al. 2003, 2007; Selz and Craig 2015; Sun 126 

and Zhang 2016). Indeed, there has been increasing evidence that mesoscale error growth 127 

shows similarity with the turbulence case under shallower -5/3 kinetic energy spectrum, 128 

which is not well simulated in most of coarse resolution global NWP models (Augier and 129 

Lindborg 2013; Sun and Zhang 2016; Weyn and Durran 2017). 130 

With recent advancement in computing capability, we now have entered a new era 131 

of global convection-permitting NWP models (Putman and Suarez 2011; Skamarock et al. 132 

2014). Mapes et al. (2008) examined the predictability behavior of the atmosphere using 133 
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global 7-km aqua-planet identical-twin simulations, with a focus in the tropics. Judt (2018) 134 

studied the atmospheric predictability through a pair of convection-permitting identical-135 

twin simulations with the newly developed global model for prediction across scales 136 

(MPAS, Skamarock et al. 2014). Building on the findings of previous theoretical and 137 

modeling studies, our work here seeks to estimate the intrinsic limit of day-to-day weather 138 

predictability using ensemble simulations with the most advanced global NWP models at 139 

both ECMWF and U.S. NOAA. Our particular emphasis will be synoptic-scale weather 140 

systems dominated by baroclinic instability in the midlatitudes, where most of the world 141 

population resides. In particular, we showcase the practical versus intrinsic predictability 142 

limits of the global midlatitude weather during two periods in boreal winter and summer, 143 

respectively. These periods also endured two recent hazardous regional weather events: a 144 

wintertime cold surge event affecting northern Europe in early January 2016, and a 145 

summertime rainfall-flooding event in China during July 2016. The choice of these two 146 

events are rather subjective and somewhat random with the intent to represent the typical 147 

midlatitude predictability while in the meantime covering some notable weather events in 148 

recent years. Nevertheless, neither of these two cases fall into the “forecast-bust” cases 149 

using the criteria identified by Rodwell et al. (2013).  Moreover, to the best of our 150 

knowledge, there were no severe weather outbreaks during these two periods in the 151 

midlatitude atmosphere of the Southern Hemisphere whose predictability will be 152 

simultaneously examined and compared with the Northern Hemispheric midlatitudes that 153 

have notable weather events. 154 

Section 2 of this paper introduces the experiment design of our work, including the 155 

model we used and the perturbations added for each ensemble.  Analysis for the ensemble 156 
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spread from different perspectives are given in section 3, physical interpretation based on 157 

the results and hence the estimated predictability limit is also provided. Discussions on the 158 

limitations of current work and concluding remarks are presented in section 4. 159 

 160 

2. Experimental Design 161 

This study adopted established methodologies introduced in the introduction part 162 

for studying atmospheric predictability using perfect-model, identical-twin experiments 163 

where the ensemble members with minute initial condition differences are explored. A 164 

series of ensemble simulations with the state-of-the-science global NWP model at ECMWF 165 

(namely the Integrated Forecast System or IFS), and US next-generation global prediction 166 

system (NGGPS) with finite volume (FV3) dynamical core are designed to address the 167 

following two key questions: (1) what is the intrinsic predictability limit of multiscale 168 

midlatitude weather assuming a perfect model with nearly perfect initial conditions? (2) 169 

How much longer can the practical predictability be increased by reducing initial condition 170 

uncertainties to different degree of accuracy? 171 

2.1  Model details 172 

2.1.a   ECMWF / IFS model 173 

The IFS control and ensemble forecasts presented herein uses the latest upgrade 174 

(cycle 41r2) of ECMWF, the highest-resolution (~9 km) ever global operational NWP 175 

model. More details of this model upgrade can be found on the official website of ECMWF 176 

(http://www.ecmwf.int/). Different from previous versions, this new ECMWF IFS model 177 

implements a cubic octahedral reduced Gaussian grid (with spectral truncation denoted by 178 
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TCO1279) instead of the linear reduced Gaussian grid. With this cubic reduced Gaussian 179 

grid, the shortest resolved wave is represented by four rather than two grid points. The 180 

octahedral grid is also globally more uniform than the linear reduced Gaussian grid. In the 181 

vertical, ECMWF model has 137 levels and a model top at 0.01 hPa. This corresponds to 182 

over 900 million grid points in total after this resolution upgrade.  183 

In addition to resolution increase, the realism of the kinetic energy spectrum is also 184 

significantly improved with more energy in the smaller scales due to a reduction of the 185 

diffusion and removal of the dealiasing filter, enabled by the change to using a cubic 186 

truncation for the spectral dynamics.  The semi-Lagrangian departure point iterations used 187 

to solve the primitive equations are also increased in the new model to remove numerical 188 

instabilities. The integration time step upgraded accordingly to 450s. As intrinsic 189 

predictability implies the upper limit for our weather prediction given a nearly perfect 190 

model, no perturbation is applied to any model parameter and no stochastic physics scheme 191 

is adopted. 192 

2.1.b   US fvGFS system 193 

The newly developed Geophysical Fluid Dynamics Laboratory (GFDL) fvGFS 194 

modeling system (Zhou et al. 2018; Hazelton et al. 2018; Chen et al. 2018) is used to further 195 

cross-examine the sensitivity of multiscale predictability to different model 196 

parameterizations and resolutions under future global convection-permitting NWP. This 197 

system was built during the next-generation global prediction system (NGGPS) phase II, 198 

using the nonhydrostatic Finite-Volume Cubed-Sphere Dynamical core (FV3) coupled to 199 

physical parameterizations from the National Center for Environmental Prediction's Global 200 

Forecast System (NCEP/GFS). The GFDL FV3 was recently chosen as the dynamical core 201 
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for the US NGGPS as detailed in the online report: 202 

https://www.weather.gov/sti/stimodeling_nggps_implementation_atmdynamics; a report 203 

on this NGGPS development can also be found in Voosen (2017). In this study, we used 204 

the global uniform 3-km fvGFS configuration without ocean coupling. This model has 63 205 

vertical layers and the model top is set at 0.6 hPa. The physical parameterizations include 206 

the Rapid Radiative Transfer Model for GCMs (RRTMG; Iacono et al. 2008) and  the 207 

GFDL 6-class single-moment microphysics scheme (Chen and Lin 2011, 2013; Zhou et al. 208 

2018). No cumulus scheme is adopted.   209 

2.b Ensemble experiments: EDA and EDA0.1 210 

We first perform two types of ensemble experiments (denoted as EDA and EDA0.1 211 

hereafter) with the current operational 9-km IFS model, running 10-member ensembles for 212 

20 days beginning at 6 different times (three consecutive days of 24-26 December 2015, 213 

and three consecutive days of 24-26 June 2016), respectively. All simulations are 214 

initialized at 0000 UTC. The initial condition and perturbations for the EDA ensembles are 215 

derived directly from the first 10 of 21 available operational ensemble 4DVar analyses 216 

(Bonavita et al. 2012) that represent the current realistic initial condition uncertainties by 217 

the best-performing global NWP model (i.e., IFS at ECMWF). The design of the EDA 218 

ensemble using realistic initial condition uncertainties is to explore more on the practical 219 

predictability side of the atmosphere as an assurance that the model used for this study 220 

could capture synoptic-scale dynamics and has typical predictive skills during the event 221 

periods selected for this study. Note that the EDA system uses the covariances derived 222 

from a coarser resolution (TCo639, ~16 km) ensemble forecast and thus small scales are 223 

not strongly constrained by observations. When initializing the model at higher resolutions, 224 
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there would be a transient adjustment process (within hours, see Skamarock et al. 2014) to 225 

the small-scale energy spectrum. This adjustment process will potentially excite a spurious 226 

cascade, which might bring faster initial error growth at these smaller scales. However, the 227 

impact of this process is expected to be small at synoptic scales and will be neglected in 228 

particular for the current study with a perfect-model assumption. 229 

 In comparison, the initial conditions for the EDA0.1 ensembles are perturbed with 230 

only 10% of the initial perturbations in the corresponding EDA ensembles centered at the 231 

control operational analysis of the IFS. With perturbation kinetic energy error only 1% of 232 

the current-day state-of-the-science analysis uncertainties, the EDA0.1 ensembles can be 233 

regarded as using nearly perfect initial conditions. The use of nearly perfect initial 234 

conditions, along with the use of the same model without physics perturbations, is in the 235 

spirit of perfect-model identical-twin experiments which are designed to understand the 236 

intrinsic predictability limit of the atmosphere. Although the number of ensemble runs is 237 

still limited, to the best of our knowledge, this is the first time such a high-resolution global-238 

model ensemble performing at the convection-permitting resolution is used for exploring 239 

the intrinsic limit of atmospheric predictability. 240 

For the NGGPS FV3 model experiment, at 3-km grid spacing, computational costs 241 

permit us to run only one pair of identical-twin simulations starting at 0000 UTC 24 242 

December 2015 for the Northern Hemispheric winter event. One initialized with the control 243 

member from the IFS model and the other initialized with the same initial perturbations as 244 

in member 1 of EDA0.1.  245 

Although only one pair of identical-twin 3-km FV3 simulations can be afforded 246 

computationally for this study, it does offer a direct comparison of the error growth to the 247 
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same pair of identical-twin simulations using the operational IFS model that has a different 248 

dynamical core and different resolution. In the meantime, for typical midlatitude synoptic 249 

systems of 5000 km in horizontal wavelength, there are about 5-10 such concurrent 250 

synoptic weather events in either hemisphere. In essence, this single pair of identical-twin 251 

experiments could represent a predictability estimate of multiple events under more general 252 

global statistics. 253 

 254 

3. Predictability Limit 255 

To exemplify the limit of intrinsic predictability of day-to-day weather, we first 256 

select the January 2016 cold surge event during which most areas of northern Europe 257 

experienced temperature anomalies below -5°C, as shown in the observational analysis 258 

(Fig. 2a). Near-normal temperature is observed over most of the contiguous US and Canada 259 

except for a moderate warm anomaly over the Great Lakes region. The corresponding 15-260 

day control forecast (Fig. 2b) by the ECMWF 9-km operational model IFS initialized at 261 

0000 UTC 24 December 2015 failed to predict the Northern Europe cold anomaly while it 262 

under-predicted the surface temperature over most of contiguous US and over-predicted 263 

temperature over most of Canada.  264 

A 10-member ensemble (“EDA0.1”), constructed by perturbing the control forecast 265 

with minute initial perturbations that are an order of magnitude smaller than the current 266 

analysis uncertainty, produced drastically different 15-day forecasts, each of which is 267 

nearly indistinguishable from a random sample of the climatology of this day. For example, 268 

member 1 of this reduced-perturbation ensemble (Fig. 2c) initialized also at 0000 UTC 24 269 

December 2015 predicted a slightly above normal temperature (instead of the observed 270 
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cold surge) over Northern Europe while forecasting extremely cold conditions over most 271 

of the contiguous U.S. (instead of the observed normal to slightly warmer anomalies). The 272 

differences in predicted synoptic flow patterns between EDA0.1 member 1 and the 273 

unperturbed control forecast are comparable to the differences between the control run and 274 

the observational analyses represented by the sea-level pressure maps in Fig. 2, except for 275 

the quasi-stationary planetary low-pressure centers over the northern Atlantic and Pacific 276 

Oceans typical of climatological mean patterns. Failure of the control forecast (compared 277 

to observational analysis), and drastic forecast divergence between the control forecast and 278 

EDA0.1 ensemble member 1 that is perturbed with hypothetical minute initial 279 

perturbations (likely beyond the reach of future analysis accuracy) suggests a complete loss 280 

of predictability at the 15-day lead time ( i.e., the intrinsic limit of day-to-day midlatitude 281 

weather predictability may not be extended beyond 2 weeks, at least in this case).  282 

 283 

3.a Evolution of ensemble spread 284 

As mentioned in the introduction, the forecast uncertainty and the limit of 285 

predictability can be more systematically quantified by the evolution of the spread between 286 

the ensemble members and the time when it starts to saturate. Figure 3 shows midlatitude 287 

mean ensemble variance of the 500-hPa winds (a measure of ensemble kinetic energy 288 

spread) from two ensemble hindcasts initialized on three consecutive days (24, 25 and 26 289 

December). The choice of 500-hPa winds is because that it is directly linked to the kinetic 290 

energy spectrum which will be discussed later. Nonetheless, metrics using geopotential 291 

height give very consistent results (not shown here). The EDA ensemble sets in Fig. 3 are 292 

initialized with the current realistic analysis uncertainties represented by the ECMWF 293 
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ensemble of 4DVar analyses, while EDA0.1 ensemble sets are initialized with nearly 294 

perfect initial conditions (initial kinetic energy error is 1% of that in EDA). As shown in 295 

Fig. 3a (normalized results shown in Fig. 3c), the spread of the EDA ensembles with 296 

realistic initial condition uncertainties grows nearly two orders of magnitude larger before 297 

saturating at approximately 10–12 days, while the spread of the EDA0.1 ensembles, with 298 

minute initial perturbations (i.e., nearly perfect initial conditions), grows nearly four orders 299 

of magnitude larger before saturating at the same level as the EDA ensemble around 14–300 

15  days (as a strong indication of the intrinsic predictability limit).  301 

Similar quantitative statistics, representing intrinsic versus practical predictability 302 

limits assuming perfect model, can also be inferred from the same pairs of ensembles for 303 

the Southern Hemisphere (Fig. 4), as well as from pairs of Northern Hemisphere 304 

midlatitude 20-day 10-member global ensemble (Fig. 3b and Fig. 3d) initialized from three 305 

consecutive summer days (24, 25 and 26 June) in 2016. During the 20-day simulation 306 

period in June, vast areas of the Yangtze River Basin of China observed historical flooding 307 

(NASA:https://earthobservatory.nasa.gov/NaturalHazards/view.php?id=88467). Moreover, 308 

calculation of the anomaly correlation coefficients (ACC) between the ensemble forecast 309 

and the observations over the global midlatitudes also gives quantitatively similar estimates 310 

for both the practical and intrinsic predictability limits (Fig. 5), with correlation dropping 311 

to 60% at around 10 days for the EDA ensemble and 13-15 days for EDA0.1 ensemble.   312 

The growth of the ensemble variance, representative of the forecast error, fits 313 

surprisingly well with the simple error growth model that was originally proposed in 314 

Lorenz (1982), modified later (Dalcher and Kalnay 1987; Reynolds et al. 1994) and here 315 

as: 316 
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𝑑𝜀(𝑡)
𝑑𝑡 = (𝛼𝜀(𝑡) + 𝛽)(1 − 𝜀(𝑡))																										(1)	326 

Here ε(t) is the normalized error where ε~1 means it reaches the maximum or becomes 317 

saturated, 𝛼 is the synoptic-scale error growth rate. Previous studies (e.g., Magnusson and 318 

Källén 2013) usually use 𝛽 as a measure for model error. Given that we are comparing 319 

between different ensemble members using the same forecast model, 𝛽 here represents the 320 

error growth rate induced by the intrinsic upscale error propagation such as from small-321 

scale moist processes (e.g., convection) even when we have nearly perfect initial condition 322 

(Sun and Zhang 2016). Figures 3c-d and 4c-d show the evolution of normalized error 323 

averaged for both the winter and summer cases, respectively, as well as the fitted error 324 

growth curves from equation (1).  325 

Fig. 3 and Fig. 4 show that exponential error growth (quasi-linear line in the 327 

logarithmic plot) dominates the first few days of the EDA ensembles, with a growth rate 328 

determined by 𝛼. The 𝛽 term has little impact on the error growth curve for the EDA 329 

experiment due to relatively large initial-condition error.  However, compared with EDA, 330 

much faster initial error growth is observed for the EDA0.1 ensembles. We can also deduce 331 

that the error growth rate (slope of the error growth curve in Fig.3 and Fig. 4) in EDA0.1 332 

will increase with decreasing 𝜀, implying that there will eventually be diminishing returns 333 

from further reducing the initial condition errors. This “super-exponential” initial error 334 

growth in EDA0.1 is caused by the presence of the 𝛽  term (representing the intrinsic 335 

upscale error growth and propagation from small scales) in equation (1). For example, the 336 

green line in Figs. 3c-d shows the predicted error growth curve derived from equation (1) 337 

when the initial condition error is reduced to 1.0e-10. It is nearly identical to the blue line 338 
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which means there is not much more room for improvement. In other words, if equation 339 

(1) holds, further reduction in the initial-condition or model error would not help extend 340 

our forecast lead time much longer (maybe only in hours or even minutes).   341 

 The errors in EDA0.1 grow to an amplitude similar to the EDA initial ensemble 342 

spread in 3-4 days. Subsequent error growth and saturation in the EDA0.1 ensembles 343 

mimic those of the EDA ensembles except for a 3-to-4-day delay in forecast lead times. 344 

The overall reference error kinetic energy saturates (𝜀 ~ 1) at around 10-12 days for all the 345 

EDA ensembles and 14-15 days for all the EDA0.1 ensembles. This remains true for 346 

different initialization times and for both the winter and summer days of the Northern 347 

Hemisphere and the Southern Hemisphere. 348 

These unprecedented high-resolution 9-km global ensembles of a state-of-the-science 349 

NWP model, initialized with both realistic and nearly-perfect initial condition 350 

uncertainties, suggest that the ultimate limit of midlatitude day-to-day weather 351 

predictability is about 2 weeks, but there is still a potential of 3-5 more days of additional 352 

forecast lead time to be gained through improving the current practical predictability, 353 

which is about 9-10 days. Such improvements may be gained from reducing initial 354 

condition and model uncertainties through better observations, better data assimilation, and 355 

better forecast models running at higher-resolution with ever-increasing computing 356 

capability.   357 

3.b Spectral analysis 358 

While this 3-5 day serve as the estimated potential for extended weather forecast 359 

lead time, the atmospheric predictability limit is also scale-dependent. For example, small 360 

scale thunderstorms is much less predictable than the synoptic system in which they are 361 
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embedded.  Therefore, it is important to examine the scale dependence of predictability 362 

limit. Spectral decomposition of perturbation kinetic energy across all zonal wavenumbers 363 

averaged over the midlatitudes (40-60°N) for both winter and summer periods are 364 

displayed in Fig. 6. The corresponding spectra for the Southern Hemisphere midlatitudes 365 

(40-60°S) are shown in Fig. 7. 366 

The kinetic energy spectrum here is calculated as in (Skamarock 2004). We have 367 

chosen to compute the one-dimensional (1D) spectrum of the velocity fields along zonal 368 

direction . The advantage of this 1D spectrum is that we could fully utilize the periodicity 369 

of the global model in the zonal direction while focus on the midlatitude only. Let 𝑢.,0,1 370 

and 𝜐.,0,1  denote the zonal and meridional velocity components for the 𝑛 th ensemble 371 

member, subtracting the ensemble mean fields first if we are calculating the kinetic energy 372 

spectra for the perturbations. For the spectra in Fig. 8, the differences between the perturbed 373 

run and the un-perturbed run are used. The Fourier transforms of the velocity components 374 

𝑢40,1(𝑘) and 𝜐40,1(𝑘) are then computed along the zonal direction for each ensemble member 375 

and all the meridional 𝑗 indices. Then the kinetic energy spectra density can be written as: 376 

𝐸0,1(𝑘) = 		
Δ𝑥
2𝑁;

<𝑢40,1(𝑘)𝑢4∗0,1(𝑘) + 𝜐40,1(𝑘)𝜐4∗0,1(𝑘)	>																																									(2) 377 

where 𝑁; is the number of grid points along the zonal direction of the model. The asterisk 378 

denotes the complex conjugate. We can then average 𝐸0,1(𝑘) over 𝑗 and 𝑛 to get the kinetic 379 

energy spectrum for the full ensemble and the latitude band of interest (40-60°N for the 380 

mid-latitude; the results are not very sensitive to this choice, 30-60°N average give very 381 

similar plots). When the spectrum of the perturbation kinetic energy (amplitude of “noise”) 382 

at a given wavelength reaches the reference background spectral kinetic energy (signal to 383 
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be predicted), it is saturated, after which no single deterministic forecast will have any 384 

predictive skill.  385 

 Consistent with Fig. 3, Figure 6 also shows that it takes slightly more than 3 days 386 

for the perturbation kinetic energy in the reduced-perturbation ensemble (EDA0.1) to grow 387 

two orders of magnitude across all resolvable wavelengths to a level comparable with the 388 

realistic analysis uncertainty represented by the EDA for the periods of the winter and 389 

summer events, respectively. Also, Fig. 6 shows that the perturbation spectral kinetic 390 

energy from the EDA0.1 ensemble saturates at the amplitude of the reference kinetic 391 

energy across all synoptic scales by 15 days, again consistent with the overall intrinsic 392 

predictability limit estimated from Fig. 3.  393 

Moreover, saturation time for different scales is different. With reduced initial-394 

condition uncertainties, as in EDA0.1, forecast error first saturates at smaller scales, then 395 

subsequently grows rapidly in magnitude and in scale, consistent with past regional 396 

modeling studies (Zhang et al. 2007; Selz and Craig 2015; Sun and Zhang 2016).  A simple 397 

estimation from Fig. 6 shows that the forecast error saturation time (and thus intrinsic limit 398 

of predictability) is less than 3 days for horizontal scales less than 200 km, less than 5 days 399 

for horizontal scales less than 400 km, and less than 10 days for horizontal scales less than 400 

1000 km. Also worth noting, Fig. 6 illustrates the synoptic-scale predictability in terms of 401 

500-hPa horizontal winds. Much more limited predictability is expected for vertical 402 

velocity and instantaneous precipitation rate forecasts (Bei and Zhang 2007, 2014), which 403 

possesses very different reference energy spectra. 404 

 405 

3.c. Sensitivity study using US NGGPS model 406 
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Although we could only afford to perform one pair of 10-day forecasts using the 407 

US NGGPS model based on the FV3 dynamical core with 3-km convection-permitting 408 

horizontal grid spacing, the results (Fig. 8) show that for both winter and summer 409 

hemispheric midlatitudes, such limits are rather insensitive to the forecast model or 410 

resolution, and likely arise from the intrinsic dynamics of the atmosphere (Zhang et al. 411 

2007; Rotunno and Snyder 2008; Sun and Zhang 2016). Due to the use of a higher 412 

horizontal resolution, the NGGPS FV3 model better resolves the small-scale atmospheric 413 

motions as can be seen by the extended  background energy spectrum at smaller scales 414 

(Fig. 8).  Yet the evolution of the forecast error in the NGGPS FV3 model, as reflected by 415 

the perturbation  kinetic energy spectrum at 500 hPa, does not show significant differences 416 

with that in the ECMWF model. Once again, we find that after 3−5 days the differences 417 

between two initially nearly identical runs is comparable with our current operational 418 

analysis uncertainty (Fig. 8).  419 

This consistency between two completely different models (with different 420 

dynamical cores, different physics and different resolutions) also strengthens our 421 

confidence that these two state-of-the-science NWP models are “appropriate” to assess the 422 

intrinsic predictability limit, at least for the periods examined in this study. It is safe to say 423 

that minute uncontrollable initial-condition uncertainties originating from convective and 424 

mesoscale instabilities can grow upscale and will eventually limit the predictability of 425 

various weather systems at increasingly larger scales. The impacts of the background 426 

governing dynamics and instabilities on the limits of intrinsic predictability may also be 427 

inferred from the differences in equation (1) fitted values of 𝛼 (synoptic-scale error growth 428 

rate likely controlled by synoptic instabilities such as baroclinicity) and 𝛽 (upscale error 429 
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growth rate likely controlled by small-scale instabilities and moist physics including 430 

convention). As denoted in Figs. 3c-d, a larger value of 𝛼 and a smaller value of 𝛽 are 431 

derived from the winter cold surge event than those derived from the summer flooding 432 

event. This is consistent with stronger baroclinicity and weaker convective instability in 433 

the winter than in the summer, although more research is needed to further quantify such 434 

relationships (Reynolds et al. 1994; Magnusson and Källén 2013). 435 

3.d. possible dynamic processes 436 

Given both models agree on the forecast lead time we could gain from reducing 437 

initial condition uncertainty, the question then arises as to what dynamic processes control 438 

the error growth and eventually limits the predictability of midlatitude weather? While this 439 

is surely an important question and needs future research (Rosinski and Williamson 1997; 440 

Magnusson 2017), some details on the evolution of the ensemble spread during specific 441 

cases may give us some insights and guidance into this question. 442 

Figure 9 shows the evolution of the ensemble spread of 500-hpa meridional winds 443 

for the first three days in EDA0.1 integrated from 0000 UTC 26 Dec 2015, especially focus 444 

on a developing extratropical cyclone over the west coast of the United States. The blue 445 

contour is the 500-hpa geopotential height and grey contour is the regions with 12 hour 446 

precipitation greater than 0.1 mm. We can see that, at day 1 the ensemble spread first shows 447 

up in the precipitating region. Then the spread increases and moves with the synoptic 448 

system, propagating both upstream and downstream in the meanwhile. After 3 days, the 449 

ensemble spread could be found anywhere in the mid-latitude bands, although with a 450 

maximum in the synoptic storms. The key idea that minute perturbations will first generate 451 

error in small scale moist convective systems and the errors then grow upscale is consistent 452 
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with previous studies (Zhang et al. 2007; Sun and Zhang 2016).  We could also take a first 453 

look at the propagation of the ensemble spread using the Hovmöller diagram, which is 454 

plotted in Fig. 10 for the EDA0.1 ensembles initialized at 0000 UTC 24 December 2015. 455 

As marked subjectively by different type of arrows, there exist at least three characteristic 456 

pathways for the error to evolve and grow through time globally. The dotted ones, mainly 457 

shown up in the first few days, have an approximate eastward speed of 10-15 m/s and are 458 

consistent with the phase speed of individual synoptic weather systems. The double dashed 459 

arrows that have an approximate eastward speed of 25-30 m/s likely following the 460 

downstream energy propagation of different baroclinic wave packets, and the bold solid 461 

arrows with a slow westward progression signaling the error enhancement near the quasi-462 

stationary planetary-scale low-pressure centers. These error growth pathways expand 463 

beyond the multi-stage error growth mechanisms identified in previous regional-scale 464 

predictability study (Zhang et. al, 2007) and will be examined in more details in our future 465 

study. 466 

 467 

4. Concluding Remarks 468 

The promising finding of the current study is that, assuming the current-generation 469 

state-of-the-science NWP models could capture the most essential physical processes in 470 

the real world, we can further improve the forecast accuracy of day-to-day weather events 471 

such as the ones we discussed, by up to 5 days, if we reduce the initial condition 472 

uncertainties by a factor of 10. In particular, we examined the predictability of weather 473 

forecasts in two showcase studies, and we have looked at the multiscale midlatitude error 474 

evolution across different spatial scales. Our study suggests that we are currently still quite 475 
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far from the ultimate limit of predictability, and it is apparent that we have ample room for 476 

further improvement in the day-to-day weather predictability likely for decades ahead.  477 

More quantitatively, it can be inferred from Figs. 3 and 6 that reducing the current 478 

initial-condition error represented by EDA by about 20% (~40% smaller in error kinetic 479 

energy) can potentially lead to a gain of one more day, and reducing by about 50% for a 480 

gain of two more days of additional predictable forecast lead time. Achieving this 481 

additional predictability limit can greatly benefit society by saving lives and property but 482 

requires continued coordinated efforts by the entire meteorology community and beyond 483 

to design more accurate NWP models performing at refined resolutions, improve and 484 

enhance the observing techniques and networks, and make better use of observations with 485 

advanced data assimilation and computing techniques. 486 

It is possible those two individual local weather events (cold surge and floods) have 487 

slightly different predictability than more typical weather patterns but our findings here are 488 

based on mean error growth statistics of the global midlatitudes averaged over many 489 

wavelengths and multiple initialization times, not just the regions of the localized 490 

hazardous events. Additional calculations that exclude these two local events show 491 

consistent results (Fig. 11); so are the calculations in the opposing hemispheric midlatitudes 492 

that have no remarkable severe weather events during the same periods examined. 493 

Nonetheless, further research is needed to extend the findings to more case studies during 494 

all seasons, and preferably with further refined, convection-permitting model resolutions 495 

to capture more realistic rapid initial error growth from small-scale moist physics including 496 

convection. Although limited sensitivity experiments suggest that the predictability 497 

horizon of the day-to-day midlatitude weather is controlled by dynamics and instabilities 498 
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of the atmosphere and are not particularly dependent on the specific numerical models, it 499 

remains possible the estimates may change if future improved models have different 500 

perturbation-growth’s characteristics. While it remains possible that the incorporation of 501 

additional unresolved scales and phenomena could actually lead to an increase in the upper 502 

bound of predictability (Lorenz 1982), it is generally acknowledged that improved models 503 

will resolve more smaller scale instabilities and thus the error growth is likely to further 504 

increase, at least in smaller scales, in which case the current estimate of intrinsic 505 

predictability limit may be on the optimistic side.  506 

Also, despite the use of ensembles, the current study focuses on whether a limit of 507 

deterministic forecast longer than two weeks can be reached if we concentrate on the 508 

instantaneous weather that we experience every day. If we define the ‘forecast skill 509 

horizon’ as the lead time when ensemble forecasts cease to be, statistically, more skillful 510 

than a climatological distribution, the predictability horizon can be longer than two weeks 511 

for some variables at large synoptic and planetary scales and with longer periods and lower 512 

frequencies (Buizza and Leutbecher 2015; Shukla 1998; Palmer 2017).  It is beyond the 513 

scope of this study to determine what is the intrinsic limit of the probabilistic prediction. It 514 

is also beyond the limit of the current study what is predictability horizon for lower-515 

frequency oscillations such as the Madden-Julian Oscillations (Madden and Julian 1971; 516 

Zhang 2005; Zhang et al. 2017) or the background mean weather regimes that potentially 517 

have predictive skills at the season-to-intraseasonal timescales and beyond. Moreover, 518 

even at the convection-permitting resolution, the current sets of ensemble experiments 519 

might be insufficient to fully reproduce multiscale tropical waves coupled with moist 520 

convection, and thus future studies on the error growth dynamics and predictability limits 521 
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for tropical systems and their interactions with midlatitudes systems (e.g., Ying and Zhang 522 

2017) are warranted.  523 
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Fig. 1. Annual evolution the ECMWF NWP deterministic control forecast performance in terms 

of anomaly correlation of 500-hPa height predictions. Shading in this plot indicates the different 

forecast skill between NH and SH, which has almost gone in recent years. This plot is directly 

adapted from ECMWF official website 

 (https://www.ecmwf.int/en/forecasts/charts/catalogue/plwww_m_hr_ccaf_adrian_ts).  



 

Fig. 2. Sample 15-day numerical weather predictions versus observations. The 2-metre surface 

temperature anomalies (colored) and the sea-level pressure (contoured every 4 hPa) and valid at 

0000 UTC 8 January 2016 for (a) the ECMWF observational analysis, (b) the 9-km IFS 15-day-

lead-time control forecast initialized at 0000 UTC 24 December 2015 with the unperturbed EDA 

analysis, and (c) 15-day forecast from a member of the ensemble (EDA0.1) perturbed with 10% 

of the EDA ensemble perturbations that the current level of uncertainty in the EDA analysis. The 

temperature anomalies are calculated from a climatology based on a 20-year, 10-member ensemble 

reforecast dataset using the same model with a 15-day lead time. 



 

 

 
Fig. 3 Evolution of forecast uncertainty growth in terms of ensemble variance of 500-hPa winds 

energy averaged over NH midlatitude (40-60°N) for 3 ensemble simulations with current-day 

realistic initial condition uncertainties (red symbols) and the corresponding ensembles with minute 

(1%) initial condition errors (blue symbols) initialized at: a) three consecutive days for the winter 

(24-26 December 2015; top) and b) three consecutive days in the summer (24-26 June 2016).  c) 

and d) show the evolution of normalized error variances (grey symbols) averaged for the winter 

and summer cases, respectively, as well as the fitted error growth curves (red for EDA; blue for 

EDA0.1) from equation (1). The units for α and β are day-1. Green lines in c) and d) show the error 

growth curve according to fitted equation 1 if the initial condition error is further reduced to 1e-

10. Note the log scale of the perturbation energy.  

 



 

Fig. 4. Similar as in Fig. 3 except for the Southern Hemisphere (SH, 40-60S). 

  



 

 
 

Fig. 5. Anomaly correlation coefficient (ACC) of the 500-hPa heights averaged over Northern 

Hemisphere mid-latitude (30-60N) for (a) 2016 Jan case and (b) 2016 July summer case. Blue line 

shows the ACC for all the EDA members, red line shows the results for EDA0.1 members.   



 

 

Fig. 6 Forecast error growth and saturation for different horizontal scales. Evolution of ensemble mean error spectral kinetic energy 

(colored lines) averaged over NH midlatitudes (40-60N) for three 9-km 10-member ECMWF IFS global ensemble simulations with 

minute (1%) initial condition errors (solid gray lines) initialized on three consecutive days for (a) the winter period and (b) the summer 

period. The reference background kinetic energy spectra are derived from the respective 20-day mean spectra of the control forecast 

(dark dotted). The corresponding initial spread of the EDA ensemble with realistic analysis uncertainties are shown in light-gray dotted 

lines for comparison. The two straight dotted line segments denote the spectral slopes of -3 and -5/3, respectively.  



 

 

Fig. 7. Similar as Figure 6 except for the Southern Hemisphere (SH, 40-60°S). 

  



 

 

Fig. 8 Sensitivity of error growth and saturation with the 3-km FV3 model. Evolution of perturbation spectral kinetic energy between 

two forecasts (one initialized with the control EDA analysis and the other perturbed with the same initial perturbations as in EDA0.1 

ensemble member 1 performed with the 3-km U.S. FV3 model for a) NH and b) SH.  Computational costs permit us to run only one 

pair of 10-day simulations starting at 0000 UTC 24 December 2015 for the winter event. Thin lines show results for EC model calculated 

based on the differences between 10 perturbed EDA0.1 members and the ctrl run. The FV3 results lies well within the 10 ensembles 

produced by the EC model.  Note at small scales, different with the perturbation kinetic energy spectra in Fig. 6, the difference spectral 

kinetic energy has a saturation level that is twice the background spectrum.  



 

 

Fig. 9 Evolution of the ensemble spread of 500-hpa meridional winds (color shaded region) for 

the first three days in EDA0.1 integrated from 0000 UTC 26 Dec 26 2015. Blue contour is the 500-

hpa geopotential height and grey contour is the regions with 12 hour precipitation greater than 0.1 

mm. Red circles imply the movement of the developing low-pressure synoptic storms.  

 



 

 

Fig. 10 The longitude-time Hovmöller diagram for the mean ensemble spread in terms of root-

mean-square difference of kinetic energy (m/s) derived from the 9-km 20-day 10-member 

ECMWF IFS global ensemble initialized at 0000 UTC 24 December 2015, as a demonstration of 

different modes of error propagation that lead to the error saturation and intrinsic predictability 

limits (see text for details).   
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Fig. 11: As in Fig. 3c and Fig. 3d except for separating the error statistics from the hazardous event 

region versus the rest of the midlatitudes. Red and blue curves are the same fitted curve as in Fig. 

3, implying the global averaged results. ‘+’ represents the hazardous event region (60-degree 

longitude width). ‘o’ represents the non-hazardous-event region (300-degree longitude width). 

 

 




