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Abstract—Dimensionality-reduction methods are a fundamen-
tal tool in the analysis of large datasets. These algorithms
work on the assumption that the “intrinsic dimension” of the
data is generally much smaller than the ambient dimension in
which it is collected. Alongside their usual purpose of mapping
data into a smaller-dimensional space with minimal information
loss, dimensionality-reduction techniques implicitly or explicitly
provide information about the dimension of the dataset.

In this paper, we propose a new statistic that we call the kappa-
profile for analysis of large datasets. The kappa-profile arises
from a dimensionality-reduction optimization problem: namely
that of finding a projection that optimally preserves the secants
between points in the dataset. From this optimal projection we
extract kappa, the norm of the shortest projected secant from
among the set of all normalized secants. This kappa can be
computed for any dimension k; thus the tuple of kappa values
(indexed by dimension) becomes a kappa-profile. Algorithms
such as the Secant-Avoidance Projection algorithm and the
Hierarchical Secant-Avoidance Projection algorithm provide a
computationally feasible means of estimating the kappa-profile
for large datasets, and thus a method of understanding and
monitoring their behavior. As we demonstrate in this paper, the
kappa-profile serves as a useful statistic in several representative
settings: weather data, soundscape data, and dynamical systems
data.

Keywords-Dimension of data, secant sets, dynamical systems,
dimensionality reduction, big data.

I. INTRODUCTION

As high-dimensional data becomes more and more plentiful,
dimensionality-reduction algorithms become an increasingly
important tool for any researcher seeking to extract meaningful
information from their data. Indeed, it is not unusual to find
that data collected in an n-dimensional space is intrinsically
only k-dimensional, where &k < n. A good dimensionality-
reduction algorithm will find a map from R” to R¥ (for
some k' close to k) while preserving fundamental properties
such as distances between data points. This process is essential
since data in low-dimensional space is often computationally
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easier to store and manipulate, and hence a wider array of
algorithms are available for data analytics. Furthermore, the
process of reduction often coincides with the production of
a more appropriate representation of the data, making many
data analytics algorithms more successful as a result of a
meaningful feature space.

By systematically studying how well a dataset D in R™ can
be projected to R" for m < n, as m varies, we can uncover
geometric properties of D (such as the intrinsic dimension
of an underlying manifold on which D approximately sits).
In this paper we will explore this idea in the context of
secant-based dimensionality-reduction algorithms, a family of
dimensionality-reduction algorithms that use the secant set S
of D to find projections that best preserve distances between
points. We will focus on the Secant-Avoidance Projection
(SAP) dimensionality-reduction algorithm [1]. By finding SAP
projections for various m < m, we return a statistic which we
call the xk-profile.

The problem of calculating the dimension of a dataset
has been addressed from various perspectives. A classical
approach to estimating dimension is to use a linear method
such as principal component analysis (PCA). However, such
methods do not capture the dimension of non-linear data well.
Other methods that do not assume linearity have also been
proposed, see, e.g., [2] - [8].

Though it is related to dimension, the x-profile often carries
more information such as how well the data fits into many
different reduced dimensions simultaneously. This is useful for
studying real-world data, which rarely conforms precisely to a
manifold. Estimating the k-profile from a dataset is relatively
easy and requires very few assumptions about the data. It is
thus a useful statistic, particularly in cases in which domain-
specific tools are limited.

The x-profile can be used not only for analysis of a static
dataset, but also for settings such as time-series analysis and
anomaly detection. In particular, the sensitivity of the -
profile to changes in the geometry of a dataset makes it a
prime candidate as an indicator of fundamental changes in
the behavior of an underlying system as a function of either



time or a set of parameters. In fact, by utilizing a time-delay
embedding, the x-profile can in some cases also give indication
of the dimension of the underlying dynamics from which the
data is drawn.

This paper is organized as follows. In Section II we re-
view dimension of a dataset and secant-based dimensionality-
reduction algorithms, we define the x-profile, and we provide
a short illustrative example. We also include a brief review
of geodesic distance on a Grassmann manifold and ways
to format a collection of time-parametrized datasets prior to
calculating the x-profile. In Sections III and IV, we calculate
the x-profile on weather data and ambient noise data, respec-
tively. In Section V, we discuss a synthetic example where the
dimension of the data, the solution set of a well-known partial
differential equation, is already approximately known.

II. BACKGROUND
A. Dimension Estimation

We follow the background on dimension estimation from
[9]. The motivation for consideration of dimension is that
locally a dataset often has hidden constraints that allow one
to consider the data as a noisy sampling of some underlying
manifold. When this underlying manifold is d dimensional, we
say that the data is d-dimensional. Locally, a d-dimensional
manifold can be parameterized by d free variables. Dimen-
sionality is a coarse measure of manifold complexity. The
estimation of dimension from data has been addressed by
numerous authors including, e.g., [2] - [11].

An important result for characterizing dimension-preserving
transformations revolves around the definition of a bi-Lipschitz
function. A function f : X — Z, for X C R", Z C R™, is
said to be bi-Lipschitz on X if there exist a,b > 0 such that
forall z,y € X

allz = ylle, < F(@) = fFWllex <bllz—ylle,. (1)

Thus, pairs of points neither collapse nor are blown apart
by application of f. When f is a projection, the class of
functions considered in this paper, we have b = 1. Asking for
a > 0 satisfying (1) is equivalent to asking that f preserve
secants. Such a goal is justified by the fact that if f is
bi-Lipschitz then we know dim(X) = dim(Z), where the
dimension can be taken as the topological dimension, or the
Hausdorff dimension; see [12] for details. Thus projection-
based algorithms that maximally avoid decreasing the length
of secants are, in some sense, optimally dimension-preserving.
An additional argument for this approach, based on invoking
Whitney’s easy embedding theorem, is made in [13].

B. The SAP algorithm and k-profiles

Following the context in [1], data residing in a high-
dimensional ambient space can both be a computational bur-
den and difficult to analyze. Data-reduction algorithms offer
a way to reduce these difficulties by mapping the dataset
into a lower-dimensional space with the goal of retaining as
much information as possible. A classical example of a data-
reduction algorithm for this context is PCA. In [11], [13], [14],
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Broomhead and Kirby developed a new framework for data-
reduction which focuses on preserving the normalized secant
set
{ 7Yy
|z = yll2
corresponding to a dataset D C R™. When successful, pro-
jections produced by such methods not only retain differen-
tial structure but also have a well-conditioned inverse. This
property, not necessarily found for projections obtained from
other popular methods such as PCA, means that the projection
provides not only a method to compress the data, but also to
decompress the data without loss of information.

In practice, producing projections from a dataset D C R"
into R™ for m < m amounts to finding projections, P, for
which the smallest value of ||P(s)|ls, over all s € S is
maximized. In [1] the authors propose the SAP algorithm for
producing a projection that best preserves the secant set of a
dataset.

The SAP algorithm proceeds through an iterative procedure.
An outline of the algorithm is as follows. Let D C R™ be a
dataset and define S to be the set of all normalized secants
of D. Initialize a projection from R™ to R™. At iteration i,
use the current projection to compute the projection of the
secant set S and determine the secant vector that is least well-
preserved, i.e. has the shortest projection. Define the (7 + 1)-
th projection by rotating the i-th projection subspace toward
the orthogonal complement of the projection of the shortest
projected secant. The (i + 1)-th projection is the projection
corresponding to this rotated m-dimensional subspace.

For a version of SAP that addresses big data settings, see
the Hierarchical Secant-Avoidance Projection (HSAP) algo-
rithm [9]. Both SAP and HSAP are polynomial-time algo-
rithms [1], [9], and SAP has been shown to be straightforward
to implement on a GPU [1]. In general, the computational
complexity for the x-profile will be highly dependent on the
choice of secant-based dimensionality-reduction technique.

The key mathematical object of this paper is a s-profile.

|x,y€D}

Definition II.1. Let D be a finite set of points in R™, and
let S be the set of normalized secants for D. For fixed m <
n, define P,,, to be the collection of matrices in R™"*™ with
orthonormal columns (equivalently the set of all orthogonal
projections from R™ into an m-dimensional subspace). If

P*

m

= arg max <min ||PTs||g2) , then
P ses

Kom = 1D 1(P7) " s

One may then construct a tuple of ,, values for a range of
m. Such a tuple (K, , Kmys - - - s Km, ) 18 @ K-profile. Note that
in this definition, m; > 1 and m; < n.

Intuitively, if M is a manifold from which data is drawn, the
k-profile provides a measure of how successfully a projection
P* embeds M into R™ for varying m. Not only does this
serve as a means of extracting information about the dimension
of the underlying manifold, the s-profile itself contains useful
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Fig. 1. A comparison of the x-profile and the cumulative energy captured by

the singular values for a set of points from the trigonometric moment curve
in R2.

information about the nature of the dataset. We demonstrate,
for example, in Section III that the x-profile reflects impor-
tant features in data, such as the changing characteristics
of weather data during the presence or absence of extreme
weather events.

Throughout this paper, we use the SAP algorithm to esti-
mate the x-profile in various settings; for simplicity we refer
to the estimated profile as the x-profile.

C. An illustrative synthetic example

We calculate the x-profile for a small example. We
randomly sample 192 points from the trigonometric mo-
ment curve ¢ R — R® defined by o(t)
(cos(t), sin(t), cos(2t), sin(2t), cos(3t)). While ¢(R) is fun-
damentally 1-dimensional, it is not contained in any non-
trivial subspace of R®. In Figure 1 we compare the x-
profile obtained from application of SAP against the cumu-
lative energy captured by the singular values of the data
(for each k from 1 to 5: % S . By heuristic, if £ > 0.2,
we consider the embedding to be good. This choice is based
on experiments where we calculated the x-profile for data
sets drawn from manifolds of known dimension (see [1,
Section VI] for example). Notice that the x-profile alone
tells us that data is either 1, 2, or 3 dimensional. On the
other hand, the energy distribution from the singular values
is indistinguishable from what one might see from a draw
from a 5-dimensional Gaussian distribution. The projection of
our sample into R3 (obtained via SAP), is pictured in Figure
2.

D. Geodesic Distance on the Grassmann Manifold

In this paper, we use the notion of geodesic distance on
a Grassmann manifold to compare the projection returned by
the SAP algorithm to the common dimensionality-reduction
technique of PCA. We briefly review the Grassmannian and
distance metrics on this manifold.

As described in [9], the Grassmannian Gr(k,n) is a man-
ifold whose points parametrize the k-dimensional subspaces
of a fixed n-dimensional vector space. Distance metrics on
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SAP Projection: Trigonometric Moment Curve
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Fig. 2. Projection of points from trigonometric moment curve in R® to R3
using SAP.

this manifold are often given via principal angles between
corresponding vector spaces; such metrics are orthogonally
invariant. Principal angles are defined below and are readily
computable through a singular value decomposition.

Consider the subspaces U and V' of a vector space R and
let ¢ = min{dim U, dim V'}. The principal angles between
U and V are the angles 61,05, ...,0, € [0, 5] between pairs
of principal vectors {u, vy} With Ui, ..., uq a distinguished
orthonormal set of vectors in U and vy, .. ., v4 a distinguished
set of orthonormal vectors in V. These vectors are obtained
recursively, for each 1 < k < ¢, by

max UT'U = uka

uelU,veV

cos, =

subject to ||ull2 = [|v||2 = 1, uTu; = 0 and vTv; = 0 for
i1=1,2,...,k—1.

The geodesic distance between X,Y € Gr(q,n) is defined
in terms of the principal angles, 61, ..., 0,, between the vector

spaces represented by X and Y as

= /03 + 63+

While there are many other interesting orthogonally invariant
metrics, we utilize the geodesic distance for this paper.

dgeodeszc X Y -+ 92

E. The k-profile and time series

The k-profile can provide information about the dynamics
of data over time. Suppose {D;} is a collection of datasets in
R"™ parametrized by time parameter ¢t € Z>, with bijective
maps f; : Dy = Dyy1. Then we can identify points in D; and
D;41, so that fi(z) € Dyyq is the same point as x € Dy, but
one time step later.

Given such a collection {D;} there are various ways of
calculating the k-profile depending on how we structure the
input data. One approach is to create a k-profile for each
D, independently. That is, the secant set we apply our
dimensionality-reduction algorithm to is precisely the secant
set of points D; C R"™ for each t € Zs(. This captures



The x-profile over time for weather in the Western Atlantic

(b)

Fig. 3. The k-profile for weather data from the Western Atlantic in 2014 from the grid (20 — 33°N, 44 — 69°W). The first hurricane of the year, Hurricane
Arthur, approached the grid in the beginning of July, but because of the time-delayed embedding, the effect of the storm should be seen near the end of
June. We suspect the drop in the x-value corresponding to projection into 2 dimensions which occurs around the end of June is probably attributable to this.
Similarly, the drop in the same x-value in mid-August and early September are possibly related to Hurricane Cristobal and Hurricane Edouard, respectively.
(a) and (b) show projections of points from two sets from {D 4 +} as indicated by the arrows.

geometric properties of {D;} as t changes. When we also
want a single k-profile to capture temporal changes in the
data, an alternative approach is to construct a new sequence
of datasets {Dt(é)} such that

D = {[z, fi(x), for1(2), ..., frre(x)] € R™ |z € Dy}

where the brackets indicate vector concatenation. This type of
construction is often known as a time-delay embedding.

Motivation for this approach is given by Takens’ theorem
[15]. Given a discrete dynamical system where the state
space is an m-dimensional compact, smooth manifold M,
evolution of the system can be defined as a smooth map
f + M — M. Suppose that we only have access to a
single smooth measurement function ¢ : M — R. Takens’
theorem says that under suitably general conditions, we can
construct a diffeomorphic copy of the manifold A in R*
via a length & > 2m + 1 time-delay embedding of ¢ with
respect to f, i.e. we define the embedding by sending x to

[o(2), f(e(),- .., [E ().

Hence when considering the problem of monitoring a large
collection of data that is changing over time, it is useful to
use time-delay embeddings so that we can monitor both the
geometry and dynamics of the data. Of course in the real
world, we rarely know the dimension of the manifold M. It
is thus an important problem to estimate the value 2m + 1,
or the shortest time-delay embedding that will fully capture
the dynamics. Algorithms which address this problem include
false nearest neighbors [16], and saturation methods [17]. In
the spirit of the latter, the x-profile should provide a new tool
to approach this problem. We intend to explore this idea in
future research.
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III. EXAMPLE: WEATHER DATA

Statistics arising from measurements of the Earth’s weather
are one of the most fertile sources of big data available. In this
section we provide an example of how large-scale regional
weather patterns are reflected in the k-profile of weather
datasets. We obtained historical weather model data from the
National Center for Environmental Prediction (NCEP) Climate
Forecast System (CFS), version 2 [18]. We took two rectan-
gular grids, with data points at each .5° of latitude/longitude:

o The first is in the Western Atlantic (20 — 33°N, 44 —
69°W), northeast of the Caribbean and in the path of At-
lantic hurricane activity, from April 1st, 2014, to October
Ist, 2014 with measurements every 6 hours.

e The second is located in the Western Pacific (18 — 26°N
123 — 132°E) east of Taiwan in the line of some of the
Pacific typhoon activity, from July 1st, 2015, to December
Ist, 2015, with measurements every 6 hours.

The data contains 9 measurements at each grid point, such
as pressure, wind speed, air temperature, and precipitation
rate. Thus, before time-delay embedding, we consider points
in these datasets to be in R?. We used a 19 step time-delay
embedding in order to construct new datasets {D4 ¢} from the
Western Atlantic data and {Dp,} from the Western Pacific
data, from which we produced the k-profiles that we analyze
below. Note that each set D4, Dp; C R'™! corresponds to
a 114-hour time window.

In Figures 3 and 4, we provide x-profiles for {D4 .} and
{Dp.}. We see that in both cases, elements of {Dy4,} and
{Dp.} fluctuate between being 2 and 3 dimensional. This
is further supported by examining projections of the data,
obtained by the SAP algorithm (see Figure 3 for example).
Rough comparisons of these figures with the record of storms



The x-profile over time for weather in the Western Pacific
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The k-profile for weather data taken from the rectangle (18 — 26°N, 123 — 132°E) in the Western Pacific, east of Taiwan. We suspect that the

sustained drop in the x-value associated with projection into 2 dimensions beginning in May may be related to Typhoon Dolphin, which moved through the
grid during this time (taking into account the time-delay embedding). The drop in x-value in early August may be attributable to Typhoon Soudelor.

(hurricanes and typhoons, respectively) suggests that in gen-
eral the x-values decrease as a storm approaches (indicating
an increase in the dimension of the data), and increase again
when no major weather events are occurring. We hypothesize,
for example, that the drop in k-values in Figure 3 in late-
June/early-July is related to Hurricane Arthur which passed
by the grid near this time (taking into account the time-delay
embedding).

While the x-profiles shown in Figures 3 and 4 seem to cap-
ture historical weather activity in these areas during the given
time range, the correlation is not perfect. For example, one
would expect a drop in k-values in Figure 4 during Typhoon
Dujuan which passed through the grid in mid-September. It
seems likely that such discrepancies could be understood if a
direct connection between the physics of weather and changes
in dimension of the corresponding datasets was known. This
is an avenue for further research.

IV. EXAMPLE: SOUNDSCAPES

All environments produce ambient noise which serves as
a continuous stream of information that reflects the state
of the environment. We ran the SAP algorithm on audio
recordings from five different locations/states: (1) an area
experiencing heavy rain (2) a forest, (3) a London street,
(4) a train station, and (5) a sea shore [19]. The audiofiles
were originally recorded at a sampling rate of 48,000 with
2 channels. We resampled these at 1/100 this rate and took
a point to be a length 5,000 window. For each environment
then, the corresponding dataset D consists of some number of
points in R1%:090  We selected overlapping windows in order
to capture a maximum amount of temporal information about
the soundscape.

We used the SAP algorithm to calculate the x-profile for
each of these soundscape datasets (Figure 5). We see that the
heavy rain and sea shore soundscape appear to be quite high-
dimensional. This is perhaps unsurprising, as both of these
soundscapes consist of relatively uniform, incoherent noise.
On the other hand, the datasets for soundscapes corresponding
to a train station and a London street appear to have lower
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dimension. This fits with the nature of urban ambient noise
which generally has more structure.

While we did not do it here, it would be easy to monitor a
continuous sound recording in a manner similar to that found
in Section III. As indicated by Figure 5, such a set-up should
capture fundamental changes in the soundscape through the «-
profile. For example, a sudden downpour in the London street
environment would correspond to a sharp drop in k-values in
the x-profile.

V. EXAMPLE: THE KURAMOTO-SIVASHINSKY EQUATION

The Kuramoto-Sivashinsky (KS) equation [20] in one spatial
dimension is the partial differential equation

5(“%)2

where v is a positive constant and v : R x Ry — R
is a function that satisfies an L-periodic initial condition
u(z + L,0) = u(z,0). See [21] and [22] for motivation
and applications. For u(x,0) satisfying the initial condition,
a unique solution exists and is bounded. These solutions
have coherent spatial structure but exhibit temporal chaos.
For different initial conditions and periodicity values L, the
solution manifold has varying dimension. This makes data
collected from the KS equation ideal for studying algorithms
which seek to capture dimensionality and related statistics.

Following [20], the version of the KS equation that we use
to generate data is

Ut + Vlggrr + Upe + 0,

1
U + 4u11w1 + a(uxw + 5(“;1?)2) = 07

where the periodicity has been set at 2w, v = 4, and
a bifurcation parameter o has been introduced. The stable
solution manifolds for various values of o were described via
numerical experiment in [20].

We now consider some examples with varying values of «
and hence dimension. In each case, we generate a dataset from
the solution manifold consisting of 10,000 points in R32. In
several of these examples, we also provide a comparison with
the PCA approach to dimensionality-reduction for context.
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Let us begin with « 19; the solution is a periodic
orbit [20]. In Figure 6, we show the k-profile for projection
dimensions 1 to 20 for this value of « as well as several
others. In this case, we can reasonably embed the data in RE.
It is worth noting as well that the projection into R is nearly
isometric on the normalized secant set since the value of & is
very close to one.

r-Profiles: KS Equation Data
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Fig. 6.  k-profiles for the KS equation data with o« = 19, = 54, and
o = 117.5 for projection dimensions 1 to 20.

For comparison, consider the singular values of the dataset
(in this example and throughout the paper, data is not mean-
subtracted), shown in Figure 7. From the singular values
for o = 19, we infer similar information to that contained
in the s-profile: the data can be projected into R' or R?
without much loss of information. The two vectors that form
a basis for the 2-dimensional subspace into which the data is
projected for PCA and SAP are shown in Figure 8; while they
capture similar information, they provide distinct projections.
For each embedding dimension, we consider the geodesic
distance between the subspace that defines the PCA projection
and that of the SAP projection; see Figure 9. Note that the
subspaces are distinct for projections to R with m < 7.

For a different choice of the parameter o, we see distinctly
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The k-profile of 5 soundscapes. The dimension of heavy rain and the sea shore

appear to be much higher dimensional than the other environments.

Singular Values of KS Equation Data
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Fig. 7. Singular values for the KS equation with o = 19, = 54, and
a = 117.5. In the case of o = 19, the majority of the energy in the data
is captured in the first one to two dimensions. For the other two choices of
«, we see singular value decay but a less clear signal regarding the precise
dimension of the data.

different behavior. For example, consider o« = 54, which
gives oscillatory and/or chaotic orbits [20]. In this example,
we get a good projection of the data starting at dimension
4. For comparison, consider the singular values of the data
shown in Figure 7. Here too, we see a change in behavior at
dimension 4. However, the dimension estimate inferred from
the singular values is not obvious - one could argue that
the energy or variance in the data isn’t essentially captured
until some dimension between 10 and 15. Thus, the added
information from the x-profile is valuable.

As a final example from the KS equation data, we consider
a = 117.5, which produces chaotic orbits [20]. We show the
k-profile in Figure 6 and the singular values in Figure 7. The
more complex behavior of the solution set is reflected in the
k-profile: a good projection arises at dimension 6, and the &
values increase more gradually than in the previous examples
with @ = 19 and o« = 54. As before, the dimension estimate
from the singular values is not obvious, so the k-profile stands
to provide meaningful additional context.
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Geodesic Distance (PCA,SAP): KS Equation Data
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Fig. 9. Geodesic distance between basis of first m left singular vectors
and first m SAP basis vectors for projection into R™ for KS equation with
a =19,a = 54, and o = 117.5 for m = 1,...,20. The projections are
quite distinct for low dimensional projections.

VI. CONCLUSION

In this paper we present evidence suggesting that the -
profile is a useful statistic for analyzing and monitoring
datasets, particularly those that change over time. While it
is in some sense a coarse statistic, it is broadly applicable and
carries meaningful information.

We suggest a few directions for future research. (1) Given
that dimension is an intrinsic property of a dataset, it would be
interesting to understand whether machine learning algorithms
could benefit from inclusion of this as a feature. (2) It would be
interesting to understand how the dimension and x-profile are
related to other notions of dataset complexity, such as entropy.
(3) As mentioned in Section II-E, in the case where the data
can be seen as reflecting an underlying dynamical system, the
k-profile should offer an alternative method of estimating the
minimum embedding dimension.
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