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a b s t r a c t 

Locally linear embedding (LLE) is a nonlinear dimension reduction technique that only relies on the as- 

sumption of local linearity. While it is known to produce good results and is computationally efficient, 

it does not perform well when the observations are distorted by noises, as the fundamental assumption 

of local linearity becomes violated. In this work, we present a modification of locally linear embedding 

which is designed to handle such situations. This new modification is termed LLEAN, short for locally 

linear embedding with additive noise, which has been seen to perform better in the presence of noise 

distortion. In LLEAN, we seek to recover the noiseless data from the noisy data by exploiting the relation- 

ship between local linearity and reconstruction potential, and we then use the recovered noiseless data 

while performing the dimension reduction. The LLEAN algorithm includes a tuning parameter, and our 

work includes an automatic selection method for the tuning parameter to remove the burden from the 

user. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Dimension reduction refers to the machine learning problem

f extracting a lower dimensional set of features from a higher

imensional dataset. It is often used as a form of preprocessing:

y extracting relevant features first the dataset becomes easier to

ork with. One such common dimension reduction technique is

nown as principal components analysis (PCA) [12] . PCA is limited

n that it requires that the data lie on or near a linear subspace,

hich is an assumption that is often not satisfied. 

When the linearity assumption is not met, we turn to nonlin-

ar dimensional reduction techniques, which do not require the

inearity assumption and have been successfully adopted in var-

ous applications [e.g., [6,15,22,23] ]. Popular nonlinear dimension

eduction techniques include Kernel PCA [20] , Isomap [21] , princi-

le curves [8] , deep autoencoders [9] , diffusion maps [4] , and lo-

ally linear embedding [19] , just to name a few. Our focus in this

aper will be extensions to the latter. 

Locally linear embedding (LLE) is a powerful alternative to PCA

hen the data is nonlinear, but is not effective in the presence of

oise. When Gaussian noise is added to each data point, the local

inearity assumption becomes violated, and LLE no longer handles
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he dimension reduction well. This appears to be the case even

hen the variance of the noise is relatively small. We remark that

here are other nonlinear dimensional reduction techniques that

re robust to noise, especially recent developments in deep learn-

ng such as Arpit et al. [1] , Jiang et al. [11] , Ren et al. [17] . In this

aper, our focus is LLE. While LLE has advantages in optimization

nd tuning, a key limitation of LLE is that the underlying manifold

s smooth. 

Various extensions to the basic LLE algorithm have already

een developed. These include Robust Locally Linear Embedding

RLLE), which was developed to handle outlier points [3] ; a su-

ervised version of LLE developed to handle classification tasks

18] ; a version of LLE based on Hessian eigenmaps to handle high-

imensional data [5] ; and an incremental version of LLE to pre-

erve topology [13] . 

In this paper, we introduce an alternative to LLE called Locally

inear Embedding with Additive Noise (LLEAN), which is designed

o handle the case when the data are corrupted by additive noise.

his is not to be confused with the setting of the above-mentioned

obust Locally Linear Embedding, in which additional noise/outlier

oints are added to the data. For our problem, no additional points

re added, but rather the original points are just distorted with

oise. 

In LLEAN, we modify the minimization criterion to consist of

 minimization term and a regularization term. As to be shown

elow, this modification allows the proposed approach to handle

oisy observations. The rest of the paper will be organized in the
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Fig. 1. 3-dimensional Helix data with noise distortions and 2D embeddings from 

LLE and LLEAN. 
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following manner: we will first provide some background on the

LLE algorithm as well as discuss the shortcomings of the LLE algo-

rithm with respect to noise in Section 2 . In Section 3 , we introduce

the LLEAN algorithm, including an algorithm for automatic selec-

tion of the tuning parameter. In Section 4 , we will present some

simulation results and compare our algorithm performance to LLE.

Lastly, concluding remarks are offered in Section 5 while technical

details are delayed to the appendix. 

2. Locally linear embedding 

2.1. Introduction 

Locally linear embedding (LLE) involves a minimization term

that utilizes the linearity of small neighborhoods formed by data

points and its nearest neighbors. The minimization has a closed

form solution and therefore LLE is very computationally efficient.

LLE first computes the optimal weights needed to form the best

linear reconstruction of every data points from its nearest K neigh-

bors, and then computes the set of lower dimensional vectors that

are best linearly reconstructed from its K neighbors using these op-

timal weights. It follows that LLE excels at handling data that are

locally linear. 

2.2. Algorithm: Locally Linear Embedding (LLE) 

Let x 1 , . . . , x n be a set of vectors in a high dimensional space R 
d .

Locally linear embedding takes this set of vectors and produces a

lower-dimensional embedding y 1 , . . . , y n , which lie in a lower di-

mensional space R 
m , where m � d. The algorithm can be summa-

rized in the following three steps: 

1. Obtain the set of K nearest neighbors for each x i . Denote this

set as N i . 

2. Obtain the weight matrix W = (w i j ) i, j=1 , ... ,n that minimizes the

following error term: 

E = 

n ∑ 

i =1 

‖ x i −
∑ 

j � = i 
w i j x j ‖ 

2 , 

where w i j = 0 if j / ∈ N i and 
∑ n 

i =1 w i j = 1 . 

3. Obtain the low dimensional embedding y 1 , . . . , y n by minimiz-

ing the following cost function: 

C = 

n ∑ 

i =1 

‖ y i −
∑ 

j � = i 
w i j y j ‖ 

2 , 

where 
∑ n 

i =1 y i = 0 and Y T Y = I m . Here Y = (y 1 , . . . , y n ) 
T . 

The minimization in Step 2 can be done through solving a con-

strained least squares problem. Define the matrix 

Q i = (x i 1 
T − N i ) 

T (x i 1 
T − N i ) , 

where 1 is a column vector of ones and N i is a d ×K matrix with

each of its K columns being a neighbor of x i . A closed form solution

for the weight vector w i is then given by: 

w i = 

Q 
−1 
i 

1 

1 T Q 
−1 
i 

1 
. 

Computing the above requires inverting Q i , which may be im-

practical in very large dimensions. A more efficient solution is to

solve the equation Q i w i = 1 , and then normalize the weights to

enforce the constraint 
∑ n 

i =1 w i j = 1 . 

The minimization in Step 3 can be done in the following way.

Define the following matrix 

S = (I −W ) T (I −W ) . 
a  
btain the d + 1 eigenvectors of S with the smallest eigenvalues,

nd then discard the eigenvector with the smallest eigenvalue (this

igenvalue will be zero). The remaining d eigenvectors solve the

inimization problem. 

.3. Performance in the presence of noise 

As mentioned earlier, locally linear embedding does not per-

orm well in the presence of noise. To illustrate this fact, we gener-

ted 800 observations from a helix shaped curve in three dimen-

ions (the “Helix dataset”). We first ran the LLE algorithm on the

oiseless data, and then added Gaussian noise to the data (with

tandard deviation σ = 0 . 1 ), and ran the LLE algorithm on the

oisy data. For comparison purposes, we have also ran the LLEAN

lgorithm on both the non-noisy and noisy datasets as well. The

esults are illustrated in Fig. 1 . 

From this figure, we see an improvement in the 2D embedding

f the noisy data obtained with LLEAN as compared to LLE. We

an see that the points, in particular the purple and blue colored

oints, are better separated in the former. 

. Local linear embedding with additive noise 

.1. Algorithm: Locally Linear Embedding with Additive Noise (LLEAN)

Let z 1 , . . . , z n be a set of noisy vectors in high dimensional

pace R 
p . Let x 1 , . . . , x n denote the underlying (unobserved) noise-

ess vectors. They are related to z 1 , . . . , z n in the following way: 

 i = x i + εi , i = 1 , . . . , n, 

here ε1 , . . . , εn 
iid ∼ N p (0 , σ 2 I p ) represent Gaussian noise. 

Notice that the original LLE algorithm applies to the x i ’s (which

re not observed in the current setting) while the LLEAN algorithm
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pplies to the z i ’s. Another major difference between the LLEAN al-

orithm and the LLE algorithm is the modification of the minimiza-

ion criterion in Step 2 of LLE. The LLEAN algorithm is as follows. 

1. Obtain the set of K nearest neighbors for each z i . Denote this

set as N i . 

2. Obtain the weight matrix W = (w i j ) i, j=1 , ... ,n and data matrix

X = (x 1 , . . . , x n ) that minimizes the following error term: 

E = || X −W X || 2 F + 

1 

λ
|| Z − X || 2 F , 

where w i = 0 if j �∈ N i and 
∑ n 

i =1 w i j = 1 , || · || F represents the
Frobenius norm, and λ> 0 is a tuning parameter. 

3. Obtain the low dimensional embedding y 1 , . . . , y n by mini-

mizing the following cost function: 

C = 

n ∑ 

i =1 

|| y i −
∑ 

j � = i 
w i j y j || 2 , 

where 
∑ n 

i =1 y i = 0 and Y T Y = I m . Here Y = (y 1 , . . . , y n ) 
T . 

The minimization in Step 3 is identical to the minimization in

tep 3 of LLE. The minimization in Step 2 may be done through

lock coordinate descent [16] . We will iterate between minimizing

 while keeping X fixed, and vice versa. The minimization of W

ith fixed X is similar to the minimization of W in LLE. For the

inimization of X with fixed W , it can be shown that the mini-

izer is 

 min = 

{
λ(I n −W ) T (I n −W ) + I n 

}−1 
Z, (1) 

here I n represents an n x n identity matrix. With this explicit

xpression, the overall minimization of Step 2 is relatively fast. The

erivation of X min will be relegated to Appendix A . 

.2. Intuition 

The minimization term of LLEAN resembles that of regularized

inear regression, in that it includes a minimization component
1 
λ
|| Z − X|| 2 

F 
and a regularization term || X −W X|| 2 

F 
. Unlike regular-

zed linear regression, however, we view the regularization term

ere as the primary minimization criterion and the minimization

omponent as the constraint. In other words, in LLEAN, we are se-

ecting a data configuration X ∗ along with a corresponding weight

atrix W that has the best overall reconstruction potential , in that

t is the configuration in which its observations are best overall

ble to be reconstructed by its K neighbors. As the overall recon-

truction is closely linked to local linearity, we are effectively at-

empting to find the data configuration X ∗ that is the most locally

inear among all candidate solutions. The constraint 1 
λ
|| Z − X|| 2 

F 
is

mposed to ensure that X ∗ does not stray too far from the original

ata Z . 

The parameter λ controls how tightly the constraint is enforced.

he smaller the value of λ, the more weight we are putting on

he constraint term, meaning that the search space for the optimal

olution will be restricted to a smaller neighborhood near Z . 

Once we have selected X ∗ in Step 2 of the LLEAN algorithm, we

roceed by computing the optimal lower dimensional embedding

n the same manner as in LLE. Thus, the primary purpose of the

LEAN is to attempt to recover a data configuration that is close

o the original noiseless data X from the observed noisy data Z .

ince Z is seen to be less locally linear than X due to the presence

f noise, we attempt to recover the original noiseless data X by

electing a data configuration X ∗ near Z that is more locally linear,

nd thus, closer to X . 
.3. Choosing a parameter automatically 

The tuning parameter λ will need to be chosen. A smaller value

f λ penalizes solutions that are further away (in terms of Frobe-

ius norm) from the actual data. Here we present an algorithm to

utomatically choose the value of λ. 
The algorithm is based on cross validation. The idea is to cal-

ulate a cross validation score for a candidate parameter λj by

omputing the distance between the original data Z and a recon-

truction ˆ X based on λj and cross validation. Each row ˆ X i of this

econstruction is obtained by first applying the LLEAN algorithm

o Z with the i th observation removed, and then extracting the K

earest neighbors of the removed observation from the resulting

 
∗ and then computing their mean. The candidate parameter with

he lowest CV score will then be chosen. 

.4. Algorithm: Automatic Parameter Selection (APS) 

Choose a set � = { λ1 , . . . , λq } to test. Do the following for each

j , j = 1 , . . . , q : 

Repeat Steps 1 and 2 for i = 1 , . . . , n : 

Let z i denote the i 
th row (observation) of the data matrix Z . Re-

ove z i from Z and denote the resulting (n − 1) × p matrix as Z −i .

pply the LLEAN algorithm with parameter λj to Z −i , stopping at

he second step where the optimal X is obtained. Denote this result

s ˆ X −i . 

1. Find the K nearest neighbors of z i . Extract the rows of ˆ X −i 

corresponding to these K neighbors, and denote them as

n 1 ( ̂  X −i ) , . . . , n K ( ̂  X −i ) . Then define the following 

ˆ X i = 

K ∑ 

j=1 

n j 
(
ˆ X −i 

)
. 

2. Let ˆ X ( j) denote the matrix whose i th row is ˆ X i , i = 1 , . . . , n .

Define the following quantity: 

CV (λ j ) = 

10 0 0 ∑ 

i =1 

|| Z − ˆ X || 2 F . 

The optimal value λ∗ is equal to the λj with the lowest value of

V ( λj ). 

Depending on the size of the data etc, this algorithm could be

omputationally expensive. If necessary, the following method can

e employed to speed up the computation. Instead of repeating

teps 1 and 2 for all n indices, we may choose a random subset

f indices I ⊆ { 1 , . . . , n } and iterate through only those indices. Let
 
′ < n denote the size of the set I . For example, if N 

′ = 0 . 5 n, the

omputational time will be halved. In fact, in practice we have ob-

erved that setting N 
′ = 0 . 5 n will approximate the result very well.

 successful imaging example of applying this approach for speed

ain can be found in Hudson and Lee [10] . 

. Simulations and examples 

.1. A new metric to measure performance 

In order to quantitatively evaluate the performance of LLEAN

gainst LLE in simulated examples, we have developed a metric for

erformance measurement. We first define the overall distance be-

ween two reduced dimension configurations Y and Y ( b ) as 

 

(
Y, Y (b) 

)
= 

∑ 

all pairs i,j 

| δ(Y i , Y j 
)

− δ
(
Y (b) 
i 

, Y (b) 
j 

)| , (2) 

here δ( · , ·) is a standard distance measure (e.g., Euclidean) and

 i refers to the i 
th row (observation) of matrix Y . It can be shown

hat this is a distance metric; see Appendix B . 
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Fig. 2. 3-dimensional S Curve data and its 2D embedding using LLE. 

Table 2 

Experimental settings and results for the S Curve Data simulation. 

Number of repetitions 10 0 0 

Number of observations for each repetition 800 

Dimension of the data 3 

Number of neighbors K 15 

Iterations per LLEAN 20 

Standard deviation of the noise 0.2 

Number of candidate parameters 16 

Test statistic −2 . 771 

p-value 0.0058 
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This closeness measure assesses how “close” two reduced di-

mension configurations are by assessing the discrepancy in dis-

tance between every pair of observations. If the measure is large,

then this implies that, overall, the distances between pairs are not

similar among the two configurations. We would like to note that

although there are 
(
N 
2 

)
pairs to evaluate, the computational time

required for a reasonable sized N (80 0–150 0) is less than half a

minute. 

We may then define a metric M that compares the closeness of

two reduced dimension configurations Y (1) and Y (2) to a baseline

configuration Y ( b ) : 

M 

(
Y (1) , Y (2) , Y (b) 

)
= D 

(
Y (1) , Y (b) 

)
− D 

(
Y (2) , Y (b) 

)
. 

The metric M compares the closeness of Y (1) and Y ( b ) to that

of Y (2) and Y ( b ) . A negative value for the metric implies that Y (1) 

is closer to the baseline, while a positive value implies that Y (2) is

closer to the baseline. We will take Y (1) and Y (2) to be the LLEAN

and LLE reduced configurations on the noisy data, respectively, and

Y ( b ) being the LLE reduced configuration on the non-noisy data.

Therefore, a smaller value of the metric indicates that LLEAN pre-

serves pairwise distances from the non-noisy data better than LLE

does. 

In our following experiments, we take Y ( b ) to be the result of

the LLE algorithm on the non-noisy data X, Y (1) to be the result of

the LLEAN algorithm on the noisy data Z , and Y (2) to be the result

of the LLE algorithm on the noisy data Z . Therefore, negative values

of the metric M imply that results from LLEAN are better when the

data are corrupted by noise. 

4.2. Helix Data 

We first tested the performance of LLEAN against LLE using the

Helix Dataset. The number of repetitions in was 10 0 0. That is, we

generated 10 0 0 datasets a 3-dimensional Helix with N = 800 . For

each dataset, we first ran the LLE algorithm on the non-noisy ver-

sion of the data, and the resulting output is the baseline configu-

ration Y ( b ) . We then added Gaussian noise to the data with noise

standard deviation σ = 0 . 1 , and ran both LLEAN and LLE on the

noisy data, with respective outputs Y (1) and Y (2) . Finally, we ap-

plied the metric to the results. We repeated this process for all

10 0 0 generated datasets. 

For both LLEAN and LLE, we set K = 15 , a standard choice for

the number of neighbors. In addition, we fixed the number of it-

erations of the block coordinate descent in LLEAN to be 20, as the

algorithm has typically been found to have converged by then. We

also used the automatic parameter selection method to choose λ,
setting N 

′ = N/ 2 = 400 . 

Finally, we collected the values of the metric for all 1,0 0 0

datasets. We then performed a t -test to assess whether the true

average value of the metric would be negative, which would pro-

vide strong evidence that LLEAN performs better than LLE in the

long run. The results are shown in Table 1 . We can see that since

the value for the test statistic is negative with a low p -value, we
Table 1 

xperimental settings and results for the Helix Data simulation. 

Number of repetitions 1,0 0 0 

Number of observations for each repetition 800 

Dimension of the data 3 

Number of neighbors K 15 

Iterations per LLEAN 20 

Standard deviation of the noise 0.1 

Number of candidate parameters 16 

Test statistic −2 . 062 

p-value 0.0394 

 

d  

c  

o  

c  

c  

w  

T  

s  

a  

t  

h  

n  
an empirically conclude that LLEAN does perform better than LLE

n the long run. Note that in the classical theory of statistical hy-

othesis testing, the p-value is the probability of observing at least

s extreme as the experimental outcomes, under the assumption

hat the null hypothesis is true. Therefore, the smaller the p-value,

he more confident we are that the null hypothesis is false. 

.3. S Curve Data 

For this experiment, we used the S Curve Dataset. That is, the

bservations are sampled from an S-shaped curve in three dimen-

ions. A typical data set is shown in Fig. 2 . The experimental set-

ings here are essentially the same as for the Helix Dataset simula-

ion, except the standard deviation of the Gaussian noise added to

he data was increased to σ = 0 . 2 . The results for this simulation

re reported in Table 2 in a similar manner as before. 

Once again, these results strongly suggest that LLEAN is supe-

ior to LLE when the observations are corrupted by noise. 

.4. Magic gamma telescope data 

The Magic Gamma Telescope Data is Monte Carlo generated

ata that simulates the registration of gamma particles in a gamma

elescope using the imaging technique [2] . For each observation,

here are 10 continuous covariates describing various character-

stics of the gamma particle. The goal is to predict whether the

article is caused by primary gammas (sigma) or from a hadronic

hower (background). Overall, there are 19,020 observations, with

2,332 belonging to the category sigma and the remaining 6688

elonging to the category background. 

This dataset is assumed to be noisy data generated from a 10

imensional manifold. Since non-noisy data is not available, we

annot use the metric from earlier to compare the performance

f LLE and LLEAN. Instead, we performed classification with 5-fold

ross validation and assessed which method has the overall lower

lassification error. We first reduced the data into 5 dimensions

ith K = 15 using both LLE and LLEAN (5 iterations on LLEAN).

hen each reduced-dimension dataset was divided into 5 equally-

ized segments, with one of the segments acting as the test data

nd the remaining segments acting as the training data. We then

rained an artificial neural network on the training data using 10

idden nodes, a learning rate of 0.05, and 30 iterations. The trained

eural network was then fitted on the test data and we obtained
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 classification error. This process was repeated 5 times in total,

ach time with a different segment acting as the test data. Finally,

he five resulting classification errors were averaged, and we then

ompared the performance of LLE and LLEAN on this data based

n the classification error of their respective dimension reduced

atasets. 

Due to the large number of observations, the automatic param-

ter selection algorithm was not practical here, as it is computa-

ionally expensive. Instead, we tested the performance on a list

f candidate λ parameters. For all the candidate parameters, we

ound that the classification error of LLEAN to be lower than that

f LLE. The best performing candidate parameter was λ = 1 × 10 −6 ,

hich yielded a 3.8% improvement for the classification error. 

.5. MNIST digit data with additive noise 

The MNIST handwritten digit database [14] consists of a set of

mages of handwritten digits from 0 to 9. Each image is repre-

ented as a 28 x 28 matrix with each pixel taking values between

 and 255. We divided each pixel by 255 to scale the values to lie

etween 0 and 1. The dimensionality of the data is 28 2 = 784 . 

Similarly to the previous example, we will use binary classifi-

ation of the digit 4 vs. the digit 9 to show the effectiveness of

LEAN compared to LLE. Note that 4 and 9 are two of the most

asily confused digits in the database, and that datasets based on

NIST have been specifically created to discriminate between 4’s

nd 9’s [7] . To perform our experiment, we took random samples

f 4’s and 9’s from the database and introduced additive noise. An

xample of a 4 and 9 with additive noise is shown in Fig. 3 . We

hen preprocessed the noisy data using both LLE and LLEAN, and

howed that the classification accuracy is higher for the prepro-

essed data created by LLEAN. More specifically, we used the fol-

owing process: 

1. Take random samples of size 500 each from 4’s and 9’s. 

2. Add a random noise term ε(G ) 
i j 

∼ N(0 , σ 2 ) to each pixel ( i, j )

of each image G in the above samples. 

3. Use LLE to reduce the dimensionality of the data from n =
784 to m = 10 using K = 15 . Call the result D LLE . 

4. Repeat Step 3 with LLEAN using the same parameters. We

ran the algorithm for 3 iterations and found a good per-

forming tuning parameter to be λ = 0 . 0 0 0 01 . Call the result

D LLEAN . 

5. Split D LLE into 70% training set and 30% testing set. Train

random forest with 500 trees and 3 randomly sampled fea-

tures for each tree on the training set and obtain classifica-

tion error on the testing set. 

6. Repeat Step 5 for D LLEAN . 

We repeated the above process 20 times for a total of 10,0 0 0

eplications each of noisy 4’s and noisy 9’s. The data was prepro-

essed and trained on relatively small samples of data at once, as

he preprocessing using both LLE and LLEAN becomes exponen-

ially more computationally expensive as the sample size increases.

e used the random forest classifier here as it is well-suited to rel-

tively small sample sizes. LLEAN yielded a 5.9% improvement for

he classification error over LLE. 
Fig. 3. MNIST 4 and 9 with additive noise. 

|
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P  

l

. Concluding remarks 

Locally linear embedding (LLE) is an effective approach to non-

inear dimension, which only relies on the assumption of local lin-

arity. However, it is limited by its inability to handle data with

dditive noise. It was observed that even a small amount of noise

an drastically alter the results of the dimension reduction step. 

In this paper we have introduced an alternative to LLE, LLEAN,

hich has been seen to have better long run performance than LLE

hen noise is present in the observations. LLEAN finds the set of

ectors X ∗ with the best “linear reconstruction potential” within a

pecified neighborhood of the original data Z , and then performs

he dimension reduction step of LLE using X ∗ instead of the orig-

nal data Z . It is thought that due to the superior locally linear

roperties of X ∗ as compared to the original data Z , that the re-

ulting dimension reduction of LLEAN will more closely mirror the

imension reduction of noiseless data than LLE will. 

LLEAN also includes a tuning parameter which controls how far

rom the original data Z the algorithm searches. In order to take

he burden of choosing the parameter from the user, we have de-

ised an automatic parameter selection algorithm, which chooses

he best parameter from a list based on a criteria, the Cross-

alidation (CV) score. 

We have included several experiments to present the perfor-

ance of LLEAN against LLE under noisy data. Through our experi-

ents we have seen that, on average, LLEAN achieves a dimension

eduction that more closely mirrors that of noiseless data in the

ong run. 

One limitation of our algorithm is in the computational cost.

he block coordinate descent step in the LLEAN algorithm requires

round 20 steps before converging to the optimal solution, with

ach step iterating over each of the N observations in the data. In

ddition, the automatic parameter selection algorithm requires a

ignificant computational cost when computing the CV scores of

ach parameter candidate. 

Future work will include, first and foremost, a way to reduce

he computational cost required for the automatic parameter se-

ection algorithm. While the cost can be reduced significantly by

etting N 
′ = N/ 2 , it is still significant. Also, while LLEAN has been

een to outperform LLE in the long run, there are still cases where

t does not outperform LLE. In the future, we would like to isolate

he cases where LLEAN does not perform LLE and figure out under

xactly what conditions LLEAN will not outperform LLE. 
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ppendix A. Derivation of (1) 

To derive the minimizer X min , we first rely on the following re-

ult. 

roposition 1. 

| X −W X || 2 F + α|| Z − X || 2 F = tr 
(
Z ′ Z − ˜ Z ′ ˜ Z 

)
+ || ̃  Z − HX || 2 F , 

here α > 0, H = [(I n −W ) ′ (I n −W ) + αI n ] 
1 / 2 , and ˜ Z = αH 

−1 Z. 

roof. First note that the left-hand side can be rewritten as fol-

ows after expanding out the Frobenius norm: 

|| X −W X || 2 F + α|| Z − X || 2 F 
= (1 + α) tr(X ′ X ) + α

[
tr(Z ′ Z) − 2 tr(Z ′ X ) 

]

−2 tr(X ′ W X ) + tr 
(
X ′ W 

′ W X 
)
. 

https://doi.org/10.13039/100000001
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We now show that the right-hand side can be rewritten in the

same way: 

tr 
(
Z ′ Z − ˜ Z ′ ˜ Z 

)
+ || ̃  Z − HX || 2 F 

= tr(Z ′ Z) − tr 
(
˜ Z ′ ˜ Z 

)
+ tr 

(
˜ Z ′ ˜ Z 

)
− 2 tr 

(
˜ Z ′ HX 

)
+ tr 

(
X ′ H 

′ HX 
)

= tr(Z ′ Z) − 2 tr 
(
αZ(H 

−1 ) T HX 
)

+ tr 
(
X ′ H 

′ HX 
)
. 

Let K = H 
2 . It can be easily seen that K is a symmetric positive

definite matrix, so it follows that H is also a symmetric matrix. So

we now have 

tr 
(
Z ′ Z − ˜ Z ′ ˜ Z 

)
+ || ̃  Z − HX || 2 F 

= tr(Z ′ Z) − 2 tr(αZX ) + tr 
(
X ′ KX 

)

= tr(Z ′ Z) − 2 tr(αZX ) + tr 
(
X ′ 

[
(1 + α) I n − 2 W + W 

′ W 

]
X 
)

= tr(Z ′ Z) − 2 tr(αZX ) + tr(X ′ X ) + αtr(X ′ X ) 
−2 tr(X ′ W X ) + tr 

(
X ′ W 

′ W X 
)

= (1 + α) tr(X ′ X ) + α
[
tr(Z ′ Z) − 2 tr(Z ′ X ) 

]

−2 tr(X ′ W X ) + tr 
(
X ′ W 

′ W X 
)
. 

Now apply Proposition 1 to the minimization criterion of RLLE,

letting α = 
1 
λ
. Note that since we are minimizing with respect to

X , we only need to minimize || ̃  Z − HX|| 2 
F 
. Let ˜ z j and x j represent

the j th column of ˜ Z and X , respectively. It can be seen through the

ordinary least squares problem that the minimizing x j is given by

(H 
′ H ) −1 H 

′ ˜ z j . It therefore follows that the minimizing X is H 
−1 ̃  Z =

{ λ(I n −W ) T (I n −W ) + I n } −1 Z. �

Appendix B. Closeness measure (2) is a metric 

We show here that the closeness measure (2) , given by 

D (Y, Y (b) ) = 

∑ 

all pairs i,j 

| δ(Y i , Y j ) − δ(Y (b) 
i 

, Y (b) 
j 

) | , 

is a distance measure. To do this, we will need to show the three

properties of a distance metric: identity, symmetry, and subaddi-

tivity. 

Identity. Suppose that Y = Y (b) . Then D (Y, Y (b) ) =∑ 

all pairs i,j | δ(Y i , Y j ) − δ(Y (b) 
i 

, Y (b) 
j 

) | = 0 . 

Symmetry. D (Y, Y (b) ) = D (Y (b) , Y ) due to the absolute value

within the summation. 

Subadditivity. Suppose we have three inputs: Y, Y ( b ) , and Y ( c ) . We

wish to show that D (Y, Y (b) ) ≤ D (Y, Y (c) ) + D (Y (b) , Y (c) ) . 

We will show that | δ(Y i , Y j ) − δ(Y (b) 
i 

, Y (b) 
j 

) | ≤ | δ(Y i , Y j ) −
δ(Y (c) 

i 
, Y (c) 

j 
) | + | δ(Y (b) 

i 
, Y (b) 

j 
) − δ(Y (c) 

i 
, Y (c) 

j 
) | for all pairs i and j . 
By the triangle inequality, | (a − c) + (c − b) | ≤ | (a − c) | + | c −
| , and thus | a − b| ≤ | a − c| + | c − b| . Now let a = δ(Y i , Y j ) , b =
(Y (b) 

i 
, Y (b) 

j 
) , and c = δ(Y (c) 

i 
, Y (c) 

j 
) | . The result follows. 
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