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Locally linear embedding (LLE) is a nonlinear dimension reduction technique that only relies on the as-
sumption of local linearity. While it is known to produce good results and is computationally efficient,
it does not perform well when the observations are distorted by noises, as the fundamental assumption
of local linearity becomes violated. In this work, we present a modification of locally linear embedding
which is designed to handle such situations. This new modification is termed LLEAN, short for locally
linear embedding with additive noise, which has been seen to perform better in the presence of noise
distortion. In LLEAN, we seek to recover the noiseless data from the noisy data by exploiting the relation-
ship between local linearity and reconstruction potential, and we then use the recovered noiseless data
while performing the dimension reduction. The LLEAN algorithm includes a tuning parameter, and our
work includes an automatic selection method for the tuning parameter to remove the burden from the

user.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Dimension reduction refers to the machine learning problem
of extracting a lower dimensional set of features from a higher
dimensional dataset. It is often used as a form of preprocessing:
by extracting relevant features first the dataset becomes easier to
work with. One such common dimension reduction technique is
known as principal components analysis (PCA) [12]. PCA is limited
in that it requires that the data lie on or near a linear subspace,
which is an assumption that is often not satisfied.

When the linearity assumption is not met, we turn to nonlin-
ear dimensional reduction techniques, which do not require the
linearity assumption and have been successfully adopted in var-
ious applications [e.g., [6,15,22,23]]. Popular nonlinear dimension
reduction techniques include Kernel PCA [20], Isomap [21], princi-
ple curves [8], deep autoencoders [9], diffusion maps [4], and lo-
cally linear embedding [19], just to name a few. Our focus in this
paper will be extensions to the latter.

Locally linear embedding (LLE) is a powerful alternative to PCA
when the data is nonlinear, but is not effective in the presence of
noise. When Gaussian noise is added to each data point, the local
linearity assumption becomes violated, and LLE no longer handles
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the dimension reduction well. This appears to be the case even
when the variance of the noise is relatively small. We remark that
there are other nonlinear dimensional reduction techniques that
are robust to noise, especially recent developments in deep learn-
ing such as Arpit et al. [1], Jiang et al. [11], Ren et al. [17]. In this
paper, our focus is LLE. While LLE has advantages in optimization
and tuning, a key limitation of LLE is that the underlying manifold
is smooth.

Various extensions to the basic LLE algorithm have already
been developed. These include Robust Locally Linear Embedding
(RLLE), which was developed to handle outlier points [3]; a su-
pervised version of LLE developed to handle classification tasks
[18]; a version of LLE based on Hessian eigenmaps to handle high-
dimensional data [5]; and an incremental version of LLE to pre-
serve topology [13].

In this paper, we introduce an alternative to LLE called Locally
Linear Embedding with Additive Noise (LLEAN), which is designed
to handle the case when the data are corrupted by additive noise.
This is not to be confused with the setting of the above-mentioned
Robust Locally Linear Embedding, in which additional noise/outlier
points are added to the data. For our problem, no additional points
are added, but rather the original points are just distorted with
noise.

In LLEAN, we modify the minimization criterion to consist of
a minimization term and a regularization term. As to be shown
below, this modification allows the proposed approach to handle
noisy observations. The rest of the paper will be organized in the
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following manner: we will first provide some background on the
LLE algorithm as well as discuss the shortcomings of the LLE algo-
rithm with respect to noise in Section 2. In Section 3, we introduce
the LLEAN algorithm, including an algorithm for automatic selec-
tion of the tuning parameter. In Section 4, we will present some
simulation results and compare our algorithm performance to LLE.
Lastly, concluding remarks are offered in Section 5 while technical
details are delayed to the appendix.

2. Locally linear embedding
2.1. Introduction

Locally linear embedding (LLE) involves a minimization term
that utilizes the linearity of small neighborhoods formed by data
points and its nearest neighbors. The minimization has a closed
form solution and therefore LLE is very computationally efficient.
LLE first computes the optimal weights needed to form the best
linear reconstruction of every data points from its nearest K neigh-
bors, and then computes the set of lower dimensional vectors that
are best linearly reconstructed from its K neighbors using these op-
timal weights. It follows that LLE excels at handling data that are
locally linear.

2.2. Algorithm: Locally Linear Embedding (LLE)

Let X1, ..., Xy be a set of vectors in a high dimensional space R9.
Locally linear embedding takes this set of vectors and produces a
lower-dimensional embedding y;,...,y,, which lie in a lower di-
mensional space R™, where m « d. The algorithm can be summa-
rized in the following three steps:

1. Obtain the set of K nearest neighbors for each x;. Denote this
set as V.

2. Obtain the weight matrix W = (w;;); j_1
following error term:

n
E=Y"lxi— Y wixll?
i1

J#i

» that minimizes the

where w;; =0 if j ¢ A and Y I wyj = 1.
3. Obtain the low dimensional embedding yq, ...
ing the following cost function:

n
C= "y = wiil*
i1

Ji

,Yn by minimiz-

where 37 ;y; =0 and YTY = Ip,. Here Y = (y1,....yn)T.
The minimization in Step 2 can be done through solving a con-
strained least squares problem. Define the matrix

Q= (x1" = N)T(x1" = N;),

where 1 is a column vector of ones and N; is a d x K matrix with
each of its K columns being a neighbor of x;. A closed form solution
for the weight vector w; is then given by:

Q'
S 1T

w;

Computing the above requires inverting Q;, which may be im-
practical in very large dimensions. A more efficient solution is to
solve the equation Q;w; =1, and then normalize the weights to
enforce the constraint Y ; w;; = 1.

The minimization in Step 3 can be done in the following way.
Define the following matrix

S=I-W)Td-w).

(a) Original Data (X). (b) With noise, o = 0.1 (Z).
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(c) LLE embedding of X. (d) LLEAN embedding of X.

5 2
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(e) LLE embedding of Z. (f) LLEAN embedding of Z.

Fig. 1. 3-dimensional Helix data with noise distortions and 2D embeddings from
LLE and LLEAN.

Obtain the d + 1 eigenvectors of S with the smallest eigenvalues,
and then discard the eigenvector with the smallest eigenvalue (this
eigenvalue will be zero). The remaining d eigenvectors solve the
minimization problem.

2.3. Performance in the presence of noise

As mentioned earlier, locally linear embedding does not per-
form well in the presence of noise. To illustrate this fact, we gener-
ated 800 observations from a helix shaped curve in three dimen-
sions (the “Helix dataset”). We first ran the LLE algorithm on the
noiseless data, and then added Gaussian noise to the data (with
standard deviation o =0.1), and ran the LLE algorithm on the
noisy data. For comparison purposes, we have also ran the LLEAN
algorithm on both the non-noisy and noisy datasets as well. The
results are illustrated in Fig. 1.

From this figure, we see an improvement in the 2D embedding
of the noisy data obtained with LLEAN as compared to LLE. We
can see that the points, in particular the purple and blue colored
points, are better separated in the former.

3. Local linear embedding with additive noise
3.1. Algorithm: Locally Linear Embedding with Additive Noise (LLEAN)

Let zy,...,zp be a set of noisy vectors in high dimensional
space RP. Let xq, ..., X, denote the underlying (unobserved) noise-
less vectors. They are related to zy,...,z, in the following way:

Zi =X + €, i=1,...,n,
where €1, ..., €, iid Np(0, 02Ip) represent Gaussian noise.

Notice that the original LLE algorithm applies to the x;'s (which
are not observed in the current setting) while the LLEAN algorithm
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applies to the z;’s. Another major difference between the LLEAN al-
gorithm and the LLE algorithm is the modification of the minimiza-
tion criterion in Step 2 of LLE. The LLEAN algorithm is as follows.

1. Obtain the set of K nearest neighbors for each z;. Denote this
set as ;.

2. Obtain the weight matrix W = (w;j); j—1, . n and data matrix
X = (X1,...,xp) that minimizes the following error term:

1
E=|IX -~ WXI|[}+ 711 -X]

2
F»

where w; =0 if j ¢ A; and Y i w;j =1, || - || represents the
Frobenius norm, and A >0 is a tuning parameter.

3. Obtain the low dimensional embedding y1,...,y, by mini-
mizing the following cost function:
n
C=Y"1lyi= Y wiyll
i=1 J#
where Y1 ;y; =0 and YTY = I,. Here Y = (y1,....yn)T.

The minimization in Step 3 is identical to the minimization in
Step 3 of LLE. The minimization in Step 2 may be done through
block coordinate descent [16]. We will iterate between minimizing
W while keeping X fixed, and vice versa. The minimization of W
with fixed X is similar to the minimization of W in LLE. For the
minimization of X with fixed W, it can be shown that the mini-
mizer is

Xanin = {AUn = W) (ly = W) + 1} Z, (1)

where I, represents an n x n identity matrix. With this explicit
expression, the overall minimization of Step 2 is relatively fast. The
derivation of X,,;, will be relegated to Appendix A.

3.2. Intuition

The minimization term of LLEAN resembles that of regularized
linear regression, in that it includes a minimization component
111Z - X||2 and a regularization term ||X — WX||2. Unlike regular-
ized linear regression, however, we view the regularization term
here as the primary minimization criterion and the minimization
component as the constraint. In other words, in LLEAN, we are se-
lecting a data configuration X* along with a corresponding weight
matrix W that has the best overall reconstruction potential, in that
it is the configuration in which its observations are best overall
able to be reconstructed by its K neighbors. As the overall recon-
struction is closely linked to local linearity, we are effectively at-
tempting to find the data configuration X* that is the most locally
linear among all candidate solutions. The constraint %||Z—X||§ is
imposed to ensure that X* does not stray too far from the original
data Z.

The parameter A controls how tightly the constraint is enforced.
The smaller the value of A, the more weight we are putting on
the constraint term, meaning that the search space for the optimal
solution will be restricted to a smaller neighborhood near Z.

Once we have selected X* in Step 2 of the LLEAN algorithm, we
proceed by computing the optimal lower dimensional embedding
in the same manner as in LLE. Thus, the primary purpose of the
LLEAN is to attempt to recover a data configuration that is close
to the original noiseless data X from the observed noisy data Z
Since Z is seen to be less locally linear than X due to the presence
of noise, we attempt to recover the original noiseless data X by
selecting a data configuration X* near Z that is more locally linear,
and thus, closer to X.

3.3. Choosing a parameter automatically

The tuning parameter A will need to be chosen. A smaller value
of A penalizes solutions that are further away (in terms of Frobe-
nius norm) from the actual data. Here we present an algorithm to
automatically choose the value of A.

The algorithm is based on cross validation. The idea is to cal-
culate a cross validation score for a candidate parameter A; by
computing the distance between the original data Z and a recon-
struction X based on Aj and cross validation. Each row X; of this
reconstruction is obtained by first applying the LLEAN algorithm
to Z with the it observation removed, and then extracting the K
nearest neighbors of the removed observation from the resulting
X* and then computing their mean. The candidate parameter with
the lowest CV score will then be chosen.

3.4. Algorithm: Automatic Parameter Selection (APS)

Choose a set A = {Aq, ...
Api=1,....q

Repeat Steps 1 and 2 fori=1,..., n:

Let z; denote the ith row (observation) of the data matrix Z. Re-
move z; from Z and denote the resulting (n — 1) x p matrix as Z_;.
Apply the LLEAN algorithm with parameter A; to Z_;, stopping at
theAsecond step where the optimal X is obtained. Denote this result
as X_j.

. Aq} to test. Do the following for each

1. Find the K nearest neighbors of z;. Extract the rows of X_;
corresponding to these K neighbors, and denote them as
n1(X_), ..., ng(X_;). Then define the following

K
X,' = an(X,,-).
j=1
2. Let XU denote the matrix whose ith row is X;, i=1,...,n.
Define the following quantity:

1000 .
i) = 11Z-RIE
i=1

The optimal value A* is equal to the A; with the lowest value of
CV(A)).

Depending on the size of the data etc, this algorithm could be
computationally expensive. If necessary, the following method can
be employed to speed up the computation. Instead of repeating
Steps 1 and 2 for all n indices, we may choose a random subset
of indices I € {1,...,n} and iterate through only those indices. Let
N’ <n denote the size of the set I. For example, if N’ = 0.5n, the
computational time will be halved. In fact, in practice we have ob-
served that setting N’ = 0.5n will approximate the result very well.
A successful imaging example of applying this approach for speed
gain can be found in Hudson and Lee [10].

4. Simulations and examples
4.1. A new metric to measure performance

In order to quantitatively evaluate the performance of LLEAN
against LLE in simulated examples, we have developed a metric for
performance measurement. We first define the overall distance be-
tween two reduced dimension configurations Y and Y(?) as

DY) = 3 18(5.1;) ~3(57. V)] @
all pairs i,

where §(-, -) is a standard distance measure (e.g., Euclidean) and
Y; refers to the it row (observation) of matrix Y. It can be shown
that this is a distance metric; see Appendix B.
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This closeness measure assesses how “close” two reduced di-
mension configurations are by assessing the discrepancy in dis-
tance between every pair of observations. If the measure is large,
then this implies that, overall, the distances between pairs are not
similar among the two configurations. We would like to note that
although there are (g’) pairs to evaluate, the computational time
required for a reasonable sized N (800-1500) is less than half a
minute.

We may then define a metric M that compares the closeness of
two reduced dimension configurations Y(!) and Y(?) to a baseline
configuration Y(0):

M(Y(l), y(Z)’ y(b)) — D(y(l)’ y(b)) _ D(y(2)7 y(b)).

The metric M compares the closeness of Y1) and Y(®) to that
of Y2 and Y), A negative value for the metric implies that Y(1)
is closer to the baseline, while a positive value implies that Y(?) is
closer to the baseline. We will take Y{!) and Y(?) to be the LLEAN
and LLE reduced configurations on the noisy data, respectively, and
Y(®) being the LLE reduced configuration on the non-noisy data.
Therefore, a smaller value of the metric indicates that LLEAN pre-
serves pairwise distances from the non-noisy data better than LLE
does.

In our following experiments, we take Y(?) to be the result of
the LLE algorithm on the non-noisy data X, Y{) to be the result of
the LLEAN algorithm on the noisy data Z, and Y{?) to be the result
of the LLE algorithm on the noisy data Z. Therefore, negative values
of the metric M imply that results from LLEAN are better when the
data are corrupted by noise.

4.2. Helix Data

We first tested the performance of LLEAN against LLE using the
Helix Dataset. The number of repetitions in was 1000. That is, we
generated 1000 datasets a 3-dimensional Helix with N = 800. For
each dataset, we first ran the LLE algorithm on the non-noisy ver-
sion of the data, and the resulting output is the baseline configu-
ration Y(?), We then added Gaussian noise to the data with noise
standard deviation o = 0.1, and ran both LLEAN and LLE on the
noisy data, with respective outputs Y1) and Y{2). Finally, we ap-
plied the metric to the results. We repeated this process for all
1000 generated datasets.

For both LLEAN and LLE, we set K = 15, a standard choice for
the number of neighbors. In addition, we fixed the number of it-
erations of the block coordinate descent in LLEAN to be 20, as the
algorithm has typically been found to have converged by then. We
also used the automatic parameter selection method to choose A,
setting N’ = N/2 = 400.

Finally, we collected the values of the metric for all 1,000
datasets. We then performed a t-test to assess whether the true
average value of the metric would be negative, which would pro-
vide strong evidence that LLEAN performs better than LLE in the
long run. The results are shown in Table 1. We can see that since
the value for the test statistic is negative with a low p-value, we

Table 1

Experimental settings and results for the Helix Data simulation.
Number of repetitions 1,000
Number of observations for each repetition 800
Dimension of the data 3
Number of neighbors K 15
Iterations per LLEAN 20
Standard deviation of the noise 0.1
Number of candidate parameters 16
Test statistic —2.062
p-value 0.0394

(a) Original Data.

(b) 2D Embedding.

Fig. 2. 3-dimensional S Curve data and its 2D embedding using LLE.

Table 2

Experimental settings and results for the S Curve Data simulation.
Number of repetitions 1000
Number of observations for each repetition 800
Dimension of the data 3
Number of neighbors K 15
Iterations per LLEAN 20
Standard deviation of the noise 0.2
Number of candidate parameters 16
Test statistic -2.771
p-value 0.0058

can empirically conclude that LLEAN does perform better than LLE
in the long run. Note that in the classical theory of statistical hy-
pothesis testing, the p-value is the probability of observing at least
as extreme as the experimental outcomes, under the assumption
that the null hypothesis is true. Therefore, the smaller the p-value,
the more confident we are that the null hypothesis is false.

4.3. S Curve Data

For this experiment, we used the S Curve Dataset. That is, the
observations are sampled from an S-shaped curve in three dimen-
sions. A typical data set is shown in Fig. 2. The experimental set-
tings here are essentially the same as for the Helix Dataset simula-
tion, except the standard deviation of the Gaussian noise added to
the data was increased to o = 0.2. The results for this simulation
are reported in Table 2 in a similar manner as before.

Once again, these results strongly suggest that LLEAN is supe-
rior to LLE when the observations are corrupted by noise.

4.4. Magic gamma telescope data

The Magic Gamma Telescope Data is Monte Carlo generated
data that simulates the registration of gamma particles in a gamma
telescope using the imaging technique [2]. For each observation,
there are 10 continuous covariates describing various character-
istics of the gamma particle. The goal is to predict whether the
particle is caused by primary gammas (sigma) or from a hadronic
shower (background). Overall, there are 19,020 observations, with
12,332 belonging to the category sigma and the remaining 6688
belonging to the category background.

This dataset is assumed to be noisy data generated from a 10
dimensional manifold. Since non-noisy data is not available, we
cannot use the metric from earlier to compare the performance
of LLE and LLEAN. Instead, we performed classification with 5-fold
cross validation and assessed which method has the overall lower
classification error. We first reduced the data into 5 dimensions
with K =15 using both LLE and LLEAN (5 iterations on LLEAN).
Then each reduced-dimension dataset was divided into 5 equally-
sized segments, with one of the segments acting as the test data
and the remaining segments acting as the training data. We then
trained an artificial neural network on the training data using 10
hidden nodes, a learning rate of 0.05, and 30 iterations. The trained
neural network was then fitted on the test data and we obtained
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a classification error. This process was repeated 5 times in total,
each time with a different segment acting as the test data. Finally,
the five resulting classification errors were averaged, and we then
compared the performance of LLE and LLEAN on this data based
on the classification error of their respective dimension reduced
datasets.

Due to the large number of observations, the automatic param-
eter selection algorithm was not practical here, as it is computa-
tionally expensive. Instead, we tested the performance on a list
of candidate A parameters. For all the candidate parameters, we
found that the classification error of LLEAN to be lower than that
of LLE. The best performing candidate parameter was A = 1 x 1076,
which yielded a 3.8% improvement for the classification error.

4.5. MNIST digit data with additive noise

The MNIST handwritten digit database [14] consists of a set of
images of handwritten digits from 0 to 9. Each image is repre-
sented as a 28 x 28 matrix with each pixel taking values between
0 and 255. We divided each pixel by 255 to scale the values to lie
between 0 and 1. The dimensionality of the data is 282 = 784.

Similarly to the previous example, we will use binary classifi-
cation of the digit 4 vs. the digit 9 to show the effectiveness of
LLEAN compared to LLE. Note that 4 and 9 are two of the most
easily confused digits in the database, and that datasets based on
MNIST have been specifically created to discriminate between 4’s
and 9’s [7]. To perform our experiment, we took random samples
of 4’s and 9's from the database and introduced additive noise. An
example of a 4 and 9 with additive noise is shown in Fig. 3. We
then preprocessed the noisy data using both LLE and LLEAN, and
showed that the classification accuracy is higher for the prepro-
cessed data created by LLEAN. More specifically, we used the fol-
lowing process:

1. Take random samples of size 500 each from 4’s and 9's.

2. Add a random noise term e,.(jc) ~ N(0,02) to each pixel (i, j)
of each image G in the above samples.

3. Use LLE to reduce the dimensionality of the data from n =
784 to m = 10 using K = 15. Call the result Dyjg.

4. Repeat Step 3 with LLEAN using the same parameters. We
ran the algorithm for 3 iterations and found a good per-
forming tuning parameter to be A = 0.00001. Call the result
DiiEAN-

5. Split Dy into 70% training set and 30% testing set. Train
random forest with 500 trees and 3 randomly sampled fea-
tures for each tree on the training set and obtain classifica-
tion error on the testing set.

6. Repeat Step 5 for Djjgan-

We repeated the above process 20 times for a total of 10,000
replications each of noisy 4's and noisy 9’s. The data was prepro-
cessed and trained on relatively small samples of data at once, as
the preprocessing using both LLE and LLEAN becomes exponen-
tially more computationally expensive as the sample size increases.
We used the random forest classifier here as it is well-suited to rel-
atively small sample sizes. LLEAN yielded a 5.9% improvement for
the classification error over LLE.

Fig. 3. MNIST 4 and 9 with additive noise.

5. Concluding remarks

Locally linear embedding (LLE) is an effective approach to non-
linear dimension, which only relies on the assumption of local lin-
earity. However, it is limited by its inability to handle data with
additive noise. It was observed that even a small amount of noise
can drastically alter the results of the dimension reduction step.

In this paper we have introduced an alternative to LLE, LLEAN,
which has been seen to have better long run performance than LLE
when noise is present in the observations. LLEAN finds the set of
vectors X* with the best “linear reconstruction potential” within a
specified neighborhood of the original data Z, and then performs
the dimension reduction step of LLE using X* instead of the orig-
inal data Z. It is thought that due to the superior locally linear
properties of X* as compared to the original data Z, that the re-
sulting dimension reduction of LLEAN will more closely mirror the
dimension reduction of noiseless data than LLE will.

LLEAN also includes a tuning parameter which controls how far
from the original data Z the algorithm searches. In order to take
the burden of choosing the parameter from the user, we have de-
vised an automatic parameter selection algorithm, which chooses
the best parameter from a list based on a criteria, the Cross-
Validation (CV) score.

We have included several experiments to present the perfor-
mance of LLEAN against LLE under noisy data. Through our experi-
ments we have seen that, on average, LLEAN achieves a dimension
reduction that more closely mirrors that of noiseless data in the
long run.

One limitation of our algorithm is in the computational cost.
The block coordinate descent step in the LLEAN algorithm requires
around 20 steps before converging to the optimal solution, with
each step iterating over each of the N observations in the data. In
addition, the automatic parameter selection algorithm requires a
significant computational cost when computing the CV scores of
each parameter candidate.

Future work will include, first and foremost, a way to reduce
the computational cost required for the automatic parameter se-
lection algorithm. While the cost can be reduced significantly by
setting N’ = N/2, it is still significant. Also, while LLEAN has been
seen to outperform LLE in the long run, there are still cases where
it does not outperform LLE. In the future, we would like to isolate
the cases where LLEAN does not perform LLE and figure out under
exactly what conditions LLEAN will not outperform LLE.

Acknowledgment

The authors are grateful to the reviewers for their useful com-
ments. This work was supported by the National Science Founda-
tion (Grant nos. DMS-1512945, DMS-1811405 and DMS-1811661).

Appendix A. Derivation of (1)

To derive the minimizer X;,, we first rely on the following re-
sult.
Proposition 1.
X =WX|[; +al|lZ-X|; =tr(ZZ-ZZ) +||Z - HX|[}.
where >0, H=[(In = W) (I, = W) + al;]V/2, and Z = aH1Z.

Proof. First note that the left-hand side can be rewritten as fol-
lows after expanding out the Frobenius norm:

X —WX| [z + ||z - X]| [z
= (1+a)tr(X'X) +a[tr(Zz) - 2tr(Z'X)]
=2tr(X'WX) + tr(X' W'WX).
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We now show that the right-hand side can be rewritten in the
same way:
tr(2Z -ZZ) + 1|1Z - HX|}
=tr(Z'2) —tr(ZZ) + tr(ZZ) — 2tr(ZHX) + tr(X'H'HX)
=tr(Z'Z) - 2tr(aZ(H"")"HX) + tr(X'H'HX).
Let K = H2. It can be easily seen that K is a symmetric positive

definite matrix, so it follows that H is also a symmetric matrix. So
we now have

tr(2Z - Z'Z) + 1|12 - HX|}
=tr(Z'Z) - 2tr(aZX) + tr(X'’KX)
=tr(Z'Z) = 2tr(@ZX) + tr(X'[ (1 + )l = 2W + W'W]X)
=tr(Z'Z) - 2tr(aZX) + tr(X'X) + atr(X'X)
—2tr(X'WX) + tr(X'W'WX)
= (1 +a)tr(X'X) + a[tr(Z'Z) - 2tr(Z'X)|
—2tr(X'WX) + tr(X'W'WX).

Now apply Proposition 1 to the minimization criterion of RLLE,
letting o = % Note that since we are minimizing with respect to
X, we only need to minimize ||Z—HX||12E. Let Z; and x; represent
the jth column of Z and X, respectively. It can be seen through the
ordinary least squares problem that the minimizing x; is given by

(H’'H)~'H’Z;. It therefore follows that the minimizing X is H~1Z =
Ay —WHT(U —W) +1,}'2. O

Appendix B. Closeness measure (2) is a metric

We show here that the closeness measure (2), given by

DY.Y®)= 3 8% - 8Py,

all pairs i,

is a distance measure. To do this, we will need to show the three
properties of a distance metric: identity, symmetry, and subaddi-
tivity.

Identity.  Suppose that Y =Y®,
Sait pairs i 18 (V2. Y)) = 8 (4@, Y| = 0.

Symmetry. D(Y,Y®) =D(Y® Y) due to the absolute value
within the summation.

Subadditivity. Suppose we have three inputs: Y, Y, and Y(©). We
wish to show that D(Y,Y®) < D(Y,Y©) + D(Y®) Y (©),

We will show that [8(Y,Y;) - a(yl.<”>,yj<b))| < 8%, Y)) —

8OO YN +18¢P,¥P) = 8%, ¥ V)] for all pairs i and j.

Then D(Y.Y®)=

By the triangle inequality, |(a —c)+ (c—b)| <|(a—¢)| +|c—
b|, and thus [a—b| <|a—c|+|c—b|. Now let a=48(Y;,Y;), b=
S(Yi(b), Yj(b)), and c = 8(Yl.(c), Y].(C))l. The result follows.
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