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The essential dimension of an algebraic group G is a measure of the number of
parameters needed to describe all G-torsors over all fields. A major achievement
of the subject was the calculation of the essential dimension of the spin groups
over a field of characteristic not 2, started by Brosnan, Reichstein, and Vistoli,
and completed by Chernousov, Merkurjev, Garibaldi, and Guralnick [3, 4, 7], [18,
Theorem 9.1].

In this paper, we determine the essential dimension of the spin group Spin(n) for
n ≥ 15 over an arbitrary field (Theorem 2.1). We find that the answer is the same
in all characteristics. In contrast, for the groups O(n) and SO(n), the essential
dimension is smaller in characteristic 2, by Babic and Chernousov [1].

In characteristic not 2, the computation of essential dimension can be phrased
to use a natural finite subgroup of Spin(2r + 1), namely an extraspecial 2-group,
a central extension of (Z/2)2r by Z/2. A distinctive feature of the argument in
characteristic 2 is that the analogous subgroup is a finite group scheme, a central
extension of (Z/2)r × (μ2)

r by μ2, where μ2 is the group scheme of square roots of
unity.

In characteristic not 2, Rost and Garibaldi computed the essential dimension of
Spin(n) for n ≤ 14 [6, Table 23B], where case-by-case arguments seem to be needed.
We show in Theorem 4.1 that for n ≤ 10, the essential dimension of Spin(n) is
the same in characteristic 2 as in characteristic not 2. It would be interesting to
compute the essential dimension of Spin(n) in the remaining cases, 11 ≤ n ≤ 14 in
characteristic 2.

This work was supported by NSF grant DMS-1303105. Thanks to Skip Garibaldi
and Alexander Merkurjev for their suggestions. Garibaldi spotted a mistake in my
previous description of the finite group scheme in the proof of Theorem 2.1.

1 Essential dimension

Let G be an affine group scheme of finite type over a field k. Write H1(k,G) for the
set of isomorphism classes of G-torsors over k in the fppf topology. For G smooth
over k, this is also the set of isomorphism classes of G-torsors over k in the etale
topology.

Following Reichstein, the essential dimension ed(G) is the smallest natural num-
ber r such that for every G-torsor ξ over an extension field E of k, there is a subfield
k ⊂ F ⊂ E such that ξ is isomorphic to some G-torsor over F extended to E, and
F has transcendence degree at most r over k. (It is essential that E is allowed to
be any extension field of k, not just an algebraic extension field.) There are several
survey articles on essential dimension, including [19, 17].
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For example, let q0 be a quadratic form of dimension n over a field k of character-
istic not 2. Then O(q0)-torsors can be identified with quadratic forms of dimension
n, up to isomorphism. (For convenience, we sometimes write O(n) for O(q0).)
Thus the essential dimension of O(n) measures the number of parameters needed
to describe all quadratic forms of dimension n. Indeed, every quadratic form of
dimension n over a field of characteristic not 2 is isomorphic to a diagonal form
〈a1, . . . , an〉. It follows that the orthogonal group O(n) in characteristic not 2 has
essential dimension at most n; in fact, O(n) has essential dimension equal to n, by
one of the first computations of essential dimension [19, Example 2.5]. Reichstein
also showed that the connected group SO(n) in characteristic not 2 has essential
dimension n− 1 for n ≥ 3 [19, Corollary 3.6].

For another example, for an integer n ≥ 2 and any field k, the group scheme μn

of nth roots of unity is smooth over k if and only if n is invertible in k. Independent
of that, H1(k, μn) is always isomorphic to k∗/(k∗)n. From that description, it is
immediate that μn has essential dimension at most 1 over k. It is not hard to check
that the essential dimension is in fact equal to 1.

One simple bound is that for any generically free representation V of a group
scheme G over k (meaning that G acts freely on a nonempty open subset of V ),
the essential dimension of G is at most dim(V ) − dim(G) [18, Proposition 5.1]. It
follows, for example, that the essential dimension of any affine group scheme of finite
type over k is finite.

For a prime number p, the p-essential dimension edp(G) is a simplified invariant,
defined by “ignoring field extensions of degree prime to p”. In more detail, for a
G-torsor ξ over an extension field E of k, define the p-essential dimension edp(ξ)
to be the smallest number r such that there is a finite extension E′/E of degree
prime to p such that ξ over E′ comes from a G-torsor over a subfield k ⊂ F ⊂ E′

of transcendence degree at most r over k. Then the p-essential dimension edp(G)
is defined to be the supremum of the p-essential dimensions of all G-torsors over all
extension fields of k.

The spin group Spin(n) is the simply connected double cover of SO(n). It was a
surprise when Brosnan, Reichstein, and Vistoli showed that the essential dimension
of Spin(n) over a field k of characteristic not 2 is exponentially large, asymptotic
to 2n/2 as n goes to infinity [3]. As an application, they showed that the number of
“parameters” needed to describe all quadratic forms of dimension 2r in I3 over all
fields is asymptotic to 2r.

We now turn to quadratic forms over a field which may have characteristic 2.
Define a quadratic form (q, V ) over a field k to be nondegenerate if the radical
V ⊥ of the associated bilinear form is 0, and nonsingular if V ⊥ has dimension at
most 1 and q is nonzero on any nonzero element of V ⊥. (In characteristic not 2,
nonsingular and nondegenerate are the same.) The orthogonal group is defined as
the automorphism group scheme of a nonsingular quadratic form [13, section VI.23].
For example, over a field k of characteristic 2, the quadratic form

x1x2 + x3x4 + · · ·+ x2r−1x2r

is nonsingular of even dimension 2r, while the form

x1x2 + x3x4 + · · ·+ x2r−1x2r + x22r+1
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is nonsingular of odd dimension 2r+1, with V ⊥ of dimension 1. The split orthogonal
group over k is the automorphism group of one of these particular quadratic forms.

Babic and Chernousov computed the essential dimension of O(n) and the smooth
connected subgroup O+(n) over an infinite field k of characteristic 2 [1]. (We also
write SO(n) for O+(n) by analogy with the case of characteristic not 2, even though
the whole group O(2r) is contained in SL(2r) in characteristic 2.) The answer is
smaller than in characteristic not 2. Namely, O(2r) has essential dimension r + 1
(not 2r) over k. Also, O+(2r) has essential dimension r + 1 for r even, and either
r or r + 1 for r odd, not 2r − 1. Finally, the group scheme O(2r + 1) has essential
dimension r + 2 over k, and O+(2r + 1) has essential dimension r + 1. The lower
bounds here are difficult, while the upper bounds are straightforward. For example,
to show that O(2r) has essential dimension at most r + 1 in characteristic 2, write
any quadratic form of dimension 2r as a direct sum of 2-dimensional forms, thus
reducing the structure group to (Z/2)r × (μ2)

r, and then use that the group (Z/2)r

has essential dimension only 1 over an infinite field of characteristic 2 [1, proof of
Proposition 13.1].

In this paper, we determine the essential dimension of Spin(n) in characteristic
2 for n ≤ 10 or n ≥ 15. Surprisingly, in view of what happens for O(n) and O+(n),
the results for spin groups are the same in characteristic 2 as in characteristic not 2.
For n ≤ 10, the lower bound for the essential dimension is proved by constructing
suitable cohomological invariants. It is not known whether a similar approach is
possible for n ≥ 15, either in characteristic 2 or in characteristic not 2.

2 Main result

Theorem 2.1. Let k be a field. For every integer n at least 15, the essential
dimension of the split group Spin(n) over k is given by:

ed2(Spin(n)) = ed(Spin(n)) =

⎧⎪⎨
⎪⎩
2n−1 − n(n− 1)/2 if n is odd;

2(n−2)/2 − n(n− 1)/2 if n ≡ 2 (mod 4);

2(n−2)/2 + 2m − n(n− 1)/2 if n ≡ 0 (mod 4),

where 2m is the largest power of 2 dividing n.

Proof. For k of characteristic 0, this was proved by Chernousov and Merkurjev,
sharpening the results of Brosnan, Reichstein, and Vistoli [4, Theorem 2.2]. Their
argument works in any characteristic not 2, using the results of Garibaldi and
Guralnick for the upper bounds [7]. Namely, Garibaldi and Guralnick showed that
for any field k and any n at least 15, Spin(n) acts generically freely on the spin
representation for n odd, on each of the two half-spin representations if n ≡ 2
(mod 4), and on the direct sum of a half-spin representation and the standard
representation if n ≡ 0 (mod 4). Moreover, for n at least 20 with n ≡ 0 (mod 4),
HSpin(n) = Spin(n)/μ2 (the quotient different from O+(n)) acts generically freely
on a half-spin representation [7, Theorem 1.1].

It remains to consider a field k of characteristic 2. Garibaldi and Guralnick’s
result gives the desired upper bound in most cases. Namely, for n odd and at
least 15, the spin representation has dimension 2(n−1)/2, and so ed(Spin(n)) ≤
2(n−1)/2 − dim(Spin(n)) = 2(n−1)/2 − n(n− 1)/2. For n ≡ 2 (mod 4), the half-spin
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representations have dimension 2(n−2)/2, and so ed(Spin(n)) ≤ 2(n−2)/2−n(n−1)/2.
For n = 16, since the spin group acts generically freely on the direct sum of a half-
spin representation and the standard representation, ed(Spin(n)) ≤ 2(n−2)/2 + n −
n(n− 1)/2 (= 24).

For n at least 20 and divisible by 4, the optimal upper bound requires more effort.
The following argument is modeled on Chernousov and Merkurjev’s characteristic
zero argument [4, Theorem 2.2]. Namely, consider the map of exact sequences of
k-group schemes:

1 �� μ2
��

=
��

Spin(n) ��

��

HSpin(n) ��

��

1

1 �� μ2
�� O+(n) �� PGO+(n) �� 1.

Since HSpin(n) acts generically freely on a half-spin representation, which has di-
mension 2(n−2)/2, we have ed(HSpin(n)) ≤ 2(n−2)/2 − n(n− 1)/2.

By Chernousov-Merkurjev or independently Lötscher, for any normal subgroup
scheme C of an affine group scheme G over a field k,

ed(G) ≤ ed(G/C) + max ed [E/G],

where the maximum runs over all field extensions F of k and all G/C-torsors E over
F [4, Proposition 2.1], [15, Example 3.4]. Thus [E/G] is a gerbe over F banded by
C.

Identifying H2(K,μp) with the p-torsion in the Brauer group of K, we can talk
about the index of an element of H2(K,μp), meaning the degree of the correspond-
ing division algebra over K. For a prime number p and a nonzero element E of
H2(K,μp) over a field K, the essential dimension (or also the p-essential dimen-
sion) of the corresponding μp-gerbe over K is equal to the index of E, by Karpenko
and Merkurjev [11, Theorems 2.1 and 3.1].

By the diagram above, for any field F over k, the image of the connecting map

H1(F,HSpin(n)) → H2(F, μ2) ⊂ Br(F )

is contained in the image of the other connecting map

H1(F, PGO+(n)) → H2(F, μ2) ⊂ Br(F ).

In the terminology of the Book of Involutions, the image of the latter map consists
of the classes [A] of all central simple F -algebras A of degree n with a quadratic
pair (σ, f) of trivial discriminant [13, section 29.F]. Any torsor for PGO+(n) is split
by a field extension of degree a power of 2, by reducing to the corresponding fact
about quadratic forms. So ind(A) must be a power of 2, but it also divides n, and
so ind(A) ≤ 2m, where 2m is the largest power of 2 dividing n. We conclude that

ed(Spin(n)) ≤ ed(HSpin(n)) + 2m

≤ 2(n−2)/2 − n(n− 1)/2 + 2m.

This completes the proof of the upper bound in Theorem 2.1.
We now prove the corresponding lower bound for the 2-essential dimension of

the spin group over a field k of characteristic 2. Since ed2(Spin(n)) ≤ ed(Spin(n)),
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this will imply that the 2-essential dimension and the essential dimension are both
equal to the number given in Theorem 2.1.

Write O(2r) for the orthogonal group of the quadratic form x1x2 + x3x4 + · · ·+
x2r−1x2r over k, and O(2r + 1) for the orthogonal group of x1x2 + x3x4 + · · · +
x2r−1x2r + x22r+1. Then we have an inclusion O(2r) ⊂ O(2r + 1). Note that O(2r)
is smooth over k, with O(2r)/O+(2r) ∼= Z/2. The group scheme O(2r + 1) is
not smooth over k, but it contains a smooth connected subgroup O+(2r + 1) with
O(2r+1) ∼= O+(2r+1)×μ2. It follows that O(2r) is contained in O+(2r+1). Using
the subgroup Z/2× μ2 of O(2), we have a k-subgroup scheme K := (Z/2× μ2)

r ⊂
O(2r) ⊂ O+(2r+1). LetG be the inverse image ofK in the double cover Spin(2r+1)
of O+(2r + 1). Thus G is a central extension

1 → μ2 → G → (Z/2)r × (μ2)
r → 1.

(Essentially the same “finite Heisenberg group scheme” appeared in the work of
Mumford and Sekiguchi on abelian varieties [20, Appendix A].)

To describe the structure of G in more detail, think of K = (μ2)
r as the 2-torsion

subgroup scheme of a fixed maximal torus TSO
∼= (Gm)r in O+(2r + 1), where Gm

is the multiplicative group. The chararacter group of TSO is the free abelian group
Z{x1, . . . , xr}, and the Weyl groupW = N(TSO)/TSO of O+(2r+1) is the semidirect
product Sr � (Z/2)r. Here Sr permutes the characters x1, . . . , xr of TSO, and the
subgroup Er = (Z/2)r of W , with generators ε1, . . . , εr, acts by: εi changes the sign
of xi and fixes xj for j 
= i. The character group of K = TSO[2] is Z/2{x1, . . . , xr}.
The group Er centralizes K, and the group (Z/2)r × (μ2)

r ⊂ O+(2r + 1) above is
Er ×K.

Let L be the inverse image of K in Spin(2r+1), which is contained in a maximal
torus T of Spin(2r + 1), the inverse image of TSO. The character group X∗(T ) is

Z{x1, . . . , xr, A}/(2A = x1 + · · ·+ xr).

Therefore, the character group X∗(L) is

Z{x1, . . . , xr, A}/(2xi = 0, 2A = x1 + · · ·+ xr).

(Thus X∗(L) is isomorphic to (Z/4) × (Z/2)r−1, and so L is isomorphic to μ4 ×
(μ2)

r−1.) The Weyl group W of Spin(2r + 1) is the same as that of O+(2r + 1),
namely Sr �Er. In particular, the element εi of Er acts on X∗(T ) by changing the
sign of xi and fixing xj for j 
= i, and hence it sends A to A− xi.

The subset S of X∗(L) corresponding to characters of L which are faithful on
the center μ2 of L is the complement of the subgroup X∗(K) = Z/2{x1, . . . , xr}.
Therefore, S has order 2r. The group Er = (Z/2)r acts freely and transitively on
S, since (∏

i∈I
εi

)
(A) = A−

∑
i∈I

xi

for any subset I of {1, . . . , r}.
The group G = Er · L is the central extension considered above. Now, let V

be a representation of G over k on which the center μ2 ⊂ L acts faithfully by
scalars. Then the restriction of V to L is fixed (up to isomorphism) by the action
of Er on X∗(L). By the previous paragraph, the 2r 1-dimensional representations
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of L that are nontrivial on the center μ2 all occur with the same multiplicity in V .
Therefore, V has dimension a multiple of 2r. This bound is optimal, since the spin
representation W of Spin(2r + 1) has dimension 2r over k, and the center μ2 acts
faithfully by scalars on W .

We use the following result of Merkurjev’s [16, Theorem 5.2], [11, Remark 4.5].
(The first reference covers the case of the group scheme μp in characteristic p, as
needed here.)

Theorem 2.2. Let k be a field and p be a prime number. Let 1 → μp → G → Q → 1
be a central extension of affine group schemes over k. For a field extension K of k,
let ∂K : H1(K,Q) → H2(K,μp) be the boundary homomorphism in fppf cohomology.
Then the maximal value of the index of ∂K(E), as K ranges over all field extensions
of k and E ranges over all Q-torsors over K, is equal to the greatest common divisor
of the dimensions of all representations of G on which μp acts by its standard
representation.

As mentioned above, for a prime number p and a nonzero element E ofH2(K,μp)
over a field K, the essential dimension (or also the p-essential dimension) of the
corresponding μp-gerbe over K is equal to the index of E.

Finally, consider a central extension 1 → μp → G → Q → 1 of finite group
schemes over a field k. Generalizing an argument of Brosnan-Reichstein-Vistoli,
Karpenko and Merkurjev showed that the p-essential dimension of G (and hence
the essential dimension ofG) is at least the p-essential dimension of the μp-gerbe over
K associated to any Q-torsor over any field K/k [11, Theorem 4.2]. By the analysis
above of representations of the finite subgroup scheme G of Spin(2r+1) over a field
k of characteristic 2, we find that ed2(G) ≥ 2r. For a closed subgroup scheme G of a
group scheme L over a field k and any prime number p, we have edp(L)+dim(L) ≥
edp(G) + dim(G) [17, Corollary 4.3] (which covers the case of fppf torsors for non-
smooth group schemes, as needed here). Applying this to the subgroup scheme G of
Spin(2r), we conclude that ed2(Spin(2r+1)) ≥ 2r−dim(Spin(2r+1)) = 2r−r(2r+1).
Combining this with the upper bound discussed above, we have

ed(Spin(2r + 1)) = ed2(Spin(2r + 1)) = 2r − r(2r + 1)

for r ≥ 7.
The proof of the lower bound for ed2(Spin(2r)) when r is odd is similar. The

intersection of the subgroup K = (μ2 × Z/2)r ⊂ O(2r) with O+(2r) is K1
∼=

(μ2)
r × (Z/2)r−1, where (Z/2)r−1 denotes the kernel of the sum (Z/2)r → Z/2.

As a result, the double cover Spin(2r) contains a subgroup G1 which is a central
extension

1 → μ2 → G1 → (Z/2)r−1 × (μ2)
r → 1.

In this case, an argument analogous to the one for G shows that every representation
of G1 on which the center μ2 acts by its standard representation has dimension
a multiple of 2r−1 (rather than 2r). The argument is otherwise identical to the
argument for Spin(2r + 1), and we find that ed2(Spin(2r)) ≥ 2r−1 − r(2r − 1). For
r odd at least 9, this agrees with the lower bound found earlier, which proves the
theorem on Spin(n) for n ≡ 0 (mod 4).
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It remains to show that for n a multiple of 4, with 2m the largest power of 2
dividing n, we have

ed2(Spin(n)) ≥ 2(n−2)/2 + 2m − n(n− 1)/2.

The argument follows that of Merkurjev in characteristic not 2 [17, Theorem 4.9].
Namely, for n a multiple of 4, the center C of G := Spin(n) is isomorphic to

μ2 × μ2, and H := G/C is the group PGO+(n). An H-torsor over a field L over
k is equivalent to a central simple algebra A of degree n over L with a quadratic
pair (σ, f) and with trivialized discriminant, meaning an isomorphism from the
center of the Clifford algebra C(A, σ, f) to L × L [13, section 29.F]. The image
of the homomorphism from C∗ ∼= (Z/2)2 to the Brauer group of L is equal to
{0, [A], [C+], [C−]}, where C+ and C− are the simple components of the Clifford
algebra; each is a central simple algebra of degree 2(n−2)/2 over L. By Merkurjev,
there is a field L over k and an H-torsor E over L such that ind(C+) = ind(C−) =
2(n−2)/2 and ind(A) = 2m [16, section 4.4 and Theorem 5.2]. We use the following
result [17, Example 3.7]:

Lemma 2.3. Let L be a field, p a prime number, and r a natural number. Let C
be the group scheme (μp)

r, and let Y be a C-gerbe over L. Then the p-essential
dimension of Y , and also the essential dimension of Y , is the minimum, over all
bases u1, . . . , ur for C∗, of

∑r
i=1 ind(ui(Y )).

It follows that the 2-essential dimension of the (μ2)
2-gerbe E/G over L associated

to the H-torsor E above is

ed2(E/G) = ind(A) + ind(C+) = 2(n−2)/2 + 2m.

It follows that

ed(Spin(n)) ≥ ed2(Spin(n))

≥ ed2(E/G)− dim(G/C)

= 2(n−2)/2 + 2m − n(n− 1)/2.

3 Etale motivic cohomology

In this section, we summarize the properties of etale motivic cohomology of fields,
the natural home of mod p cohomological invariants for group schemes over a field
of characteristic p.

For a field k of characteristic p > 0, let H i,j(k) be the etale motivic cohomology
group H i

et(k,Z/p(j)), or equivalently

H i
et(k,Z/p(j))

∼= H i−j
et (k,Ωj

log),

where Ωj
log is the subgroup of the group Ωj of differential forms on the separable

closure ks over Fp spanned by products (da1/a1)∧· · ·∧(daj/aj) with a1, . . . , aj ∈ k∗s
[9]. The group H i,j(k) is zero except when i equals j or j + 1, because k has p-
cohomological dimension at most 1 [21, section II.2.2]. The symbol {a1, . . . , an−1, b]
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denotes the element ofHn,n−1(k) which is the product of the elements ai ∈ k∗/(k∗)p ∼=
H1,1(k) and b ∈ k/{ap − a : a ∈ k} ∼= H1,0(k).

Also, for a field k of characteristic 2, let W (k) denote the Witt ring of sym-
metric bilinear forms over k, and let Iq(k) be the Witt group of nondegenerate
quadratic forms over k. (By the conventions in section 1, Iq(k) consists only of
even-dimensional forms.) Then Iq(k) is a module over W (k) via tensor product [5,
Lemma 8.16]. Let I be the kernel of the homomorphism rank: W (k) → Z/2, and
let

Imq (k) = Im−1 · Iq(k),
following [5, p. 53]. To motivate the notation, observe that the class of an m-
fold quadratic Pfister form 〈〈a1, . . . , am−1, b]] lies in Imq (k). By definition, for
a1, . . . , am−1 in k∗ and b in k, 〈〈a1, . . . , am−1, b]] is the quadratic form 〈〈a1〉〉b ⊗
· · · ⊗ 〈〈am−1〉〉b ⊗ 〈〈b]] of dimension 2m, where 〈〈a〉〉b is the bilinear form 〈1, a〉 and
〈〈b]] is the quadratic form [1, b] = x2 + xy + by2.

In analogy with the Milnor conjecture, Kato proved the isomorphism

Imq (F )/Im+1
q

∼= Hm,m−1(F )

for every field F of characteristic 2 [5, Fact 16.2]. The isomorphism takes the
quadratic Pfister form 〈〈a1, . . . , am−1, b]] to the symbol {a1, . . . , am−1, b]. (For this
paper, it would suffice to have Kato’s homomorphism, without knowing that it is
an isomorphism.)

A cohomological invariant gives a lower bound for the essential dimension, as
follows. This is standard for mod l invariants with l 
= p = char(k) [17, Theorem
5.3], and we now give the analogous statement for mod p invariants of a k-group
scheme G. Define a cohomological invariant f of G with values in Hn,n−1 to be
nontrivial if there is a field F containing an algebraic closure of k and a G-torsor u
over F such that f(u) is not zero.

Lemma 3.1. Let G be an affine group scheme of finite type over a field k of char-
acteristic p > 0. If there is a nontrivial cohomological invariant for G with values
in Hn,n−1, then ed(G) ≥ edp(G) ≥ n.

Proof. Let f be the given cohomological invariant for G. It suffices to prove a
lower bound on the essential dimension after enlarging k. So we can replace k
by its algebraic closure. Then every field F of transcendence degree less than n
over k has Hn,n−1(F ) = 0, by Kato and Kuzumaki [12, section 3, Corollary 2].
By assumption, there is a G-torsor u over a field E over k such that f(u) is not
zero in Hn,n−1(E). Thanks to the transfer maps on Galois cohomology (viewing
Hn,n−1(E) as H1(E,Ωn−1

log (Es))), this element remains nonzero in Hn,n−1(E′) for
any finite extension E′/E of degree prime to p. Therefore, the G-torsor u extended
up to E′ cannot be defined over a subfield F of E′ with transcendence degree less
than n over k. So ed(G) ≥ edp(G) ≥ n.

Corollary 3.2. Let G be an affine group scheme of finite type over a field k of
characteristic p > 0. Let f be a cohomological invariant for G with values in
Hn,n−1. Suppose that for any field F over k and any a1, . . . , an−1 in F ∗ and an in
F , there is a G-torsor u over F with

f(u) = {a1, . . . , an−1, an]
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in Hn,n−1(F ). Then ed(G) ≥ edp(G) ≥ n.

Proof. Let k be an algebraic closure of k, and let E be the rational function field
k(a1, . . . , an). By assumption, there is a G-torsor u over E such that

f(u) = {a1, . . . , an−1, an].

This symbol in Hn,n−1(E) is not zero, by Izhboldin’s calculation of Hn,n−1 of a
rational function field [10, Theorem 4.5]. Thus f is nontrivial, in the sense above.
By Lemma 3.1, ed(G) ≥ edp(G) ≥ n.

4 Low-dimensional spin groups

Rost and Garibaldi determined the essential dimension of the spin groups Spin(n)
with n ≤ 14 in characteristic not 2 [6, Table 23B]. It should be possible to compute
the essential dimension of low-dimensional spin groups in characteristic 2 as well.
The following section carries this out for Spin(n) with n ≤ 10. We find that in
this range (as for n ≥ 15), the essential dimension of the spin group is the same in
characteristic 2 as in characteristic not 2, unlike what happens for O(n) and SO(n).

For n ≤ 10, we give group-theoretic proofs which work almost the same way in
any characteristic, despite the distinctive features of quadratic forms in character-
istic 2.

Theorem 4.1. For n ≤ 10, the essential dimension, as well as the 2-essential
dimension, of the split group Spin(n) over a field k of any characteristic is given
by:

n ed(Spin(n))
≤ 6 0

7 4
8 5
9 5
10 4

Proof. As discussed above, it suffices to consider the case of a field k of characteristic
2. For 2 ≤ n ≤ 6, every Spin(n)-torsor over a field is trivial, for example by the
exceptional isomorphisms Spin(2) ∼= Gm, Spin(3) ∼= SL(2), Spin(4) ∼= SL(2) ×
SL(2), Spin(5) ∼= Sp(4), and Spin(6) ∼= SL(4). It follows that ed(Spin(n)) = 0 for
2 ≤ n ≤ 6.

We will use the following standard approach to bounding the essential dimension
of a group.

Lemma 4.2. Let G be an affine group scheme of finite type over a field k. Suppose
that G acts on a k-scheme Y with a nonempty open orbit U . Suppose that for every
G-torsor E over an infinite field F over k, the twisted form (E × Y )/G of Y over
F has a Zariski-dense set of F -points. Finally, suppose that U has a k-point x, and
let N be the stabilizer k-group scheme of x in G. Then

H1(F,N) → H1(F,G)

is surjective for every infinite field F over k (or for every field F over k, if G is
smooth and connected). As a result, edk(G) ≤ edk(N).
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n char k 
= 2 char k = 2
6 SL(3) · (Ga)

3 same
7 G2 same
8 Spin(7) same
9 Spin(7) same
10 Spin(7) · (Ga)

8 same
11 SL(5) Z/2� SL(5)
12 SL(6) Z/2� SL(6)
13 SL(3)× SL(3) Z/2� (SL(3)× SL(3))
14 G2 ×G2 Z/2� (G2 ×G2)

Table 1: Generic stabilizer of spin (or half-spin) representation of Spin(n)

The proof is short, the same as that of [6, Theorem 9.3]. (Note that even if k is
finite, we get the stated upper bound for the essential dimension of G: a G-torsor
over a finite field F that contains k causes no problem, because F has transcendence
degree 0 over k.) If G is smooth and connected, then H1(F,G) is in fact trivial for
every finite field F that contains k, by Lang [14]; that implies the statement in the
theorem that H1(F,N) → H1(F,G) is surjective for every field F over k.

The assumption about a Zariski-dense set of rational points holds, for example,
if Y is a linear representation V of G, or if Y is the associated projective space
P (V ) to a representation, or (as we use later) a product P (V )× P (W ).

We use Garibaldi and Guralnick’s calculation of the stabilizer group scheme of
a general k-point in the spin (for n odd) or a half-spin (for n even) representation
W of the split group Spin(n), listed in Table 1 here [7, Table 1]. Here Spin(n) has
an open orbit on the projective space P (W ) of lines in W if n ≤ 12 or n = 14, and
an open orbit on W if 2 ≤ n ≤ 6 or n = 10. (To be precise, we will use that even
if k is finite, there is a k-point in the open orbit for which the stabilizer k-group
scheme is the split group listed in the table.)

We now begin to compute the essential dimension of the split group G = Spin(7)
over a field k of characteristic 2. Let W be the 8-dimensional spin representation
of G. Then G has an open orbit on the projective space P (W ) of lines in W . By
Table 1, there is a k-point x in W whose image in P (W ) is in the open orbit such
that the stabilizer of x in G is the split exceptional group G2. Since G preserves
a quadratic form on W , the stabilizer H of the corresponding k-point in P (W ) is
at most G2 × μ2. In fact, H is equal to G2 × μ2, because the center μ2 of G acts
trivially on P (W ).

By Lemma 4.2, the inclusion G2 × μ2 ↪→ G induces a surjection

H1(F,G2 × μ2) → H1(F,G)

for every field F over k. Over any field F , G2-torsors up to isomorphism can
be identified with 3-fold quadratic Pfister forms 〈〈a1, a2, b]] (with a1, a2 ∈ F ∗ and
b ∈ F ), and so G2 has essential dimension 3 [21, Théorème 11]. Since μ2 has
essential dimension 1, the surjectivity above implies that G = Spin(7) has essential
dimension at most 4.

Next, a G-torsor determines two quadratic forms of dimension 8. Besides the
obvious homomorphism χ1 : G ↪→ Spin(8) → SO(8) (which is trivial on the center μ2
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of G), we have the spin representation χ2 : G → SO(8), on which μ2 acts faithfully
by scalars. Thus a G-torsor u over a field F over k determines two quadratic forms
of dimension 8 over F , which we call q1 and q2.

To describe these quadratic forms in more detail, use that every G-torsor comes
from a torsor for G2 × μ2. The two homomorphisms G2 ↪→ G → SO(8) (via χ1

and χ2) are both conjugate to the standard inclusion. Also, χ1 is trivial on the μ2

factor, while χ2 acts faithfully by scalars on the μ2 factor. It follows that q1 is a
quadratic Pfister form, 〈〈a, b, c]] (the form associated to a G2-torsor), while q2 is a
scalar multiple of that form, d〈〈a, b, c]].

Therefore, a G-torsor u canonically determines a 4-fold quadratic Pfister form,

q1 + q2 = 〈〈d, a, b, c]].

Define f4(u) to be the associated element of H4,3(F ),

f4(u) = {d, a, b, c].

By construction, this is well-defined and an invariant of u. By considering the
subgroup G2 × μ2 ⊂ Spin(7), where there is a G2 × μ2-torsor associated to any
elements a, b, d in F ∗ and c in F , we see that a, b, c, d can be chosen arbitrarily. By
Corollary 3.2, G = Spin(7) has 2-essential dimension at least 4, and hence essential
dimension at least 4.

The opposite inequality was proved above, and so Spin(7) has essential dimen-
sion equal to 4. Since the lower bound is proved by constructing a mod 2 cohomo-
logical invariant, this argument also shows that Spin(7) has 2-essential dimension
equal to 4. For the same reason, the computations of essential dimension below (for
Spin(n) with 8 ≤ n ≤ 10) also give the 2-essential dimension.

Next, we turn to Spin(8). At first, let G = Spin(2r) for a positive integer r over a
field k of characteristic 2. Let V be the standard 2r-dimensional representation of G.
Then G has an open orbit in the projective space P (V ) of lines in V . The stabilizer
k-group schemeH of a general k-point in P (V ) is conjugate to Spin(2r−1)·Z, where
Z is the center of Spin(2r), with Spin(2r − 1) ∩ Z = μ2. (In more detail, a general
line in V is spanned by a vector x with q(x) 
= 0, where q is the quadratic form on
V . Then the stabilizer of x in SO(V ) is isomorphic to SO(S), where S := x⊥ is a
hyperplane in V on which q restricts to a nonsingular quadratic form of dimension
2r − 1, with S⊥ equal to the line k · x ⊂ S.) Here

Z ∼=
{
μ2 × μ2 if r is even

μ4 if r is odd.

In particular, if r is even, then H ∼= Spin(2r−1)×μ2. Thus, for r even, the inclusion
Spin(2r − 1)× μ2 ↪→ G induces a surjection

H1(F, Spin(2r − 1)× μ2) → H1(F,G)

for every field F over k, by Lemma 4.2.
It follows that, for r even, the essential dimension of Spin(2r) is at most 1 plus

the essential dimension of Spin(2r − 1). Since Spin(7) has essential dimension 4,
G = Spin(8) has essential dimension at most 5.
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Before proving that equality holds, let us analyze G-torsors in more detail. We
know that H1(F, Spin(7)×μ2) → H1(F,G) is onto, for all fields F over k. Also, we
showed earlier that H1(F,G2 × μ2) → H1(F, Spin(7)) is surjective. Therefore,

H1(F,G2 × μ2 × μ2) → H1(F,G)

is surjective for all fields F over k, where Z = μ2×μ2 is the center of G. As discussed
earlier, G2-torsors up to isomorphism can be identified with 3-fold quadratic Pfister
forms. It follows that every G-torsor is associated to some 3-fold quadratic Pfister
form 〈〈a, b, c]] and some elements d, e in F ∗, which yield elements of H1(F, μ2) =
F ∗/(F ∗)2.

Next, observe that a G-torsor determines several quadratic forms. Besides the
obvious double covering χ1 : G → SO(8), the two half-spin representations of G
give two other homomorphisms χ2, χ3 : G → SO(8). (These three homomorphisms
can be viewed as the quotients of G by the three k-subgroup schemes of order 2 in
Z. They are permuted by the group S3 of “triality” automorphisms of G.) Thus a
G-torsor u over a field F over k determines three quadratic forms of dimension 8,
which we call q1, q2, q3.

To describe how these three quadratic forms are related, use that every G-
torsor comes from a torsor for G2×μ2×μ2. The three homomorphisms G2 → G →
SO(8) (via χ1, χ2, and χ3) are all conjugate to the standard inclusion, whereas
the three homomorphisms send μ2 × μ2 to the center μ2 ⊂ SO(8) by the three
possible surjections. It follows that the three quadratic forms can be written as
q1 = d〈〈a, b, c]], q2 = e〈〈a, b, c]], and q3 = de〈〈a, b, c]].

Note that a scalar multiple of a quadratic Pfister form, q = d〈〈a1, . . . , am−1, b]]
(as a quadratic form up to isomorphism), uniquely determines the associated quadratic
Pfister form q0 = 〈〈a1, . . . , am−1, b]] up to isomorphism. (Proof: it suffices to show
that if q and r are m-fold quadratic Pfister forms over F with aq ∼= r for some a in
F ∗, then q ∼= r. Since r takes value 1, so does aq, and so q takes value a−1. But
then a−1q ∼= q by the multiplicativity of quadratic Pfister forms [5, Corollary 9.9].
Therefore, r ∼= aq ∼= q.)

We now define an invariant for G = Spin(8) over k with values in H5,4. Given
a G-torsor u over a field F over k, consider the three associated quadratic forms
q1, q2, q3 as above. By the previous paragraph, q1 = d〈〈a, b, c]] determines the
quadratic Pfister form q0 = 〈〈a, b, c]]. So u determines the 5-fold quadratic Pfister
form

q0 + q1 + q2 + q3 = 〈〈d, e, a, b, c]].
The associated class

f5(u) = {d, e, a, b, c] ∈ H5,4(F )

is therefore an invariant of u.
By considering the subgroup G2 × Z ⊂ G = Spin(8), where Z = μ2 × μ2, there

is a G2 × Z-torsor associated to any elements a, b, d, e in F ∗ and c in F , and f5 of
the associated G-torsor is {d, e, a, b, c] in H5,4(F ). By Corollary 3.2, G has essential
dimension at least 5. Since the opposite inequality was proved above, G = Spin(8)
has essential dimension over k equal to 5.

Next, let G = Spin(9) over a field k of characteristic 2. Let W be the spin
representation of G, of dimension 16, corresponding to a homomorphism G →
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SO(16). (A reference for the fact that this self-dual representation is orthogonal in
characteristic 2, as in other characteristics, is [8, Theorem 9.2.2].) By Table 1, G
has an open orbit on the space P (W ) of lines in W , and the stabilizer in G of a
general k-point in W is conjugate to Spin(7). (This is not the standard inclusion of
Spin(7) in Spin(9), but rather a lift of the spin representation χ2 : Spin(7) → SO(8)
to Spin(8) followed by the standard inclusion Spin(8) ↪→ Spin(9). In particular, the
image of Spin(7) does not contain the center μ2 of G = Spin(9).) Since G preserves
a quadratic form on W , it follows that the stabilizer in G of a general k-point in
P (W ) is conjugate to Spin(7) × μ2, where μ2 is the center of Spin(9) (which acts
faithfully by scalars on W ). Therefore, by Lemma 4.2, the inclusion of Spin(7)×μ2

in G = Spin(9) induces a surjection

H1(F, Spin(7)× μ2) → H1(F,G)

for every field F over k.
Since Spin(7) has essential dimension 4 over k as shown above, G = Spin(9) has

essential dimension at most 4 + 1 = 5.
Next, a G-torsor determines several quadratic forms. Besides the obvious homo-

morphism R : G ↪→ Spin(10) → SO(10), we have the spin representation S : G →
SO(16). Thus a G-torsor over a field F over k determines a quadratic form r of
dimension 10 and a quadratic form s of dimension 16.

To describe how these forms are related, use that every G-torsor comes from a
torsor for the subgroup Spin(7) × μ2 described above. The restriction of R to the
given subgroup Spin(7) is the composition of the spin representation χ2 : Spin(7) →
SO(8) with the obvious inclusion SO(8) ↪→ SO(10). The restriction of S to the
given subgroup Spin(7) is the direct sum of the standard representation χ1 : Spin(7) →
SO(8) and the spin representation χ2 : Spin(7) → SO(8). Finally, R is trivial on
the second factor μ2 (the center of G), whereas S acts faithfully by scalars on S.

Now, let (u1, e) be a Spin(7)×μ2-torsor over k, where u1 is a Spin(7)-torsor and
e is in H1(F, μ2) = F ∗/(F ∗)2, which we lift to an element e of F ∗. By the earlier
analysis of the quadratic forms associated to a Spin(7)-torsor, the quadratic form
associated to u1 via the standard representation χ1 : Spin(7) → SO(8) is a 3-fold
quadratic Pfister form 〈〈a, b, c]], while the quadratic form associated to u1 via the
spin representation χ2 : Spin(7) → SO(8) is a multiple of the same form, d〈〈a, b, c]].

By the analysis of representations two paragraphs back, it follows that the
quadratic form associated to (u1, e) via the representation R : G → SO(10) is
r = H+d〈〈a, b, c]], whereH is the hyperbolic plane. Also, the quadratic form associ-
ated to (u1, e) via the representation S : G → SO(16) is s = e〈〈a, b, c]]+de〈〈a, b, c]].

Next, r determines the quadratic form r0 = d〈〈a, b, c]] by Witt cancellation [5,
Theorem 8.4], and that in turn determines the quadratic Pfister form q0 = 〈〈a, b, c]]
as shown above. Therefore, a G-torsor u determines the 5-fold quadratic Pfister
form

q0 + r0 + s = 〈〈d, e, a, b, c]]
up to isomorphism.

Therefore, defining
f5(u) = {d, e, a, b, c]

in H5,4(F ) yields an invariant of u. By our earlier description of Spin(7)-torsors, we
can take a, b, d, e to be any elements of F ∗ and c any element of F . By Corollary
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3.2, G has essential dimension at least 5. Since the opposite inequality was proved
earlier, G = Spin(9) over k has essential dimension equal to 5.

Finally, let G = Spin(10) over a field k of characteristic 2. Let V be the 10-
dimensional standard representation of G, corresponding to the double covering
G → SO(10), and let W be one of the 16-dimensional half-spin representations of
G, corresponding to a homomorphism G → SL(16). (The other half-spin represen-
tation of G is the dual W ∗.)

As discussed above for any group Spin(2r), G = Spin(10) has an open orbit on
P (V ), with generic stabilizer Spin(9)·μ4. (Here μ4 is the center of G, which contains
the center μ2 of Spin(9).) Consider the action of G on P (V )× P (W ) ∼= P9 ×P15.
As discussed above, Spin(9) (and hence Spin(9) · μ4) has an open orbit on P (W ).
As a result, G has an open orbit on P (V )×P (W ). Moreover, the generic stabilizer
of Spin(9) on P (W ) is Spin(7) × μ2, where the inclusion Spin(7) ↪→ Spin(9) is
the composition of the spin representation Spin(7) ↪→ Spin(8) with the standard
inclusion into Spin(9); in particular, the image does not contain the center μ2 of
Spin(9). Therefore, the generic stabilizer of Spin(9) · μ4 ⊂ Spin(10) on P (W ) is
Spin(7)×μ4. We conclude that G has an open orbit on P (V )×P (W ), with generic
stabilizer Spin(7)× μ4. It follows that

H1(F, Spin(7)× μ4) → H1(F,G)

is surjective for every field F over k, by Lemma 4.2.
The image H2 of the subgroup H = Spin(7)×μ4 ⊂ G in SO(10) is Spin(7)×μ2,

where Spin(7) is contained in SO(8) (and contains the center μ2 of SO(8)) and μ2

is the center of SO(10). In terms of the subgroup SO(8) × SO(2) of SO(10), we
can also describe H2 as Spin(7) × μ2, where Spin(7) is contained in SO(8) and μ2

is contained in SO(2). Thus H2 is contained in Spin(7) × SO(2). Therefore, H is
contained in Spin(7)×Gm ⊂ G = Spin(10), where Gm is the inverse image in G of
SO(2) ⊂ SO(10). It follows that

H1(F, Spin(7)×Gm) → H1(F,G)

is surjective for every field F over k. Since every Gm-torsor over a field is trivial,

H1(F, Spin(7)) → H1(F,G)

is surjective for every field F over k.
Here Spin(7) maps into Spin(8) by the spin representation, and then Spin(8) ↪→

G = Spin(10) by the standard inclusion. By the description above of the 8-
dimensional quadratic form associated to a Spin(7)-torsor by the spin represen-
tation, it follows that the quadratic form associated to a G-torsor is of the form
H + d〈〈a, b, c]].

Every 10-dimensional quadratic form in I3q over a field is associated to some
G-torsor. So we have given another proof that every 10-dimensional quadratic form
in I3q is isotropic. This was proved in characteristic not 2 by Pfister, and it was
extended to characteristic 2 by Baeza and Tits, independently [2, pp. 129-130], [22,
Theorem 4.4.1(ii)].

Since Spin(7) has essential dimension 4, the surjectivity above implies that G =
Spin(10) has essential dimension at most 4. To prove equality, we define an invariant
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forG with values inH4,3 by the same argument used for Spin(7). Namely, aG-torsor
u over a field F over k determines a 4-fold quadratic Pfister form

〈〈d, a, b, c]]
up to isomorphism, and hence the element

f4(u) = {d, a, b, c]
in H4,3(F ). By Corollary 3.2, this completes the proof that G = Spin(10) over k
has essential dimension equal to 4. As in the previous cases, since the lower bound
is proved using a mod 2 cohomological invariant, G also has 2-essential dimension
equal to 4.
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