Adjoint functors on the derived category of motives

Burt Totaro

Voevodsky’s derived category of motives is the main arena today for the study
of algebraic cycles and motivic cohomology. In this paper we study whether the
inclusions of three important subcategories of motives have a left or right adjoint.
These adjoint functors are useful constructions when they exist, describing the best
approximation to an arbitrary motive by a motive in a given subcategory. We
find a fairly complete picture: some adjoint functors exist, including a few which
were previously unexplored, while others do not exist because of the failure of finite
generation for Chow groups in various situations. For some base fields, we determine
exactly which adjoint functors exist.

For a field k£ and commutative ring R, we consider three subcategories of the
derived category of motives, DM (k; R): the category DMT(k; R) of mized Tate
motives, the category DMeg(k; R) of effective motives, and the category Dg(k; R)
of (non-effective) motives of dimension < 0. Each is a localizing subcategory of
DM (k; R), meaning a full triangulated subcategory that is closed under arbitrary
direct sums in DM (k; R). It is a useful formal property of the category DM (k; R)
that it contains the direct sum and the product of an arbitrary set of objects, not
necessarily finite.

In these three cases, Neeman’s Brown Representability Theorem [15] implies
that the inclusion f* of the subcategory has a right adjoint f,, and that f, in turn
has a right adjoint f@):
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For example, if f* denotes the inclusion of DM T (k; R) into DM (k; R), the existence
of f. means that for every motive M in DM (k; R), there is a mixed Tate motive
C(M) with a map C(M) — M that induces an isomorphism on motivic homology.
This functor has been useful, for example in characterizing mixed Tate motives as
the motives which satisfy the motivic Kiinneth property [25, Theorem 7.2]. The
functor () has probably not been considered before.

On the other hand, for many fields k and rings R, and for the three subcategories
mentioned above, the sequence of adjoint functors above cannot be extended to the
left or right, because of various failures of finite generation for motivic cohomology.

For example, for any algebraically closed field k which is not the algebraic closure
of a finite field, we show that the inclusion f* of DMT(k; Q) into DM (k; Q) does
not have a left adjoint, using that the Mordell-Weil group of an elliptic curve over k
has infinite rank. In particular, it follows that a product of mixed Tate motives need
not be mixed Tate. We deduce that the analogous subcategory of cellular spectra
in the stable homotopy category SH (k) is not closed under products for some fields
k. (The opposite conclusion has been announced at least once.)

By results of Balmer, Dell’Ambrogio, and Sanders, in the case of DMT(k; R)
(but not for the other subcategories we consider), f* has a left adjoint if and only



if it has a three-fold right adjoint [3, Theorem 3.3]. So, for many fields k£ and rings
R, the sequence of adjoint functors stops with the three listed above.

By contrast, the Tate-Beilinson conjecture would imply that the inclusion of
DMT(k; Q) into DM (k; Q) is a Frobenius functor when k is algebraic over a finite
field (Theorem 8.1). This is the strong property that the right adjoint to the in-
clusion is also left adjoint to the inclusion (and so there is an infinite sequence of
adjoints). It is not clear what to expect when k is a number field, or when k is
replaced by a regular scheme of finite type over Z.

Next, an example by Ayoub, based on Clemens’s example of a complex variety
with Griffiths group of infinite rank, implies that the inclusion of DM.g(C, Q) into
DM (C, Q) does not have a three-fold right adjoint [11, Proposition A.1]. The same
goes for any algebraically closed field of characteristic zero (Theorem 6.1). We also
show that for many fields k and rings R, the inclusion of DMg(k; R) into DM (k; R)
does not have a left adjoint (Theorem 6.2).

An example by Ayoub and Barbieri-Viale, again building on Clemens’s example,
implies that the inclusion of our third subcategory Dy(C; Q) into DM (C; Q) does
not have a left adjoint [2, section 2.5]. This can be viewed as showing that certain
generalizations of the Albanese variety do not exist. We give an analogous example
with finite coefficients, showing that the inclusion of Dy(k;F),) in DM (k;F,) does
not have a left adjoint in many cases (Theorem 7.1). These results imply that the
subcategory Dy(k; R) need not be closed under arbitrary products in DM (k; R), a
question that arose during the construction of the motive of a quotient stack [25,
after Lemma 8.8]. We also show that for many fields k& and rings R, the inclusion
of Dy(k; R) into DM (k; R) does not have a three-fold right adjoint (Theorem 7.2).

Finally, we prove a positive result: for any scheme X of finite type over a field
k such that the compactly supported motive M“(X) in DM (k; R) is mixed Tate,
the Chow groups CH,(X; R) are finitely generated R-modules (Theorem 3.1). This
helps to clarify what it means for a scheme to be mixed Tate.
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was supported by The Ambrose Monell Foundation and Friends, via the Institute
for Advanced Study, and by NSF grant DMS-1303105.

1 Notation

Let k be a field. The exponential characteristic of k means 1 if k has characteristic
zero, or p if k has characteristic p > 0. Let R be a commutative ring in which
the exponential characteristic of & is invertible. Following Cisinski and Déglise, the
derived category DM (k; R) of motives over k with coefficients in R is defined to be
the homotopy category of Gt -spectra of (unbounded) chain complexes of Nisnevich
sheaves with transfers which are A'-local [18, section 2.3], [5, Example 6.25]. This
is a triangulated category with arbitrary direct sums. (Voevodsky originally con-
sidered the subcategory DM (k) of “bounded above effective motives” [27].) For
k perfect, Rondigs and Ostveer showed that the category DM (k; R) is equivalent to
the homotopy category of modules over the motivic Eilenberg-MacLane spectrum
HR in Morel-Voevodsky’s stable homotopy category SH (k) [18, Theorem 1].

A separated scheme X of finite type over k determines two motives in DM (k; R),
M(X) (called the motive of X') and M¢(X) (called the compactly supported motive



of X). These two motives are isomorphic if X is proper over k. Also, there are
objects R(j) in DM (k; R) for integers j, called Tate motives. Here DM (k; R) is a
tensor triangulated category with identity object R(0), and R(a) ® R(b) = R(a+1b)
for integers a and b. The motive of projective space is M (P}) = &7_,R(j)[2]].

Voevodsky defined motivic cohomology and (Borel-Moore) motivic homology for
any separated scheme X of finite type over k by

HY(X, R(i)) = Hom(M (X), R(i)[j])

and
Hj(X, R(1)) = Hom(R(i)[j], M“(X))

[27, section 2.2]. These include the Chow groups of algebraic cycles with coeffi-
cients in R, as Hy; (X, R(i)) = CH;(X;R) := CH;(X) ®z R and H*(X, R(i)) =
CH'(X;R) := CH'(X)®z R. More generally, the motivic cohomology and motivic
homology of any object N in DM (k; R) are defined by H’ (N, R(i)) = Hom(N, R(3)[5])
and H;(N, R(i)) = Hom(R(i)[j], N).

For an equidimensional separated scheme X of dimension n over k, motivic
homology is isomorphic to Bloch’s higher Chow groups:

CH"™ (X,j — 2i; R) = H;(X, R(i)).

It follows that the motivic homology H;(X, R(7)) of a separated k-scheme X is zero
unless j > 2i and j > i and ¢ < dim(X). The isomorphism between motivic homol-
ogy and higher Chow groups was proved under mild assumptions in [27, Proposition
4.2.9]; see [25, section 5] for references to the full statement.

The triangulated category DM (k; R) is compactly generated [6, Theorem 11.1.13],
[13, Proposition 5.5.3]. (For k imperfect, see [7, Proposition 8.1].) A set of compact
generators is given by the motives M (X)(a) for smooth projective varieties X over
k and integers a. Since DM (k; R) is compactly generated, it contains arbitrary
products as well as arbitrary direct sums [16, Proposition 8.4.6].

Define a thick subcategory of a triangulated category to be a strictly full trian-
gulated subcategory that is closed under direct summands. We use the following
result of Neeman’s [15, Theorem 2.1].

Theorem 1.1. Let T be a compactly generated triangulated category, and let P be
a set of compact generators. Then any compact object in T belongs to the smallest
thick subcategory of T that contains P.

2 Background on triangulated categories

We consider three subcategories of DM (k; R) in this paper. The category DM T (k; R)
of mized Tate motives is the smallest localizing subcategory that contains R(j) for
all integers j. The category DMeg(k; R) of effective motives is the smallest localiz-
ing subcategory that contains M (X) for every smooth projective variety X over k.
The category Dy(k; R) of (non-effective) motives of dimension < 0 is the smallest
localizing subcategory that contains M (X)(—b) for every smooth projective variety
X over k and every integer b > dim(X).

We use the following consequences of Neeman’s Brown Representability Theorem
[3, Corollary 2.3], [15, Theorem 5.1].



Theorem 2.1. Let F': § — T be a exact functor between triangulated categories,
and assume that S is compactly generated. Then:

(1) F has a right adjoint if and only if it preserves arbitrary direct sums.

(2) F has a left adjoint if and only if preserves arbitrary products.

Theorem 2.2. Let F': § — T be an exact functor between triangulated categories
with right adjoint G, and assume that S is compactly generated. Then F preserves
compact objects if and only if G preserves arbitrary direct sums.

The following lemma applies to the three subcategories of DM (k; R) considered
in this paper: mixed Tate motives, effective motives, and (non-effective) motives of
dimension < 0.

Lemma 2.3. Let T be a compactly generated triangulated category, and let S be
the smallest localizing subcategory of T that contains a given set of compact objects
in T. Then the inclusion f* of S into T has a right adjoint f.. Moreover, fi also
has a right adjoint f): S — T
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The fact that f. exists means that for every object A of T there is an object
B of § and a morphism B — A that is universal for maps from objects of S to
A. This is often a useful construction. In this paper, we ask (in various examples)
whether the inclusion f* of S into 7 also has a left adjoint f). Equivalently, for
every object A in T, is there an object B of S with a map A — B that is universal
for maps from A to objects of S7

The notation f(!) was suggested by Balmer, Dell’Ambrogio, and Sanders 3,
Corollary 2.14].

Proof. (Lemma 2.3) First, because S is compactly generated and the inclusion f*
from S to T preserves arbitrary direct sums, f* has a right adjoint, by Theorem
2.1. Next, we use that the given generators for S are compact in 7. It follows
that f* takes compact objects in S to compact objects in 7. Since S is compactly
generated, it follows that f, preserves arbitrary direct sums, by Theorem 2.2. Since
T is compactly generated, Theorem 2.1 gives that f, also has a right adjoint f(V). O

The subcategory DM T (k; R) of DM (k; R) is rigidly-compactly generated, unlike
DMeg(k; R) and Dg(k; R). This means that DMT(k; R) is a tensor-triangulated
category; it has arbitrary direct sums; its compact objects coincide with the rigid
objects (also called the strongly dualizable objects); and DMT (k; R) is generated
by a set of compact objects. (The key point in checking this is that the duals in
DM (k; R) of the given generators R(j) for DM T (k; R), for integers j, are again in
DMT(k;R).)

For a tensor exact functor between rigidly-compactly generated categories that
preserves arbitrary direct sums, Balmer, Dell’Ambrogio, and Sanders showed that
the sequence of adjoint functors in Lemma 2.3 extends one step to the left if and
only if it extends one step to the right [3, Theorem 3.3]. In particular:

Theorem 2.4. Let k be a field and R a commutative ring in which the exponen-
tial characteristic of k is invertible. Then the inclusion f* of DMT(k; R) into
DM (k; R) has a left adjoint if and only if it has a three-fold right adjoint (meaning
that f1) above has a right adgjoint).



3 The Chow groups of a mixed Tate scheme

Let X be a scheme of finite type over a field k such that the compactly supported
motive M¢(X) is mixed Tate. This implies the weak Chow Kinneth property that
the Chow groups of X do not increase when the base field k is enlarged [25, section
6]. However, that leaves open the question of how big the Chow groups of X are.
Note that more general motivic homology groups of a mixed Tate scheme X over k
need not be finitely generated abelian groups, as shown by the case X = Spec(k).
(For example, H_j(k,Z(—1)) = k*.)

In this section, we show that for a scheme X of finite type over a field k such
that M¢(X) is mixed Tate in DM (k; R), the Chow groups CH,(X; R) are finitely
generated R-modules. This was known for the simplest examples of mixed Tate
schemes, linear schemes over k in the sense of [24]. On the other hand, there are
mixed Tate varieties that are not linear schemes or even rational, for example some
Barlow surfaces of general type [1, Proposition 1.9], [25, after Theorem 4.1].

It is natural to ask a stronger question. Let X be a scheme of finite type that has
the weak Chow Kiinneth property with R coefficients, meaning that CH,(X; R) —
CH,(Xg; R) is surjective for all finitely generated fields E over k, or equivalently for
all fields E over k. Are the Chow groups C' H.(X; R) finitely generated R-modules?
The answer is yes for X smooth proper over k [25, Theorem 4.1], but the general
question remains open.

Theorem 3.1. Let k be a field and R a commutative ring such that the exponential
characteristic of k is invertible in R. Let X be a scheme of finite type over k. If
M(X) is mized Tate in DM (k; R), then the Chow groups CH.(X; R) are finitely
generated R-modules.

Proof. The object M¢(X) is compact in DM (k; R). Since we assume that M¢(X)
is also mixed Tate (that is, M“(X) is in the smallest localizing subcategory that
contain the objects R(7) for integers i), it is in fact in the smallest thick subcategory
of DM (k; R) that contains R(i) for all integers i, by Theorem 1.1. In order to see
that X has finitely generated Chow groups, we will analyze which motives R(7)[j]
are needed to construct M¢(X).

Let No = N = M¢(X). Consider the following sequence of mixed Tate motives
N, for a > 0. Given N, choose a set of generators for the motivic homology of N,
as a module over the motivic homology of k. Let F, be the corresponding direct
sum (possibly infinite) of objects R(7)[j] together with a map F, — N, that induces
a surjection on motivic homology. Let N, be a cone of the map F, — N,. This
defines a sequence of mixed Tate motives Ng — N1 — - - -.

By construction, the homotopy colimit hocolim(/V,) has zero motivic homology
groups. Since hocolim(N,) is a mixed Tate motive, it follows that hocolim(N,) = 0
(by another of Neeman’s results; see [25, Corollary 5.3]). So

0 = Hom(V, hocolim(N,)) = ligHom(N7 Ng).

So there is a natural number a such that the composition N = Ny — Ny — -+ — N,
is zero. By construction, the fiber Y of N = Ny — N, is an iterated extension of
direct sums of Tate motives, Fy,..., F,—1. Since the map N — N, is zero, Y is
isomorphic to N & N,[—1]. Thus N is a summand of the extension Y.



The following lemma formalizes an argument by Neeman [14, proof of Lemma
2.3]. We say that an object Y in a triangulated category is an iterated extension of
objects Fy, ..., F,_1 if there is a map fo: Fy — Y, a map fi from Fj to the cone of
fo, and so on, with the cone of f,_1 being zero.

Lemma 3.2. Let T be a triangulated category with arbitrary direct sums. Let N be
a compact object in T which is a summand of an iterated extension Y of (possibly
infinite) direct sums Fy, ..., Fy_1 of compact objects. Then N is a summand of an
iterated extension Y' of objects Fy,..., F._,, with each F} a finite direct sum of
some of the summands of Fy.

Proof. To make an induction, we prove a more general statement. Let N be a
compact object in 7 with a morphism to an object Y, and let Y/ — Y be a morphism
whose cone is an iterated extension of direct sums Fy, ..., F,_1 of compact objects
in 7. Then there is an object N/ and a map N’ — N such that the composite
N’ — N — Y factors through Y, and the cone of N’ — N is an iterated extension of
objects Fy), ..., F,_,, with each F} a finite direct sum of some of the given summands
of F. For Y’ = 0, this gives the statement of the lemma.

The proof is by induction on the number a. If a = 1, then the cone F = F{, of
Y’ — Y is a direct sum of compact objects. Since N is compact, the composition
N — Y — F factors through a finite direct sum F’ of the given summands of F.
Then we can complete the commutative square

N —F'

Lol

Y — F

to a map of triangles
N — N — F'— N'[1]

Ll

Y —Y —F—Y'[l].

Thus the cone of N’ — N is a finite direct sum F” of the given summands of ' = Fy,
and the composite N’ — N — Y factors through Y’, as we want.

Now suppose that a > 1. Then we can factor the map Y/ — Y (with cone an
extension of Fy,...,F,—1) as Y/ — Y” — Y such that the cone of Y/ — Y” is an
extension of Fy,...,F, o and the cone of Y/ — Y is F, ;. By the case a = 1 of
the induction, there is a map N” — N with cone a finite subsum F_; of F,_; such
that N — N — Y factors through Y”. Then N” is compact. By induction on a,
there is a map N’ — N” with cone an extension of finite subsums F{,..., F,_, of
the direct sums Fy, ..., F, o such that N’ — N” — Y factors through Y’. Then
we have a commutative diagram

N — N'— N

Ll

Y —Y"—Y,

which shows that the composite N/ —+ N — Y factors through Y. Finally, the cone
of N — N is an extension of F{,..., F,_;, by the octahedral axiom. O

a—1>



We showed above that N = M¢(X) is a summand of an extension Fy, ..., F,_1
of direct sums of Tate motives. Since N is compact, Lemma 3.2 gives that N is
a summand of an extension Y’ of finite direct sums F{,..., F._, of Tate motives,
where each FJ is the direct sum of finitely many of the Tate motives that occur in
Fy.

We now use that for a scheme X of finite type over k, the motivic homology
H;(X, R(i)) vanishes unless 2i < j, by section 1. As a result, we can take Fj to be
a direct sum of objects R(7)[j] with 2i < j. Since Ny is a cone of the morphism
Fy — Np which induces a surjection on motivic homology, we have an exact sequence
of motivic homology groups:

Hy(No, R(i)) —+ H;(N1, R(i)) — Hj_1(Fo, R(3)).

We read off that Ny has a stronger vanishing property than Ny does: H;(Ny, R(7))
is zero unless 2¢ — j < —1. Repeating the argument, we find that each F} can be
chosen to be a direct sum of Tate motives R(7)[j] with 2i — j < —b.

Therefore, each F} is a finite direct sum of Tate motives R(z)[j] with 2i—j < —b.
Since N = M¢(X) is a summand of the extension Y’ of F{,..., F!_,, we read off
that CH,(F}) — CH.(X; R) is surjective, and that C H,(F}) is a finitely generated
free R-module. Thus the R-module CH,(X; R) is finitely generated. O

The same argument gives the following variant. The right adjoint f. to the
inclusion of DMT(k; R) into DM (k; R) is also called colocalization with respect to
mixed Tate motives, N — C(N).

Theorem 3.3. Let k be a field and R a commutative ring such that the exponential
characteristic of k is invertible in R. Let X be a scheme of finite type over k.
If the colocalization C(M(X)) in DMT (k; R) is compact, then the Chow groups
CH,.(X;R) are finitely generated R-modules.

4 Products of mixed Tate motives

Theorem 4.1. Let k be a field and R a commutative ring. If the product T];°_; R(0)
in DM (k; R) is mized Tate, then the R-module CH;(Y; R) is finitely generated for
every smooth projective variety Y over k and every integer 1.

Proof. Suppose that P := [[°_; R(0) in DM (k; R) is mixed Tate. That implies that
for every smooth projective variety Y over k, Dugger-Isaksen’s Kiinneth spectral
sequence

By = Tor™> ® D (1, (P, R(x)), Ho(Y, R(%))) = H_p_g(P @ M(Y), R(j))
converges to the motivic homology of P ® M(Y') [8, Proposition 7.10]. Here, for
bigraded modules M and N over a bigraded ring S, Torf,i,j(M ,N') denotes the
(i,7)th bigraded piece of Tor? (M, N). For this purpose, the group HM(X, R(5))
has bigrading (i, j).

Next, P ® M(Y') is isomorphic to []-_; M (Y). (To prove that, use that M(Y")
is strongly dualizable in DM (k; R) (a reference is [25, Lemma 5.5]), and check that



the abelian group of maps from any object W in DM (k; R) to P ® M(Y') can be
identified with the group of maps from W to [[7_; M(Y).)

The motivic homology of P is (trivially) the product of infinitely many copies
of the motivic homology of R(0). (In particular, H;(P, R(j)) = 0 unless ¢ > 25 and
i > jand j <0, just as we would have for a 0-dimensional variety.) As a result, the
Kiinneth spectral sequence with R(j) coefficients is concentrated in columns < 0
and rows < —2j. If we write H,(P) for the bigraded group H.(P, R(x)), the Es
term looks like:

0 0 0

[Tory"**(H, P, H\Y)]s;; [Tor{™**(H. P, H,Y))s;,; [HiP ®@p,1 HiY 2

[Tory *(H.P, H.Y)zj1y  [Tory™ (H P HoY)ajiry  [HoP ®pog HiYlajin

So there are no differentials into or out of the upper right group, ES =2 We deduce
that the homomorphism

CH,.(P)®r CH,(Y;R) — CH,(P® M(Y)) = C’H*< ﬁ M(Y)>
m=1

is an isomorphism. In particular, it is surjective.
That is,

( ﬁ R) ®r CH.(Y;R) — ﬁ CH.(Y;R)

m=1 m=1

is surjective. But (by definition of the tensor product of R-modules) any element
of the tensor product on the left maps to a sequence (a1, as,...) in [[,, CH.(Y; R)
such that aj, ag, ... all lie in some finitely generated R-submodule of CH,(Y; R). So
we get a contradiction if CH,(Y; R) is not finitely generated as an R-module. [

Another proof that DMT(k; R) is not closed under products in DM (k; R), when
there is a k-variety whose Chow groups are not finitely generated, can be given as
follows. By Theorem 2.1, DM T (k; R) is closed under products in DM (k; R) if and
only if the inclusion f* of DMT(k; R) into DM (k; R) has a left adjoint. By Balmer,
Dell’Ambrogio, and Sanders, that holds if and only if f* has a three-fold right adjoint
(Theorem 2.4 above). This in turn is equivalent to f (1) preserving arbitrary direct
sums (Theorem 2.1), or again to f, (also called N — C(N)) preserving compact
objects (Theorem 2.2). By Theorem 3.3, if that holds, then CH,(X; R) is a finitely
generated R-module for every smooth projective k-variety X.

Theorem 4.1 implies that the subcategory of mixed Tate motives is not closed
under products in DM (k; R), in many cases. For example:

Corollary 4.2. Let k be an algebraically closed field. Let p be the exponential char-
acteristic of k, and write R = Z[1/p]. Then the product [[,;_, R(0) in DM (k; R) is
not mized Tate. In particular, the subcategory of mized Tate motives is not closed
under products in DM (k; R), and the inclusion DMT(k; R) — DM (k; R) does not
have a left adjoint or a three-fold right adjoint.



Proof. By Theorem 4.1, to show that [[>_; R(0) in DM (k; R) is not mixed Tate,
it suffices to give an example of a smooth projective variety Y over k such that
CHy(Y)[1/p] is not finitely generated as an R-module. Since k is algebraically
closed, we can take Y to be any elliptic curve over k. Then we have an exact

sequence
0—=Y(k)—CHy(Y)—>Z—0.

The group of points Y (k) (with p inverted) is not finitely generated, because it
has prime-to-p torsion of arbitrarily large order. Since DMT(k; R) is not closed
under products in DM (k; R), the inclusion does not have a left adjoint. By Balmer,
Dell’Ambrogio, and Sanders, since DMT'(k; R) is rigidly-compactly generated, it
follows that the inclusion does not have a three-fold right adjoint (Theorem 2.4). O

We can also consider motives with rational coeflicients:

Corollary 4.3. Let k be an algebraically closed field which is not the algebraic
closure of a finite field. Then the product [[>_; Q(0) in DM (k; Q) is not mized
Tate. So the subcategory of mixed Tate motives is not closed under products in
DM (k; Q), and the inclusion DMT (k; Q) — DM (k; Q) does not have a left adjoint

or a three-fold right adjoint.

Proof. By Theorem 4.1, to show that [[>_; Q(0) in DM (k; Q) is not mixed Tate,
it suffices to find a smooth projective variety X over k such that CHy(X; Q) has
infinite dimension as a Q-vector space. Since k is not the algebraic closure of a finite
field, this holds for any elliptic curve X over k, by Frey and Jarden [9, Theorem
9.1]. The other statements follow as in the proof of Corollary 4.2. O]

By contrast, Theorem 8.1 shows, under the Tate-Beilinson conjecture, that for
k algebraic over a finite field, the subcategory of mixed Tate motives is closed
under products in DM (k; Q), and the inclusion DMT(k; Q) — DM (k; Q) has a
left adjoint.

Finally, we can say something with finite coefficients:

Theorem 4.4. Let p be a prime number. Then the product [[>_; F,(0) in DM (C; F))
is not mized Tate. So the subcategory of mized Tate motives is not closed under
products in DM(C;Fy), and the inclusion DMT(C;F,) — DM(C;F),) does not
have a left adjoint or a three-fold right adjoint.

For any algebraically closed field k of characteristic zero in place of C, these
results hold for all prime numbers p congruent to 1 modulo 3.

Proof. By Theorem 4.1, to show that DMT(k;F,) is not closed under products
in DM (k;F,), it suffices to exhibit a smooth projective variety X over k with
CH;(X;F,) = CH;(X)/p infinite for some i. For k algebraically closed, CHy(X;F,) =
CHy(X)/p is finite for every smooth projective variety X over k, and so the proof
has to be slightly different from the previous cases. We can instead use Schoen’s
theorem that, for k algebraically closed of characteristic zero and p = 1 (mod 3),
the product X of three copies of the Fermat cubic curve 23 + 43 + 22 = 0 over k has
CH;(X)/p infinite [21, Theorem 0.2]. (Schoen proves this for k = Q, and then we
can use Suslin’s theorem that CH;(X;F,) - CH;(Xp,F,) is an isomorphism for
every algebraically closed field F//Q [22, Corollary 2.3.3].)



Strengthening a result by Rosenschon and Srinivas [19], I showed that CH;(X)/p
is infinite for X a very general principally polarized abelian 3-fold over C and all
prime numbers p [26]. This yields the result we want over C. The statements about
adjoint functors follow as in the proof of Corollary 4.2. L

5 Products of cellular spectra

Let k£ be a field. Following Dugger-Isaksen, the subcategory of cellular spectra in
the stable homotopy category SH (k) is the smallest localizing subcategory that
contains the spheres S®? for all integers a and b [8]. Here S! is the class of the
pointed curve (A' — 0, 1) over k, and S*C is the circle as a simplicial set. We have
Satlb — §ab[1] in terms of the structure of SH (k) as a triangulated category. The
natural functor from SH (k) to DM (k; R) takes S%* to R(b)]a).

Corollary 5.1. Let k be an algebraically closed field which is not the algebraic
closure of a finite field. Then 5’%0 is cellular in SH(k), but the product T[], S’%O
in SH(k) is not cellular. So the subcategory of cellular spectra is not closed under
products in SH(k), and the inclusion of this subcategory into SH (k) does not have
a left adjoint. It also does not have a three-fold right adjoint.

Proof. Following Bokstedt and Neeman, the homotopy colimit X, = hocolim(Xy —
X1 — --+) in a triangulated category with arbitrary direct sums is defined as a cone
of the morphism

1—s: ®i>0 Xi = ®i>0Xi,

where s is the given map from each X; to X;11 [4]. The spectrum S%O is cellular in
SH(k), because it can be defined as the homotopy colimit of the sequence

0,0 0,0 .
S ST
We can think of SH(k; Q) as a full subcategory of SH (k), with the rationaliza-
tion of a spectrum X defined as X A S&’O, or equivalently as the homotopy colimit
of

X—X—-.
2 3

It is clear that rationalization SH (k) — SH(k; Q) takes cellular objects in SH (k) to
cellular objects in SH (k; Q) (meaning objects in the smallest localizing subcategory
of SH(k; Q) that contains all rational spheres Sgb).

Suppose that [[°_; S%O is cellular in SH (k). Then the rationalization (][] _, S’%O)Q
is cellular in SH(k; Q). From the definition of the rationalization as a homotopy
colimit, we see that this rationalization is simply [[_, 5’22’0. We conclude that
I S%O is cellular in SH(k; Q).

Since k is algebraically closed, —1 is a sum of squares in k. Under that assump-
tion, Cisinski and Déglise deduced from Morel’s work that SH (k; Q) is equivalent to
the derived category of motives, DM (k; Q) [6, Corollary 16.2.14]. So [],~_, Q(0) is
a mixed Tate motive in DM (k; Q), contradicting Corollary 4.3. So in fact []7_, Sgo
in SH (k) is not cellular. As a result, the subcategory of cellular spectra is not closed
under products in SH(k).

10



As a result, the inclusion f* of cellular spectra into SH(k) does not have a
left adjoint. The inclusion does have a right adjoint f., which in turn has a right
adjoint f(!), by Theorem 2.3. Since the subcategory of cellular spectra is rigidly-
compactly generated and f* does not have a left adjoint, it follows from Balmer,
Dell’Ambrogio, and Sanders that f() does not have a right adjoint [3, Theorem
3.3]. O

6 Effective motives

Here we show that the inclusion from the subcategory of effective motives D Mg (k; R)
to DM (k; R) does not have a left adjoint or a three-fold right adjoint, in many cases.
For the three-fold right adjoint, this is a reformulation of an example by Ayoub.
The right adjoint f, of the inclusion f* has been used by Huber and Kahn under
the name v<q (or step 0 of the slice filtration) [12].

Theorem 6.1. Let k be an algebraically closed field of characteristic zero. Let f* be
the inclusion of DMg(k, Q) into DM (k,Q). Then the right adjoint f. of f* does
not preserve compact objects; the right adjoint fV) of f, does not preserve arbitrary
direct sums; and ) does not have a right adjoint:

fAL A

Proof. Ayoub showed that f.: DM (k,Q) — DM.g(k,Q) does not preserve com-
pact objects, for k algebraically closed of characteristic zero with sufficiently large
transcendence degree. He used Clemens’s example of a complex 3-fold X whose
Griffith group has infinite rank [11, Proposition A.1]. The argument works for any
algebraically closed field of characteristic zero by using instead Schoen’s example
of a 3-fold over Q whose Griffiths group has infinite rank [20]. It follows that the
right adjoint f() of f, does not preserve arbitrary direct sums, by Theorem 2.2.
Therefore, f(1) does not have a right adjoint. O

A simpler argument shows that the inclusion f* from DMcg(k; R) to DM (k; R)
does not have a left adjoint in most cases:

Theorem 6.2. Let k be a field, and let R be a commutative noetherian ring in which
the exponential characteristic of k is invertible. If the inclusion from DM g(k; R)
to DM (k; R) has a left adjoint, then every motivic cohomology group H? (X, R(7))
is a finitely generated R-module for every smooth projective variety X over k. This
fails, for example, if R = Q and k is not an algebraic extension of a finite field; or
if R =17 and k is an infinite field; or if R =F, for a prime number congruent to 1
modulo 3 and k is an algebraically closed field of characteristic zero; or if R = F,
for any prime number p and k = C.

Proof. Suppose that the inclusion f* from DMcg(k; R) to DM (k; R) has a left
adjoint f(). Since f* preserves arbitrary direct sums, f(;) must preserve compact
objects, by Theorem 2.2.

Let X be a smooth projective variety over k. Let j be an integer. By the
isomorphism between motivic cohomology and higher Chow groups, H’ (X, R(0)) is
isomorphic to CH%(X, —j; R), which is R if j = 0 and zero otherwise. Let N be a
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compact object in DMeg(k; R). By Theorem 1.1, N belongs to the smallest thick
subcategory of DM (k; R) that contains M (X) for all smooth projective varieties
X over k. Since R is noetherian, the exact sequences for Hom in a triangulated
category yield that Hom(N, R(0)) = H(N, R(0)) is a finitely generated R-module.

For every object A in DM (k; R), the definition of f(;) gives a map A — f(1)(A)
which is universal for maps from A into DMg(k; R). In particular, H%(f(1)(A4), R(0))
maps isomorphically to H°(A, R(0)). Let A be compact in DM (k; R); then f(1)(M)
is compact in DMeg(k; R). So H°(M, R(0)) is a finitely generated R-module. Since
HI(X,R(i)) = H(M(X)(—1i)[—j], R(0)) for any smooth projective variety X over
k and integers i and j, it follows that all motivic cohomology groups of smooth
projective varieties with R coefficients are finitely generated.

It remains to show that this conclusion fails for the pairs (k, R) mentioned in
the theorem. First, if R = Q, then the Q-vector space H'(k,Q(1)) = k* ® Q has
infinite dimension if the field k is not an algebraic extension of a finite field. Next,
if R = Z, then the abelian group H'(k,Z(1)) = k* is not finitely generated if k is
an infinite field. Finally, if R = F,, for a prime number p = 1 (mod 3) and k is
algebraically closed of characteristic zero, then Schoen found a smooth projective
3-fold X over k with CH?(X)/p infinite [21, Theorem 0.2]. If R = F, for any
prime number p, I exhibited a smooth complex projective 3-fold X with CH?(X)/p
infinite [26]. O

7 The dimension filtration on motives

Let Do(k; R) (also called d<gDM (k; R) by analogy with Voevodsky’s notation [27,
section 3.4]) be the smallest localizing subcategory of DM (k; R) that contains
M(X)(=b) for all smooth projective varieties X over k and all integers b such
that b > dim(X). The subcategory Dy(k; R) was useful for constructing and study-
ing the compactly supported motive of a quotient stack over k, for example of a
classifying stack BG [25, section 8§].

In this section we show that the inclusion of Dy(k; R) into DM (k; R) does not
have a left adjoint or a three-fold right adjoint, in many cases. Ayoub and Barbieri-
Viale gave the first example where the left adjoint does not exist [2, section 2.5].
These examples imply that the subcategory Dg(k; R) need not be closed under
products in DM (k; R), which answers a question in [25], after Lemma 8.8.

One can think of the nonexistence of a left adjoint as meaning that certain
generalizations of the Albanese variety do not exist. Indeed, Ayoub and Barbieri-
Viale, generalizing an earlier result by Barbieri-Viale and Kahn, showed that for a
field k, the inclusion

d<1DMeg(k; Q) — DMesi(k; Q)

has a left adjoint LAlb, related to the Albanese variety of a smooth projective
variety [2, Theorem 2.4.1].

Theorem 7.1. (1) The subcategory Dy(C; Q) is not closed under products in DM (C, Q),
and the inclusion functor from Dy(C; Q) to DM (C; Q) does not have a left adjoint.

(2) Let k be an algebraically closed field of characteristic zero, and let p be a
prime number congruent to 1 modulo 3. Then the subcategory Do(k;F,) is not
closed under products in DM (k;F¥y), and the inclusion functor from Do(k;F)p) to
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DM (k;F,) does not have a left adjoint. If k = C, then this holds for any prime
number p.

It would be interesting to find out whether the inclusion of Dy (k; R) into DM (k; R)
has a left adjoint for other fields & and commutative rings R.

Proof. (1) Ayoub and Barbieri-Viale showed that the inclusion
dSQDMeff(C; Q) — DMeff(C; Q)

does not have a left adjoint, using Clemens’s example of a complex variety with
Griffiths group of infinite rank [2, section 2.5]. (In contrast to Theorem 6.1, it
is not clear how to generalize Ayoub and Barbieri-Viale’s argument to arbitrary
algebraically closed fields of characteristic zero.) The same argument gives that the
inclusion of Dy(C; Q) into DM (C; Q) does not have a left adjoint. Equivalently, by
Theorem 2.1, the subcategory Dy(C; Q) is not closed under products in DM (C; Q).

(2) Let R = F,,. Let f*: Dy — DM (k; R) be the inclusion. Since Dy(k; R) is
the smallest localizing subcategory containing a certain set of compact objects, the
inclusion f* has a right adjoint f.. Suppose that f* also has a left adjoint f(;). Since
[* preserves arbitrary direct sums, f(;) must take compact objects in DM (k; R) to
compact objects in Dg, by Theorem 2.2.

Let X be a smooth projective 3-fold over k. Then M (X)(—2) is compact in
DM (k; R), and so f1)(M(X)(—2)) is compact in Dy. By section 1,

CH?*(X;R) = H*(X, R(2))
= Hompp (M(X), R(2)[4])
>~ Hompy (M (X)(—=2)[—-4], f*(R))

(which makes sense because the object R is in D)
= Homp, (f(1)(M(X)(=2)[-4]), R).

I claim that Homp, (N, R) is finite for every compact object N in Dy. We know
that N can be obtained from the objects M (Y)(j)[b] with Y smooth projective over
k, b€ Z and j + dim(Y) < 0 by finitely many cones and taking a summand. So
it suffices to show that Homp, (M (Y)(7)[b], R) is finite for every smooth projective
variety Y over k, b € Z, and j+dim(Y) < 0. Equivalently, we want to show that the
motivic cohomology group H®(Y, R(a)) is finite for all smooth projective varieties
Y over k, all b € Z, and all ¢ > dim(Y). This was proved by Suslin: the group
mentioned is isomorphic to etale cohomology HY (Y,Z/p(a)) and hence is finite,
using that k is algebraically closed [23, Corollary 4.3].

Thus, by two paragraphs back, C H?(X)/p is finite for every smooth projective
3-fold X over k. This contradicts the fact that there is a smooth projective 3-fold
X over k with CH?(X)/p infinite, under our assumptions on k and p [21, Theorem
0.2], [26]. We conclude that the inclusion of Dy (k; R) into DM (k; R) does not have
a left adjoint. O

A simpler argument shows that the inclusion f* from Dy(k; R) to DM (k; R)
does not have a three-fold right adjoint in most cases:
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Theorem 7.2. Let k be a field, and let R be a commutative noetherian ring in which
the exponential characteristic of k is invertible. Suppose that there is a smooth pro-
jective k-variety such that some motivic cohomology group H’ (X, R(i)) is not finitely
generated as an R-module. Let f* be the inclusion of Do(k, R) into DM (k, R).
Then the right adjoint f. of f* does not preserve compact objects; the right adjoint
fO of £, does not preserve arbitrary direct sums; and f does not have a right
adjoint:

fALAFY

These negative results hold, for example, if R = Q and k is not an algebraic
extension of a finite field; or R = Z and k is an infinite field; or R = F,, for any
prime number p and k = C; or R = F,, with p a prime number congruent to 1
modulo 3 and k is an algebraically closed field of characteristic zero.

Proof. Suppose that there is a smooth projective variety X over k such that some
motivic cohomology group H’(X, R(i)) is not finitely generated as an R-module.
We will show that the right adjoint f.: DM (k; R) — Dgo(k; R) does not preserve
compact objects. Given that, the right adjoint f(1) of f, does not preserve arbitrary
direct sums, by Theorem 2.2. Therefore, f(!) does not have a right adjoint.

If f. preserves compact objects, then for every compact object M in DM (k; R),
we have a compact object f,M in Dy(k; R) and a map f.M — M which is uni-
versal for maps from Dy(k; R) to M. In particular, since R(0) is in Dy(k; R),
Ho(f«M,R(0)) — Ho(M, R(0)) is a bijection.

Let X be a smooth projective variety of dimension n, and let b be an integer
such that b > n. (The objects N = M(X)(—b) of this form generate Dy(k; R).)
I claim that the R-module Ho(N[—j]; R(0)) is finitely generated for all integers j.
This group is H;(X, R(b)). By the isomorphism of motivic homology with higher
Chow groups (see section 1), this group is zero if b > n, and

H;(X,R(n)) = CH"(X,j — 2n; R)

~ )R itj=2n
10 otherwise.

Thus Hy(N[—j]; R(0)) is either 0 or R, and hence is a finitely generated R-module.

Every compact object in Dy(k; R) belongs to the smallest thick subcategory that
contains M (X)(—b) for all smooth projective varieties X over k and all b > dim(X)
(Theorem 1.1). Therefore, the long exact sequences for Hom in a triangulated
category, plus the fact that R is noetherian, yield that the R-module Hy(N, R(0))
is finitely generated for all compact objects N in Do(k;R). If f() has a right
adjoint, then (as explained above) it would follow that the R-module Hy (N, R(0))
is finitely generated for all compact objects N in DM (k; R). In particular, all
motivic homology groups of smooth projective k-varieties with R coefficients would
be finitely generated, as we want.

Finite generation of motivic cohomology fails for the pairs (k, R) mentioned in
the theorem, by the proof of Theorem 6.2. O
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8 Mixed Tate motives over finite fields

We now show that some of the questions in this paper would have a different answer
for k algebraic over a finite field, assuming the Tate-Beilinson conjecture. I do not
know what to expect over number fields k, or with k replaced by a regular scheme
of finite type over Z.

Let p be a prime number. The strong Tate conjecture over F, says that for
smooth projective varieties X over F, and a prime number [ # p, the general-
ized eigenspace for the eigenvalue 1 of Frobenius on H 22'(Xﬁ, Q,(7)) is spanned
by codimension-¢ algebraic cycles on X with Q; coefficients. The Tate-Beilinson
conjecture over F, is the combination of the strong Tate conjecture over F,, with
the conjecture that rational and numerical equivalence coincide, for algebraic cycles
with Q coefficients on smooth projective varieties over F),.

Theorem 8.1. Let k be an algebraic extension field of ¥p,. Assume the Tate-
Beilinson congecture. Then the inclusion f* of the subcategory DMT(k; Q) into
DM (k; Q) is a Frobenius functor. That is, the right adjoint functor fy from DM (k; Q)
to DMT (k; Q) is also left adjoint to f*. It follows that the subcategory DMT (k; Q)
is closed under both direct sums and products in DM (k; Q).

Thus, given Tate-Beilinson, there is an infinite sequence of adjoint functors,
consisting of f* and f, in turn:

A A A A A

As far as I know, the Bass conjecture (that K-groups of smooth varieties over
F, are finitely generated) would not be enough to imply that f* has a left adjoint.
In particular, Bruno Kahn explained to me that the Bass conjecture is not known
to imply Parshin’s conjecture, which is needed for the following argument. By
contrast, the analog of the Bass conjecture for etale motivic cohomology would
imply Parshin’s conjecture.

Proof. Let k be an algebraic extension field of Fj,, and let X be a smooth pro-
jective variety over k. Given the Tate-Beilinson conjecture, the Chow groups
CH*(X, Q) are finite-dimensional Q-vector spaces (and in fact dimg CH(X, Q) <
dimq, HZ (X7, Q;)). Also, Geisser showed that the Tate-Beilinson conjecture im-
plies Parshin’s conjecture that K;(X)® Q = 0 for ¢ > 0 [10, Theorem 1.2]. Equiv-
alently, H7(X,Q(i)) = 0 for j # 2i.

Let f*: DMT(k;Q) — DM (k; Q) be the inclusion. Since DMT(k; Q) is the
smallest localizing subcategory containing a certain set of compact objects, the
inclusion f* has a right adjoint f. (by Lemma 2.3). We also write N — C(N)
for fi. To prove that f* also has a left adjoint f(y), it suffices to show that f*
has a three-fold right adjoint, by Theorem 2.4. Equivalently, we have to show that
f) preserves arbitrary direct sums (Theorem 2.1), or again that f, (also called
N — C(N)) preserves compact objects (Theorem 2.2).

The subcategory of compact objects in DM (k; Q) is the smallest thick subcat-
egory that contains M (X)(b) for all smooth projective varieties X over k and all
integers b. So it suffices to show that C'(M (X)(b)) is compact under these assump-
tions. Since DMT'(k; Q) is closed under tensoring with Q(b), it suffices to show
that C(M (X)) is compact for every smooth projective k-variety X.
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As discussed above, our assumptions give that the Q-vector space H’ (X, Q(i))
is zero if j # 2i and finite-dimensional if j7 = 2i. Also, Quillen’s calculation of the
K-theory of finite fields [17, Theorem 8] gives that Homp s 1:q)(Q(0), Q(i)[j]) is Q
if i = j = 0 and zero otherwise. It follows that there is a finite direct sum N of
Tate motives Q(4)[2¢] and a morphism N — M (X)) that induces an isomorphism on
motivic homology groups. So N is isomorphic to C'(M (X)), and we have shown that
C(M(X)) is compact. This completes the proof that the inclusion of DMT'(k; Q)
into DM (k; Q) has a left adjoint as well as a right adjoint.

Finally, we want to show that f* is a Frobenius functor, that is, that the right
adjoint fi to the inclusion f* is also left adjoint to f*. We know from Lemma 2.3
that f, has a right adjoint f(1). Recall that we use the notation N — C(N) for f,.
By Balmer, Dell’Ambrogio, and Sanders, the object wy = f(1)(Q(0)) (the relative
dualizing object for f*) is characterized by the existence of a natural bijection

HOHIDMT(C(N), Q(O)) = HOHIDM(N, OJf)

for all N in DM (k; Q) [3, Definition 1.4]. Given that f* has a left adjoint f(;), f*
is a Frobenius functor if and only if wy = Q(0) [3, Remark 1.15].

Thus, it suffices to show that for N in DM (k; Q), the map C(IN) — N induces a
bijection H*(N, Q(0)) — H°(C(N), Q(0)). Let S be the full subcategory of objects
N such that H°(C(N)[j],Q(0)) — HO(N[j], Q(0)) is a bijection for all integers j.
Clearly S is a triangulated subcategory. Also, N — C(NN) preserves arbitrary direct
sums, by Theorems 2.1 and 2.3. It follows that S is a localizing subcategory, using
that Ho(®©N,, Q(0)) = [T H(N,, Q(0)) for any set of objects N,. So S is equal to
DM (k; Q) as we want if S contains M (X )(—b) for all smooth projective varieties
X and all integers —b.

To prove this, we use that, by the analysis of C'(M (X)) above, the motive
N = M(X)(—b)[—c] for integers b and c satisfies

C(N) = a;Q(j —b)[2j — ] ® CH;(X, Q).
We have
HO(N,Q(0)) = H(X, Q(b))
~ )0 if ¢ #£2b
| CHY(X:Q) if c=2b.
On the other hand, by the description of C'(N) above,

HY(C(N), Q) = {0 e

CHy(X;Q)* if ¢ =20.
Since rational and numerical equivalence coincide (by the Tate-Beilinson conjec-
ture), the natural map CH?(X; Q) — CH,(X;Q)* is a bijection. This shows that
M(X)(—0) is in the subcategory S for all smooth projective varieties X over k and
all integers b. As a result, S is equal to DM (k; Q). That is, the inclusion from
DMT(k;Q) into DM (k; Q) is a Frobenius functor. O
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