
Hodge theory of classifying stacks

Burt Totaro

This paper creates a correspondence between the representation theory of alge-
braic groups and the topology of Lie groups. In more detail, we compute the Hodge
and de Rham cohomology of the classifying space BG (defined as étale cohomology
on the algebraic stack BG) for reductive groups G over many fields, including fields
of small characteristic. These calculations have a direct relation with representation
theory, yielding new results there. Eventually, p-adic Hodge theory should provide a
more subtle relation between these calculations in positive characteristic and torsion
in the cohomology of the classifying space BGC.

For the representation theorist, this paper’s interpretation of certain Ext groups
(notably for reductive groups in positive characteristic) as Hodge cohomology groups
suggests spectral sequences that were not obvious in terms of Ext groups (Proposi-
tion 9.3). We apply these spectral sequences to compute Ext groups in new cases.
The spectral sequences form a machine that can lead to further calculations.

One main result is an isomorphism between the Hodge cohomology of the clas-
sifying stack BG and the cohomology of G as an algebraic group with coefficients in
the ring O(g) = S(g∗) of polynomial functions on the Lie algebra g (Theorem 3.1):

H i(BG,Ωj) ∼= H i−j(G,Sj(g∗)).

This was shown by Bott over a field of characteristic 0 [8], but in fact the iso-
morphism holds in any characteristic, and even for group schemes over the integers.
More generally, we give an analogous description of the equivariant Hodge cohomol-
ogy of an affine scheme (Theorem 2.1). This was shown by Simpson and Teleman
in characteristic 0 [29, Example 6.8(c)].

Using that isomorphism, we improve the known results on the cohomology of
the representations Sj(g∗). Namely, by Andersen, Jantzen, and Donkin, we have
H>0(G,O(g)) = 0 for a reductive group G over a field of characteristic p if p is a
“good prime” for G [13, Proposition and proof of Theorem 2.2], [21, II.4.22]. We
strengthen that to an “if and only if” statement (Theorem 9.1):

Theorem 0.1. Let G be a reductive group over a field k of characteristic p ≥ 0.
Then H>0(G,O(g)) = 0 if and only if p is not a torsion prime for G.

For example, this cohomology vanishing holds for every symplectic group Sp(2n)
in characteristic 2 and for the exceptional group G2 in characteristic 3; these are
“bad primes” but not torsion primes.

Finally, we address the problem of computing the Hodge cohomology and de
Rham cohomology of BG, especially at torsion primes. At non-torsion primes, we
have a satisfying result, proved using ideas from topology (Theorem 9.2):
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Theorem 0.2. Let G be a split reductive group over Z, and let p be a non-
torsion prime for G. Then Hodge cohomology H∗

H(BG/Z) and de Rham cohomology
H∗

dR(BG/Z), localized at p, are polynomial rings on generators of degrees equal to
2 times the fundamental degrees of G. These graded rings are isomorphic to the
cohomology of the topological space BGC with Z(p) coefficients.

At torsion primes p, it is an intriguing question how the de Rham cohomology
of BGFp is related to the mod p cohomology of the topological space BGC. We
show that these graded rings are isomorphic for G = SO(n) with p = 2 (Theorem
11.1). On the other hand, we find that

dimF2 H
32
dR(B Spin(11)/F2) > dimF2 H

32(B Spin(11)C,F2)

(Theorem 12.1). It seems that no existing results on integral p-adic Hodge theory
address the relation between these two rings (because the stack BG is not proper
over Z), but the theory may soon reach that point. In particular, the results of
Bhatt-Morrow-Scholze suggest that the de Rham cohomology H i

dR(BG/Fp) may
always be an upper bound for the mod p cohomology of the topological space BGC

[6].
This work was supported by NSF grant DMS-1701237. Bhargav Bhatt convinced

me to change some definitions in an earlier version of this paper: Hodge and de
Rham cohomology of a smooth stack are now defined as étale cohomology. Thanks
to Johan de Jong, Eric Primozic, Raphaël Rouquier, and the referees for their
comments. Finally, I am grateful to Jungkai Chen for arranging my visit to National
Taiwan University, where this work was completed.

1 Notation

The fundamental degrees of a reductive group G over a field k are the degrees of the
generators of the polynomial ring S(X∗(T ) ⊗Z Q)W of invariants under the Weyl
group W , where X∗(T ) is the character group of a maximal torus T . For k of
characteristic zero, the fundamental degrees of G can also be viewed as the degrees
of the generators of the polynomial ring O(g)G of invariant functions on the Lie
algebra. Here are the fundamental degrees of the simple groups [17, section 3.7,
Table 1]:

Al 2, 3, . . . , l + 1
Bl 2, 4, 6, . . . , 2l
Cl 2, 4, 6, . . . , 2l
Dl 2, 4, 6, . . . , 2l − 2; l
G2 2, 6
F4 2, 6, 8, 12
E6 2, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30

For a commutative ring R and j ≥ 0, write Ωj for the sheaf of differential forms
over R on any scheme over R. For an algebraic stack X over R, Ωj is a sheaf of
abelian groups on the big étale site of X. (In particular, for every scheme Y over X
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of “size” less than a fixed limit ordinal α [32, Tag 06TN], we have an abelian group
Ωj(Y/R), and these groups form a sheaf in the étale topology.) We define Hodge
cohomology H i(X,Ωj) to mean the étale cohomology of this sheaf [32, Tag 06XI].
In the same way, we define de Rham cohomology of a stack, H i

dR(X/R), as étale
cohomology with coefficients in the de Rham complex over R. (If X is an algebraic
space, then the cohomology of a sheaf F on the big étale site of X coincides with the
cohomology of the restriction of F to the small étale site, the latter being the usual
definition of étale cohomology for algebraic spaces [32, Tag 0DGB].) For example,
this gives a definition of equivariant Hodge or de Rham cohomology, H i

G(X,Ωj) or
H i

G,dR(X/R), as the Hodge or de Rham cohomology of the quotient stack [X/G].
Essentially the same definition was used for smooth stacks in characteristic zero by
Teleman and Behrend [33, 3].

In particular, we have the Hodge spectral sequence for a stackX over R, meaning
the “hypercohomology” spectral sequence [32, Tag 015J] associated to the de Rham
complex of sheaves on X, 0 → Ω0 → Ω1 → · · · :

Eij
1 = Hj(X,Ωi) ⇒ H i+j

dR (X/R).

This definition of Hodge and de Rham cohomology is the “wrong” thing to con-
sider for an algebraic stack which is not smooth over R. For non-smooth stacks, it
would be better to define Hodge and de Rham cohomology using some version of
Illusie and Bhatt’s derived de Rham cohomology, or in other words using the cotan-
gent complex [5, section 4]. Section 2 has further comments on possible definitions.
In this paper, we will only consider Hodge and de Rham cohomology for smooth
stacks over a commutative ring R. An important example for the paper is that the
classifying stack BG is smooth over R even for non-smooth group schemes G [32,
Tag 0DLS]:

Lemma 1.1. Let G be a group scheme which is flat and locally of finite presentation
over a commutative ring R. Then the algebraic stack BG is smooth over R. More
generally, for a smooth algebraic space X over R on which G acts, the quotient
stack [X/G] is smooth over R.

Let X be an algebraic stack over R, and let U be an algebraic space with
a smooth surjective morphism to X. The C̆ech nerve C(U/X) is the simplicial
algebraic space:

U
��

U ×X U��
��

��
��

U ×X U ×X U · · ·��
��
��

For any sheaf F of abelian groups on the big étale site ofX, the étale cohomology
of X with coefficients in F can be identified with the étale cohomology of the
simplicial algebraic space C(U/X) [32, Tags 06XJ, 0DGB]. In particular, there is a
spectral sequence:

Eij
1 = Hj

et(U
i+1
X , F ) ⇒ H i+j

et (X,F ).

Write H i
H(X/R) = ⊕jH

j(X,Ωi−j) for the Hodge cohomology of an algebraic
stack X over R, graded by total degree.

Let G be a group scheme which is flat and locally of finite presentation over a
commutative ring R. Then the Hodge cohomology of the stack BG can be viewed,
essentially by definition, as the ring of characteristic classes in Hodge cohomology
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for principal G-bundles (in the fppf topology). Concretely, for any scheme X over
R, a principal G-bundle over X determines a morphism X → BG of stacks over R
and hence a pullback homomorphism

H i(BG,Ωj) → H i(X,Ωj).

Note that for a scheme X over R, H i(X,Ωj) can be computed either in the Zariski
or in the étale topology, because the sheaf Ωj (on the small étale site of X) is
quasi-coherent [32, Tags 03OY, 0DGB].

For any scheme X over a commutative ring R, there is a simplicial scheme EX
whose space (EX)n of n-simplices is X{0,...,n} = Xn+1 [11, 6.1.3]. For a group
scheme G over R, the simplicial scheme BsimpG over R is defined as the quotient of
the simplicial scheme EG by the free left action of G:

Spec(R) ��G
��
�� ��

��
G2 · · ·��

��
��

If G is smooth over R, then Hodge cohomology H i(BG,Ωj) as defined above
can be identified with the cohomology of BsimpG, because this simplicial scheme
is the C̆ech nerve of the smooth surjective morphism Spec(R) → BG. For G not
smooth, one has instead to use the C̆ech nerve of a smooth presentation of BG.
See for example the calculation of the Hodge cohomology of Bμp in characteristic
p, Proposition 10.1.

It is useful that we can compute Hodge cohomology via any smooth presentation
of a stack. For example, let H be a closed subgroup scheme of a smooth group
scheme G over a commutative ring R, and assume that H is flat and locally of finite
presentation over R. Then G/H is an algebraic space with a smooth surjective
morphism G/H → BH over R, and so we can compute the Hodge cohomology of
the stack BH using the associated C̆ech nerve. Explicitly, that is the simplicial
algebraic space EG/H, and so we have:

Lemma 1.2.
H i(BH,Ωj) ∼= H i(EG/H,Ωj).

Note that the cohomology theories we are considering are not A1-homotopy
invariant. Indeed, Hodge cohomology is usually not the same for a scheme X as for
X × A1, even over a field of characteristic zero. For example, H0(Spec(k), O) = k,
whereasH0(A1

k, O) is the polynomial ring k[x]. In de Rham cohomology, H0
dR(A

1/k)
is just k if k has characteristic zero, but it is k[xp] if k has characteristic p > 0.

2 Equivariant Hodge cohomology and functions on the
Lie algebra

In this section, we identify the Hodge cohomology of a quotient stack with the
cohomology of an explicit complex of vector bundles (Theorem 2.1). As a special
case, we relate the Hodge cohomology of a classifying stack BG to the cohomology
of G as a group scheme (Corollary 2.2). In this section, we assume G is smooth.
Undoubtedly, various generalizations of the statements here are possible. In partic-
ular, we will give an analogous description of the Hodge cohomology of BG for a
non-smooth group G in Theorem 3.1.
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The main novelty is that these results hold in any characteristic. In particular,
Theorem 2.1 was proved in characteristic zero by Simpson and Teleman [29, Exam-
ple 6.8(c)]. As discussed in section 1, equivariant Hodge cohomology H i

G(X,Ωj) is
defined as cohomology of the quotient stack [X/G].

Theorem 2.1. Let G be a smooth affine group scheme over a commutative ring
R. Let G act on a smooth affine scheme X over R. Then there is a canonical
isomorphism

H i
G(X,Ωj) ∼= H i

G(X,ΛjL[X/G]),

where ΛjL[X/G] is the complex of G-equivariant vector bundles on X, in degrees 0
to j:

0 → Ωj
X → Ωj−1

X ⊗ g∗X → · · · → Sj(g∗X) → 0,

associated to the map gX → TX.

Here the action of G on X gives an action of the Lie algebra g by vector fields
on X by differentiating the action G×R X → X at 1 ∈ G(R). This can be viewed
as a map from the trivial vector bundle gX over X to the tangent bundle TX. (The
action of G on gX is nontrivial, coming from the adjoint representation of G on g.)
Dualizing gives the map Ω1

X → g∗X used in Theorem 2.1.
The isomorphism of Theorem 2.1 expresses the cohomology over [X/G] of the

“big sheaf” Ωj , which is not a quasi-coherent sheaf on [X/G], in terms of the
cohomology of a complex of quasi-coherent sheaves on [X/G]. (Here differentials
are over R unless otherwise stated. The sheaf Ωj on the big étale site of [X/G] is
not quasi-coherent for j > 0 because, for a morphism f : Y → Z of schemes over
[X/G], the pullback map f∗Ωj

Z/R → Ωj
Y/R need not be an isomorphism.)

One might prefer to take the right side of Theorem 2.1 as a definition of Hodge
cohomology for algebraic stacks. This could be done without any smoothness as-
sumption. Namely, Olsson defined the cotangent complex LX/Y as an inverse sys-
tem for any quasi-compact and quasi-separated morphism f : X → Y of algebraic
stacks, correcting the approach of Laumon and Moret-Bailly [27, section 8]. One
could then define Hodge cohomology of X over Y as Rif∗(LΛjLX/Y ) (perhaps
“Hodge-completed” in the sense of [5]). For X and G smooth over Y = Spec(R),
this definition agrees with the right side of Theorem 2.1. using that

L[X/G]/R
∼= [Ω1

X → g∗X ]

by the transitivity triangle [27, 8.1.5]. We have preferred to take the left side of
Theorem 2.1 as the definition, using “big sheaves”, because that definition is directly
related to the cohomology of simplicial spaces as discussed in section 1. As a result,
Theorem 2.1 makes a nontrivial connection between the two approaches.

Theorem 2.1 is useful already for X = Spec(R), where it gives the following
result, proved over a field of characteristic zero by Bott [8].

Corollary 2.2. Let G be a smooth affine group scheme over a commutative ring
R. Then there is a canonical isomorphism

H i(BG,Ωj) ∼= H i−j(G,Sj(g∗)).
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The group on the left is an étale cohomology group of the algebraic stack BG
over R, as discussed in section 1. On the right is the cohomology of G as a group
scheme, defined by H i(G,M) = ExtiG(R,M) for a G-module M [21, section 4.2].

Proof. (Corollary 2.2) This follows from Theorem 2.1 applied to the stack BG =
[Spec(R)/G]. The deduction uses two facts. First, a quasi-coherent sheaf on BG
is equivalent to a G-module [32, Tag 06WS]. Second, for a G-module M , the co-
homology of the corresponding quasi-coherent sheaf on the big étale site of BG
coincides with its cohomology as a G-module, H∗(G,M), since both are computed
by the same C̆ech complex (section 1 for the sheaf, [21, Proposition 4.16] for the
module).

Proof. (Theorem 2.1) The adjoint representation ofG on g determines aG-equivariant
vector bundle gX on X. The action of G on X gives a morphism Ω1

X → g∗X
of G-equivariant quasi-coherent sheaves (in fact, vector bundles) on X. Consider
these equivariant sheaves as quasi-coherent sheaves on [X/G], according to [32, Tag
06WS].

We will define a map from the complex Ω1
X → g∗X of quasi-coherent sheaves on

[X/G] (in degrees 0 and 1) to the sheaf Ω1, in the derived categoryD([X/G]et, O[X/G])
of O[X/G]-modules on the big étale site [X/G]et. To do this, define another sheaf S on
the big étale site of [X/G] by: for a scheme U over [X/G], let E = U×[X/G]X (so that

π : E → U is a principal G-bundle), and define S(U) = H0(E,Ω1)G. (This space of
invariants means the equalizer of the pullbacks via the two morphisms G×E → E,
the projection and the group action.) Since G is smooth over R, there is a short
exact sequence of quasi-coherent sheaves on E, 0 → π∗Ω1

U → Ω1
E → Ω1

E/U → 0.
These are G-equivariant sheaves on E, and so this can be viewed as the pullback of
a short exact sequence of sheaves on U , known as the Atiyah sequence [2, Theorem
1], [20, VII.2.4.2.13–14]:

0 → Ω1
U → π∗(Ω1

E)
G → Eg∗U → 0.

Here Eg∗U is the vector bundle on U associated to the G-bundle E → U and the
action of G on g∗. Since the G-bundle E → U is arbitrary, we have produced an
exact sequence

0 → Ω1 → S → g∗X → 0

of sheaves on the big étale site of [X/G]. By definition of the Atiyah sequence, the
map from S(U) = H0(E,Ω1

E)
G to H0(U, Eg∗U ) = H0(E, g∗E)

G arises from the map
Ω1
E → g∗E given by differentiating the action of G on E.
Thus the sheaf Ω1 on [X/G] is isomorphic in the derived category to the complex

S → g∗X (in cohomological degrees 0 and 1) on [X/G]. Therefore, to produce the
map inD([X/G]et, O[X/G]) promised above, it suffices to define a map α of complexes
of sheaves on [X/G]et:

0 �� Ω1
X

��

��

g∗X ��

��

0

0 �� S �� g∗X �� 0.

(As above, g∗X denotes the vector bundle on [X/G] associated to the representation
of G on g∗, and Ω1

X denotes the vector bundle on [X/G] corresponding to the G-
equivariant vector bundle of the same name on X.) It is now easy to produce the
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map α of complexes: for any scheme U over [X/G], with associated principal G-
bundle E → U and G-equivariant morphism h : E → X, the map from Ω1

X(U) =
H0(E, h∗Ω1

X)G to S(U) = H0(E,Ω1
E)

G is the pullback, and the map from Eg∗U to
itself is the identity. In words, the difference between Ω1

X(U) and S(U) comes from
the difference between (1) the pullback to E of the sheaf of differentials of X over
R and (2) the sheaf of differentials on E over R.

The commutativity of the diagram above follows from the G-equivariance of the
morphism h : E → X, since the two horizontal maps arise by differentiating the
actions of G on X and on E.

For any j ≥ 0, taking the jth derived exterior power over O[X/G] of this map of
complexes gives a map from the Koszul complex

0 → Ωj
X → Ωj−1

X ⊗ g∗X → · · · → Sj(g∗X) → 0

(in degrees 0 to j) of vector bundles on [X/G] to the big sheaf Ωj , inD([X/G]et, O[X/G]).
(The description of the derived exterior power of a 2-term complex of flat modules
as a Koszul complex follows from Illusie [18, Proposition II.4.3.1.6], by the same
argument used for derived divided powers in [20, Lemme VIII.2.1.2.1].) We want
to show that this map of complexes induces an isomorphism on cohomology over
[X/G].

By the exact sequence above for the big sheaf Ω1 on [X/G], we can identify the
big sheaf Ωj in the derived category with a similar-looking Koszul complex:

0 → Λj(S) → Λj−1(S)⊗ g∗X → · · · → Sj(g∗X) → 0.

We want to show that the map Λj(α) from the Koszul complex of vector bundles (in
the previous paragraph) to this complex of big sheaves induces an isomorphism on
cohomology over [X/G]. For each of these complexes, we have a spectral sequence
from the cohomology over [X/G] of the individual sheaves to the “hypercohomol-
ogy” over [X/G] of the whole complex [32, Tag 015J]. We have a map of spectral
sequences. Therefore, to show that the map on hypercohomology is an isomor-
phism, it suffices to show that the map on cohomology of the individual sheaves is
an isomorphism. That is, it suffices to show that for each 0 ≤ i ≤ j, the map

H∗
G(X,Ωi

X ⊗ Sj−i(g∗X)) → H∗
G(X,Λi(S)⊗ Sj−i(g∗X))

is an isomorphism. (Equivariant cohomology is defined as cohomology of the stack
[X/G], as discussed in section 1.)

By section 1, we can compute both of these cohomology groups on the C̆ech
nerve of the smooth surjective morphism X → [X/G]. This simplicial space can be
written as (X × EG)/G, where all products are over R:

X
��

X ×G��
��

		
		

X ×G2 · · · ,��
��
��

Since X is affine, all the spaces in this simplicial space are affine schemes. There-
fore, for any 0 ≤ i ≤ j, H∗

G(X,Ωi
X ⊗Sj−i(g∗X)) is the cohomology of the complex of

H0 of the sheaves Ωi
X ⊗OEG ⊗ Sj−i(g∗X) over the spaces making up (X ×EG)/G.

Likewise, H∗
G(X,Λi(S)⊗ Sj−i(g∗X)) is the cohomology of the complex of H0 of the

sheaves Λi(S)⊗ Sj−i(g∗X) over the spaces making up (X × EG)/G.
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Let

ϕ : H0(X × EG,Ωi
X ⊗OEG ⊗ Sj−i(g∗)) → H0(X × EG,Λi(S)⊗ Sj−i(g∗))

be the map of complexes of G-modules arising as H0 of sheaves over the spaces
making up X × EG. The boundary maps in these complexes are alternating sums
of pullbacks via the face maps in this simplicial space. By the previous paragraph,
we want to show that the induced map ϕG on G-invariants is a quasi-isomorphism.
Moreover, all of these G-modules arising as H0 are induced from representations of
the trivial group, because X ×Gr+1 → (X ×Gr+1)/G is a G-torsor with a section
for each r ≥ 0. Indeed, a choice of section of this G-torsor trivializes the torsor,
and so the group of sections of a G-equivariant sheaf of X×Gr+1 is the subspace of
invariants tensored with O(G), as a G-module. (Note that trivializations of these
G-torsors cannot be made compatible with the face maps of the simplicial space, in
general.) And every tensor product O(G)⊗R M for a G-module M is injective as a
G-module [21, Proposition 3.10]. It follows that H i(G,O(G) ⊗R M) = 0 for i > 0
[21, Lemma I.4.7].

Therefore, to show that the map ϕG of G-invariants is a quasi-isomorphism
(as we want), it suffices to show that the map ϕ is a quasi-isomorphism. And for
that, we can forget about the G-action. That is, we want to show that the map of
complexes with rth term (for r ≥ 0)

H0(X ×Gr+1,Ωi
X ⊗OGr+1 ⊗ Sj−i(g∗)) → H0(X ×Gr+1,Ωi

X×Gr+1 ⊗ Sj−i(g∗))

is a quasi-isomorphism.
We can write Ωi

X×Gr+1 as the direct sum ⊕i
l=0Ω

i−l
X ⊗ Ωl

Gr+1 . Moreover, this
splitting is compatible with pullback along the face maps of the simplicial scheme
X × EG. So the map of complexes above is the inclusion of a summand (corre-
sponding to l = 0). It remains to show that for every 0 < l ≤ i, the lth summand
is a complex Al with cohomology zero. Its rth term is

Ωi−l(X)⊗R Ωl(Gr+1)⊗R Sj−i(g∗).

To analyze the cohomology of the complex Al, we use the well-known “contractibil-
ity” of EG, in the following form:

Lemma 2.3. Let Y be a scheme over a ring R with Y (R) not empty. For any
sheaf M of abelian groups on the big étale site of R, the cohomology of the simplicial
scheme EY over R with coefficients in M coincides with the cohomology of Spec(R):

H i(EY,M) ∼= H i(R,M).

Proof. This is the standard result that a morphism Y → Spec(R) with a section
satisfies cohomological descent, via an explicit chain homotopy. More generally, it
would suffice to have sections locally on Spec(R) [1, Proposition Vbis.3.3.1].

Returning to the proof of Theorem 2.1: we want to show that for l > 0, the
complex Al has zero cohomology. Recall that the rth term of Al is

Ωi−l(X)⊗R Ωl(Gr+1)⊗R Sj−i(g∗),
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with boundary maps coming from the face maps of the simplicial scheme X ×EG.
By Lemma 1.2 (applied to the sheaf Ωl on the big étale site of R and the simplicial
scheme EG), the complex Al has cohomology equal to Ωi−l(X) ⊗ Ωl(SpecR) ⊗
Sj−i(g∗) in degree 0 and zero in other degrees. Since l > 0, the cohomology in
degree 0 also vanishes. The proof is complete.

The argument works verbatim to prove a twisted version of Corollary 2.2, where
the sheaf Ωj on BG is tensored with the vector bundle associated to any G-module.
The generalization will not be needed in this paper, but we state it for possible later
use.

Theorem 2.4. Let G be a smooth affine group scheme over a commutative ring R.
Let M be a G-module that is flat over R. Then there is a canonical isomorphism

H i(BG,Ωj ⊗M) ∼= H i−j(G,Sj(g∗)⊗M).

3 Flat group schemes

We now describe the Hodge cohomology of the classifying stack of a group scheme
G which need not be smooth, generalizing Corollary 2.2. The analog of the co-Lie
algebra g∗ in this generality is the co-Lie complex lG in the derived category of
G-modules, defined by Illusie [20, section VII.3.1.2]. Namely, lG is the pullback
of the cotangent complex of G → Spec(R) to Spec(R), via the section 1 ∈ G(R).
(The cotangent complex LX/Y of a morphism X → Y of schemes is an object of
the quasi-coherent derived category of X; if X is smooth over Y , then LX/Y is the
sheaf Ω1

X/Y .)

The cohomology of lG in degree 0 is the R-module ω1
G, the restriction of Ω1

G to
the identity 1 ∈ G(R); thus ω1

G is the co-Lie algebra g∗ if G is smooth over R. The
complex lG has zero cohomology except in cohomological degrees −1 and 0. If G is
smooth, then lG has cohomology concentrated in degree 0. More generally, a closed
immersion of G into a smooth R-group scheme H yields an explicit formula for lG
in the derived category of G-modules: lG is the complex

0 → I/mI → m/m2 → 0,

where I is the ideal defining G in H and m is the ideal defining the point 1 in H,
so that m/m2 = h∗ [19, section 4.2].

Theorem 3.1. Let G be a flat affine group scheme of finite presentation over a
commutative ring R. Then there is a canonical isomorphism

H i(BG,Ωj) ∼= H i−j(G,Sj(lG)).

This is an isomorphism of rings from H∗
H(BG/R) to H∗(G,S∗(lG)).

Proof. As discussed in section 1, we can compute H∗(BG,Ωj) as the étale cohomol-
ogy with coefficients in Ωj of the C̆ech nerve associated to any algebraic space U
over R with a smooth surjective morphism from U to the stack BG. The assump-
tion on G implies that BG is a quasi-compact algebraic stack over R, and so there
is an affine scheme U with a smooth surjective morphism U → BG [32, Tags 06FI
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and 04YA]. By Lemma 1.1, BG is smooth over R, and so U is smooth over R. Let
E = U ×BG Spec(R); then E is a smooth R-space with a free G-action such that
U = E/G. Also, E is affine because U and G are affine.

By section 1, H∗(BG,Ωj) is the étale cohomology with coefficients in Ωj of the
simplicial algebraic space EE/G:

E/G



E2/G��

��
��
��

E3/G · · ·��
��
��

By the properties of E and U above, En+1/G is an affine scheme for all n ≥ 0.
Since H∗(BG,Ωj) is the cohomology with coefficients in Ωj of the simplicial scheme
EE/G, this is the cohomology of the cochain complex

0 → Ωj(E/G) → Ωj(E2/G) → · · · .

As in the proof of Theorem 2.1, this complex is the G-invariants of the complex

0 → H0(E, π∗(Ωj
E/G)) → H0(E2, π∗(Ωj

E2/G
)) → · · · ,

where we write π for the morphism En+1 → En+1/G for any n ≥ 0.
For any smooth R-scheme X with a free action of G, I claim that there is a

canonical exact triangle in the quasi-coherent derived category of G-equivariant
sheaves on X:

π∗(Ω1
X/G) → Ω1

X → lG,

where we write lG for the pullback of the co-Lie complex lG from the stack BG over
R to X. To deduce this from Illusie’s results on the cotangent complex LX/Y , let
Y = X/G and S = Spec(R), and use the transitivity exact triangle for X → Y → S
in the derived category of X [18, II.2.1.5.2]:

π∗LY/S → LX/S → LX/Y .

Since X is smooth over S, so is Y (even though G need not be); so LY/S
∼= Ω1

Y/S

and LX/S
∼= Ω1

X/S . Also, since X → Y is a G-torsor in the fppf topology, LX/Y

is the pullback of an object lX/Y on Y [20, VII.2.4.2.8]. Furthermore, lX/Y in
the fppf topology is the pullback of lG via the morphism from Y to the stack BG
corresponding to the G-torsor X → Y [20, VII.3.1.2.6].

Applying this to En+1/G for any n ≥ 0, we get an exact triangle

π∗(Ω1
EE/G) → Ω1

EE → lG

in DG(EE), or equivalently

lG[−1] → π∗(Ω1
EE/G) → Ω1

EE .

It follows that for any j ≥ 0, π∗(Ωj
EE/G) has a filtration in the derived category

with quotients π∗(Ωj−m
EE )⊗ Λm(lG[−1]) for m = 0, . . . , j.

If E(R) is nonempty, then H i(EE,Ωj) ∼= H i(Spec(R),Ωj), by Lemma 2.3. That
group is zero unless i = j = 0, in which case it is R. By faithfully flat descent, the
same conclusion holds under our weaker assumption that E → Spec(R) is smooth
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and surjective. Therefore, in the filtration above, all objects but one have zero
cohomology in all degrees over EE. We deduce that the homomorphism

H i(EE,Λj(lG[−1])) → H i(EE, π∗(Ωj
EE/G))

is an isomorphism of G-modules for all i. By Illusie’s “décalage” isomorphism [18,
Proposition I.4.3.2.1(i)], we can write Sj(lG)[−j] instead of Λj(lG[−1]).

The cochain complex O(EE) has cohomology R in degree 0 and 0 otherwise,
by Lemma 2.3 again. So the complex of global sections of the trivial vector bundle
Sj(lG) over EE is isomorphic, in the derived category of G-modules, to the complex
of G-modules Sj(lG). We conclude that the complex of sections of π∗(Ωj

EE/G) over

EE is isomorphic to Sj(lG)[−j] in the derived category of G-modules.
Finally, we observe that each G-module in this complex,

M := H0(En+1, π∗(Ωj
En+1/G

))

for n ≥ 0, is acyclic (meaning that H>0(G,M) = 0). More generally, for any affine
R-scheme Y with a free G-action such that Y/G is affine, and any quasi-coherent
sheaf F on Y/G, M := H0(Y, π∗F ) is acyclic. Indeed, this holds if Y → Y/G is
a trivial G-bundle, since then M = O(G) ⊗ F and so M is acyclic [21, Lemma
4.7]. We can prove acyclicity in general by pulling the G-bundle over Y/G back
to a G-bundle over Y , which is trivial; then H>0(G,M) ⊗O(Y/G) O(Y ) is 0 by [21,
Proposition 4.13], and so H>0(G,M) = 0 by faithfully flat descent.

We conclude that the complex computing H∗(BG,Ωj) is the same one that
computes H∗(G,Sj(lG)[−j]).

4 Good filtrations

In this section, we explain how known results in representation theory imply calcu-
lations of the Hodge cohomology of classifying spaces in many cases, via Corollary
2.2. This is not logically necessary for the rest of the paper: Theorem 9.1 is a
stronger calculation of Hodge cohomology, based on ideas from homotopy theory.

Let G be a split reductive group over a field k. (A textbook reference on split
reductive groups is [24, Chapter 21].) A Schur module for G is a module of the
form H0(λ) for a dominant weight λ. By definition, H0(λ) means H0(G/B,L(λ)),
where B is a Borel subgroup and L(λ) is the line bundle associated to λ. For k of
characteristic zero, the Schur modules are exactly the irreducible representations of
G. Kempf showed that the dimension of the Schur modules is independent of the
characteristic of k [21, Chapter II.4]. They need not be irreducible in characteristic
p, however.

A G-module M has a good filtration if there is a sequence of submodules 0 ⊂
M0 ⊂ M1 ⊂ · · · such that M = ∪Mj and each quotient Mi/Mi−1 is a Schur module.
One good feature of Schur modules is that their cohomology groups are known, by
Cline-Parshall-Scott-van der Kallen [21, Proposition 4.13]. Namely,

H i(G,H0(λ)) ∼=
{
k if i = 0 and λ = 0

0 otherwise.

As a result, H i(G,M) = 0 for all i > 0 when M has a good filtration.

11



The following result was proved by Andersen-Jantzen and Donkin [13, Proposi-
tion and proof of Theorem 2.2], [21, II.4.22]. The statement on the ring of invariants
incorporates earlier work by Kac and Weisfeiler. Say that a prime number p is bad
for a reductive group G if p = 2 and G has a simple factor not of type An, p = 3
and G has a simple factor of exceptional type, or p = 5 and G has an E8 factor.
Otherwise, p is good for G.

Theorem 4.1. Let G be a split reductive group over a field k. Assume either
that G is a simply connected semisimple group and char(k) is good for G, or that
G = GL(n). Then the polynomial ring O(g) = S(g∗) has a good filtration as
a G-module, and the ring of invariants O(g)G is a polynomial ring over k, with
generators in the fundamental degrees of G.

It follows that, under these assumptions, H>0(G,Sj(g∗)) is zero for all j ≥ 0.
Equivalently, H i(BG,Ωj) = 0 for i �= j, by Corollary 2.2. We prove this under the
weaker assumption that p is not a torsion prime in Theorem 9.1.

5 Künneth formula

The Künneth formula holds for Hodge cohomology, in the following form. The
hypotheses apply to the main case studied in this paper: classifying stacks BG with
G an affine group scheme of finite type over a field.

Proposition 5.1. Let X and Y be quasi-compact algebraic stacks with affine diag-
onal over a field k. Then

H∗
H((X ×k Y )/k) ∼= H∗

H(X/k)⊗k H
∗
H(Y/k).

Proof. Since X and Y are quasi-compact, there are affine schemes A and B with
smooth surjective morphisms A → X and B → Y [32, Tag 04YA]. Since X and Y
have affine diagonal, the fiber products An+1

X and Bn+1
Y are affine over the products

An+1 and Bn+1 over k, and so they are affine schemes, for all n ≥ 0.
The morphism A×B → X × Y is smooth and surjective. Therefore, the Hodge

cohomology of X × Y is the cohomology of the C̆ech nerve C(A × B/X × Y )
over k, with coefficients in Ω∗ (with zero differential). This space is the product
C(A/X)×C(B/Y ) over k. By the previous paragraph, these are in fact simplicial
affine schemes over k.

The quasi-coherent sheaf Ω1 on the product of two affine schemes over k is the
direct sum of the pullbacks of Ω1 from the two factors. (No smoothness is needed
for this calculation.) Therefore, the quasi-coherent sheaf Ω∗ on the product affine
scheme An+1

X × Bn+1
Y over k is the tensor product of the pullbacks on Ω∗ on those

two schemes. So H0(An+1
X × Bn+1

Y ,Ω∗) is the tensor product of H0(An+1
X ,Ω∗) and

H0(Bn+1
Y ,Ω∗) over k.

The spectral sequence of the simplicial scheme C(A/X) × C(B/Y ) with coef-
ficients in Ω∗ reduces to one row, since all the schemes here are affine. Explicitly,
by the previous paragraph, the cohomology of the product simplicial scheme is
the cohomology of the tensor product over k of the two cosimplicial vector spaces
H0(An+1

X ,Ω∗) and H0(Bn+1
Y ,Ω∗). By the Eilenberg-Zilber theorem, it follows that
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the cohomology of the product simplicial scheme is the tensor product over k of the
cohomology of the two factors. [23, Theorem 29.3]. Equivalently,

H∗
H((X ×k Y )/k) ∼= H∗

H(X/k)⊗k H
∗
H(Y/k).

6 Parabolic subgroups

Theorem 6.1. Let P be a parabolic subgroup of a reductive group G over a field
k, and let L be the Levi quotient of P (the quotient of P by its unipotent radical).
Then the restriction

H i(BP,Ωj) → H i(BL,Ωj)

is an isomorphism for all i and j. Equivalently,

Ha(P, Sj(p∗)) → Ha(L, Sj(l∗))

is an isomorphism for all a and j.

Theorem 6.1 can be viewed as a type of homotopy invariance for Hodge coho-
mology of classifying spaces. This is not automatic, since Hodge cohomology is
not A1-homotopy invariant for smooth varieties. Homotopy invariance of Hodge
cohomology also fails in general for classifying spaces. For example, let Ga be the
additive group over a field k. Then the Hodge cohomology group H1(BGa, O) is
not zero for any k, and it is a k-vector space of infinite dimension for k of positive
characteristic; this follows from Theorem 6.3, due to Cline, Parshall, Scott, and van
der Kallen, together with Corollary 2.2.

Proof. (Theorem 6.1) Let U be the unipotent radical of P , so that L = P/U . It
suffices to show that

Ha(P, Sj(p∗)) → Ha(L, Sj(l∗))

is an isomorphism after extending the field k. So we can assume that G has a Borel
subgroup B and that B is contained in P . Let R be the set of roots for G. We
follow the convention that the weights of B acting on the Lie algebra of its unipotent
radical are the negative roots R−. There is a subset I of the set S of simple roots so
that P is the associated subgroup PI , in the notation of [21, II.1.8]. More explicitly,
let RI = R ∩ ZI; then P = PI is the semidirect product UI � LI , where LI is the
reductive group G(RI) and U := UI is the unipotent group U(R− \RI).

As a result, the weights of P on p are all the roots
∑

α∈S nαα such that nα ≤ 0
for α not in I. The coefficients nα for α not in I are all zero exactly for the weights
of P on p/u. As a result, for any j ≥ 0, the weights of P on Sj(p∗) are all in the root
lattice, with nonnegative coefficients for the simple roots not in I, and with those
coefficients all zero only for the weights of P on the subspace Sj((p/u)∗) ⊂ Sj(p∗).

We now use the following information about the cohomology of P -modules [21,
Proposition II.4.10]. For any element λ of the root lattice ZS, λ =

∑
α∈S nαα, the

height ht(λ) means the integer
∑

α∈S nα.

Proposition 6.2. Let P be a parabolic subgroup of a reductive group G over a field,
and let M be a P -module. If Hj(P,M) �= 0 for some j ≥ 0, then there is a weight
λ of M with −λ ∈ NR+ and ht(−λ) ≥ j.
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As mentioned above, for any j ≥ 0, every weight of P onM := coker(Sj((p/u)∗) →
Sj(p∗)) has at least one positive coefficient in terms of the simple roots. By Propo-
sition 6.2, it follows that Ha(P,M) = 0 for all a. Therefore, the homomorphism

Ha(P, Sj((p/u)∗)) → Ha(P, Sj(p∗))

is an isomorphism for all a and j. Here p/u ∼= l is a representation of the quotient
group L = P/U . It remains to show that the pullback

Ha(L, Sj((p/u)∗)) → Ha(P, Sj((p/u)∗))

is an isomorphism. This would not be true for an arbitrary representation of L; we
will have to use what we know about the weights of L on Sj((p/u)∗).

We also use the following description of the cohomology of an additive group
V = (Ga)

n over a perfect field k [21, Proposition I.4.27]. (To prove Theorem 6.1,
we can enlarge the field k, and so we can assume that k is perfect.) The following
description is canonical, with respect to the action of GL(V ) on H∗(V, k). Write
W (j) for the jth Frobenius twist of a vector space W , as a representation of GL(W ).

Theorem 6.3. (1) If k has characteristic zero, then H∗(V, k) ∼= Λ(V ∗), with V ∗ in
degree 1.

(2) If k has characteristic 2, then

H∗(V, k) ∼= S(⊕j≥0(V
∗)(j)),

with all the spaces (V ∗)(j) in degree 1.
(3) If k has characteristic p > 2, then

H∗(V, k) ∼= Λ(⊕j≥0(V
∗)(j))⊗ S(⊕j≥1(V

∗)(j)),

with all the spaces (V ∗)(j) in the first factor in degree 1, and all the spaces (V ∗)(j)

in the second factor in degree 2.

We also use the Hochschild-Serre spectral sequence for the cohomology of alge-
braic groups [21, I.6.5, Proposition I.6.6]:

Theorem 6.4. Let G be an affine group scheme of finite type over a field k, and
let N be a normal k-subgroup scheme of G. For every G-module (or complex of
G-modules) V , there is a spectral sequence

Eij
2 = H i(G/N,Hj(N,V )) ⇒ H i+j(G, V ).

Theorems 6.3 and 6.4 give information about the weights of L on H∗(U, k), that
is, about the action of a maximal torus T ⊂ L on H∗(U, k). The method is to
write U (canonically) as an extension of additive groups V = (Ga)

n and use the
Hochschild-Serre spectral sequence. We deduce that as a representation of L, all
weights of H>0(U, k) are in the root lattice of G, with nonnegative coefficients for
the simple roots not in I, and with at least one of those coefficients positive. (This
is the same sign as we have for the action of L on u∗.)

Now apply the Hochschild-Serre spectral sequence to the normal subgroup U in
P :

Eij
2 (L,Hj(U, k)⊗ Sl((p/u)∗)) ⇒ H i+j(P, Sl((p/u)∗)).
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By the analysis of Sl(p∗) above, all the weights of L on the subspace Sl((p/u)∗) are
in the root lattice of G, and the coefficients of all simple roots not in I are equal to
zero. Combining this with the previous paragraph, we find: for l ≥ 0 and j > 0, all
weights of L on Hj(U, k) ⊗ Sl((p/u)∗) have all coefficients of the simple roots not
in I nonnegative, with at least one positive. By Proposition 6.2, it follows that

H i(L,Hj(U, k)⊗ Sl((p/u)∗)) = 0

for all i and l and all j > 0. So the spectral sequence above reduces to an isomor-
phism

H i(P, Sl((p/u)∗)) ∼= H i(L, Sl((p/u)∗)),

as we wanted. Theorem 6.1 is proved.

7 Hodge cohomology of flag manifolds

We use the following result, proved by Srinivas [31, section 3]:

Proposition 7.1. Let P be a parabolic subgroup of a split reductive group G over
a field k. Then the cycle map

CH∗(G/P )⊗Z k → H∗
H((G/P )/k)

is an isomorphism of k-algebras. In particular, H i(G/P,Ωj) = 0 for i �= j.

There are many related results. In particular, Proposition 7.1 can also be de-
duced from the work of El Zein (who constructed the cycle map in Hodge cohomol-
ogy over any field) and Gros (who constructed the pushforward homomorphism in
Hodge cohomology over any perfect field) [15, Proposition 3.3.5], [16, sections II.2
and II.4]. That approach implies Proposition 7.1 more generally for any smooth
proper variety with a cell decomposition. Also, Andersen gave the additive calcu-
lation of H i(G/P,Ωj) over any field [21, Proposition II.6.18].

Note that Chevalley and Demazure gave combinatorial descriptions of the Chow
ring of G/P , which in particular show that this ring is independent of k, and
isomorphic to the ordinary cohomology ring H∗(GC/PC,Z) [10, Proposition 11],
[12]. (That makes sense because the classification of split reductive groups and
their parabolic subgroups is the same over all fields.)

8 Invariant functions on the Lie algebra

Theorem 8.1. Let G be a simple group over a field k, T a maximal torus in G, g
and t the Lie algebras. Assume that we are not in the case where char(k) = 2 and
Gk is a product of copies of Sp(2n) for some positive integer n. Then the restriction
O(g)G → O(t)W is an isomorphism.

Theorem 8.1 was proved by Springer and Steinberg for any adjoint group G [30,
II.3.17’], and generalized to any simple group by Chaput and Romagny [9, Theorem
1.1]. They assumed that G is split, but that implies Theorem 8.1 by passage to the
algebraic closure k.
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The statement is optimal, in that the conclusion fails for the symplectic group
Sp(2n) in characteristic 2 for any positive integer n (for example, for SL(2)), as
Chaput and Romagny pointed out. In their argument, the distinctive feature of
the symplectic group is that it is the only simple group for which some roots are
divisible by 2 in the weight lattice.

In particular, Theorem 8.1 applies to cases such as the spin group Spin(n) in
characteristic 2 with n ≥ 6, which we study further in Theorem 12.1.

Here is a related observation.

Lemma 8.2. Let G be a smooth affine group over a field k whose identity compo-
nent is reductive. Then there are canonical maps Ha(BG,Ωa) → H2a

dR(BG/k) and
Ha+1(BG,Ωa) → H2a+1

dR (BG/k). These maps are compatible with products and
with pullback under group homomorphisms.

Proof. By Corollary 2.2, we have Ha(BG,Ωb) = 0 for all a < b. Therefore, the
Hodge spectral sequence gives a canonical “edge map” Ha(BG,Ωa) → H2a

dR(BG/k).
In odd degrees, there is one possible differential on the group Ha+1(BG,Ωa):

d1 : H
a+1(BG,Ωa) → Ha+1(BG,Ωa+1).

In fact, this differential is zero. To see this, let T be a maximal torus in G. Then
the restriction O(g)G → O(t) is injective, because the G-conjugates of elements
of t (over the algebraic closure of k) are the semisimple elements of g, which are
Zariski dense in g. Equivalently, Hb(BG,Ωb) → Hb(BT,Ωb) is injective for all b.
But Ha(BT,Ωb) = 0 for all a �= b, and so Hb(BT,Ωb) injects into H2b

dR(BT/k).
Therefore, Hb(BG,Ωb) injects into H2b

dR(BG/k). In particular, the d1 differential
into Ha+1(BG,Ωa+1) is zero, as we want. Therefore, we have a canonical “edge
map” Ha+1(BG,Ωa) → H2a+1

dR (BG/k).

9 Hodge cohomology of BG at non-torsion primes

Theorem 9.1. Let G be a reductive group over a field k of characteristic p ≥ 0.
Then H>0(G,O(g)) = 0 if and only if p is not a torsion prime for G.

Theorem 9.2. Let G be a split reductive group over Z, and let p be a non-torsion
prime for G. Then Hj(BGZ,Ω

i) localized at p is zero for i �= j. Moreover, the
Hodge cohomology ring H∗(BGZ,Ω

∗) and the de Rham cohomology H∗
dR(BG/Z),

localized at p, are polynomial rings on generators of degrees equal to 2 times the
fundamental degrees of G. These rings are isomorphic to the cohomology of the
topological space BGC with Z(p) coefficients.

We recall the definition of torsion primes for a reductive group G over a field k.
Let B be a Borel subgroup of Gk, and T a maximal torus in B. Then there is a
natural homomorphism from the character group X∗(T ) = Hom(T,Gm) (the weight
lattice of G) to the Chow group CH1(Gk/B). Therefore, for N = dim(Gk/B), there
is a homomorphism from the symmetric power SN (X∗(T )) to CHN (Gk/B); taking
the degree of a zero-cycle on Gk/B gives a homomorphism (in fact, an isomorphism)
CHN (Gk/B) → Z. A prime number p is said to be a torsion prime for G if the
image of SN (X∗(T )) → Z is zero modulo p. Borel showed that p is a torsion prime
for G if and only if the cohomology H∗(BGC,Z) has p-torsion, where GC is the
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corresponding complex reductive group [7, Proposition 4.2]. It is also equivalent to
say that G(C) contains an elementary abelian p-subgroup that is not contained in
a torus [7, Théorème 4.5].

In most cases, Theorem 9.1 follows from Theorem 4.1. Explicitly, a prime num-
ber p is torsion for a simply connected simple group G if p = 2 and G has a simple
factor not of type An or Cn, p = 3 and G has a simple factor of type F4, E6, E7,
or E8, pr p = 5 and G has an E8 factor. So the main new cases in Theorem 9.1 are
the symplectic groups Sp(2n) in characteristic 2 and G2 in characteristic 3. (These
are non-torsion primes, but not good primes in the sense of Theorem 4.1.) In these
cases, the representation-theoretic result that H>0(G,O(g)) = 0 seems to be new.
Does O(g) have a good filtration in these cases?

The following spectral sequence, modeled on the Leray-Serre spectral sequence
in topology, will be important for the rest of the paper.

Proposition 9.3. Let P be a parabolic subgroup of a split reductive group G over a
field k. Let L be the quotient of P by its unipotent radical. Then there is a spectral
sequence of algebras

Eij
2 = H i

H(BG/k)⊗Hj
H((G/P )/k) ⇒ H i+j

H (BL/k).

Proof. Consider Ω∗ = ⊕Ωi as a presheaf of commutative dgas on smooth k-schemes,
with zero differential.

For a smooth morphism f : X → Y of smooth k-schemes, consider the object
Rf∗(Ω∗

X) in the derived category D(Y ) of étale sheaves on Y . Here the sheaf Ω∗
X

on X has an increasing filtration, compatible with its ring structure, with 0th step
the subsheaf f∗(Ω∗

Y ) and jth graded piece f∗(Ω∗
Y ) ⊗ Ωj

X/Y . So Rf∗(Ω∗
X) has a

corresponding filtration in D(Y ), with jth graded piece Rf∗(f∗(Ω∗
Y ) ⊗ Ωj

X/Y )
∼=

Ω∗
Y ⊗Rf∗Ω

j
X/Y . This gives a spectral sequence

Eij
2 = H i+j(Y,Ω∗

Y ⊗Rf∗Ω
j
X/Y ) ⇒ H i+j(X,Ω∗

X).

Now specialize to the case where f : X → Y is the G/P -bundle associated to a
principal G-bundle over Y . The Hodge cohomology of G/P is essentially indepen-
dent of the base field, by the isomorphismH∗

H((G/P )/k) ∼= CH∗(G/P )⊗Zk (Propo-
sition 7.1). Here CH∗(G/P ) is a free abelian group with a fixed basis (independent
of k), as discussed in section 7, and G acts trivially on CH∗(G/P ). Therefore, each
object Rf∗(Ω

j
X/Y ) is a trivial vector bundle on Y , with fiber Hj(G/P,Ωj), viewed

as a complex in degree j. So we can rewrite the spectral sequence as

Eij
2 = H i(Y,Ω∗)⊗Hj(G/P,Ωj) ⇒ H i+j(X,Ω∗).

All differentials in the spectral sequence above preserve the degree in the grading
of Ω∗. Therefore, we can renumber the spectral sequence so that it is graded by
total degree:

Eij
2 = H i

H(Y/k)⊗Hj
H((G/P )/k) ⇒ H i+j

H (X/k).

Finally, we consider the analogous spectral sequence for the morphism f : EG/P →
BsimpG of simplicial schemes:

Eij
2 = H i

H(BG/k)⊗Hj
H((G/P )/k) ⇒ H i+j

H ((EG/P )/k).
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By Lemma 1.2, the output of the spectral sequence is isomorphic to H∗
H(BP/k),

or equivalently (by Theorem 6.1) to H∗
H(BL/k). This is a spectral sequence of

algebras. All differentials preserve the degree in the grading of Ω∗.

Proof. (Theorem 9.1) First, suppose that H>0(G,O(g)) = 0; then we want to show
that char(k) is not a torsion prime for G. By Corollary 2.2, the assumption implies
that Hj(BG,Ωi) = 0 for all i �= j. Apply Proposition 9.3 when P is a Borel
subgroup B in G; this gives a spectral sequence

Eij
2 = H i

H(BG/k)⊗Hj
H((G/B)/k) ⇒ H i+j

H (BT/k),

where T is a maximal torus in B. Under our assumption, this spectral sequence
degenerates at E2, because the differential dr (for r ≥ 2) takes H i(BG,Ωi) ⊗
Hj(G/B,Ωj) into H i+r(BG,Ωi+r−1) ⊗ Hj−r+1(G/B,Ωj−r+1), which is zero. It
follows that H∗

H(BT/k) → H∗
H((G/B)/k) is surjective. Here H∗

H(BT/k) is the poly-
nomial ring S(X∗(T )⊗k) by Theorem 4.1, and H∗

H((G/B)/k) = CH∗(G/B)⊗k by
Proposition 7.1. It follows that the ring CH∗(G/B)⊗ k is generated as a k-algebra
by the image of X∗(T ) → CH1(G/B). Equivalently, p is not a torsion prime for G.

Conversely, suppose that p is not a torsion prime for G. That is, the homomor-
phism S(X∗(T ) ⊗ k) → CH∗(G/B) ⊗ k is surjective. Equivalently, H∗

H(BT/k) →
H∗

H((G/B)/k) is surjective. By the product structure on the spectral sequence
above, it follows that the spectral sequence degenerates at E2. SinceH

j(BT,Ωi) = 0
for i �= j, it follows that Hj(BG,Ωi) = 0 for i �= j. Equivalently, H>0(G,O(g)) =
0.

Proof. (Theorem 9.2) Let G be a split reductive group over Z, and let p be a non-
torsion prime for G. We have a short exact sequence

0 → Hj(BGZ,Ω
i)/p → Hj(BGFp ,Ω

i) → Hj+1(BGZ,Ω
i)[p] → 0.

By Theorem 9.1 and Corollary 2.2, the Hodge cohomology ring H∗(BGZ,Ω
∗) lo-

calized at p is concentrated in bidegrees H i,i and is torsion-free. This ring tensored
with Q is the ring of invariants O(gQ)G, which is a polynomial ring on generators
of degrees equal to the fundamental degrees of G.

To show that the Hodge cohomology ring over Z(p) is a polynomial ring on
generators in H i.i for i running through the fundamental degrees of G, it suffices
to show that the Hodge cohomology ring H∗

H(BG/Fp) is a polynomial ring in the
same degrees. Given that, the other statements of the theorem will follow. Indeed,
the statement on Hodge cohomology implies that the de Rham cohomology ring
H∗

dR(BG/Z) localized at p is also a polynomial ring, on generators in 2 times the
fundamental degrees of G. The cohomology of the topological space BGC localized
at p is known to be a polynomial ring on generators in the same degrees, by Borel
[7, Proposition 4.2, Théorème 4.5], [25, Theorem VII.2.12].

From here on, let k = Fp, and write G for Gk. By definition of the Weyl group
W as W = NG(T )/T , the image of H∗

H(BG/k) in H∗
H(BT/k) = S(X(T ) ⊗ k) is

contained in the subring of W -invariants. We now use that p is not a torsion prime
for G. By Demazure, except in the case where p = 2 and G has an Sp(2n) factor,
the ring of W -invariants in S(X(T ) ⊗ k) is a polynomial algebra over k, with the
degrees of generators equal to the fundamental degrees of G [12, Théorème].
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By Theorem 9.1, H∗
H(BG/k) is equal to the ring of invariants O(g)G. By The-

orem 8.1 (due to Chaput and Romagny), for any simple group G over a field k of
characteristic p with p not a torsion prime, except for G = Sp(2n) with p = 2, the
restriction O(g)G → O(t)W is an isomorphism, and hence O(g)G is the polynomial
ring we want.

The case of Sp(2n) in characteristic 2 (including SL(2) = Sp(2)) is a genuine
exception: here O(g)G is a subring of O(t)W , not equal to it. However, it is still
true in this case that O(g)G is a polynomial ring with generators in the fundamental
degrees of G, that is, 2, 4, . . . , 2n, by Chaput and Romagny [9, Theorem 6.6].

10 μp

Proposition 10.1. Let k be a field of characteristic p > 0. Let G be the group
scheme μp of pth roots of unity over k. Then

H∗
H(Bμp/k) ∼= k[c1]〈v1〉,

where c1 is in H1(Bμp,Ω
1) and v1 is in H0(Bμp,Ω

1). Likewise, H∗
dR(Bμp/k) ∼=

k[c1]〈v1〉 with |v1| = 1 and |c1| = 2.

Here R〈v〉 denotes the exterior algebra over a graded-commutative ring R with
generator v; that is, R〈v〉 = R ⊕ R · v, with product v2 = 0. See section 1 for the
definitions of Hodge and de Rham cohomology we are using for a non-smooth group
scheme such as μp. Proposition 10.1 can help to compute Hodge cohomology of
BG for smooth group schemes G, as we will see in the proof of Theorem 11.1 for
G = SO(n).

Proposition 10.1 is roughly what the topological analogy would suggest. Indeed,
the group scheme μp of pth roots of unity is defined over Z, with (μp)C isomorphic
to the group Z/p. For k of characteristic p, the ring H∗((Bμp)C, k) is a polynomial
ring k[x] with |x| = 1 if p = 2, or a free graded-commutative algebra k〈x, y〉 with
|x| = 1 and |y| = 2 if p is odd. So H∗

dR(Bμp/k) is isomorphic to H∗((Bμp)C, k)
additively for any prime p, and as a graded ring if p > 2.

Proof. Let G = μp over k. The co-Lie complex lG in the derived category of G-
modules, discussed in section 3, has H0(lG) ∼= g∗ ∼= k and also H−1(lG) ∼= k, with
other cohomology groups being zero. (In short, this is because G is a complete
intersection in the affine line, defined by the one equation xp = 1.)

Since representations of G are completely reducible, we have Ext>0
G (M,N) = 0

for all G-modules M and N [21, Lemma I.4.3]. The isomorphism class of lG is
described by an element of Ext2G(k, k), which is zero. So lG ∼= k⊕k[1] in the derived
category of G-modules.

By Theorem 3.1, we have

H i(BG,Ωj) ∼= H i−j(G,Sj(lG)).

Here

Sj(lG) ∼= ⊕j
m=0S

m(k)⊗ Sj−m(k[1])

∼= ⊕j
m=0S

m(k)⊗ Λj−m(k)[j −m],
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which is isomorphic to k⊕ k[1] if j ≥ 1 and to k if j = 0. Therefore, H i(BG,Ωj) is
isomorphic to k if 0 ≤ i = j or if 0 ≤ i = j − 1, and is otherwise zero.

Write c1 for the generator of H1(BG,Ω1), which is pulled back from the Chern
class c1 in H1(BGm,Ω1) via the inclusion G ↪→ Gm. Write v1 for the generator of
H0(BG,Ω1). We have v21 = 0 because H0(BG,Ω2) = 0. Theorem 3.1 also describes
the ring structure on the Hodge cohomology of BG. In particular, ⊕iH

i(BG,Ωi)
is the ring of invariants of G acting on O(g), which is the polynomial ring k[c1].
Finally, the description of Sj(lG) also shows that ⊕iH

i(BG,Ωi+1) is the free module
over k[c1] on the generator v1. This completes the proof that

H∗
H(BG/k) ∼= k[c1]〈v1〉.

Finally, consider the Hodge spectral sequence for BG from section 1. The ele-
ment v1 is a permanent cycle because H0(BG,Ω2) = 0, and c1 is a permanent cycle
because it is pulled back from a permanent cycle on BGm. Therefore, the Hodge
spectral sequence degenerates at E1. We have v21 = 0 in de Rham cohomology as
in Hodge cohomology, because ⊕iH

0(BG,Ωi) is a subring of de Rham cohomol-
ogy, using degeneration of the Hodge spectral sequence. Therefore, the de Rham
cohomology of BG is isomorphic to k[c1]〈v1〉 as a graded ring.

Lemma 10.2. Let G be a discrete group, considered as a group scheme over a field
k. Then the Hodge cohomology of the algebraic stack BG is the group cohomology
of G:

H i(BG,Ωj) ∼=
{
H i(G, k) if j = 0

0 otherwise.

It follows that H∗
dR(BG/k) ∼= H∗(G, k).

Proof. Since G is smooth over k, we can compute the Hodge cohomology of the
stack BG as the étale cohomology of the simplicial scheme BsimpG with coefficients
in Ωj . Since G is discrete, the sheaf Ωj is zero for j > 0. For j = 0, the spectral
sequence

Eab
1 = Hb(Ga, O) ⇒ Ha+b(BG,O)

reduces to a single row, since Hb(Ga, O) = 0 for b > 0. That is, H∗(BG,O) is the
cohomology of the standard complex that computes the cohomology of the group
G with coefficients in k.

Although Lemma 10.2 applies to any discrete group G, it is probably most
meaningful in the case where G is finite (so that the associated group scheme over
a field k is affine). A generalization of that case is the following “Hochschild-Serre”
spectral sequence for the Hodge cohomology of a non-connected group scheme:

Lemma 10.3. Let G be an affine group scheme of finite type over a field k. Let G0

be the identity component of G, and suppose that the finite group scheme G/G0 is
the k-group scheme associated to a finite group Q. Then there is a spectral sequence

Eij
2 = H i(Q,Hj(BG0,Ωa)) ⇒ H i+j(BG,Ωa).

for any a ≥ 0.
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Proof. By Theorem 3.1, Hr(BG,Ωa) is isomorphic to Hr−a(G,Sa(lG)). The lemma
then becomes a special case of the Hochschild-Serre spectral sequence for the coho-
mology of G as an algebraic group, Theorem 6.4:

Eij
2 = H i(Q,Hj(G0, Sa(lG))) ⇒ H i+j(G,Sa(lG)).

(Strictly speaking, move the Hochschild-Serre spectral sequence up by a rows to
obtain the spectral sequence of the lemma.)

11 The orthogonal groups

Theorem 11.1. Let G be the split group SO(n) (also called O+(n)) over a field
k of characteristic 2. Then the Hodge cohomology ring of BG is a polynomial
ring k[u2, u3, . . . , un], where u2a is in Ha(BG,Ωa) and u2a+1 is in Ha+1(BG,Ωa).
Also, the Hodge spectral sequence degenerates at E1, and so H∗

dR(BG/k) is also
isomorphic to k[u2, u3, . . . , un].

Likewise, the Hodge and de Rham cohomology rings of BO(2r) are isomorphic to
the polynomial ring k[u1, u2, . . . , u2r]. Finally, the Hodge and de Rham cohomology
rings of BO(2r + 1) are isomorphic to k[v1, c1, u2, . . . , u2r+1]/(v

2
1), where v1 is in

H0(BO(2r + 1),Ω1) and c1 is in H1(BO(2r + 1),Ω1).

Thus the de Rham cohomology ring of BSO(n)F2 is isomorphic to the mod 2
cohomology ring of the topological space BSO(n)C as a graded ring:

H∗(BSO(n)C,F2) ∼= F2[w2, w3, . . . , wn],

where the classes wi are the Stiefel-Whitney classes. Theorem 11.1 gives a new
analog of the Stiefel-Whitney classes for quadratic bundles in characteristic 2. (Note
that the k-group scheme O(2r + 1) is not smooth in characteristic 2. Indeed, it is
isomorphic to SO(2r + 1) × μ2. By contrast, O(2r) is smooth but not connected,
and we write SO(2r) for the kernel of the Dickson determinant O(2r) → Z/2, which
describes the action of O(2r) on the center k × k of the even Clifford algebra.)

The proof is inspired by topology. In particular, it involves some hard work
with spectral sequences, related to Borel’s transgression theorem and Zeeman’s
comparison theorem. The method should be useful for other reductive groups.

The formula for the classes ui of a direct sum of two quadratic bundles is not
the same as for the Stiefel-Whitney classes in topology. To state this, define a
quadratic form (q, V ) over a field k to be nondegenerate if the radical V ⊥ of the
associated bilinear form is zero, and nonsingular if V ⊥ has dimension at most 1 and
q is nonzero on any nonzero element of V ⊥. (In characteristic not 2, nonsingular and
nondegenerate are the same.) The orthogonal group is defined as the automorphism
group scheme of a nonsingular quadratic form; the precise group over k depends on
the choice of form [22, section VI.23]. For example, over a field k of characteristic
2, the quadratic form

x1x2 + x3x4 + · · ·+ x2r−1x2r

is nonsingular of even dimension 2r, while the form

x1x2 + x3x4 + · · ·+ x2r−1x2r + x22r+1

is nonsingular of odd dimension 2r + 1, with V ⊥ of dimension 1. (These particular
forms define the split orthogonal groups over k.) Let u0 = 1.
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Proposition 11.2. Let X be a scheme of finite type over a field k of characteristic
2. Let E and F be vector bundles with nondegenerate quadratic forms over X (hence
of even rank). Write ul for the characteristic classes from Theorem 11.1. Then, for
any a ≥ 0, in either Hodge cohomology or de Rham cohomology,

u2a(E ⊕ F ) =
a∑

j=0

u2j(E)u2a−2j(F )

and

u2a+1(E ⊕ F ) =

2a+1∑
l=0

ul(E)u2a+1−l(F ).

Thus the even u-classes of E ⊕ F depend only on the even u-classes of E and
F . By contrast, Stiefel-Whitney classes in topology satisfy

wm(E ⊕ F ) =

m∑
l=0

wl(E)wm−l(F )

for all m [25, Theorem III.5.11].
Theorem 12.1 gives an example of a reductive group G for which the de Rham

cohomology of BGFp and the mod p cohomology of BGC are not isomorphic. It is
a challenge to find out how close these rings are, in other examples.

Via Corollary 2.2, Theorem 11.1 can be viewed as a calculation in the repre-
sentation theory of the algebraic group G = SO(n) for any n, over a field k of
characteristic 2. For example, when G = SO(3) = PGL(2) over k of characteristic
2, we find (what seems to be new):

H i(G,Sj(g∗)) ∼=
{
k if 0 ≤ i ≤ j

0 otherwise.

Proof. (Theorem 11.1) We will assume that k = F2. This implies the theorem for
any field of characteristic 2.

We begin by computing the ring ⊕iH
i(BG,Ωi) for G = SO(n). By Corollary

2.2, this is equal to the ring of G-invariant polynomial functions on the Lie algebra g
over k. By Theorem 8.1, since G is not a symplectic group, the restriction O(g)G →
O(t)W is an isomorphism.

Let r = �n/2�. For n = 2r + 1, the Weyl group W is the semidirect product
Sr � (Z/2)r. There is a basis e1, . . . , er for t on which (Z/2)r acts by changing the
signs, and so that action is trivial since k has characteristic 2. The group Sr has its
standard permutation action on e1, . . . , er. Therefore, the ring of invariants O(t)W

is the ring of symmetric functions in r variables. Let u2, u4, . . . , u2r denote the
elementary symmetric functions. By the isomorphisms mentioned, we can view u2a
as an element of Ha(BSO(2r + 1),Ωa) for 1 ≤ a ≤ r, and ⊕iH

i(BSO(2r + 1),Ωi)
is the polynomial ring k[u2, u4, . . . , u2r].

For n = 2r, the Weyl groupW of SO(2r) is the semidirect product Sr�(Z/2)r−1.
Again, the subgroup (Z/2)r−1 acts trivially on t, and Sr acts by permutations as
usual. So ⊕iH

i(BSO(2r),Ωi) is also the polynomial ring k[u2, u4, . . . , u2r], with u2a
in Ha(BSO(2r),Ωa) for 1 ≤ a ≤ r.
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For the smooth k-group G = O(2r), we can also compute the ring ⊕iH
i(BG,Ωi).

By Corollary 2.2, this is the ring of G-invariant polynomial functions on the Lie
algebra g = so(2r). This is contained in the ring of SO(2r)-invariant functions on g,
and I claim that the two rings are equal. It suffices to show that an SO(2r)-invariant
function on g is also invariant under the normalizer N in O(2r) of a maximal torus T
in SO(2r), since that normalizer meets both connected components of O(2r). Here
N = Sr � (Z/2)r, which acts on t in the obvious way; in particular, (Z/2)r acts
trivially on t. Therefore, an SO(2r)-invariant function on g (corresponding to an Sr-
invariant function on t) is also O(2r)-invariant. Thus we have ⊕iH

i(BO(2r),Ωi) =
k[u2, u4, . . . , u2r].

For a smooth group scheme G over R = Z/4, define the Bockstein

β : H i(BGk,Ω
j) → H i+1(BGk,Ω

j)

on the Hodge cohomology of BGk (where k = Z/2) to be the boundary homomor-
phism associated to the short exact sequence of sheaves

0 → Ωj
k → Ωj

R → Ωj
k → 0

on BGR. (The Bockstein on Hodge cohomology is also defined for group schemes
G such as μ2 which are flat but not smooth over R = Z/4, because the Hodge
cohomology of BG can be described using smooth schemes (Lemma 1.2).)

Next, define elements u1, u3, . . . , u2r−1 of H∗
H(BO(2r)/k) as follows. First, let

u1 ∈ H1(BO(2r),Ω0) be the pullback of the generator of H1(Z/2, k) = k via the
surjection O(2r) → Z/2 (Lemma 10.2). Next, use that the split group O(2r) over
k = F2 lifts to a smooth group O(2r) over Z. As a result, we have a Bockstein
homomorphism on the Hodge cohomology of BO(2r). For 0 ≤ a ≤ r − 1, let
u2a+1 = βu2a + u1u2a ∈ Ha+1(BO(2r),Ωa). This agrees with the previous formula
for u1, if we make the convention that u0 = 1. (The definition of u2a+1 is suggested
by the formula for odd Stiefel-Whitney classes in topology: w2a+1 = βw2a +w1w2a

[25, Theorem III.5.12].)
I claim that the homomorphism

k[u1, u2] → H∗
H(BO(2)/k)

is an isomorphism. To see this, consider the Hochschild-Serre spectral sequence of
Lemma 10.3,

Eij
2 = H i(Z/2, Hj(BSO(2)k,Ω

∗)) ⇒ H i+j(BO(2)k,Ω
∗).

Here SO(2) is isomorphic to Gm, and so we know the Hodge cohomology of BSO(2)
by Theorem 4.1: H∗

H(BSO(2)/k) ∼= k[c1] with c1 in H1(BSO(2),Ω1). We read off
that the E2 page of the spectral sequence is the polynomial ring k[u1, u2], with u1
in H1(Z/2, H0(BSO(2),Ω0)) and u2 in H0(Z/2, H1(BSO(2),Ω1)). Here u1 is a
permanent cycle, because all differentials send u1 to zero groups. Also, because the
surjection O(2) → Z/2 of k-groups is split, there are no differentials into the bottom
row of the spectral sequence; so u2 is also a permanent cycle. It follows that the
spectral sequence degenerates at E2, and hence that H∗

H(BO(2)/k) ∼= k[u1, u2].
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We also need to compute the Bockstein on the Hodge cohomology of BO(2),
which is defined because O(2) lifts to a smooth group scheme over R := Z/4. The
Bockstein is related to the Hodge cohomology of BO(2)R by the exact sequence

H i(BO(2)R,Ω
j) → H i(BO(2)k,Ω

j) −→
β

H i+1(BO(2)k,Ω
j).

Consider the Hochschild-Serre spectral sequence of Lemma 10.3 for BO(2)R:

Eij
2 = H i(Z/2, Hj(BSO(2)R,Ω

∗)) ⇒ H i+j(BO(2)R,Ω
∗).

Here H1(BO(2)R,Ω
1) is isomorphic to H0(Z/2, H1(BSO(2)R,Ω

1)), where Z/2 acts
by −1 on H1(BSO(2)R,Ω

1) ∼= Z/4. So the generator of H1(BO(2)R,Ω
1) ∼= Z/2

maps to zero in H1(BO(2)k,Ω
1) = k · u2. Therefore, β(u2) �= 0. Since k = F2,

the element β(u2) in H2(BO(2)k,Ω
1) = k · u1u2 must be equal to u1u2. A similar

analysis shows that β(u1) = u21.
Finally, think of O(2) as the isometry group of the quadratic form q(x, y) = xy

on V = A2
k. There is an inclusion H = Z/2 × μ2 ⊂ O(2), where Z/2 switches x

and y and μ2 acts by scalars on V . For later use, it is convenient to say something
about the restriction from BO(2) to BH on Hodge cohomology. By Lemma 10.2, the
Hodge cohomology ofB(Z/2) over k is the cohomology of Z/2 as a group, namely the
polynomial ring k[s] with s ∈ H1(B(Z/2), O). Also, by Proposition 10.1, the Hodge
cohomology of Bμ2 is k[t, v]/(v2) with t ∈ H1(Bμ2,Ω

1) and v ∈ H0(Bμ2,Ω
1).

Thus we have a homomorphism from H∗
H(BO(2)/k) = k[u1, u2] to H∗

H(BH/k) ∼=
k[s, t, v]/(v2) (by the Künneth theorem, Proposition 5.1). Here u1 restricts to s,
since both elements are pulled back from the generator of H1(BZ/2, O). Also, u2
restricts to either t or t+sv, because u2 restricts to the generator c1 ofH

1(BGm,Ω1)
and hence to t in H1(Bμ2,Ω

1). Thus the homomorphism from H∗
H(BO(2)/k) to

H∗
H(BH/k)/rad = k[s, t] is an isomorphism. (Here the radical of a commutative

ring means the ideal of nilpotent elements.) A direct cocycle computation shows
that u2 restricts to t+sv in H1(BH,Ω1), but we do not need that fact in this paper.

We now return to the group O(2r) over k = F2 for any r. To formulate the
following lemma, let s1, . . . , sr ∈ H1(BO(2)r,Ω0) be the pullbacks of u1 from the
r BO(2) factors, and let t1, . . . , tr be the pullbacks of u2 from those r factors. By
the Künneth theorem (Proposition 5.1), the Hodge cohomology of BO(2)r is the
polynomial ring k[s1, . . . , sr, t1, . . . , tr].

Lemma 11.3. The homomorphism

ψ : k[u1, u2, . . . , u2r] → H∗
H(BO(2r)/k)

is injective. Also, the composition of ψ with the restriction ρ to the Hodge cohomol-
ogy of BO(2)r is given by

u2a �→ ea(t1, . . . , tr) =
∑

1≤i1<···<ia≤r

ti1 · · · tia

and

u2a+1 �→
r∑

m=1

sm
∑

1≤i1<···<ia≤r
none equal to m

ti1 · · · tia .

Finally, the same formulas hold in de Rham cohomology as well as Hodge cohomol-
ogy.
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Proof. The formula for the restriction ρψ(u2a) on Hodge cohomology follows from
the definition of u2a. Likewise, it is immediate that

u1 �→ s1 + · · ·+ sr.

The inclusion O(2)2 ⊂ O(2r) lifts to an inclusion of smooth groups over Z,
and so the restriction homomorphism commutes with the Bockstein. Therefore, for
0 ≤ a ≤ r − 1,

u2a+1 = βu2a + u1u2a

�→ β

( ∑
1≤i1<···<ia≤r

ti1 · · · tia
)
+ (s1 + · · ·+ sr)

( ∑
1≤i1<···<ia≤r

ti1 · · · tia
)

=
∑

1≤i1<···<ia≤r

( a∑
j=1

sij +

r∑
m=1

sm

)
ti1 · · · tia

=

r∑
m=1

sm
∑

1≤i1<···<ia≤r
none equal to m

ti1 · · · tia ,

as we want.
These formulas remain true in de Rham cohomology as well as in Hodge co-

homology, using Lemma 8.2: for a smooth affine k-group G whose identity com-
ponent is reductive, there are canonical maps Ha(BG,Ωa) → H2a

dR(BG/k) and
Ha+1(BG,Ωa) → H2a+1

dR (BG/k). These maps are compatible with products and
with pullback under a homomorphism of smooth affine k-groups.

To show that the homomorphism ψ : k[u1, . . . , u2r] → H∗
H(BO(2r)/k) is injec-

tive, it suffices to show that the composition ρψ : k[u1, . . . , u2r] → k[s1, . . . , sr, t1, . . . , tr]
is injective. We can factor this homomorphism through k[u1, u3, . . . , u2r−1, t1, . . . , tr],
by the homomorphism μ sending u2, u4, . . . , u2r to the elementary symmetric poly-
nomials in t1, . . . , tr. Since μ is injective, it remains to show that

σ : k[u1, u3, . . . , u2r−1, t1, . . . , tr] → k[s1, . . . , sr, t1, . . . , tr]

is injective.
More strongly, we will show that σ is generically étale; that is, its Jacobian

determinant is not identically zero. Because σ is the identity on the ti coordinates, it
suffices to show that the determinant of the matrix of derivatives of u1, u3, . . . , u2r−1

with respect to s1, . . . , sr is nonzero for s1, . . . , sr, t1, . . . , tr generic. This matrix of
derivatives in fact only involves t1, . . . , tr, because u1, u3, . . . , u2r−1 have degree 1 in
s1, . . . , sr. For example, for r = 3, this matrix of derivatives is⎛

⎝1 t2 + t3 t2t3
1 t1 + t3 t1t3
1 t1 + t2 t1t2

⎞
⎠ ,

where the ath column gives the derivatives of u2a−1 with respect to s1, . . . , sr. For
any r, column 1 consists of 1s, while entry (j, a) for a ≥ 2 is∑

1≤i1<···<ia−1≤r
none equal to j

ti1 · · · tia−1 .
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This determinant is equal to the Vandermonde determinant δ :=
∏

i<j(ti − tj), and
in particular it is not identically zero [14, Theorem 1]. (The reference works over
C, but it amounts to an identity of polynomials over Z, which therefore holds over
any field.)

Thus we have shown that the composition ψ : k[u1, . . . , u2r] → H∗
H(BO(2r)/k)

is injective, because the composition ρψ to H∗
H(BO(2)r/k) is injective.

To avoid an excess of notation, let us also write ψ for the homomorphism
k[u2, u3, . . . , un] → H∗

H(BSO(n)/k).

Lemma 11.4. The homomorphism

ψ : k[u2, u3, . . . , un] → H∗
H(BSO(n)/k)

is injective. Also, in the case n = 2r + 1, the composition of ψ with the restriction
ρ to the Hodge cohomology of BO(2)r is given by

u2a �→ ea(t1, . . . , tr) =
∑

1≤i1<···<ia≤r

ti1 · · · tia ,

u2a+1 �→
r∑

m=1

sm
∑

1≤i1<···<ia≤r
one equal to m

ti1 · · · tia

for 1 ≤ a ≤ r. Finally, the same formulas hold in de Rham cohomology as well as
Hodge cohomology.

Proof. For n = 2r + 1, this is an easy consequence of Lemma 11.3, using the in-
clusions O(2)r ⊂ O(2r) ⊂ SO(2r + 1). Write u2, u3, . . . , u2r+1 for the elements
of the Hodge cohomology of BSO(2r + 1) defined by the same formulas as used
above for BO(2r) (which simplify to u2a+1 = βu2a, since there is no element u1 for
BSO(2r + 1)). Also, let v1, . . . , v2r be the elements of the Hodge cohomology of
BO(2r) that were called u1, . . . , u2r above. Then restricting from BSO(2r + 1) to
BO(2r) sends u2a �→ v2a and u2a+1 = βu2a �→ βv2a = v2a+1+v1v2a for 1 ≤ a ≤ r−1.
It is not immediate how to compute the restriction of the remaining element u2r+1

to BO(2r), but we can compute its restriction to BO(2)r:

u2r+1 = βu2r

�→ βv2r

= β(t1 · · · tr)
= (s1 + · · ·+ sr)(t1 · · · tr).

Thus we have proved the desired formulas for the restriction on Hodge cohomology
from BSO(2r + 1) to BO(2)r. Since the generators are in H i(BSO(2r + 1),Ωi) or
H i+1(BSO(2r + 1),Ωi), the same formulas hold in de Rham cohomology.

Thus, the restriction from BSO(2r + 1) to BO(2)r sends k[u2, . . . , u2r+1] into
the subring

k[v1, . . . , v2r] ⊂ k[s1, . . . , sr, t1, . . . , tr],

by u2a �→ v2a for 1 ≤ a ≤ r, u2a+1 �→ v2a+1 + v1v2a for 1 ≤ a ≤ r − 1, and
u2r+1 �→ v1v2r. This homomorphism is injective, because the corresponding mor-
phism A2r → A2r is birational (for u2r �= 0, one can solve for v1, . . . , v2r in terms of
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u2, . . . , u2r+1). So the homomorphism ψ : k[u2, . . . , u2r+1] → H∗
H(BSO(2r + 1)/k)

is injective (because its composition to H∗
H(BO(2)r/k) is injective).

For SO(2r), we argue a bit differently. As discussed above, there is a subgroup
Z/2× μ2 ⊂ O(2). Therefore, we have a k-subgroup scheme (Z/2× μ2)

r ⊂ O(2)r ⊂
O(2r). Since SO(2r) is the kernel of a homomorphism from O(2r) onto Z/2, SO(2r)
contains a k-subgroup scheme H ∼= (Z/2)r−1 × (μ2)

r. By Lemma 10.2, the Hodge
cohomology of B(Z/2) over k is the cohomology of Z/2 as a group, namely the poly-
nomial ring k[x] with x ∈ H1(B(Z/2),Ω0). Also, by Proposition 10.1, the Hodge
cohomology of Bμ2 is k[t, v]/(v

2) with t ∈ H1(Bμ2,Ω
1) and v ∈ H0(Bμ2,Ω

1). Thus
we have a homomorphism ψ from k[u2, u3, . . . , u2r] to H∗

H(BSO(2r)/k), and a ho-
momorphism from there to H∗

H(BH/k) ∼= k[x1, . . . , xr−1, t1, . . . , tr, v1, . . . , vr]/(v
2
i )

(by the Künneth theorem, Proposition 5.1). We want to show that this composi-
tion is injective. For convenience, we will prove the stronger statement that the
composition ρψ from k[u2, u3, . . . , u2r] to

H∗
H(BH/k)/rad = k[x1, . . . , xr−1, t1, . . . , tr]

is injective.
We compare the restriction from O(2r) to (Z/2)r× (μ2)

r with that from SO(2r)
to H:

k[u1, . . . , u2r] ��

��

k[u2, u3, . . . , u2r]

��

H∗
H(BO(2r)/k) ��

��

H∗
H(BSO(2r)/k)

��

k[s1, . . . , sr, t1, . . . , tr] �� k[x1, . . . , xr−1, t1, . . . , tr]

The bottom homomorphism is given (for a suitable choice of generators x1, . . . , xr−1)
by si �→ xi for 1 ≤ i ≤ r − 1 and sr �→ x1 + · · ·+ xr−1 (agreeing with the fact that
u1 �→ s1 + · · · + sr �→ 0 in the Hodge cohomology of BH). By the formulas for
O(2r), we know how the elements u2, . . . , u2r restrict to k[s1, . . . , sr, t1, . . . , tr], and
hence to k[x1, . . . , xr−1, t1, . . . , tr]. Namely,

u2a �→ ea(t1, . . . , tr) =
∑

1≤i1<···<ia≤r

ti1 · · · tia ,

and, for 1 ≤ a ≤ r − 1,

u2a+1 �→
∑

1≤i1<···<ia≤r

( a∑
j=1

sij +
r∑

m=1

sm

)
ti1 · · · tia

�→
∑

1≤i1<···<ia≤r−1

( a∑
j=1

xij

)
ti1 · · · tia

+
∑

1≤i1<···<ia−1≤r−1

(
x1 + · · ·+ xr−1 +

a−1∑
j=1

xij

)
ti1 · · · tia−1tr

=

r−1∑
j=1

xj(tj + tr)
∑

1≤i1<···<ia−1≤r−1
none equal to j

ti1 · · · tia−1 .
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We want to show that this homomorphism ρψ : k[u2, u3, . . . , u2r] → k[x1, . . . , xr−1, t1, . . . , tr]
is injective. It can be factored through k[u3, u5, . . . , u2r−1, t1, . . . , tr], by the ho-
momorphism μ sending u2, u4, . . . , u2r to the elementary symmetric polynomials in
t1, . . . , tr. Since μ is injective, it remains to show that σ : k[u3, u5, . . . , u2r−1, t1, . . . , tr] →
k[x1, . . . , xr−1, t1, . . . , tr] is injective.

As in the argument for O(2r), we will show (more strongly) that σ is gener-
ically étale; that is, its Jacobian determinant is not identically zero. Because σ
is the identity on the ti coordinates, it suffices to show that the determinant of
the matrix of derivatives of u3, u5, . . . , u2r−1 with respect to x1, . . . , xr−1 is nonzero
for x1, . . . , xr−1, t1, . . . , tr generic. This matrix of derivatives in fact only involves
t1, . . . , tr, because u3, u5, . . . , u2r−1 have degree 1 as polynomials in x1, . . . , xr−1.
For example, for r = 3, this (r − 1)× (r − 1) matrix of derivatives is(

t1 + t3 (t1 + t3)(t2)
t2 + t3 (t2 + t3)(t1)

)
,

where the ath column gives the derivatives of u2a+1 with respect to x1, . . . , xr−1.
For any r, the entry (j, a) of the matrix (with j, a ∈ {1, . . . , r − 1}) is (tj + tr)eja,
where

eja =
∑

1≤i1<···<ia−1≤r−1
none equal to j

ti1 · · · tia−1 .

Since row j is a multiple of (tj + tr) for each r, the determinant is (t1 + tr)(t2 +
tr) · · · (tr−1 + tr) times the determinant of the (r − 1) × (r − 1) matrix E = (eja).
So it suffices to show that the determinant of E is not identically zero. Indeed, the
determinant of E is the same determinant shown to be nonzero in the calculation
above for O(2r), but with r replaced by r − 1.

Thus we have shown that ψ : k[u2, . . . , un] → H∗
H(BSO(n)/k) is injective for n

even as well as for n odd.

Having shown that ψ : k[u2, . . . , un] → H∗
H(BSO(n)/k) is injective, we now show

that it is an isomorphism.
Let r = �n/2� and s = �(n − 1)/2�. Let P be the parabolic subgroup of G =

SO(n) that stabilizes a maximal isotropic subspace (that is, an isotropic subspace
of dimension r). Then the quotient of P by its unipotent radical is isomorphic to
GL(r). By Proposition 9.3, we have a spectral sequence

Eij
2 = H i

H(BG/k)⊗Hj
H((G/P )/k) ⇒ H i+j

H (BGL(r)/k).

The Chow ring of G/P is isomorphic to

Z[e1, . . . , es]/(e
2
i − 2ei−1ei+1 + 2ei−2ei+2 − · · ·+ (−1)ie2i),

where ei ∈ CH i(G/P ) is understood to mean zero if i > s [25, III.6.11]. (This uses
the theorem, discussed in section 7, that the Chow ring of G/P for a split group G is
independent of the characteristic of k, and is isomorphic to the integral cohomology
ring of GC/PC. The reference assumes that n is even, but that is enough, because
the obvious map SO(2r+1)/P → SO(2r+2)/P is an isomorphism.) By Proposition
7.1, it follows that the Hodge cohomology ring of G/P is isomorphic to

k[e1, . . . , es]/(e
2
i = e2i),
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where ei is in H i(G/P,Ωi). For any list of variables x1, . . . , xm, write Δ(x1, . . . , xm)
for the k-vector space with basis consisting of all products xi1 . . . xij with 1 ≤ i1 <
· · · < ij ≤ m and 0 ≤ j ≤ m. Then we can say that

H∗
H((G/P )/k) = Δ(e1, . . . , es).

The spectral sequence converges to H∗
H(BGL(r)/k) = k[c1, . . . , cr], by Theorem

9.2. Write Φ: H∗
H(BG/k) → H∗

H(BGL(r)/k) for the restriction homomorphism,
which is the “edge map” associated to the 0th row in the spectral sequence. The
restriction Φ takes the elements u2, u4, . . . , u2r (where u2i is in H i(BG,Ωi)) to
c1, c2, . . . , cr. So the E∞ term of the spectral sequence is concentrated on the 0th
row and consists of the polynomial ring k[u2, u4, . . . , u2r].

To analyze the structure of the spectral sequence further, we use Zeeman’s com-
parison theorem, which he used to simplify the proof of the Borel transgression the-
orem [25, Theorem VII.2.9]. The key point is to show that the elements ei (possibly
after adding decomposable elements) are transgressive. (By definition, an element u
of E0,q

2 in a first-quadrant spectral sequence is transgressive if d2 = · · · = dq = 0 on

u; then u determines an element τ(u) := dq+1(u) of E
q+1,0
q+1 , called the transgression

of u.)
In order to apply Zeeman’s comparison theorem, we define a model spectral

sequence that maps to the spectral sequence we want to analyze. (To be precise,
we consider spectral sequences of k-vector spaces, not of k-algebras.) As above, let
k = F2. For a positive integer q, define a spectral sequence G∗ with E2 page given by
G2 = Δ(y)⊗k[u], y in bidegree (0, q), u in bidegree (q+1, 0), and dq+1(yu

j) = uj+1.

k · y ∼=
��

k · yu ∼=




k · yu2 · · ·

k · 1 k · u k · u2 · · ·
Suppose that, for some positive integer a, we have found elements yi ofH

2i
H ((G/P )/k)

for 1 ≤ i ≤ a which are transgressive in the spectral sequence E∗ above. Because
yi is transgressive, there is a map of spectral sequences G∗ → E∗ that takes the
element y (in degree q = 2i) to yi. Since E∗ is a spectral sequence of algebras,
tensoring these maps gives a map of spectral sequences

α : F∗ := G∗(y1)⊗ · · · ⊗G∗(ya)⊗ k[u2, u4, . . . , u2r] → E∗.

(Here we are using that the elements u2, u4, . . . , u2r are in H∗
H(BG/k), which is row

0 of the E2 page on the right, and so they are permanent cycles.) Although we do
not view the domain as a spectral sequence of algebras, its E2 page is the tensor
product of row 0 and column 0, and the map α : F2 → E2 of E2 pages is the tensor
product of the maps on row 0 and column 0.

Using these properties, we have the following version of Zeeman’s comparison
theorem, as sharpened by Hilton and Roitberg [25, Theorem VII.2.4]:

Theorem 11.5. Let N be a natural number. Suppose that the homomorphism
α : F∗ → E∗ of spectral sequences is bijective on Ei,j∞ for i+ j ≤ N and injective for
i + j = N + 1, and that α is bijective on row 0 of the E2 page in degrees ≤ N + 1
and injective in degree N + 2. Then α is bijective on column 0 of the E2 page in
degree ≤ N and injective in degree N + 1.
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The inductive step for computing the Hodge cohomology of BSO(n) is as follows.

Lemma 11.6. Let G be SO(n) over k = F2, P the parabolic subgroup above,
r = �n/2�, s = �(n− 1)/2�. Let N be a natural number, and let a = min(s, �N/2�).
Then, for each 1 ≤ i ≤ a, there is an element yi in H i(G/P,Ωi) with the following
properties. First, yi is equal to ei modulo polynomials in e1, . . . , ei−1 with exponents
≤ 1. Also, each element yi is transgressive, and any lift v2i+1 to H i+1(BG,Ωi) of
the element τ(yi) has the property that

k[u2, u4, . . . , u2r; v3, v5, . . . , v2a+1] → H∗
H(BG/k)

is bijective in degree ≤ N + 1 and injective in degree N + 2. Finally, each element
v2i+1 is equal to u2i+1 modulo polynomials in u2, u3, . . . , u2i.

More precisely, if this statement holds for N − 1, then it holds for N with the
same elements yi, possibly with one added.

We will apply Lemma 11.6 with N = ∞, but the formulation with N arbitrary
is convenient for the proof.

Proof. As discussed earlier, the E∞ page of the spectral sequence

Eij
2 = H i

H(BG/k)⊗Hj
H((G/P )/k) ⇒ H i+j

H (BGL(r)/k)

is isomorphic to k[u2, u4, . . . , u2r], concentrated on row 0.
We prove the lemma by induction on N . For N = 0, it is true, using that

H0
H(BG/k) = k and H1

H(BG/k) = 0, as one checks using our knowledge of the E∞
term.

We now assume the result for N − 1, and prove it for N . By the inductive
assumption, for b := min(s, �(N − 1)/2�), we can choose y1, . . . , yb such that yi ∈
H i(G/P,Ωi) is equal to ei modulo polynomials in e1, . . . , ei−1 with exponents ≤ 1,
yi is transgressive for the spectral sequence, and, if we define v2i+1 ∈ H i+1(BG,Ωi)
to be any lift (from the E2i+1 page to the E2 page) of the transgression τ(yi) for
1 ≤ i ≤ b, the homomorphism

k[u2, u4, . . . , u2r; v3, v5, . . . , v2b+1] → H∗
H(BG/k)

is bijective in degree ≤ N and injective in degree N + 1. Finally, the element v2i+1

for 1 ≤ i ≤ b is equal to u2i+1 modulo polynomials in u2, u3, . . . , u2i.
Also, by the injectivity in degree N + 1 (above), it follows that there is a k-

linearly independent set (possibly empty) of elements zi in HN+1
H (BG/k) such that

ϕ : k[u2, u4, . . . , u2r; v3, v5, . . . , v2b+1; zi] → H∗
H(BG/k)

is bijective in degrees at most N + 1. (Recall that b = min(s, �(N − 1)/2�).) The
elements zi do not affect the domain of ϕ in degree N +2 (because that ring is zero
in degree 1). Therefore, ϕ is injective in degree N + 2, because

k[u2, u4, . . . , u2r; v3, v5, . . . , v2b+1] → H∗
H(BG/k)

is injective. (This uses that v2i+1 is equal to u2i+1 modulo polynomials in u2, u3, . . . , u2i,
together with the injectivity of k[u2, u3, . . . , un] → H∗

H(BG/k), shown in Lemma
11.4.)
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The elements zi can be chosen to become zero in the E∞ page, because the E∞
page is just k[u2, u4, . . . , u2r] on row 0. Therefore, there are transgressive elements
wi ∈ HN

H ((G/P )/k) with zi = τ(wi) in the EN+1 page. (If zi is killed before EN+1,
we can simply take wi = 0.)

Consider the map of spectral sequences

α : F∗ := Δ(y1, . . . , yb;wi)⊗ k[u2, u4, . . . , u2r, v3, v3, . . . , v2b+1; zi] → E∗.

The map on E∞ terms is an isomorphism (to k[u2, u4, . . . , u2r]), and we showed two
paragraphs back that the map on column 0 of the E2 terms is bijective in degrees at
most N+1 and injective in degree N+2. Therefore, Zeeman’s comparison theorem
(Theorem 11.5) gives that the homomorphism

ψ : Δ(y1, . . . , yb;wi) → H∗
H((G/P )/k)

is bijective in degrees ≤ N and injective in degree N + 1.
Let a = min(s, �N/2�). We know that Δ(e1, . . . , ea) → H∗

H((G/P )/k) is bijec-
tive in degrees ≤ N . Since the elements wi are in degree N , while b = min(s, �(N −
1)/2�), we deduce that there is no element wi if N is odd or N > 2s, and there is
exactly one wi if N is even and N ≤ 2s. In the latter case, we have a = N/2; in
that case, let ya denote the single element wi. Since we know that H∗

H((G/P )/k) =
Δ(e1, . . . , es), ya must be equal to ea modulo polynomials in e1, . . . , ea−1 with ex-
ponents ≤ 1. By construction, ya is transgressive. Also, in the case where N is
even and N ≤ 2s, let v2a+1 in Ha+1(BG,Ωa) be a lift to the E2 page of the element
τ(ya) (formerly called zi). Then we know that

ϕ : k[u2, u4, . . . , u2r; v3, v5, . . . , v2a+1] → H∗
H(BG/k)

is bijective in degree ≤ N + 1. In the case where N is even and N ≤ 2s (where
we have added one element v2a+1 to those constructed before), this bijectivity in
degree N+1 = 2a+1 together with the injectivity of k[u2, u3, . . . , un] → H∗

H(BG/k)
in all degrees implies that v2a+1 must be equal to u2a+1 modulo polynomials in
u2, u3, . . . , u2a. By the same injectivity, it follows that ϕ is injective in degree
N + 2.

We can take N = ∞ in Lemma 11.6, because the elements y1, . . . , ys do not
change as we increase N . This gives that k[u2, u3, . . . , un] → H∗

H(BSO(n)/k) is
an isomorphism. (The element v2i+1 produced by Lemma 11.6 need not be the
element u2i+1 defined earlier, but v2i+1 is equal to u2i+1 modulo decomposable
elements, which gives this conclusion.)

Using the Hodge cohomology of BSO(2r), we can compute the Hodge coho-
mology of BO(2r) over k using the Hochschild-Serre spectral sequence of Lemma
10.3:

Eij
2 = H i(Z/2, Hj(BSO(2r),Ω∗)) ⇒ H i+j(BO(2r),Ω∗).

We have a homomorphism k[u1, u2, . . . , u2r] → BO(2r) whose composition toBSO(2r)
is surjective. Therefore, Z/2 acts trivially on the Hodge cohomology of BSO(2r),
and all differentials are zero on column 0 of this spectral sequence. It follows that
the spectral sequence degenerates at E2, and hence

H∗
H(BO(2r)/k) ∼= H∗(Z/2, k)⊗H∗

H(BSO(2r)/k)
∼= k[u1, u2, . . . , u2r].
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Finally, we show that the Hodge spectral sequence

Eij
1 = Hj(BG,Ωi) ⇒ H i+j

dR (BG/k)

degenerates for G = SO(n) over k. Indeed, by restricting to a maximal torus
T = (Gm)r of G, the elements u2, u4, . . . , u2r restrict to the elementary symmetric
polynomials in the generators of H∗

dR(BT/k) = k[t1, . . . , tr]. Therefore, the ring
k[u2, u4, . . . , u2r] injects into H∗

dR(BG/k). So all differentials into the main diagonal
⊕iH

i,i of the Hodge spectral sequence for BG are zero.

H2(BG,Ω0)
d1 ��

d2

��

H2(BG,Ω1)
d1 �� H2(BG,Ω2)

H1(BG,Ω0)
d1 ��

d2

��

H1(BG,Ω1) �� 0

H0(BG,Ω0) �� 0 �� 0

It follows that all differentials are zero on the elements u2i+1 ∈ H i+1(BG,Ωi): only
d1 maps u2i+1 into a nonzero group, and that is on the main diagonal. Also, all
differentials are zero on the elements u2i in the main diagonal (since they map
into zero groups). This proves the degeneration of the Hodge spectral sequence.
Therefore, H∗

dR(BSO(n)/k) is isomorphic to k[u2, u3, . . . , un].
The same argument proves the degeneration of the Hodge spectral sequence for

BO(2r). Therefore, H∗
dR(BO(2r)/k) is isomorphic to k[u1, u2, . . . , u2r].

Finally, O(2r + 1) is isomorphic to SO(2r + 1)× μ2, and so the calculation for
BO(2r+1) follows from those for BSO(2r+1) (above) and Bμ2 (Proposition 10.1),
by the Künneth theorem (Proposition 5.1). Theorem 11.1 is proved.

Proof. (Proposition 11.2) Let 2r and 2s be the ranks of the quadratic bundles E
and F . The problem amounts to computing the restriction from BO(2r + 2s) to
BO(2r)×BO(2s) on Hodge cohomology or de Rham cohomology. We first compute
u(E ⊕ F ) in Hodge cohomology. The formula for u2a(E ⊕ F ) follows from the
definition of u2a in Ha(BO(2r+2s),Ωa). (Since u2a is in Ha(BO(2r+2s),Ωa), its
restriction to the Hodge cohomology of BO(2r)×BO(2s) must be in Ha(BO(2r)×
BO(2s),Ωa), which explains why only the even u-classes of E and F appear in the
formula.) The formula for u2a+1(E ⊕ F ) follows from the formula for u2a(E ⊕ F ),
using that u2a+1 = βu2a + u1u2a.

In de Rham cohomology, the same formulas hold for u(E ⊕ F ). This uses that
the subring ⊕iH

i(BG,Ωi) of Hodge cohomology canonically maps into de Rham
cohomology (Lemma 8.2).

12 The spin groups

In contrast to the other calculations in this paper, we now exhibit a reductive group
G such that the mod 2 cohomology of the topological space BGC is not isomorphic
to the de Rham cohomology of the algebraic stack BGF2 , even additively. The
example was suggested by the observation of Feshbach, Benson, and Wood that the
restriction H∗(BGC,Z) → H∗(BTC,Z)

W fails to be surjective for G = Spin(n) if
n ≥ 11 and n ≡ 3, 4, 5 (mod 8) [4]. For simplicity, we work out the case of Spin(11).

32



It would be interesting to make a full computation of the de Rham cohomology of
B Spin(n) in characteristic 2.

Theorem 12.1.

dimF2 H
32
dR(B Spin(11)/F2) > dimF2 H

32(B Spin(11)C,F2).

Proof. Let k = F2. Let n be an integer at least 6; eventually, we will restrict to the
case n = 11. Let G be the split group Spin(n) over k, and let T be a maximal torus
in G. Let r = �n/2�. The Weyl group W of G is Sr � (Z/2)r for n = 2r + 1, and
the subgroup Sr � (Z/2)r−1 for n = 2r. We start by computing the ring O(t)W of
W -invariant functions on the Lie algebra t of T .

First consider the easier case where n is odd, n = 2r + 1. The element −1 in
(Z/2)r ⊂ W acts as the identity on t, since we are in characteristic 2. The ring
O(t)W can also be viewed as S(X∗(T ) ⊗ k)W . Computing this ring is similar to,
but simpler than, Benson and Wood’s calculation of S(X∗(T ))W = H∗(BTC,Z)

W

[4]. We follow their notation.
We have

S(X∗(T )) ∼= Z[x1, . . . , xr, A]/(2A = x1 + · · ·+ xr),

by thinking of T as the double cover of a maximal torus in SO(2r + 1). The
symmetric group Sr in W permutes x1, . . . , xr and fixes A. The elementary abelian
group Er = (Z/2)r in W , with generators ε1, . . . , εr, acts by: εi changes the sign of
xi and fixes xj for j �= i, and εi(A) = A− xi. So

S(X∗(T )⊗ k) ∼= k[x1, . . . , xr, A]/(x1 + · · ·+ xr).

Note that −1 := ε1 · · · εr in W acts as the identity on S∗(X∗(T )⊗ k).
We first compute the invariants of the subgroup Er on S(X∗(T )⊗ k), using the

following lemma.

Lemma 12.2. Let R be an F2-algebra which is a domain, S the polynomial ring
R[x], and a a nonzero element of R. Let G = Z/2 act on S by fixing R and sending
x to x+ a. Then the ring of invariants is

SG = R[u],

where u = x(x+ a).

Proof. Clearly u = x(x + a) in S is G-invariant. Since u is a monic polynomial of
degree 2 in x, we have S = R[u] ⊕ x · R[u]. Let σ be the generator of G = Z/2.
Any element of S can be written as f + xg for some (unique) elements f, g ∈ R[u].
If f + xg is G-invariant, then 0 = σ(f + xg) − (f + xg) = (x + a)g − xg = ag.
Since a is a non-zero-divisor in R, it is a non-zero-divisor in R[u]; so g = 0. Thus
SG = R[u].

Let Ej
∼= (Z/2)j be the subgroup of W generated by ε1, . . . , εj . Let

ηj =
∏

I⊂{1,...,j}

(
A−

∑
i∈I

xi

)
,
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which is Ej-invariant. Here ηj has degree 2j in S∗(X∗(T ) ⊗ k). By Lemma 12.2
(with R = k[x1, . . . , xr]/(x1 + · · ·+ xr)) and induction on j, we have

S∗(X∗(T )⊗ k)Ej = k[x1, . . . , xr, ηj ]/(x1 + · · ·+ xr = 0)

for 1 ≤ j ≤ r − 1. Since −1 = ε1 · · · εr acts as the identity on these rings, we also
have

S∗(X∗(T )⊗ k)Er = k[x1, . . . , xr, ηr−1]/(x1 + · · ·+ xr = 0).

The symmetric group Sr permutes x1, . . . , xr, and it fixes ηr−1. Therefore,
computing the invariants of the Weyl group on S∗(X∗(T )⊗k) reduces to computing
the invariants of the symmetric group Sr on k[x1, . . . , xr]/(x1 + · · · + xr). That
is known, by the following result [26, Proposition 4.1]. Write c1, . . . , cr for the
elementary symmetric polynomials in k[x1, . . . , xr].

Lemma 12.3. Let k be a field of characteristic 2. If r ≥ 3, then the ring of in-
variants of Sr on R = k[x1, . . . , xr]/(x1 + · · · + xr) is equal to k[c1, . . . , cn]/(c1) =
k[c2, . . . , cr]. If r = 2, on the other hand, then S2 acts trivially on R = k[x1, x2]/(x1+
x2), and so RS2 = R = k[x1].

Combining Lemma 12.3 with the calculations above, we have found the invari-
ants for the Weyl group W of G = Spin(2r + 1): for r ≥ 1,

S∗(X∗(T )⊗ k)W =

{
k[c2, . . . , cr, ηr−1] if r �= 2,

k[x1, η1] if r = 2.

Here |ci| = i for 2 ≤ i ≤ r, |x1| = 2, and |ηr−1| = 2r−1.
We now compute S∗(X∗(T )⊗k)W for G = Spin(2r). Note that a maximal torus

in Spin(2r) is also a maximal torus in Spin(2r + 1). So we have again

S∗(X∗(T )⊗ k) ∼= k[x1, . . . , xr, A]/(x1 + · · ·+ xr).

The Weyl group W = Sr � (Z/2)r−1 acts on this ring by: Sr permutes x1, . . . , xr,
and fixed A, and (Z/2)r−1 is the subgroup 〈ε1ε2, . . . , ε1εr〉 in the notation above.
Thus ε1εj fixes each xj (since we are working modulo 2) and sends A to A−x1−xj .

For 1 ≤ j ≤ r, let Fj be the subgroup 〈ε1ε2, . . . , ε1εj〉 ∼= (Z/2)j−1 ⊂ W . Let

μj =
∏

I⊂{1,...,j}
|I| even

(
A−

∑
i∈I

xi

)
.

Then |μj | = 2j−1 and μ1 = A. Clearly μj is Fj-invariant. Benson and Wood
observed (or one can check directly) that if r is even and r ≥ 4, then μr−1 is in fact
W -invariant, while if r is odd and r ≥ 3, then μr is W -invariant [4, Proposition 4.1].

For 1 ≤ j ≤ r − 1, an induction on j using Lemma 12.2 gives that

S∗(X∗(T )⊗ k)Fj = k[x1, . . . , xr, μj ]/(x1 + · · ·+ xr).

If r is even, then −1 := ε1 · · · εr is in Fr ⊂ W , and it acts trivially on S∗(X∗(T )⊗k).
Therefore, for r even, we have

S∗(X∗(T )⊗ k)Fr = k[x1, . . . , xr, μr−1]/(x1 + · · ·+ xr).
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If r is odd, then we can apply Lemma 12.2 one more time, yielding that

S∗(X∗(T )⊗ k)Fr = k[x1, . . . , xr, μr]/(x1 + · · ·+ xr).

The subgroup Sr ⊂ W permutes x1, . . . , xr, and fixes μr−1, resp. μr. We showed
above that

k[x1, . . . , xr]/(x1 + · · ·+ xr)
Sr = k[c2, . . . , cr].

Therefore, for G = Spin(2r), we have

S∗(X∗(T )⊗ k)W =

{
k[c2, . . . , cr, μr−1] if r is even

k[c2, . . . , cr, μr] if r is odd.

Here |ci| = i for 2 ≤ i ≤ r and |μr−1| = 2r−2, resp. |μr| = 2r−1.
Thus we have determined S∗(X∗(T ) ⊗ k)W for G = Spin(n) for all n, even or

odd. Now think of G = Spin(n) as a split reductive group over k. By Theorem 8.1
(due to Chaput and Romagny), the ring S∗(X∗(T )⊗k)W = O(t)W can be identified
with O(g)G for all n ≥ 6. (The exceptional cases Spin(3), Spin(4), Spin(5) are the
spin groups that have a factor isomorphic to a symplectic group: Spin(3) ∼= Sp(2),
Spin(4) ∼= Sp(2)× Sp(2), and Spin(5) ∼= Sp(4).) We deduce that for n ≥ 6,

O(g)G =

⎧⎪⎨
⎪⎩
k[c2, . . . , cr, ηr−1] if n = 2r + 1

k[c2, . . . , cr, μr−1] if n = 2r and r is even

k[c2, . . . , cr, μr] if n = 2r and r is odd.

For G = Spin(n) and any n ≥ 6, we have homomorphisms

O(g)G → H∗
dR(BG/k) → H∗

dR(BT/k)W = O(t)W ,

whose composition is the obvious inclusion. (The first homomorphism comes from
the isomorphism of O(g)G with ⊕iH

i(BGk,Ω
i), using that H i(BGk,Ω

j) = 0 for
i < j.) In this case, the restriction O(g)G → O(t)W is a bijection. So H∗

dR(BG/k)
contains the ring computed above (with degrees multiplied by 2), and retracts onto
it. It follows that for all n ≥ 6, H∗

dR(BG/k) has an indecomposable generator in
degree 2r if n = 2r + 1, in degree 2r−1 if n = 2r and r is even, and in degree
2r if n = 2r and r is odd. (For this argument, we do not need to find all the
indecomposable generators of H∗

dR(BG/k).) For our application to Spin(11), we
note the following information:

Lemma 12.4. The image of H∗
dR(B Spin(2r + 1)/k) → H∗

dR(BT/k) is the polyno-
mial ring k[c2, . . . , cr, ηr−1], where |ci| = 2i and |ηr−1| = 2r.

Compare this with Quillen’s calculation of the cohomology of the classifying
space of the complex reductive group Spin(n)C, or equivalently of the compact Lie
group Spin(n) [28, Theorem 6.5]:

H∗(B Spin(n)C, k) ∼= H∗(BSO(n)C, k)/J ⊗ k[w2h(Δθ)].

Here Δθ is a faithful orthogonal representation of Spin(n)C of minimal dimension,
and J is the ideal generated by the regular sequence

w2, Sq
1w2, . . . , Sq

2h−2 · · ·Sq2Sq1w2
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in the polynomial ring H∗(BSO(n)C, k) = k[w2, w3, . . . , wn], where |wi| = i. Fi-
nally, the number h is given by the following table:

n h
8l + 1 4l + 0
8l + 2 4l + 1
8l + 3 4l + 2
8l + 4 4l + 2
8l + 5 4l + 3
8l + 6 4l + 3
8l + 7 4l + 3
8l + 8 4l + 3

The Steenrod operations on the mod 2 cohomology of BSO(n)C, as used in the
formula above, are known, by Wu’s formula [25, Theorem III.5.12]:

Sqiwj =

i∑
l=0

(
j − l − 1

i− l

)
wlwi+j−l

for 0 ≤ i ≤ j, where by convention
(−1

0

)
= 1.

Write r = �n/2�. If n = 2r+1, then the generator w2h(Δθ) is in degree 2r if r ≡
0, 3 (mod 4) and in degree 2r+1 if r ≡ 1, 2 (mod 4). If n = 2r, then the generator
w2h(Δθ) is in degree 2r−1 if r ≡ 0 (mod 4) and in degree 2r if r ≡ 1, 2, 3 (mod 4).
Therefore, for n ≥ 11,H∗(B Spin(n)C, k) has no indecomposable generator in degree
2r if n ≡ 3, 5 (mod 8), and no indecomposable generator in degree 2r−1 if n ≡ 4
(mod 8). But H∗

dR(BG/k) does have an indecomposable generator in the indicated
degree 2a, as shown above. Thus, for G = Spin(n), H∗(BGC, k) is not isomorphic
to H∗

dR(BG/k) as a graded ring when n ≥ 11 and n ≡ 3, 4, 5 (mod 8).
We want to show, more precisely, that for n = 11, H32

dR(BG/k) is bigger than
H32(BGC, k). We know the cohomology of BGC by Quillen (above), and so it
remains to give a lower bound for the de Rham cohomology of BG over k.

We do this by restricting to a suitable abelian k-subgroup scheme of G =
Spin(n). Assume that n �≡ 2 (mod 4); this includes the case Spin(11) that we
are aiming for. Then the Weyl group W of Spin(n) contains −1. So Spin(n) con-
tains an extension of Z/2 by a split maximal torus T ∼= (Gm)r, where Z/2 acts by
inversion on T . Let L be the subgroup of the form 1 → T [2] → L → Z/2 → 1;
then L is abelian (because inversion is the identity on T [2] ∼= (μ2)

r). Since the field
k = F2 is perfect, the reduced subscheme of L is a k-subgroup scheme (isomorphic
to Z/2) [24, Corollary 1.39], and so the extension splits. That is, L ∼= (μ2)

r × Z/2.
Let us compute the pullbacks of the generators ui of H

∗
dR(BSO(n)/k) (Theorem

11.1) to the subgroup L of G = Spin(n). It suffices to compute the restrictions of
the classes ui to the image K of L in SO(n); clearly K ∼= (μ2)

r−1×Z/2. In notation
similar to that used earlier in this proof, the ring of polynomial functions on the
Lie algebra of the subgroup (μ2)

r−1 here is

k[t1, . . . , tr]/(t1 + · · ·+ tr).

This ring can be viewed as the Hodge cohomology ring of B(μ2)
r−1 modulo its

radical, with the generators ti in H1(B(μ2)
r−1,Ω1) (by Propositions 10.1 and 5.1).
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Using Lemma 10.2, we conclude that

H∗
H(BK/k)/rad ∼= k[s, t1, . . . , tr]/(t1 + · · ·+ tr),

where s is pulled back from the generator of H1(B(Z/2), O). The Hodge spectral
sequence for BK degenerates at E1, since we know this degeneration for BZ/2 and
B(μ2)

r−1. Therefore,

H∗
dR(BK/k)/rad ∼= k[s, t1, . . . , tr]/(t1 + · · ·+ tr),

Note that the surjection L → K is split. So if we compute that an element of
H∗

dR(BSO(n)/k) has nonzero restriction to K, then it has nonzero restriction to L,
hence a fortiori to G = Spin(n).

Now strengthen the assumption n �≡ 2 (mod 4) to assume that n is odd and
n ≥ 7. In Lemma 11.4, we computed the restriction of u2, u3, . . . , u2r+1 in de Rham
cohomology from SO(2r + 1) to its subgroup O(2)r, and hence to its subgroup
(μ2)

r × (Z/2)r. We now want to restrict to the smaller subgroup K = (μ2)
r−1 ×

Z/2. This last step sends H∗
dR(B((μ2)

r × (Z/2)r)/k)/rad = k[s1, . . . , sr, t1, . . . , tr]
to H∗

dR(BK/k)/rad = k[s, t1, . . . , tr]/(t1+· · ·+tr) by si �→ s for all i and ti �→ ti. By
Lemma 11.4, the element u2a (for 1 ≤ a ≤ r) restricts to the elementary symmetric
polynomial

ca =
∑

1≤i1<···<ia≤r

ti1 · · · tia .

Thus u2 restricts to 0 on K, but u4, u6, . . . , u2r restrict to generators of the polyno-
mial ring

(k[t1, . . . , tr]/(t1 + · · ·+ tr))
Sr ⊂ H∗

dR(BK/k)/rad,

using that r ≥ 3, by Lemma 12.3.
Next, by Lemma 11.4, for 1 ≤ a ≤ r, the restriction of u2a+1 to H∗

dR(BK/k)/rad
is (first restricting from SO(2r + 1) to its subgroup (μ2)

r × (Z/2)r, and then to
K = (μ2)

r−1 × Z/2):

u2a+1 �→
r∑

m=1

sm
∑

1≤i1<···<ia≤r
one equal to m

ti1 · · · tia

�→ as
∑

1≤i1<···<ia≤r

ti1 · · · tia

= asu2a.

Thus, for all 1 ≤ a ≤ r, u2a+1 restricts in H∗
dR(BK/k)/rad to su2a if a is odd, and

otherwise to zero. (But u2 restricts to 0, and so this also means that u3 restricts to
0.)

This gives a lower bound for the image ofH∗
dR(BSO(n)/k) → H∗

dR(B Spin(n)/k)
for n odd. In particular, for n = 11, this image has Hilbert series at least that of
the ring

k[u4, u6, u7, u8, u10, u11]/(u11u6 + u10u7),

since the latter ring is isomorphic to the image of restriction from SO(11) to
H∗

dR(BL/k)/rad, where L ⊂ Spin(11).
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We now compare this to Quillen’s computation (above) in the case of Spin(11):

H∗(B Spin(11)C, k) = k[w4, w6, w7, w8, w10, w11, w64(Δθ)]/(w11w6 + w10w7,

w3
11 + w2

11w7w4 + w11w8w
2
7).

Since the last generator w64(Δθ) is in degree 64 and the last relation is in degree
33, the degree-32 component of this ring has the same dimension as the degree-32
component of the lower bound above for H∗

dR(B Spin(11)/k). However, Lemma
12.4 shows that H∗

dR(B Spin(11)/k) has an extra generator η4 in degree 32. This
is linearly independent of the image of restriction from SO(11), as we see by re-
stricting to a maximal torus T in Spin(11). Indeed, by Lemma 12.4, the im-
age of H∗

dR(B Spin(11)/k) → H∗
dR(BT/k) is the polynomial ring k[c2, . . . , c5, η4],

whereas the image of the pullback from SO(11) to T ⊂ Spin(11) is just k[c2, . . . , c5]
(= k[w4, w6, w8, w10]). Thus we have shown that

dimk H
32
dR(B Spin(11)/k) > dimk H

32(B Spin(11)C, k).
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