Hodge theory of classifying stacks

Burt Totaro

This paper creates a correspondence between the representation theory of alge-
braic groups and the topology of Lie groups. In more detail, we compute the Hodge
and de Rham cohomology of the classifying space BG (defined as étale cohomology
on the algebraic stack BG) for reductive groups G over many fields, including fields
of small characteristic. These calculations have a direct relation with representation
theory, yielding new results there. Eventually, p-adic Hodge theory should provide a
more subtle relation between these calculations in positive characteristic and torsion
in the cohomology of the classifying space BGc.

For the representation theorist, this paper’s interpretation of certain Ext groups
(notably for reductive groups in positive characteristic) as Hodge cohomology groups
suggests spectral sequences that were not obvious in terms of Ext groups (Proposi-
tion 9.3). We apply these spectral sequences to compute Ext groups in new cases.
The spectral sequences form a machine that can lead to further calculations.

One main result is an isomorphism between the Hodge cohomology of the clas-
sifying stack BG and the cohomology of G as an algebraic group with coeflicients in
the ring O(g) = S(g*) of polynomial functions on the Lie algebra g (Theorem 3.1):

HY(BG, ) = H™I(G, S (g")).

This was shown by Bott over a field of characteristic 0 [8], but in fact the iso-
morphism holds in any characteristic, and even for group schemes over the integers.
More generally, we give an analogous description of the equivariant Hodge cohomol-
ogy of an affine scheme (Theorem 2.1). This was shown by Simpson and Teleman
in characteristic 0 [29, Example 6.8(c)].

Using that isomorphism, we improve the known results on the cohomology of
the representations S7(g*). Namely, by Andersen, Jantzen, and Donkin, we have
H>%(G,0(g)) = 0 for a reductive group G over a field of characteristic p if p is a
“good prime” for G [13, Proposition and proof of Theorem 2.2], [21, 11.4.22]. We
strengthen that to an “if and only if” statement (Theorem 9.1):

Theorem 0.1. Let G be a reductive group over a field k of characteristic p > 0.
Then H>°(G,0(g)) = 0 if and only if p is not a torsion prime for G.

For example, this cohomology vanishing holds for every symplectic group Sp(2n)
in characteristic 2 and for the exceptional group G» in characteristic 3; these are
“bad primes” but not torsion primes.

Finally, we address the problem of computing the Hodge cohomology and de
Rham cohomology of BG, especially at torsion primes. At non-torsion primes, we
have a satisfying result, proved using ideas from topology (Theorem 9.2):



Theorem 0.2. Let G be a split reductive group over Z, and let p be a non-
torsion prime for G. Then Hodge cohomology H{;(BG/Z) and de Rham cohomology
H3x (BG/Z), localized at p, are polynomial rings on generators of degrees equal to
2 times the fundamental degrees of G. These graded rings are isomorphic to the
cohomology of the topological space BG¢c with Z,) coefficients.

At torsion primes p, it is an intriguing question how the de Rham cohomology
of BGy, is related to the mod p cohomology of the topological space BGc. We
show that these graded rings are isomorphic for G = SO(n) with p = 2 (Theorem
11.1). On the other hand, we find that

dimyg, H3% (B Spin(11)/F3) > dimp, H**(B Spin(11)¢c, F2)

(Theorem 12.1). It seems that no existing results on integral p-adic Hodge theory
address the relation between these two rings (because the stack BG is not proper
over Z), but the theory may soon reach that point. In particular, the results of
Bhatt-Morrow-Scholze suggest that the de Rham cohomology H!y(BG/F),) may
always be an upper bound for the mod p cohomology of the topological space BG¢
[6].
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1 Notation

The fundamental degrees of a reductive group G over a field k are the degrees of the
generators of the polynomial ring S(X*(T) ®z Q)" of invariants under the Weyl
group W, where X*(T') is the character group of a maximal torus 7. For k of
characteristic zero, the fundamental degrees of G can also be viewed as the degrees
of the generators of the polynomial ring O(g)® of invariant functions on the Lie
algebra. Here are the fundamental degrees of the simple groups [17, section 3.7,
Table 1]:

A 23,0 +1

B, 2,4,6,...,2

C, 2,4,6,...,21

Dy 2,4,6,...,21— 21
Gy 2.6

Fi 2,6,8,12

Es 2,5,6,8,9,12

E: 2,6,8,10,12,14, 18
Es 2,8,12,14,18,20, 24,30

For a commutative ring R and j > 0, write €/ for the sheaf of differential forms
over R on any scheme over R. For an algebraic stack X over R, )V is a sheaf of
abelian groups on the big étale site of X. (In particular, for every scheme Y over X



of “size” less than a fixed limit ordinal « [32, Tag 06TN], we have an abelian group
QJ(Y/R), and these groups form a sheaf in the étale topology.) We define Hodge
cohomology H*(X,€)) to mean the étale cohomology of this sheaf [32, Tag 06XI].
In the same way, we define de Rham cohomology of a stack, Hy(X/R), as étale
cohomology with coefficients in the de Rham complex over R. (If X is an algebraic
space, then the cohomology of a sheaf F' on the big étale site of X coincides with the
cohomology of the restriction of F' to the small étale site, the latter being the usual
definition of étale cohomology for algebraic spaces [32, Tag 0DGB].) For example,
this gives a definition of equivariant Hodge or de Rham cohomology, Hj(X,$7) or
Hé7dR(X /R), as the Hodge or de Rham cohomology of the quotient stack [X/G].
Essentially the same definition was used for smooth stacks in characteristic zero by
Teleman and Behrend [33, 3].

In particular, we have the Hodge spectral sequence for a stack X over R, meaning
the “hypercohomology” spectral sequence [32, Tag 015J] associated to the de Rham
complex of sheaves on X, 0 — Q% — Q! — ...:

EY = HY(X,Q') = H7 (X/R).

This definition of Hodge and de Rham cohomology is the “wrong” thing to con-
sider for an algebraic stack which is not smooth over R. For non-smooth stacks, it
would be better to define Hodge and de Rham cohomology using some version of
Illusie and Bhatt’s derived de Rham cohomology, or in other words using the cotan-
gent complex [5, section 4]. Section 2 has further comments on possible definitions.
In this paper, we will only consider Hodge and de Rham cohomology for smooth
stacks over a commutative ring R. An important example for the paper is that the
classifying stack BG is smooth over R even for non-smooth group schemes G [32,
Tag 0DLS]:

Lemma 1.1. Let G be a group scheme which is flat and locally of finite presentation
over a commutative ring R. Then the algebraic stack BG is smooth over R. More
generally, for a smooth algebraic space X over R on which G acts, the quotient
stack [X/G] is smooth over R.

Let X be an algebraic stack over R, and let U be an algebraic space with
a smooth surjective morphism to X. The Cech nerve C(U/X) is the simplicial
algebraic space:
UsZUxxUSEUxxUxxU--
~— =
For any sheaf F' of abelian groups on the big étale site of X, the étale cohomology
of X with coefficients in F' can be identified with the étale cohomology of the
simplicial algebraic space C(U/X) [32, Tags 06XJ, 0DGB]. In particular, there is a
spectral sequence:
By = HL(UY, F) = Hi (X, F).

Write Hj;(X/R) = &,;H’(X,Q"7) for the Hodge cohomology of an algebraic
stack X over R, graded by total degree.

Let G be a group scheme which is flat and locally of finite presentation over a
commutative ring R. Then the Hodge cohomology of the stack BG can be viewed,
essentially by definition, as the ring of characteristic classes in Hodge cohomology



for principal G-bundles (in the fppf topology). Concretely, for any scheme X over
R, a principal G-bundle over X determines a morphism X — BG of stacks over R
and hence a pullback homomorphism

H'(BG, ) — H'(X, Q7).

Note that for a scheme X over R, H'(X,’) can be computed either in the Zariski
or in the étale topology, because the sheaf €/ (on the small étale site of X) is
quasi-coherent [32, Tags 030Y, 0DGB].

For any scheme X over a commutative ring R, there is a simplicial scheme FX
whose space (EX), of n-simplices is X{%m} = x7+1 [11, 6.1.3]. For a group
scheme G over R, the simplicial scheme Bgin,p G over R is defined as the quotient of
the simplicial scheme EG by the free left action of G:

2 e
Spec(R\)SG@

If G is smooth over R, then Hodge cohomology H'(BG, ) as defined above
can be identified with the cohomology of BgimpG, because this simplicial scheme
is the Cech nerve of the smooth surjective morphism Spec(R) — BG. For G not
smooth, one has instead to use the Cech nerve of a smooth presentation of BG.
See for example the calculation of the Hodge cohomology of By, in characteristic
p, Proposition 10.1.

It is useful that we can compute Hodge cohomology via any smooth presentation
of a stack. For example, let H be a closed subgroup scheme of a smooth group
scheme G over a commutative ring R, and assume that H is flat and locally of finite
presentation over R. Then G/H is an algebraic space with a smooth surjective
morphism G/H — BH over R, and so we can compute the Hodge cohomology of
the stack BH using the associated Cech nerve. Explicitly, that is the simplicial
algebraic space FG/H, and so we have:

Lemma 1.2. ‘ ‘ ' '
H'(BH,Y)= H' (EG/H,).

Note that the cohomology theories we are considering are not A'-homotopy
invariant. Indeed, Hodge cohomology is usually not the same for a scheme X as for
X x Al even over a field of characteristic zero. For example, H%(Spec(k),O) = k,
whereas HY(A%, O) is the polynomial ring k[z]. In de Rham cohomology, Hg (A /k)
is just k if k£ has characteristic zero, but it is k[zP] if k has characteristic p > 0.

2 Equivariant Hodge cohomology and functions on the
Lie algebra

In this section, we identify the Hodge cohomology of a quotient stack with the
cohomology of an explicit complex of vector bundles (Theorem 2.1). As a special
case, we relate the Hodge cohomology of a classifying stack BG to the cohomology
of G as a group scheme (Corollary 2.2). In this section, we assume G is smooth.
Undoubtedly, various generalizations of the statements here are possible. In partic-
ular, we will give an analogous description of the Hodge cohomology of BG for a
non-smooth group G in Theorem 3.1.



The main novelty is that these results hold in any characteristic. In particular,
Theorem 2.1 was proved in characteristic zero by Simpson and Teleman [29, Exam-
ple 6.8(c)]. As discussed in section 1, equivariant Hodge cohomology HA (X, ) is
defined as cohomology of the quotient stack [X/G].

Theorem 2.1. Let G be a smooth affine group scheme over a commutative ring
R. Let G act on a smooth affine scheme X over R. Then there is a canonical
1somorphism

HG(X, V) = HG (X, N Lix)q),

where AjL[X/G] is the complex of G-equivariant vector bundles on X, in degrees 0
to j: ‘ ‘ '
0= =0 way = — S(gk) =0,

associated to the map gx — TX.

Here the action of G on X gives an action of the Lie algebra g by vector fields
on X by differentiating the action G xp X — X at 1 € G(R). This can be viewed
as a map from the trivial vector bundle gx over X to the tangent bundle 7X. (The
action of G on gy is nontrivial, coming from the adjoint representation of G' on g.)
Dualizing gives the map Q}( — g% used in Theorem 2.1.

The isomorphism of Theorem 2.1 expresses the cohomology over [X /G| of the
“big sheaf” 7, which is not a quasi-coherent sheaf on [X/G], in terms of the
cohomology of a complex of quasi-coherent sheaves on [X/G]. (Here differentials
are over R unless otherwise stated. The sheaf 7 on the big étale site of [X/G] is
not quasi-coherent for j > 0 because, for a morphism f:Y — Z of schemes over
[X/@], the pullback map f *QJZ /R Q{, /R need not be an isomorphism.)

One might prefer to take the right side of Theorem 2.1 as a definition of Hodge
cohomology for algebraic stacks. This could be done without any smoothness as-
sumption. Namely, Olsson defined the cotangent complex Lx/y as an inverse sys-
tem for any quasi-compact and quasi-separated morphism f: X — Y of algebraic
stacks, correcting the approach of Laumon and Moret-Bailly [27, section 8]. One
could then define Hodge cohomology of X over Y as R'f.(LAJL x/v) (perhaps
“Hodge-completed” in the sense of [5]). For X and G smooth over Y = Spec(R),
this definition agrees with the right side of Theorem 2.1. using that

Lix/c/r = Q% — k]

by the transitivity triangle [27, 8.1.5]. We have preferred to take the left side of
Theorem 2.1 as the definition, using “big sheaves”, because that definition is directly
related to the cohomology of simplicial spaces as discussed in section 1. As a result,
Theorem 2.1 makes a nontrivial connection between the two approaches.

Theorem 2.1 is useful already for X = Spec(R), where it gives the following
result, proved over a field of characteristic zero by Bott [8].

Corollary 2.2. Let G be a smooth affine group scheme over a commutative ring
R. Then there is a canonical isomorphism

HY(BG, ) = H™(G, 5 (g)).



The group on the left is an étale cohomology group of the algebraic stack BG
over R, as discussed in section 1. On the right is the cohomology of G as a group
scheme, defined by H (G, M) = Ext}; (R, M) for a G-module M [21, section 4.2].

Proof. (Corollary 2.2) This follows from Theorem 2.1 applied to the stack BG =
[Spec(R)/G]. The deduction uses two facts. First, a quasi-coherent sheaf on BG
is equivalent to a G-module [32, Tag 06WS]. Second, for a G-module M, the co-
homology of the corresponding quasi-coherent sheaf on the big étale site of BG
coincides with its cohomology as a G-module, H*(G, M), since both are computed
by the same Cech complex (section 1 for the sheaf, [21, Proposition 4.16] for the
module). O

Proof. (Theorem 2.1) The adjoint representation of G on g determines a G-equivariant
vector bundle gy on X. The action of G on X gives a morphism Q}( — gy
of G-equivariant quasi-coherent sheaves (in fact, vector bundles) on X. Consider
these equivariant sheaves as quasi-coherent sheaves on [X/G], according to [32, Tag
06WS].

We will define a map from the complex Q}( — g% of quasi-coherent sheaves on
[X/G] (in degrees 0 and 1) to the sheaf !, in the derived category D([X/G]et, Ox/a))
of Ox/¢-modules on the big étale site [X/Ge;. To do this, define another sheaf S on
the big étale site of [X/G] by: for ascheme U over [X/G], let E' = UX|x/X (so that
7: E — U is a principal G-bundle), and define S(U) = H°(E,Q")“. (This space of
invariants means the equalizer of the pullbacks via the two morphisms G x E — FE,
the projection and the group action.) Since G is smooth over R, there is a short
exact sequence of quasi-coherent sheaves on FE, 0 — W*Q%] — Q}E — Q}E i 0.
These are G-equivariant sheaves on F, and so this can be viewed as the pullback of
a short exact sequence of sheaves on U, known as the Atiyah sequence [2, Theorem
1], [20, VII.2.4.2.13-14]:

E

0— QF — m (05 = g, — 0.

Here ¥ g7; is the vector bundle on U associated to the G-bundle £ — U and the
action of G on g*. Since the G-bundle E — U is arbitrary, we have produced an
exact sequence

00 =85 —=g—0

of sheaves on the big étale site of [X/G]. By definition of the Atiyah sequence, the
map from S(U) = H(E,QL)% to HO(U, Fg) = HO(E, g} arises from the map
Q}E — g given by differentiating the action of G on E.

Thus the sheaf Q' on [X/G] is isomorphic in the derived category to the complex
S — g% (in cohomological degrees 0 and 1) on [X/G]. Therefore, to produce the
map in D([X/Glet, O[x/q)) promised above, it suffices to define a map a of complexes
of sheaves on [X/G|et:

0— QL — g5\ —0

I

0—85—g% —0.

(As above, g% denotes the vector bundle on [X/G] associated to the representation
of G on g*, and Q% denotes the vector bundle on [X/G] corresponding to the G-
equivariant vector bundle of the same name on X.) It is now easy to produce the



map « of complexes: for any scheme U over [X/G], with associated principal G-
bundle £ — U and G-equivariant morphism h: E — X, the map from Q% (U) =
H(E, h*Qﬁ()G to S(U) = HY(E, Q}E)G is the pullback, and the map from Egz} to
itself is the identity. In words, the difference between Q% (U) and S(U) comes from
the difference between (1) the pullback to E of the sheaf of differentials of X over
R and (2) the sheaf of differentials on E over R.

The commutativity of the diagram above follows from the G-equivariance of the
morphism h: E — X, since the two horizontal maps arise by differentiating the
actions of G on X and on F.

For any j > 0, taking the jth derived exterior power over O[x/q) of this map of
complexes gives a map from the Koszul complex

0 -0 wgy = = S(gk) =0

(in degrees 0 to j) of vector bundles on [X/G] to the big sheaf @7, in D([X/Glet, Orx/c)-
(The description of the derived exterior power of a 2-term complex of flat modules
as a Koszul complex follows from Illusie [18, Proposition 11.4.3.1.6], by the same
argument used for derived divided powers in [20, Lemme VIII.2.1.2.1].) We want
to show that this map of complexes induces an isomorphism on cohomology over
[X/G].

By the exact sequence above for the big sheaf Q! on [X/G], we can identify the
big sheaf €/ in the derived category with a similar-looking Koszul complex:

0— A(S) = AN S@gy = — F(gk) — 0.

We want to show that the map A7(a) from the Koszul complex of vector bundles (in
the previous paragraph) to this complex of big sheaves induces an isomorphism on
cohomology over [X/G|. For each of these complexes, we have a spectral sequence
from the cohomology over [X/G] of the individual sheaves to the “hypercohomol-
ogy” over [X/G] of the whole complex [32, Tag 015J]. We have a map of spectral
sequences. Therefore, to show that the map on hypercohomology is an isomor-
phism, it suffices to show that the map on cohomology of the individual sheaves is
an isomorphism. That is, it suffices to show that for each 0 < i < j, the map

HE(X, Q% @ 877 (gk)) = HG(X, AY(S) ® 877 (g%))

is an isomorphism. (Equivariant cohomology is defined as cohomology of the stack
[X/G], as discussed in section 1.)

By section 1, we can compute both of these cohomology groups on the Cech
nerve of the smooth surjective morphism X — [X/G]. This simplicial space can be
written as (X x EG)/G, where all products are over R:

X=X xGEX G-
S
Since X is affine, all the spaces in this simplicial space are affine schemes. There-
fore, for any 0 < i < j, H}(X, Q% ® S77(g%)) is the cohomology of the complex of
HY of the sheaves Q’X ® Opa ® Si=i(g%) over the spaces making up (X x EG)/G.
Likewise, H5 (X, A (S) ® S77%(g%)) is the cohomology of the complex of H® of the
sheaves A'(S) ® S77%(g%) over the spaces making up (X x EG)/G.



Let
¢0: H'(X x EG,Q% ® Opc ® 877 (g*)) = H*(X x EG,A(S) ® §7*(g"))

be the map of complexes of G-modules arising as H° of sheaves over the spaces
making up X x EG. The boundary maps in these complexes are alternating sums
of pullbacks via the face maps in this simplicial space. By the previous paragraph,
we want to show that the induced map ¢“ on G-invariants is a quasi-isomorphism.
Moreover, all of these G-modules arising as H" are induced from representations of
the trivial group, because X x G™™! — (X x G"™1)/G is a G-torsor with a section
for each r > 0. Indeed, a choice of section of this G-torsor trivializes the torsor,
and so the group of sections of a G-equivariant sheaf of X x G"*! is the subspace of
invariants tensored with O(G), as a G-module. (Note that trivializations of these
G-torsors cannot be made compatible with the face maps of the simplicial space, in
general.) And every tensor product O(G) ®pg M for a G-module M is injective as a
G-module [21, Proposition 3.10]. It follows that H*(G,O(G) ®g M) =0 for i > 0
[21, Lemma 1.4.7].

Therefore, to show that the map ¢© of G-invariants is a quasi-isomorphism
(as we want), it suffices to show that the map ¢ is a quasi-isomorphism. And for
that, we can forget about the G-action. That is, we want to show that the map of
complexes with rth term (for » > 0)

HY(X x G Q% @ Ogrin @ S77(g")) — HO(X x G™ Q% v @ S777(g¥))

is a quasi-isomorphism.

We can write QiXxG?"H as the direct sum EB%ZOQi);l ® QIGMI. Moreover, this
splitting is compatible with pullback along the face maps of the simplicial scheme
X x EG. So the map of complexes above is the inclusion of a summand (corre-
sponding to [ = 0). It remains to show that for every 0 < [ < ¢, the {th summand
is a complex A; with cohomology zero. Its rth term is

Qifl(X) ®r Ql(GrJrl) QR S]*Z(g*)

To analyze the cohomology of the complex A;, we use the well-known “contractibil-
ity” of EG, in the following form:

Lemma 2.3. Let Y be a scheme over a ring R with Y (R) not empty. For any
sheaf M of abelian groups on the big étale site of R, the cohomology of the simplicial
scheme EY over R with coefficients in M coincides with the cohomology of Spec(R):

HY(EY,M) = H'(R, M).

Proof. This is the standard result that a morphism Y — Spec(R) with a section
satisfies cohomological descent, via an explicit chain homotopy. More generally, it
would suffice to have sections locally on Spec(R) [1, Proposition Vbis.3.3.1]. O

Returning to the proof of Theorem 2.1: we want to show that for [ > 0, the
complex A; has zero cohomology. Recall that the rth term of A4; is

QN X) ®@r QG ®r ST,



with boundary maps coming from the face maps of the simplicial scheme X x EG.
By Lemma 1.2 (applied to the sheaf Q' on the big étale site of R and the simplicial
scheme EG), the complex A4; has cohomology equal to Q~!(X) ® Q!(Spec R) ®
S7=%(g*) in degree 0 and zero in other degrees. Since I > 0, the cohomology in
degree 0 also vanishes. The proof is complete. O

The argument works verbatim to prove a twisted version of Corollary 2.2, where
the sheaf €/ on BG is tensored with the vector bundle associated to any G-module.
The generalization will not be needed in this paper, but we state it for possible later
use.

Theorem 2.4. Let G be a smooth affine group scheme over a commutative ring R.
Let M be a G-module that is flat over R. Then there is a canonical isomorphism

H'(BG, %Y @ M) = H(G, 5 (g%) © M).

3 Flat group schemes

We now describe the Hodge cohomology of the classifying stack of a group scheme
GG which need not be smooth, generalizing Corollary 2.2. The analog of the co-Lie
algebra g* in this generality is the co-Lie complex [ in the derived category of
G-modules, defined by Illusie [20, section VII.3.1.2]. Namely, ls is the pullback
of the cotangent complex of G — Spec(R) to Spec(R), via the section 1 € G(R).
(The cotangent complex Lx/y of a morphism X — Y of schemes is an object of
the quasi-coherent derived category of X7 if X is smooth over Y, then Ly/,y is the
sheaf Q% /Y')

The cohomology of [s in degree 0 is the R-module le, the restriction of ng to
the identity 1 € G(R); thus wé is the co-Lie algebra g* if G is smooth over R. The
complex [ has zero cohomology except in cohomological degrees —1 and 0. If G is
smooth, then /¢ has cohomology concentrated in degree 0. More generally, a closed
immersion of G into a smooth R-group scheme H yields an explicit formula for lg
in the derived category of G-modules: [ is the complex

0— I/mI - m/m? =0,

where [ is the ideal defining G in H and m is the ideal defining the point 1 in H,
so that m/m? = b* [19, section 4.2].

Theorem 3.1. Let G be a flat affine group scheme of finite presentation over a
commutative ring R. Then there is a canonical isomorphism

This is an isomorphism of rings from H{(BG/R) to H*(G, S*(lg)).

Proof. As discussed in section 1, we can compute H*(BG, Q) as the étale cohomol-
ogy with coefficients in Q7 of the Cech nerve associated to any algebraic space U
over R with a smooth surjective morphism from U to the stack BG. The assump-
tion on G implies that BG is a quasi-compact algebraic stack over R, and so there
is an affine scheme U with a smooth surjective morphism U — BG [32, Tags 06F1



and 04YA]. By Lemma 1.1, BG is smooth over R, and so U is smooth over R. Let
E = U xpg Spec(R); then E is a smooth R-space with a free G-action such that
U= E/G. Also, E is affine because U and G are affine.

By section 1, H*(BG, /) is the étale cohomology with coefficients in €/ of the
simplicial algebraic space FE/G:

E/GE=E*/GE=E3/G -
—

By the properties of E and U above, E""!/G is an affine scheme for all n > 0.
Since H*(BG, Q) is the cohomology with coefficients in €7 of the simplicial scheme
EFE/G, this is the cohomology of the cochain complex

0— QY (E/G) — Y (E*/G) — ---.
As in the proof of Theorem 2.1, this complex is the G-invariants of the complex

0— HO(E, 7 (Q)

1) = HO(E2 2 (9

?;;2/@))_””’

where we write 7 for the morphism E"*! — E"+1/G for any n > 0.

For any smooth R-scheme X with a free action of G, I claim that there is a
canonical exact triangle in the quasi-coherent derived category of G-equivariant
sheaves on X:

™(Qx /) = U — o,

where we write g for the pullback of the co-Lie complex lg from the stack BG over
R to X. To deduce this from Illusie’s results on the cotangent complex Ly y, let
Y = X/G and S = Spec(R), and use the transitivity exact triangle for X — Y — §
in the derived category of X [18, I11.2.1.5.2]:

W*Ly/s — LX/S' — LX/Y'

Since X is smooth over S, so is Y (even though G need not be); so Ly/g = Q%,/S
and Lx/g = Qﬁ(/s. Also, since X — Y is a G-torsor in the fppf topology, Lx /vy
is the pullback of an object Ix/y on Y [20, VIL.2.4.2.8]. Furthermore, lx/y in
the fppf topology is the pullback of l¢ via the morphism from Y to the stack BG
corresponding to the G-torsor X — Y [20, VII.3.1.2.6].

Applying this to E"T!/G for any n > 0, we get an exact triangle

W*(Q}EE/G> — Qpp = lg
in Dg(EE), or equivalently
le[-1] — 7T*(Q}NE/G) — Qpp.

It follows that for any j > 0, W*(QJE = /G) has a filtration in the derived category

with quotients W*(Q%_Em) ®@ A" (Ig[-1]) for m =0,...,].

If E(R) is nonempty, then H'(EE,7) = H'(Spec(R), /), by Lemma 2.3. That
group is zero unless ¢ = j = 0, in which case it is R. By faithfully flat descent, the
same conclusion holds under our weaker assumption that £ — Spec(R) is smooth

10



and surjective. Therefore, in the filtration above, all objects but one have zero
cohomology in all degrees over FE. We deduce that the homomorphism

HY(EE, N (ig[-1))) = H(EE, 7" (Y )

is an isomorphism of G-modules for all i. By Illusie’s “décalage” isomorphism [18,
Proposition 1.4.3.2.1(i)], we can write S7(Ig)[—j] instead of A/ (lg[—1]).

The cochain complex O(EE) has cohomology R in degree 0 and 0 otherwise,
by Lemma 2.3 again. So the complex of global sections of the trivial vector bundle
S7(lg) over EE is isomorphic, in the derived category of G-modules, to the complex
of G-modules S7(lg). We conclude that the complex of sections of 7 (€27, /G) over

EE is isomorphic to S7(Ig)[—j] in the derived category of G-modules.
Finally, we observe that each G-module in this complex,

M = HO(En+1a L (Qjén+1/g))

for n > 0, is acyclic (meaning that H>%(G, M) = 0). More generally, for any affine
R-scheme Y with a free G-action such that Y/G is affine, and any quasi-coherent
sheaf F on Y/G, M = H°(Y,7*F) is acyclic. Indeed, this holds if Y — Y/G is
a trivial G-bundle, since then M = O(G) ® F and so M is acyclic [21, Lemma
4.7]. We can prove acyclicity in general by pulling the G-bundle over Y/G back
to a G-bundle over Y, which is trivial; then H>°(G, M) ®¢(y/c) O(Y) is 0 by [21,
Proposition 4.13], and so H>°(G, M) = 0 by faithfully flat descent.

We conclude that the complex computing H*(BG, V) is the same one that
computes H*(G, S7(lg)[—7])- O

4 Good filtrations

In this section, we explain how known results in representation theory imply calcu-
lations of the Hodge cohomology of classifying spaces in many cases, via Corollary
2.2. This is not logically necessary for the rest of the paper: Theorem 9.1 is a
stronger calculation of Hodge cohomology, based on ideas from homotopy theory.

Let G be a split reductive group over a field k. (A textbook reference on split
reductive groups is [24, Chapter 21].) A Schur module for G is a module of the
form HO(\) for a dominant weight \. By definition, H°(\) means H(G/B, L(\)),
where B is a Borel subgroup and L(\) is the line bundle associated to A. For k of
characteristic zero, the Schur modules are exactly the irreducible representations of
G. Kempf showed that the dimension of the Schur modules is independent of the
characteristic of k [21, Chapter I1.4]. They need not be irreducible in characteristic
p, however.

A G-module M has a good filtration if there is a sequence of submodules 0 C
My C My C --- such that M = UM; and each quotient M;/M;_ is a Schur module.
One good feature of Schur modules is that their cohomology groups are known, by
Cline-Parshall-Scott-van der Kallen [21, Proposition 4.13]. Namely,

k ifi=0and A=0

0 otherwise.

HY(G,H°(\)) = {
As a result, HY(G, M) = 0 for all i > 0 when M has a good filtration.
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The following result was proved by Andersen-Jantzen and Donkin [13, Proposi-
tion and proof of Theorem 2.2|, [21, I1.4.22]. The statement on the ring of invariants
incorporates earlier work by Kac and Weisfeiler. Say that a prime number p is bad
for a reductive group G if p = 2 and G has a simple factor not of type A,, p = 3
and G has a simple factor of exceptional type, or p = 5 and G has an Fy factor.
Otherwise, p is good for G.

Theorem 4.1. Let G be a split reductive group over a field k. Assume either
that G is a simply connected semisimple group and char(k) is good for G, or that
G = GL(n). Then the polynomial ring O(g) = S(g*) has a good filtration as
a G-module, and the ring of invariants O(g)® is a polynomial ring over k, with
generators in the fundamental degrees of G.

It follows that, under these assumptions, H>°(G, S7(g*)) is zero for all j > 0.
Equivalently, H(BG, /) = 0 for i # j, by Corollary 2.2. We prove this under the
weaker assumption that p is not a torsion prime in Theorem 9.1.

5 Kinneth formula

The Kiinneth formula holds for Hodge cohomology, in the following form. The
hypotheses apply to the main case studied in this paper: classifying stacks BG with
G an affine group scheme of finite type over a field.

Proposition 5.1. Let X and Y be quasi-compact algebraic stacks with affine diag-
onal over a field k. Then

Hi((X % Y)/k) = Hy(X/k) ©p Hy(Y/F).

Proof. Since X and Y are quasi-compact, there are affine schemes A and B with
smooth surjective morphisms A — X and B — Y [32, Tag 04YA]. Since X and YV
have affine diagonal, the fiber products A}H and B{ﬁ“ are affine over the products
A" and B™! over k, and so they are affine schemes, for all n > 0.

The morphism A x B — X x Y is smooth and surjective. Therefore, the Hodge
cohomology of X x Y is the cohomology of the Cech nerve C(Ax B/X xY)
over k, with coefficients in Q* (with zero differential). This space is the product
C(A/X) x C(B/Y) over k. By the previous paragraph, these are in fact simplicial
affine schemes over k.

The quasi-coherent sheaf Q! on the product of two affine schemes over k is the
direct sum of the pullbacks of Q! from the two factors. (No smoothness is needed
for this calculation.) Therefore, the quasi-coherent sheaf Q* on the product affine
scheme A}H X B;}H over k is the tensor product of the pullbacks on 2* on those
two schemes. So HO(A%™ x B Q*) is the tensor product of HO(A%%T Q%) and
HO(BE, Q) over k.

The spectral sequence of the simplicial scheme C(A/X) x C(B/Y) with coef-
ficients in 2* reduces to one row, since all the schemes here are affine. Explicitly,
by the previous paragraph, the cohomology of the product simplicial scheme is
the cohomology of the tensor product over k of the two cosimplicial vector spaces
HO(A Q) and HO(BE'!, Q). By the Eilenberg-Zilber theorem, it follows that
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the cohomology of the product simplicial scheme is the tensor product over k of the
cohomology of the two factors. [23, Theorem 29.3]. Equivalently,

Hy((X xx Y)/k) = Hy(X/k) @1 Hy(Y/F).

6 Parabolic subgroups

Theorem 6.1. Let P be a parabolic subgroup of a reductive group G over a field
k, and let L be the Levi quotient of P (the quotient of P by its unipotent radical).
Then the restriction

HYBP,%) — H'(BL,)

18 an isomorphism for all v and j. Equivalently,
H*(P, 5% (p*)) — H(L, 8 (I"))
is an isomorphism for all a and j.

Theorem 6.1 can be viewed as a type of homotopy invariance for Hodge coho-
mology of classifying spaces. This is not automatic, since Hodge cohomology is
not A'-homotopy invariant for smooth varieties. Homotopy invariance of Hodge
cohomology also fails in general for classifying spaces. For example, let G, be the
additive group over a field k. Then the Hodge cohomology group H'(BG,,0O) is
not zero for any k, and it is a k-vector space of infinite dimension for k of positive
characteristic; this follows from Theorem 6.3, due to Cline, Parshall, Scott, and van
der Kallen, together with Corollary 2.2.

Proof. (Theorem 6.1) Let U be the unipotent radical of P, so that L = P/U. It
suffices to show that . .
H (P, S1(p*)) — HY(L, (1)

is an isomorphism after extending the field k. So we can assume that G has a Borel
subgroup B and that B is contained in P. Let R be the set of roots for G. We
follow the convention that the weights of B acting on the Lie algebra of its unipotent
radical are the negative roots R~. There is a subset I of the set S of simple roots so
that P is the associated subgroup P, in the notation of [21, I1.1.8]. More explicitly,
let R = RN ZI; then P = Py is the semidirect product U; x Lj, where L; is the
reductive group G(R;) and U := Uy is the unipotent group U(R™ \ Ry).

As a result, the weights of P on p are all the roots ) g nqa such that ne <0
for a not in I. The coefficients n, for a not in I are all zero exactly for the weights
of P on p/u. As a result, for any j > 0, the weights of P on S7(p*) are all in the root
lattice, with nonnegative coefficients for the simple roots not in I, and with those
coefficients all zero only for the weights of P on the subspace S7((p/u)*) C S7(p*).

We now use the following information about the cohomology of P-modules [21,
Proposition 11.4.10]. For any element A of the root lattice ZS, A =} g naa, the
height ht(\) means the integer »° g Na-

Proposition 6.2. Let P be a parabolic subgroup of a reductive group G over a field,
and let M be a P-module. If H)(P,M) # 0 for some j > 0, then there is a weight
A of M with —\ € NR" and ht(—\) > j.
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As mentioned above, for any j > 0, every weight of P on M := coker(S7((p/u)*) —
S7(p*)) has at least one positive coefficient in terms of the simple roots. By Propo-
sition 6.2, it follows that H*(P, M) = 0 for all a. Therefore, the homomorphism

H(P,S7((p/w)*)) = H(P, 5 (p"))

is an isomorphism for all @ and j. Here p/u = [ is a representation of the quotient
group L = P/U. Tt remains to show that the pullback

H(L,S7((p/w)")) — H(P, 57 ((p/u)"))

is an isomorphism. This would not be true for an arbitrary representation of L; we
will have to use what we know about the weights of L on S7((p/u)*).

We also use the following description of the cohomology of an additive group
V = (Gg)" over a perfect field k [21, Proposition 1.4.27]. (To prove Theorem 6.1,
we can enlarge the field &k, and so we can assume that & is perfect.) The following
description is canonical, with respect to the action of GL(V) on H*(V, k). Write
W) for the jth Frobenius twist of a vector space W, as a representation of GL(W).

Theorem 6.3. (1) If k has characteristic zero, then H*(V, k) = A(V*), with V* in
degree 1.
(2) If k has characteristic 2, then

H*(V,k) = S(@50(V*)D),

with all the spaces (V*)U) in degree 1.
(3) If k has characteristic p > 2, then

H*(V, k) = A(@jzo(v*)(j)) ® S(@]Zl(v*)(j)),

with all the spaces (V*)U) in the first factor in degree 1, and all the spaces (V*)0)
in the second factor in degree 2.

We also use the Hochschild-Serre spectral sequence for the cohomology of alge-
braic groups [21, 1.6.5, Proposition 1.6.6]:

Theorem 6.4. Let G be an affine group scheme of finite type over a field k, and
let N be a normal k-subgroup scheme of G. For every G-module (or complex of
G-modules) V', there is a spectral sequence

EY = HY(G/N,H’(N,V)) = H™(G,V).

Theorems 6.3 and 6.4 give information about the weights of L on H*(U, k), that
is, about the action of a maximal torus 7" C L on H*(U,k). The method is to
write U (canonically) as an extension of additive groups V = (G,)" and use the
Hochschild-Serre spectral sequence. We deduce that as a representation of L, all
weights of H>9(U, k) are in the root lattice of G, with nonnegative coefficients for
the simple roots not in I, and with at least one of those coefficients positive. (This
is the same sign as we have for the action of L on u*.)

Now apply the Hochschild-Serre spectral sequence to the normal subgroup U in
P:

EY (L, HI(U, k)  S'((p/w)")) = H¥I(P, S ((p/u)").
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By the analysis of S!(p*) above, all the weights of L on the subspace S!((p/u)*) are
in the root lattice of GG, and the coeflicients of all simple roots not in I are equal to
zero. Combining this with the previous paragraph, we find: for [ > 0 and j > 0, all
weights of L on H7(U, k) ® S'((p/u)*) have all coefficients of the simple roots not
in I nonnegative, with at least one positive. By Proposition 6.2, it follows that

H'(L, H (U, k) @ S'((p/w)")) = 0

for all 4 and [ and all j > 0. So the spectral sequence above reduces to an isomor-
phism ' 4
H'(P,S'((p/u)")) = H'(L, S'((p/w)")),

as we wanted. Theorem 6.1 is proved. O

7 Hodge cohomology of flag manifolds

We use the following result, proved by Srinivas [31, section 3]:

Proposition 7.1. Let P be a parabolic subgroup of a split reductive group G over
a field k. Then the cycle map

CH*(G/P) ®z k — Hj((G/P)/k)
is an isomorphism of k-algebras. In particular, H'(G/P,Q7) =0 fori # j.

There are many related results. In particular, Proposition 7.1 can also be de-
duced from the work of El Zein (who constructed the cycle map in Hodge cohomol-
ogy over any field) and Gros (who constructed the pushforward homomorphism in
Hodge cohomology over any perfect field) [15, Proposition 3.3.5], [16, sections I1.2
and II.4]. That approach implies Proposition 7.1 more generally for any smooth
proper variety with a cell decomposition. Also, Andersen gave the additive calcu-
lation of H'(G/P, ) over any field [21, Proposition I1.6.18].

Note that Chevalley and Demazure gave combinatorial descriptions of the Chow
ring of G/P, which in particular show that this ring is independent of k, and
isomorphic to the ordinary cohomology ring H*(G¢/Pc,Z) [10, Proposition 11],
[12]. (That makes sense because the classification of split reductive groups and
their parabolic subgroups is the same over all fields.)

8 Invariant functions on the Lie algebra

Theorem 8.1. Let G be a simple group over a field k, T a mazximal torus in G, g
and t the Lie algebras. Assume that we are not in the case where char(k) = 2 and
Gy is a product of copies of Sp(2n) for some positive integer n. Then the restriction
O(g)¢ — O()W is an isomorphism.

Theorem 8.1 was proved by Springer and Steinberg for any adjoint group G [30,
I1.3.17’], and generalized to any simple group by Chaput and Romagny [9, Theorem
1.1]. They assumed that G is split, but that implies Theorem 8.1 by passage to the
algebraic closure k.
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The statement is optimal, in that the conclusion fails for the symplectic group
Sp(2n) in characteristic 2 for any positive integer n (for example, for SL(2)), as
Chaput and Romagny pointed out. In their argument, the distinctive feature of
the symplectic group is that it is the only simple group for which some roots are
divisible by 2 in the weight lattice.

In particular, Theorem 8.1 applies to cases such as the spin group Spin(n) in
characteristic 2 with n > 6, which we study further in Theorem 12.1.

Here is a related observation.

Lemma 8.2. Let G be a smooth affine group over a field k whose identity compo-
nent is reductive. Then there are canonical maps H*(BG, Q%) — H3% (BG/k) and
HY(BG, Q%) — H3(BG/k). These maps are compatible with products and
with pullback under group homomorphisms.

Proof. By Corollary 2.2, we have H*(BG,Q) = 0 for all a < b. Therefore, the
Hodge spectral sequence gives a canonical “edge map” H%(BG, Q%) — H3& (BG/k).
In odd degrees, there is one possible differential on the group H**(BG,Q%):

dy: H*"Y(BG, Q%) — H*™(BG, Q).

In fact, this differential is zero. To see this, let T' be a maximal torus in G. Then
the restriction O(g)® — O(t) is injective, because the G-conjugates of elements
of t (over the algebraic closure of k) are the semisimple elements of g, which are
Zariski dense in g. Equivalently, H°(BG, Q") — H®(BT,Q) is injective for all b.
But H*(BT,Q") = 0 for all a # b, and so H*(BT, Q") injects into H3%(BT/k).
Therefore, H?(BG, Q") injects into H3%(BG/k). In particular, the d; differential
into H*Y(BG, Q411 is zero, as we want. Therefore, we have a canonical “edge
map” H*"Y(BG, Q%) — H3E (BG/k). O

9 Hodge cohomology of BG at non-torsion primes

Theorem 9.1. Let G be a reductive group over a field k of characteristic p > 0.
Then H>°(G,0(g)) = 0 if and only if p is not a torsion prime for G.

Theorem 9.2. Let G be a split reductive group over Z, and let p be a non-torsion
prime for G. Then HJ(BGz, Q) localized at p is zero for i # j. Moreover, the
Hodge cohomology ring H*(BGz,QY*) and the de Rham cohomology Hjy(BG/Z),
localized at p, are polynomial rings on generators of degrees equal to 2 times the
fundamental degrees of G. These rings are isomorphic to the cohomology of the
topological space BGc with Zy,) coefficients.

We recall the definition of torsion primes for a reductive group G over a field k.
Let B be a Borel subgroup of G, and T" a maximal torus in B. Then there is a
natural homomorphism from the character group X*(7') = Hom(T, G,,,) (the weight
lattice of G) to the Chow group CH'(Gy/B). Therefore, for N = dim(Gz/B), there
is a homomorphism from the symmetric power S (X*(T))) to CHY (G¢/B); taking
the degree of a zero-cycle on G/ B gives a homomorphism (in fact, an isomorphism)
CH™(Gy/B) — Z. A prime number p is said to be a torsion prime for G if the
image of SV (X*(T)) — Z is zero modulo p. Borel showed that p is a torsion prime
for G if and only if the cohomology H*(BG¢,Z) has p-torsion, where G¢ is the
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corresponding complex reductive group [7, Proposition 4.2]. It is also equivalent to
say that G(C) contains an elementary abelian p-subgroup that is not contained in
a torus [7, Théoreme 4.5].

In most cases, Theorem 9.1 follows from Theorem 4.1. Explicitly, a prime num-
ber p is torsion for a simply connected simple group G if p = 2 and G has a simple
factor not of type A, or C),, p = 3 and G has a simple factor of type Fy, Eg, Fr,
or Fg, pr p=>5 and G has an Eg factor. So the main new cases in Theorem 9.1 are
the symplectic groups Sp(2n) in characteristic 2 and G in characteristic 3. (These
are non-torsion primes, but not good primes in the sense of Theorem 4.1.) In these
cases, the representation-theoretic result that H>%(G,O(g)) = 0 seems to be new.
Does O(g) have a good filtration in these cases?

The following spectral sequence, modeled on the Leray-Serre spectral sequence
in topology, will be important for the rest of the paper.

Proposition 9.3. Let P be a parabolic subgroup of a split reductive group G over a
field k. Let L be the quotient of P by its unipotent radical. Then there is a spectral
sequence of algebras

EY = Hi{(BG/k) ® HL((G/P)/k) = H{{7 (BL/k).

Proof. Consider Q* = @)’ as a presheaf of commutative dgas on smooth k-schemes,
with zero differential.

For a smooth morphism f: X — Y of smooth k-schemes, consider the object
Rf.(Q%) in the derived category D(Y') of étale sheaves on Y. Here the sheaf Q%
on X has an increasing filtration, compatible with its ring structure, with Oth step

the subsheaf f*(€2},) and jth graded piece f*(Q}) ® Qg(/y. So Rf.(2%) has a

corresponding filtration in D(Y), with jth graded piece Rf.(f*(2}) ® Q‘é(/y) =

O R f*Q]X Iy This gives a spectral sequence
By = HY(Y, Q5 @ RfQY,y ) = H (X, Q%).

Now specialize to the case where f: X — Y is the G/P-bundle associated to a
principal G-bundle over Y. The Hodge cohomology of G/P is essentially indepen-
dent of the base field, by the isomorphism H};((G/P)/k) = CH*(G/P)®zk (Propo-
sition 7.1). Here CH*(G/P) is a free abelian group with a fixed basis (independent
of k), as discussed in section 7, and G acts trivially on CH*(G/P). Therefore, each
object Rf, (% /Y) is a trivial vector bundle on Y, with fiber H7(G/P,§V), viewed
as a complex in degree j. So we can rewrite the spectral sequence as

EY = H\(Y,Q%) @ H(G/P,V) = H" (X, Q%).

All differentials in the spectral sequence above preserve the degree in the grading
of Q*. Therefore, we can renumber the spectral sequence so that it is graded by
total degree: N ' o

Ey = Hj(Y/k) ® Hy((G/P)/k) = Hy” (X/k).

Finally, we consider the analogous spectral sequence for the morphism f: EG/P —
BginpG of simplicial schemes:

EY = Hiy(BG/k) ® H}((G/P)/k) = Hi ((EG/P)/k).

17



By Lemma 1.2, the output of the spectral sequence is isomorphic to H{;(BP/k),
or equivalently (by Theorem 6.1) to Hyj(BL/k). This is a spectral sequence of
algebras. All differentials preserve the degree in the grading of 2*. Ol

Proof. (Theorem 9.1) First, suppose that H>%(G, O(g)) = 0; then we want to show
that char(k) is not a torsion prime for G. By Corollary 2.2, the assumption implies
that H/(BG,') = 0 for all i # j. Apply Proposition 9.3 when P is a Borel
subgroup B in Gj this gives a spectral sequence

EY = Hiy(BG/k) ® H}((G/B)/k) = H/(BT/k),

where T is a maximal torus in B. Under our assumption, this spectral sequence
degenerates at Es, because the differential d, (for r > 2) takes H'(BG,Q') ®
HI(G/B,Y) into H*"(BG, Q71 @ HI="*1(G/B,¥~"1), which is zero. It
follows that Hjj(BT/k) — H{;((G/B)/k) is surjective. Here H{;(BT/k) is the poly-
nomial ring S(X*(T') ® k) by Theorem 4.1, and H{;((G/B)/k) = CH*(G/B)®k by
Proposition 7.1. It follows that the ring CH*(G/B) ® k is generated as a k-algebra
by the image of X*(T) — CH'(G/B). Equivalently, p is not a torsion prime for G.

Conversely, suppose that p is not a torsion prime for G. That is, the homomor-
phism S(X*(T) ® k) - CH*(G/B) ® k is surjective. Equivalently, H};(BT/k) —
H{{((G/B)/k) is surjective. By the product structure on the spectral sequence
above, it follows that the spectral sequence degenerates at Ey. Since H7 (BT, Q%) =0
for i # j, it follows that H’/(BG,Q) = 0 for i # j. Equivalently, H>°(G,O(g)) =
0. O

Proof. (Theorem 9.2) Let G be a split reductive group over Z, and let p be a non-
torsion prime for G. We have a short exact sequence

0 — H'(BGz, ) /p = H(BGr,, Q') = H"(BGg,2")[p] — 0.

By Theorem 9.1 and Corollary 2.2, the Hodge cohomology ring H*(BGz, ") lo-
calized at p is concentrated in bidegrees H*' and is torsion-free. This ring tensored
with Q is the ring of invariants O(gQ)G, which is a polynomial ring on generators
of degrees equal to the fundamental degrees of G.

To show that' the Hodge cohomology ring over Z(,) is a polynomial ring on
generators in H** for ¢ running through the fundamental degrees of G, it suffices
to show that the Hodge cohomology ring Hjj(BG/F)) is a polynomial ring in the
same degrees. Given that, the other statements of the theorem will follow. Indeed,
the statement on Hodge cohomology implies that the de Rham cohomology ring
H3(BG/Z) localized at p is also a polynomial ring, on generators in 2 times the
fundamental degrees of G. The cohomology of the topological space BG ¢ localized
at p is known to be a polynomial ring on generators in the same degrees, by Borel
[7, Proposition 4.2, Théoreme 4.5], [25, Theorem VII.2.12].

From here on, let k = F,, and write G for G}. By definition of the Weyl group
W as W = Ng(T)/T, the image of Hj}(BG/k) in Hj;{(BT/k) = S(X(T) ® k) is
contained in the subring of W-invariants. We now use that p is not a torsion prime
for G. By Demazure, except in the case where p = 2 and G has an Sp(2n) factor,
the ring of W-invariants in S(X(7") ® k) is a polynomial algebra over k, with the
degrees of generators equal to the fundamental degrees of G [12, Théoreme].
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By Theorem 9.1, Hj;(BG/k) is equal to the ring of invariants O(g)“. By The-
orem 8.1 (due to Chaput and Romagny), for any simple group G over a field k of
characteristic p with p not a torsion prime, except for G = Sp(2n) with p = 2, the
restriction O(g)% — O()" is an isomorphism, and hence O(g)® is the polynomial
ring we want.

The case of Sp(2n) in characteristic 2 (including SL(2) = Sp(2)) is a genuine
exception: here O(g)% is a subring of O()", not equal to it. However, it is still
true in this case that O(g)® is a polynomial ring with generators in the fundamental
degrees of G, that is, 2,4,...,2n, by Chaput and Romagny [9, Theorem 6.6].  [J

10 g

Proposition 10.1. Let k be a field of characteristic p > 0. Let G be the group
scheme p, of pth roots of unity over k. Then

Hyy(Bup/k) = klei](v1),

where c¢1 is in H'Y(Bpuy, Q') and vy is in H°(Bpu,, Q). Likewise, Hjz(Buy/k) =
klci)(v1) with |v1| =1 and |e1] = 2.

Here R(v) denotes the exterior algebra over a graded-commutative ring R with
generator v; that is, R(v) = R® R - v, with product v? = 0. See section 1 for the
definitions of Hodge and de Rham cohomology we are using for a non-smooth group
scheme such as p,. Proposition 10.1 can help to compute Hodge cohomology of
BG for smooth group schemes G, as we will see in the proof of Theorem 11.1 for
G = SO(n).

Proposition 10.1 is roughly what the topological analogy would suggest. Indeed,
the group scheme i, of pth roots of unity is defined over Z, with (u,)c isomorphic
to the group Z/p. For k of characteristic p, the ring H*((Buy)c, k) is a polynomial
ring klz| with |z] = 1 if p = 2, or a free graded-commutative algebra k(z,y) with
|z| = 1 and |y| = 2 if p is odd. So H}(Buy/k) is isomorphic to H*((Buy)c, k)
additively for any prime p, and as a graded ring if p > 2.

Proof. Let G = p, over k. The co-Lie complex lg in the derived category of G-
modules, discussed in section 3, has H%(lg) = g* = k and also H (lg) = k, with
other cohomology groups being zero. (In short, this is because G is a complete
intersection in the affine line, defined by the one equation aP = 1.)

Since representations of G are completely reducible, we have Extéo (M,N)=0
for all G-modules M and N [21, Lemma 1.4.3]. The isomorphism class of Ig is
described by an element of ExtZ (k, k), which is zero. So lg = k@ k[1] in the derived
category of G-modules.

By Theorem 3.1, we have

Here

§7(lq) = @], S™ (k) @ $77" (K[1])
> @) _(S"(k) @ M (k)[j —m),
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which is isomorphic to k @ k[1] if j > 1 and to k if j = 0. Therefore, H(BG, ) is
isomorphic to k if 0 <i=jorif 0 <i=j — 1, and is otherwise zero.

Write ¢; for the generator of H'(BG,Q!), which is pulled back from the Chern
class ¢1 in H'(BG,,, Q') via the inclusion G < G,,,. Write v1 for the generator of
HY(BG, Q). We have v? = 0 because H’(BG,Q?) = 0. Theorem 3.1 also describes
the ring structure on the Hodge cohomology of BG. In particular, @; H(BG, Q)
is the ring of invariants of G acting on O(g), which is the polynomial ring k[c1].
Finally, the description of S7(l¢) also shows that @; H'(BG, Q*1) is the free module
over k[ci] on the generator v;. This completes the proof that

H(BG/k) = E[eq](v1).

Finally, consider the Hodge spectral sequence for BG from section 1. The ele-
ment vy is a permanent cycle because H%(BG,Q?) = 0, and ¢; is a permanent cycle
because it is pulled back from a permanent cycle on BG,,. Therefore, the Hodge
spectral sequence degenerates at Fj. We have v? = 0 in de Rham cohomology as
in Hodge cohomology, because @; H°(BG, Q') is a subring of de Rham cohomol-
ogy, using degeneration of the Hodge spectral sequence. Therefore, the de Rham
cohomology of BG is isomorphic to k[c1](v1) as a graded ring. O

Lemma 10.2. Let G be a discrete group, considered as a group scheme over a field
k. Then the Hodge cohomology of the algebraic stack BG is the group cohomology

of G:
0 otherwise.

It follows that Hjy (BG/k) = H*(G, k).

Proof. Since G is smooth over k, we can compute the Hodge cohomology of the
stack BG as the étale cohomology of the simplicial scheme Bgin,,G with coefficients
in Q7. Since G is discrete, the sheaf €7 is zero for j > 0. For j = 0, the spectral
sequence

E® = HY(G*,0) = H***(BG,0)

reduces to a single row, since H*(G%,0) = 0 for b > 0. That is, H*(BG,O) is the
cohomology of the standard complex that computes the cohomology of the group
G with coefficients in k. O

Although Lemma 10.2 applies to any discrete group G, it is probably most
meaningful in the case where G is finite (so that the associated group scheme over
a field k is affine). A generalization of that case is the following “Hochschild-Serre”
spectral sequence for the Hodge cohomology of a non-connected group scheme:

Lemma 10.3. Let G be an affine group scheme of finite type over a field k. Let G©
be the identity component of G, and suppose that the finite group scheme G /G is
the k-group scheme associated to a finite group Q). Then there is a spectral sequence

EY = HY(Q, H(BG°,0%) = H'(BG,0%).

for any a > 0.
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Proof. By Theorem 3.1, H"(BG, Q%) is isomorphic to H"~*(G, S%(l¢)). The lemma
then becomes a special case of the Hochschild-Serre spectral sequence for the coho-
mology of GG as an algebraic group, Theorem 6.4:

B = H'(Q, H'(G°,8%(le))) = H'M(G, $"(Ig)).

(Strictly speaking, move the Hochschild-Serre spectral sequence up by a rows to
obtain the spectral sequence of the lemma.) ]

11 The orthogonal groups

Theorem 11.1. Let G be the split group SO(n) (also called Ot (n)) over a field
k of characteristic 2. Then the Hodge cohomology ring of BG is a polynomial
ring k[ug,us, . .., u,], where us, is in H*(BG,Q%) and ugqi1 is in HT(BG, Q).
Also, the Hodge spectral sequence degenerates at Ey, and so Hjy(BG/k) is also
isomorphic to klug, us, ..., up].

Likewise, the Hodge and de Rham cohomology rings of BO(2r) are isomorphic to
the polynomial ring kluy,us, . .., usr]. Finally, the Hodge and de Rham cohomology
rings of BO(2r + 1) are isomorphic to k[vi,c1,ug, ..., usr+1]/(v]), where vy is in
HY(BO(2r +1),QY) and ¢y is in HY(BO(2r + 1), Q).

Thus the de Rham cohomology ring of BSO(n)g, is isomorphic to the mod 2
cohomology ring of the topological space BSO(n)c as a graded ring:

H*(BSO(TL)C, FQ) = FQ[’U}Q, w3, ... ,wn],

where the classes w; are the Stiefel-Whitney classes. Theorem 11.1 gives a new
analog of the Stiefel-Whitney classes for quadratic bundles in characteristic 2. (Note
that the k-group scheme O(2r + 1) is not smooth in characteristic 2. Indeed, it is
isomorphic to SO(2r + 1) X p2. By contrast, O(2r) is smooth but not connected,
and we write SO(2r) for the kernel of the Dickson determinant O(2r) — Z/2, which
describes the action of O(2r) on the center k x k of the even Clifford algebra.)

The proof is inspired by topology. In particular, it involves some hard work
with spectral sequences, related to Borel’s transgression theorem and Zeeman’s
comparison theorem. The method should be useful for other reductive groups.

The formula for the classes u; of a direct sum of two quadratic bundles is not
the same as for the Stiefel-Whitney classes in topology. To state this, define a
quadratic form (g, V) over a field k to be nondegenerate if the radical V+ of the
associated bilinear form is zero, and nonsingular if V' has dimension at most 1 and
¢ is nonzero on any nonzero element of V-, (In characteristic not 2, nonsingular and
nondegenerate are the same.) The orthogonal group is defined as the automorphism
group scheme of a nonsingular quadratic form; the precise group over k depends on
the choice of form [22, section VI.23]. For example, over a field k of characteristic
2, the quadratic form

T1T2 + X3%4 + + - + Top_1T2p

is nonsingular of even dimension 2r, while the form
2
T1T2 + X374 + - + Tor_1T2r + X5,

is nonsingular of odd dimension 2r + 1, with V+ of dimension 1. (These particular
forms define the split orthogonal groups over k.) Let ug = 1.
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Proposition 11.2. Let X be a scheme of finite type over a field k of characteristic
2. Let E and F be vector bundles with nondegenerate quadratic forms over X (hence
of even rank). Write u; for the characteristic classes from Theorem 11.1. Then, for
any a > 0, in either Hodge cohomology or de Rham cohomology,

UQa(E S F) = Z U2j (E)U2a72j (F)
=0

and
2a+1

ugat1 (E® F) = > w(E)ugat1-1(F).
1=0

Thus the even u-classes of E¥ & F' depend only on the even u-classes of £ and
F. By contrast, Stiefel-Whitney classes in topology satisfy

m

W (E®F) =Y w(E)wm_(F)
1=0

for all m [25, Theorem III1.5.11].

Theorem 12.1 gives an example of a reductive group G for which the de Rham
cohomology of BGy, and the mod p cohomology of BG¢ are not isomorphic. It is
a challenge to find out how close these rings are, in other examples.

Via Corollary 2.2, Theorem 11.1 can be viewed as a calculation in the repre-
sentation theory of the algebraic group G = SO(n) for any n, over a field k of
characteristic 2. For example, when G = SO(3) = PGL(2) over k of characteristic
2, we find (what seems to be new):

i i~ )k H0<i<g
H(G, 5(g") = {O otherwise.
Proof. (Theorem 11.1) We will assume that £ = Fy. This implies the theorem for
any field of characteristic 2.

We begin by computing the ring ©; H*(BG, ) for G = SO(n). By Corollary
2.2, this is equal to the ring of G-invariant polynomial functions on the Lie algebra g
over k. By Theorem 8.1, since G is not a symplectic group, the restriction O(g)® —
Ot)" is an isomorphism.

Let r = [n/2]. For n = 2r + 1, the Weyl group W is the semidirect product
Sy X (Z/2)". There is a basis ey, ..., e, for t on which (Z/2)" acts by changing the
signs, and so that action is trivial since k has characteristic 2. The group S, has its
standard permutation action on ey, ...,e,. Therefore, the ring of invariants O(t)"V
is the ring of symmetric functions in r variables. Let wuo,uy, ..., us, denote the
elementary symmetric functions. By the isomorphisms mentioned, we can view usg,
as an element of H*(BSO(2r +1),0%) for 1 < a < r, and &;H (BSO(2r + 1),Q%)
is the polynomial ring k[ug, uy, . .., ug,|.

For n = 2r, the Weyl group W of SO(2r) is the semidirect product S, x (Z/2)" .
Again, the subgroup (Z/2)"~! acts trivially on t, and S, acts by permutations as
usual. So @;H (BSO(2r), Q) is also the polynomial ring k[usg, ug, . . ., ua,], with ug,
in H*(BSO(2r),Q%) for 1 <a <r.
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For the smooth k-group G' = O(2r), we can also compute the ring ®; H(BG, Q7).
By Corollary 2.2, this is the ring of G-invariant polynomial functions on the Lie
algebra g = so(2r). This is contained in the ring of SO(2r)-invariant functions on g,
and I claim that the two rings are equal. It suffices to show that an SO(2r)-invariant
function on g is also invariant under the normalizer N in O(2r) of a maximal torus T’
in SO(2r), since that normalizer meets both connected components of O(2r). Here
N = S, x (Z/2)", which acts on t in the obvious way; in particular, (Z/2)" acts
trivially on t. Therefore, an SO(2r)-invariant function on g (corresponding to an S,-
invariant function on t) is also O(2r)-invariant. Thus we have @©; H'(BO(2r), Q%) =
k[UQ, Uy oo ey UQT].

For a smooth group scheme G over R = Z /4, define the Bockstein

B: H(BGy, ) — H Y (BGy, V)

on the Hodge cohomology of BGj, (where k = Z/2) to be the boundary homomor-
phism associated to the short exact sequence of sheaves

0—>QZ:—>Q§'%—>Q?;—>O

on BGR. (The Bockstein on Hodge cohomology is also defined for group schemes
G such as p2 which are flat but not smooth over R = Z/4, because the Hodge
cohomology of BG can be described using smooth schemes (Lemma 1.2).)

Next, define elements uy, us, ..., us—1 of Hj3(BO(2r)/k) as follows. First, let
up € HY(BO(2r),Q") be the pullback of the generator of H'(Z/2,k) = k via the
surjection O(2r) — Z/2 (Lemma 10.2). Next, use that the split group O(2r) over
k = Fq lifts to a smooth group O(2r) over Z. As a result, we have a Bockstein
homomorphism on the Hodge cohomology of BO(2r). For 0 < a < r — 1, let
Uar1 = Buog + uruz, € HYTH(BO(2r),Q%). This agrees with the previous formula
for uyq, if we make the convention that ug = 1. (The definition of ug, 1 is suggested
by the formula for odd Stiefel-Whitney classes in topology: wa,+1 = Bwa, + wiwa,
[25, Theorem II1.5.12].)

I claim that the homomorphism

klui,ue] — Hi(BO(2)/k)

is an isomorphism. To see this, consider the Hochschild-Serre spectral sequence of
Lemma 10.3,

Ey = H(Z/2, H (BSO(2)3, ")) = H' (BO(2)y, ").

Here SO(2) is isomorphic to G,,, and so we know the Hodge cohomology of BSO(2)
by Theorem 4.1: H{{(BSO(2)/k) = kc1] with ¢; in HY(BSO(2),Q'). We read off
that the Ey page of the spectral sequence is the polynomial ring k[uy, ug], with uy
in HY(Z/2, H°(BSO(2),Q")) and up in HY(Z/2, H*(BSO(2),Q')). Here u; is a
permanent cycle, because all differentials send u; to zero groups. Also, because the
surjection O(2) — Z/2 of k-groups is split, there are no differentials into the bottom
row of the spectral sequence; so uo is also a permanent cycle. It follows that the
spectral sequence degenerates at Ey, and hence that H{;(BO(2)/k) = k[u1, ug).
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We also need to compute the Bockstein on the Hodge cohomology of BO(2),
which is defined because O(2) lifts to a smooth group scheme over R := Z/4. The
Bockstein is related to the Hodge cohomology of BO(2)r by the exact sequence

HY(BO(2)r,¥) — H (BO(2);;, ¥) 2 HTYBO(2), ).

Consider the Hochschild-Serre spectral sequence of Lemma 10.3 for BO(2)g:
EY = H'(Z/2, H(BSO(2), ")) = H"™(BO(2)g, Q).

Here H'(BO(2)g, Q') is isomorphic to H(Z/2, H'(BSO(2)g, ")), where Z/2 acts
by —1 on HY(BSO(2)g, Q') = Z/4. So the generator of H'(BO(2)g, Q) = Z/2
maps to zero in H'(BO(2),Q') = k- uy. Therefore, 3(uy) # 0. Since k = Fy,
the element B(uz) in H2(BO(2)r, Q') = k - ujus must be equal to ujus. A similar
analysis shows that 8(u;) = u?.

Finally, think of O(2) as the isometry group of the quadratic form ¢(z,y) = zy
on V = AZ. There is an inclusion H = Z/2 x s C O(2), where Z/2 switches x
and y and po acts by scalars on V. For later use, it is convenient to say something
about the restriction from BO(2) to BH on Hodge cohomology. By Lemma 10.2, the
Hodge cohomology of B(Z/2) over k is the cohomology of Z /2 as a group, namely the
polynomial ring k[s] with s € H'(B(Z/2),0). Also, by Proposition 10.1, the Hodge
cohomology of Busg is k[t,v]/(v?) with t € H'(Bug, Q') and v € H°(Bpug, Q).
Thus we have a homomorphism from Hj;(BO(2)/k) = k[u1,us] to Hjy(BH/k) =
k[s,t,v]/(v?) (by the Kiinneth theorem, Proposition 5.1). Here wu; restricts to s,
since both elements are pulled back from the generator of H'(BZ/2,0). Also, us
restricts to either t or t+ sv, because uso restricts to the generator ¢y of Hl(BGm, Ql)
and hence to ¢ in H'(Bpus, Q). Thus the homomorphism from Hj;(BO(2)/k) to
H{{(BH/E)/rad = k[s,t] is an isomorphism. (Here the radical of a commutative
ring means the ideal of nilpotent elements.) A direct cocycle computation shows
that ug restricts to t+sv in H'(BH,Q'), but we do not need that fact in this paper.

We now return to the group O(2r) over k = Fg for any r. To formulate the
following lemma, let s1,...,s, € HY(BO(2)",Q°) be the pullbacks of u; from the
r BO(2) factors, and let ¢1,...,t, be the pullbacks of ug from those r factors. By
the Kiinneth theorem (Proposition 5.1), the Hodge cohomology of BO(2)" is the
polynomial ring k[s1, ..., Sy, t1,...,t].

Lemma 11.3. The homomorphism
¢: k[uh U2y .- UQT] - H;I(BO(2T)/]€)
is injective. Also, the composition of ¥ with the restriction p to the Hodge cohomol-
ogy of BO(2)" is given by
’U,2a'—>€a(t1,...,t7~): Z til'"tia
1<iy < <ig <1
and

'
U2q 41 F E Sm g tiy -t
m=1

1< << <r
none equal to m

Finally, the same formulas hold in de Rham cohomology as well as Hodge cohomol-
0gy.
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Proof. The formula for the restriction pt(ug,) on Hodge cohomology follows from
the definition of usy,. Likewise, it is immediate that

Ul 81+ -+ Sp.

The inclusion O(2)? C O(2r) lifts to an inclusion of smooth groups over Z,
and so the restriction homomorphism commutes with the Bockstein. Therefore, for
0<a<r—1,

U241 = Bugq + Utz

l—>5< > til---tia>+(81+“-—|—8r)< > til---tia>

1<i) < <ig<r 1<iy < <ig<r

a I
= Z < Sij+zsm)til"'tia
j=1 m=1

1< < <ig <

T
:Zsm Z til"'tia7
m=1

1< < <ig <1
none equal to m

as we want.

These formulas remain true in de Rham cohomology as well as in Hodge co-
homology, using Lemma 8.2: for a smooth affine k-group G whose identity com-
ponent is reductive, there are canonical maps H*(BG,Q%) — H3%(BG/k) and
HY(BG,0%) — Hg‘fjl(BG/k). These maps are compatible with products and
with pullback under a homomorphism of smooth affine k-groups.

To show that the homomorphism : kfuy, ..., us,| = Hj(BO(2r)/k) is injec-

tive, it suffices to show that the composition pi: klu, ..., uor] — k[s1,...,Sp t1, ..., 1]
is injective. We can factor this homomorphism through kfu1, us, ..., ugr—1,t1, ..., t],
by the homomorphism p sending usg, uy, . . ., u2, to the elementary symmetric poly-
nomials in t1,...,t.. Since pu is injective, it remains to show that

o: k[ul,U3,.. U1, b1, ,t,«] — k[sl,...,sr,tl,. . .,tT]

is injective.

More strongly, we will show that o is generically étale; that is, its Jacobian
determinant is not identically zero. Because o is the identity on the ¢; coordinates, it
suffices to show that the determinant of the matrix of derivatives of uy, us, ..., usr_1
with respect to si,..., s, is nonzero for sy,...,s.,t1,...,t, generic. This matrix of
derivatives in fact only involves tq,...,t,, because ui, us, ..., us-—1 have degree 1 in
$1,...,8q. For example, for r = 3, this matrix of derivatives is

1 to+1ts tots
1 t1+ts tit3 |,
1 t1+ty tits

where the ath column gives the derivatives of uo, 1 with respect to sq,...,s,. For
any 7, column 1 consists of 1s, while entry (j,a) for a > 2 is

S byt

1<i1 < <tq—1<1
none equal to j

25



This determinant is equal to the Vandermonde determinant ¢ := [],_,(t; —t;), and
in particular it is not identically zero [14, Theorem 1]. (The reference works over
C, but it amounts to an identity of polynomials over Z, which therefore holds over

any field.)
Thus we have shown that the composition ¢: klui, ..., us,| = Hjj(BO(2r)/k)
is injective, because the composition py) to H{;(BO(2)"/k) is injective. O

To avoid an excess of notation, let us also write ¢ for the homomorphism
klug,us, ..., u,] = Hiy(BSO(n)/k).

Lemma 11.4. The homomorphism
W K, g, . ., ] = Hy(BSO(n) /)

is injective. Also, in the case n = 2r 4+ 1, the composition of ¥ with the restriction
p to the Hodge cohomology of BO(2)" is given by

U2a|—>6a(t1,...,tr): E til"'tiaa
1<i1 < <ig <1

.
U2a+1 F7 Z Sm Z iy - -t
m=1

1<i1 < <ig <1
one equal to m

for 1 < a <r. Finally, the same formulas hold in de Rham cohomology as well as
Hodge cohomology.

Proof. For n = 2r + 1, this is an easy consequence of Lemma 11.3, using the in-
clusions O(2)" C O(2r) C SO(2r + 1). Write ug,ug, ..., us+1 for the elements
of the Hodge cohomology of BSO(2r + 1) defined by the same formulas as used
above for BO(2r) (which simplify to ugg4+1 = [Suge, since there is no element u; for
BSO(2r 4+ 1)). Also, let vy,...,vs, be the elements of the Hodge cohomology of
BO(2r) that were called uy, ..., us, above. Then restricting from BSO(2r + 1) to
BO(2r) sends ug, — vaq and ugq 1 = Pugg > Prog = Vog4+1+010 for 1 < a < r—1.
It is not immediate how to compute the restriction of the remaining element g, 41
to BO(2r), but we can compute its restriction to BO(2)":

Ugpy1 = Pugy
= By
= Bt 1,)
=(s1+-+s)(t1-tr).

Thus we have proved the desired formulas for the restriction on Hodge cohomology
from BSO(2r + 1) to BO(2)". Since the generators are in H*(BSO(2r + 1),Q%) or
H™*Y(BSO(2r 4+ 1),Q%), the same formulas hold in de Rham cohomology.
Thus, the restriction from BSO(2r + 1) to BO(2)" sends k[ua, ..., u2,+1] into
the subring
k['l}l, e ,UQT] C ]{3[81, R N AT ,tr],

by waq > voq for 1 < a < 7, uget1 F> Vogr1 + Vv for 1 < a < 7 — 1, and
Ugr41 — V1V2r. This homomorphism is injective, because the corresponding mor-
phism A%" — A?" is birational (for us, # 0, one can solve for vy,...,vs, in terms of
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U2, ..., Ur+1). S0 the homomorphism ©: k[us, ..., ugr1] = H{(BSO(2r + 1) /k)
is injective (because its composition to Hjj(BO(2)"/k) is injective).

For SO(2r), we argue a bit differently. As discussed above, there is a subgroup
Z/2 x uy C O(2). Therefore, we have a k-subgroup scheme (Z/2 x u3)"” C O(2)" C
O(2r). Since SO(2r) is the kernel of a homomorphism from O(2r) onto Z/2, SO(2r)
contains a k-subgroup scheme H = (Z/2)"~! x (u2)". By Lemma 10.2, the Hodge
cohomology of B(Z/2) over k is the cohomology of Z/2 as a group, namely the poly-
nomial ring k[r] with = € HY(B(Z/2),Q°). Also, by Proposition 10.1, the Hodge
cohomology of Bjug is k[t,v]/(v?) with t € H'(Bug, Q') and v € HY(Bpug, Q). Thus
we have a homomorphism ¢ from kfug, us, ..., us,| to Hij(BSO(2r)/k), and a ho-
momorphism from there to Hjy(BH/k) = k[x1,...,2r—1,t1, ..., tr,01,..., 0]/ (v})
(by the Kiinneth theorem, Proposition 5.1). We want to show that this composi-
tion is injective. For convenience, we will prove the stronger statement that the
composition pip from klug,us, ..., us] to

Hi(BH/k)/rad = k[z1,...,xr—1,t1,. .., 1r]

is injective.
We compare the restriction from O(2r) to (Z/2)" x (pu2)" with that from SO(2r)
to H:
k[ul, ey ’U/QT] — k‘[UQ, us, ... ,u27~]

l |

H3 (BO(2r) k) —— Hi(BSO(2r) k)

l |

k[Sl,...,ST,tl,...,tr]—)k‘[xl,...,l‘r_l,tl,...,tr]

The bottom homomorphism is given (for a suitable choice of generators z1, ..., z,_1)
by s;+— x; for 1 <i<r—1and s, — x1+ -+ x,—1 (agreeing with the fact that
up — $1+ -+ 8 — 0 in the Hodge cohomology of BH). By the formulas for

O(2r), we know how the elements us, . . ., ug, restrict to k[s1,..., s, t1,...,t;], and
hence to k[z1,...,2r—1,t1,...,t;]. Namely,
Uga > €a(ty, ) = Y byt

1<) < <ig <r

and, for 1 <a<r-—1,

U2q+1 Z ( Si; + Z Sm

1<i1 < <4 <r * j=1 m=1

a
— Z ( l‘ij>t7;1 "'tia
=1

1<i1 << <r—1 j=

a—1
+ Z <fL’1+"‘+$r—1+zxij>ti1"'tia—ltr
j=1

1<iy < <iq_1<r—1

r—1
= ij(tj + ) Z tiy o tig_y-
j=1

1<i1 < <lg—1<r—1
none equal to j

Q
=
N——
~
S
=
~
S.
S}
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We want to show that this homomorphism pt: kf[ug, us, ..., uer] = k[z1,. .., 2r—1,t1,. .., 1]

is injective. It can be factored through k[us,us,...,u2.—1,t1,...,t,], by the ho-
momorphism g sending us, Uy, . . ., uz, to the elementary symmetric polynomials in
t1,...,t.. Since p is injective, it remains to show that o: klus, us, ..., ugr—1,t1,...,t,] —
klx1,...,xr_1,t1,...,t,] is injective.

As in the argument for O(2r), we will show (more strongly) that o is gener-
ically étale; that is, its Jacobian determinant is not identically zero. Because o
is the identity on the ¢; coordinates, it suffices to show that the determinant of

the matrix of derivatives of us, us, ..., uo,._1 with respect to x1,...,x,_1 is nonzero
for x1,...,2y_1,t1,...,t, generic. This matrix of derivatives in fact only involves
t1,...,t,, because ug, us,...,us—1 have degree 1 as polynomials in x1,...,x,_1.

For example, for » = 3, this (r — 1) x (r — 1) matrix of derivatives is

<t1 +t3 (t1+ ts)(t2)>
to+t3 (ta+1t3)(t1))’

where the ath column gives the derivatives of wus,11 with respect to x1,...,z,—1.
For any r, the entry (j,a) of the matrix (with j,a € {1,...,r —1}) is (¢; + t;)€ja,

where
€ja = Z iy tig_y-
1< < <ig_1<r—1
none equal to j
Since row j is a multiple of (¢; 4 ¢,) for each r, the determinant is (¢; +¢,)(t2 +
ty) - (t,—1 + t,) times the determinant of the (r — 1) x (r — 1) matrix E = (ejq).
So it suffices to show that the determinant of E is not identically zero. Indeed, the
determinant of F is the same determinant shown to be nonzero in the calculation
above for O(2r), but with r replaced by r — 1.
Thus we have shown that ©: k[ug, ..., u,] = H{j(BSO(n)/k) is injective for n
even as well as for n odd. O

Having shown that ¢: k[ug, ..., u,] — H{j}(BSO(n)/k) is injective, we now show
that it is an isomorphism.

Let r = |n/2] and s = [(n — 1)/2]. Let P be the parabolic subgroup of G =
SO(n) that stabilizes a maximal isotropic subspace (that is, an isotropic subspace
of dimension r). Then the quotient of P by its unipotent radical is isomorphic to
GL(r). By Proposition 9.3, we have a spectral sequence

EY = Hy(BG/k) ® H((G/P)/k) = Hi? (BGL(r)/k).
The Chow ring of G/P is isomorphic to
Z[el, e es]/(e? —2e;_1€i+1 + 2€;_9€;40 — - + (—1)i€2i),

where e; € CHY(G/P) is understood to mean zero if i > s [25, II1.6.11]. (This uses
the theorem, discussed in section 7, that the Chow ring of G/ P for a split group G is
independent of the characteristic of k, and is isomorphic to the integral cohomology
ring of G¢/Pc. The reference assumes that n is even, but that is enough, because
the obvious map SO(2r+1)/P — SO(2r+2)/P is an isomorphism.) By Proposition
7.1, it follows that the Hodge cohomology ring of G/ P is isomorphic to

kley,. .., es]/(ez2 = €2;),
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where e; is in H'(G/P, Q). For any list of variables x1, ..., T, write A(z1,...,2m,)
for the k-vector space with basis consisting of all products z;, ... z;; with 1 <3 <
- <t <mand 0 <j <m. Then we can say that

H((G/P)/k) = Aler, .. cs).

The spectral sequence converges to Hy;(BGL(r)/k) = klc1, ..., ¢}, by Theorem
9.2. Write ®: Hj}(BG/k) — H{(BGL(r)/k) for the restriction homomorphism,
which is the “edge map” associated to the Oth row in the spectral sequence. The

restriction ® takes the elements wug,uy, ..., us, (Where ug; is in H'(BG,QY)) to
€1,Co,...,Cr. So the Fy term of the spectral sequence is concentrated on the Oth
row and consists of the polynomial ring k[ug, ug, ..., ug,|.

To analyze the structure of the spectral sequence further, we use Zeeman’s com-
parison theorem, which he used to simplify the proof of the Borel transgression the-
orem [25, Theorem VII.2.9]. The key point is to show that the elements e; (possibly
after adding decomposable elements) are transgressive. (By definition, an element u
of Eg’q in a first-quadrant spectral sequence is transgressive if do = --- = dy = 0 on
u; then u determines an element 7(u) := dg41(u) of Egill’o, called the transgression
of u.)

In order to apply Zeeman’s comparison theorem, we define a model spectral
sequence that maps to the spectral sequence we want to analyze. (To be precise,
we consider spectral sequences of k-vector spaces, not of k-algebras.) As above, let
k = Fs. For a positive integer ¢, define a spectral sequence G, with Es5 page given by
G2 = A(y)®@k[u], y in bidegree (0, ¢), u in bidegree (¢+1,0), and dg41(yu!) = ui+1.

k-y k-yu k - yu?

1%
1%

k-1 k-u k- u?

Suppose that, for some positive integer a, we have found elements y; of HZ ((G/P)/k)
for 1 < i < a which are transgressive in the spectral sequence E, above. Because
y; is transgressive, there is a map of spectral sequences G, — FE, that takes the
element y (in degree ¢ = 2i) to y;. Since E, is a spectral sequence of algebras,
tensoring these maps gives a map of spectral sequences

a: Fy i =G(y1) @ - @ Gi(ya) ® klug, ug, ..., uz] — FEy.

(Here we are using that the elements ug, uy, . .., ug, are in Hjj(BG/k), which is row
0 of the E5 page on the right, and so they are permanent cycles.) Although we do
not view the domain as a spectral sequence of algebras, its Es page is the tensor
product of row 0 and column 0, and the map «: Fy — E5 of Es pages is the tensor
product of the maps on row 0 and column O.

Using these properties, we have the following version of Zeeman’s comparison
theorem, as sharpened by Hilton and Roitberg [25, Theorem VII.2.4]:

Theorem 11.5. Let N be a natural number. Suppose that the homomorphism
a: Fy — E, of spectral sequences is bijective on Esd for i+ 7 < N and injective for
i+ 7 =N +1, and that « is bijective on row 0 of the Ey page in degrees < N + 1
and injective in degree N + 2. Then « is bijective on column 0 of the Eo page in
degree < N and injective in degree N + 1.
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The inductive step for computing the Hodge cohomology of BSO(n) is as follows.

Lemma 11.6. Let G be SO(n) over k = Fo, P the parabolic subgroup above,
r=|n/2|, s=[(n—1)/2|. Let N be a natural number, and let a« = min(s, [ N/2]).
Then, for each 1 <i < a, there is an element y; in H'(G /P, Q%) with the following
properties. First, y; is equal to e; modulo polynomials in ey, ..., e;—1 with exponents
< 1. Also, each element y; is transgressive, and any lift vy 1 to HTY(BG, Q) of
the element 7(y;) has the property that

klug, ug, . .., uzr; U3, U5, ..., v2q+1] — Hij(BG/k)

1s bijective in degree < N + 1 and injective in degree N + 2. Finally, each element
V241 1S equal to ug; 11 modulo polynomials in ua, us, . .., u;.

More precisely, if this statement holds for N — 1, then it holds for N with the
same elements y;, possibly with one added.

We will apply Lemma 11.6 with N = oo, but the formulation with N arbitrary
is convenient for the proof.

Proof. As discussed earlier, the E,, page of the spectral sequence
By = Hiy(BG/k) © H}((G/P)/k) = Hy (BGL(r)/k)

is isomorphic to k[ug,uy,. .., us, |, concentrated on row 0.

We prove the lemma by induction on N. For N = 0, it is true, using that
HY(BG/k) =k and H};(BG/k) = 0, as one checks using our knowledge of the Eu,
term.

We now assume the result for N — 1, and prove it for N. By the inductive
assumption, for b := min(s, |(N — 1)/2]), we can choose yi,...,y, such that y; €
HY(G/P,Q) is equal to e; modulo polynomials in eg,...,e; 1 with exponents < 1,
y; is transgressive for the spectral sequence, and, if we define vo; 11 € H'H(BG, Q)
to be any lift (from the Fo;11 page to the Fy page) of the transgression 7(y;) for
1 <1 < b, the homomorphism

k[UQ, Ugyovny,U2p; V3, Vs, ... ,U2b+1] — Hﬁ(BG/k‘)

is bijective in degree < N and injective in degree N + 1. Finally, the element vg;41
for 1 < ¢ < b is equal to ug;+1 modulo polynomials in ug, us, ..., u;.

Also, by the injectivity in degree N + 1 (above), it follows that there is a k-
linearly independent set (possibly empty) of elements z; in H{{V 1 (BG/k) such that

o klug, ug, ..., ugr; 3,05, ..., v9p11; 2] — Hij(BG/k)

is bijective in degrees at most N + 1. (Recall that b = min(s, | (N —1)/2]).) The
elements z; do not affect the domain of ¢ in degree N + 2 (because that ring is zero
in degree 1). Therefore, ¢ is injective in degree N + 2, because

k[UQ, Ugyovn,U2r; V3, V5, . .. ,U2b+1] — Hﬁ(BG/k‘)

is injective. (This uses that vg; 11 is equal to ug; 11 modulo polynomials in ug, us, . . . , ug;,

together with the injectivity of k[ua,us,...,u,] — Hjj(BG/k), shown in Lemma
11.4.)
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The elements z; can be chosen to become zero in the E, page, because the F
page is just k[ug,uy,...,us,] on row 0. Therefore, there are transgressive elements
w; € HY ((G/P)/k) with z; = 7(w;) in the Ex 1 page. (If z; is killed before Ex 1,
we can simply take w; = 0.)

Consider the map of spectral sequences

a: F, = A(yl,. . .,yb;wi) ®k[UQ,U4,. co, Uy, 1}3,1}3,...,02b+1;zi] — F,.

The map on Eo, terms is an isomorphism (to k[ug, ug, . .., uz.|), and we showed two
paragraphs back that the map on column 0 of the Fs terms is bijective in degrees at
most N 41 and injective in degree N 4 2. Therefore, Zeeman’s comparison theorem
(Theorem 11.5) gives that the homomorphism

V: Ay, - ypswi) = H((G/P)/k)

is bijective in degrees < N and injective in degree N + 1.

Let a = min(s, [N/2]). We know that A(ey,...,eq) = Hjj((G/P)/k) is bijec-
tive in degrees < N. Since the elements w; are in degree N, while b = min(s, |(N —
1)/2]), we deduce that there is no element w; if N is odd or N > 2s, and there is
exactly one w; if N is even and N < 2s. In the latter case, we have a = N/2; in
that case, let y, denote the single element w;. Since we know that Hjj((G/P)/k) =
A(eq,...,es), y, must be equal to e, modulo polynomials in e1,...,e,-1 with ex-
ponents < 1. By construction, y, is transgressive. Also, in the case where N is
even and N < 2s, let voq 11 in H*M(BG, Q%) be a lift to the Ey page of the element
T(yq) (formerly called z;). Then we know that

©: k[UQ,U4, e, U2y V3, Vs, . . ,U2a+1] — Hﬁ(BG/k)

is bijective in degree < N + 1. In the case where N is even and N < 2s (where
we have added one element v9,41 to those constructed before), this bijectivity in
degree N +1 = 2a+1 together with the injectivity of k[us, us, ..., u,] = H}5(BG/k)
in all degrees implies that vo,41 must be equal to ug,4+1 modulo polynomials in

U2, U3, ..., U2q. By the same injectivity, it follows that ¢ is injective in degree
N + 2. O
We can take N = oo in Lemma 11.6, because the elements y1,...,ys do not

change as we increase N. This gives that k[ug,us,...,u,] = H{5(BSO(n)/k) is
an isomorphism. (The element v9;+1 produced by Lemma 11.6 need not be the
element wuo; 1 defined earlier, but ve;11 is equal to u9;11 modulo decomposable
elements, which gives this conclusion.)

Using the Hodge cohomology of BSO(2r), we can compute the Hodge coho-
mology of BO(2r) over k using the Hochschild-Serre spectral sequence of Lemma
10.3:

EY = H'(Z/2, H (BSO(2r), Q%)) = H™(BO(2r),").
We have a homomorphism k[uy, ug, . .., u2,] = BO(2r) whose composition to BSO(2r)
is surjective. Therefore, Z/2 acts trivially on the Hodge cohomology of BSO(2r),
and all differentials are zero on column 0 of this spectral sequence. It follows that
the spectral sequence degenerates at Fo, and hence

Hi(BO(2r)/k) = H*(Z/2, k) ® Hi(BSO(2r)/k)

= k[ul,u2,. . .,’LLQT].
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Finally, we show that the Hodge spectral sequence
EY = HY(BG, Q) = H (BG/k)

degenerates for G = SO(n) over k. Indeed, by restricting to a maximal torus
T = (Gp)" of G, the elements ug, uy, ..., us, restrict to the elementary symmetric
polynomials in the generators of Hj,(BT/k) = k[ti,...,t,]. Therefore, the ring
Elug, ug, . .., ug] injects into Hjg (BG/k). So all differentials into the main diagonal
®;H"" of the Hodge spectral sequence for BG' are zero.

H2(BG, 0% % H2(BG, 01 -2 H2(BG, 0?)
B

HY(BG, Q%) 2% HY(BG, Q') — =30
2

HO(BG, Q) 0 =50

It follows that all differentials are zero on the elements ug; 11 € H'T'(BG, Q): only
d1 maps uo;+1 into a nonzero group, and that is on the main diagonal. Also, all
differentials are zero on the elements wug; in the main diagonal (since they map
into zero groups). This proves the degeneration of the Hodge spectral sequence.
Therefore, Hj, (BSO(n)/k) is isomorphic to klug, us, ..., uy].

The same argument proves the degeneration of the Hodge spectral sequence for
BO(2r). Therefore, H}, (BO(2r)/k) is isomorphic to k[ui, ua, ..., ug.|.

Finally, O(2r + 1) is isomorphic to SO(2r 4+ 1) X ug, and so the calculation for
BO(2r+1) follows from those for BSO(2r+1) (above) and Bus (Proposition 10.1),
by the Kiinneth theorem (Proposition 5.1). Theorem 11.1 is proved. O

Proof. (Proposition 11.2) Let 2r and 2s be the ranks of the quadratic bundles FE
and F. The problem amounts to computing the restriction from BO(2r 4 2s) to
BO(2r) x BO(2s) on Hodge cohomology or de Rham cohomology. We first compute
u(E @ F) in Hodge cohomology. The formula for us,(E @ F') follows from the
definition of ug, in H*(BO(2r + 2s),Q%). (Since ug, is in H*(BO(2r + 2s),Q%), its
restriction to the Hodge cohomology of BO(2r) x BO(2s) must be in H*(BO(2r) x
BO(2s),9Q%), which explains why only the even u-classes of E and F' appear in the
formula.) The formula for usqe41(E & F) follows from the formula for ug,(E & F),
using that uge4+1 = Buge + urugg.

In de Rham cohomology, the same formulas hold for u(E & F'). This uses that
the subring @©;H'(BG, ) of Hodge cohomology canonically maps into de Rham
cohomology (Lemma 8.2). O

12 The spin groups

In contrast to the other calculations in this paper, we now exhibit a reductive group
G such that the mod 2 cohomology of the topological space BG¢ is not isomorphic
to the de Rham cohomology of the algebraic stack BGr,, even additively. The
example was suggested by the observation of Feshbach, Benson, and Wood that the
restriction H*(BGg,Z) — H*(BTc,Z)" fails to be surjective for G' = Spin(n) if
n>11and n = 3,4,5 (mod 8) [4]. For simplicity, we work out the case of Spin(11).
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It would be interesting to make a full computation of the de Rham cohomology of
B Spin(n) in characteristic 2.

Theorem 12.1.
dimg, H3% (B Spin(11)/Fy) > dimp, H*?(B Spin(11)¢c, Fa).

Proof. Let k = Fs. Let n be an integer at least 6; eventually, we will restrict to the
case n = 11. Let G be the split group Spin(n) over k, and let T' be a maximal torus
in G. Let r = |n/2|. The Weyl group W of G is S, x (Z/2)" for n = 2r + 1, and
the subgroup S, x (Z/2)"~! for n = 2r. We start by computing the ring O(t)"V" of
W-invariant functions on the Lie algebra t of 7'

First consider the easier case where n is odd, n = 2r + 1. The element —1 in
(Z/2)" C W acts as the identity on t, since we are in characteristic 2. The ring
Ot)" can also be viewed as S(X*(T) ® k)". Computing this ring is similar to,
but simpler than, Benson and Wood’s calculation of S(X*(T))V = H*(BTc,Z)"
[4]. We follow their notation.

We have

S(X*(T)) = Zl1, ..., 20, Al (2A =21 + - + 1),

by thinking of 7" as the double cover of a maximal torus in SO(2r + 1). The
symmetric group S, in W permutes 1, ..., 2, and fixes A. The elementary abelian
group E, = (Z/2)" in W, with generators €1, ..., €, acts by: ¢; changes the sign of
x; and fixes x; for j # i, and €(A) = A — x;. So

S(X*(T) @ k) = klz1, ..., zr, A/ (21 + - + 20).

Note that —1 :=¢; --- €, in W acts as the identity on S*(X*(T) ® k).
We first compute the invariants of the subgroup E, on S(X*(T') ® k), using the
following lemma.

Lemma 12.2. Let R be an Fa-algebra which is a domain, S the polynomial ring
R[z], and a a nonzero element of R. Let G = Z/2 act on S by fixing R and sending
x to x + a. Then the ring of invariants is

S = Rlu],
where u = x(x + a).

Proof. Clearly u = z(z + a) in S is G-invariant. Since u is a monic polynomial of
degree 2 in z, we have S = R[u| @ z - R[u]. Let o be the generator of G = Z/2.
Any element of S can be written as f + xg for some (unique) elements f, g € Ru].
If f+ zg is G-invariant, then 0 = o(f + zg) — (f + zg) = (v + a)g — zg = ag.
Since a is a non-zero-divisor in R, it is a non-zero-divisor in R[u]; so g = 0. Thus

S¢ = Rlu). O

Let E; = (Z/2)7 be the subgroup of W generated by €1,...,€;. Let

= ]I (A—sz),

Ic{1,...5} icl
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which is Ej-invariant. Here n; has degree 2/ in S*(X*(T) ® k). By Lemma 12.2
(with R = k[z1,...,2z,]/(x1+ -+ + x,)) and induction on j, we have

S*(X*(T) ®@ k)% = k[z1,..., 20,5/ (21 + -+ 2, = 0)

for 1 <j <r—1. Since —1 = €1 -- - ¢, acts as the identity on these rings, we also
have
S*X*(T)® k:)ET =klx1,...,xp,pp-1]/(x1 + - + 2, = 0).

The symmetric group S, permutes xi,...,x,, and it fixes 7n._1. Therefore,
computing the invariants of the Weyl group on S*(X*(7") ® k) reduces to computing
the invariants of the symmetric group S, on k[zi,...,2,|/(x1 + -+ + 2,). That
is known, by the following result [26, Proposition 4.1]. Write ¢y, ..., ¢, for the
elementary symmetric polynomials in k[z1, ..., z,].

Lemma 12.3. Let k be a field of characteristic 2. If r > 3, then the ring of in-
variants of Sy on R = kl[z1,...,xz.|/(x1 + -+ 4+ ) is equal to klcy, ..., cn]/(c1) =
klca, ... ¢ Ifr =2, on the other hand, then Sa acts trivially on R = k[x1, x2]/(x1+
13), and so R%? = R = k[x1].

Combining Lemma 12.3 with the calculations above, we have found the invari-
ants for the Weyl group W of G = Spin(2r + 1): for r > 1,

klea, ... ,crynp—1] ifr#2,

SHXHT) @ k)Y = {k[% ol c s

Here |¢;| =i for 2 <i <7, |z1] =2, and |n,_1| = 2L
We now compute S*(X*(T)® k)W for G = Spin(2r). Note that a maximal torus
in Spin(2r) is also a maximal torus in Spin(2r + 1). So we have again

S*(XHT) @ k) = kla, ...,z Al (@1 + - - + ).

The Weyl group W = S, x (Z/2)"~! acts on this ring by: S, permutes 1, ...,,,

and fixed A, and (Z/2)"~! is the subgroup (ejes,...,€1€,) in the notation above.

Thus €€, fixes each z; (since we are working modulo 2) and sends A to A —x1 — ;.
For 1 < j <r, let F; be the subgroup (eje2,...,€16;) = (Z/2)71 C W. Let

I|CI<|{1,...,j} i€l

Then |uj| = 277! and py = A. Clearly p; is Fj-invariant. Benson and Wood

observed (or one can check directly) that if  is even and r > 4, then p,_1 is in fact

W-invariant, while if r is odd and r > 3, then p, is W-invariant [4, Proposition 4.1].
For 1 < j <r —1, an induction on j using Lemma 12.2 gives that

S*(XH(T) @ k)T = k[w1, ..., 2, 5]/ (21 + -+ 2,).

If r is even, then —1 := €1 -+ - ¢, is in F,, C W, and it acts trivially on S*(X*(T)®k).
Therefore, for r even, we have

S*(XHT) @ k) = kfzr, ..., 2, pr1]/ (1 + - - + 27).
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If r is odd, then we can apply Lemma 12.2 one more time, yielding that
S*XHT) @ k)" =k[zy, ..., 2, g /(21 4 - + 21).

The subgroup S, C W permutes z1, ..., z,, and fixes p,_1, resp. p,. We showed
above that
klzy, ...,z /(x1 + -+ 2,)° = k[ea, ..., ¢

Therefore, for G = Spin(2r), we have

SH(X*(T) & k)W _ klca, ... crypip—1] if 7 is even
klca, ..., cry tir] if r is odd.

Here |¢;| =i for 2 < i <7 and |pu,—1| = 2772, resp. |u,| = 2" L.

Thus we have determined S*(X*(T) ® k)" for G = Spin(n) for all n, even or
odd. Now think of G = Spin(n) as a split reductive group over k. By Theorem 8.1
(due to Chaput and Romagny), the ring S*(X*(T)® k)" = O(t)" can be identified
with O(g)® for all n > 6. (The exceptional cases Spin(3), Spin(4), Spin(5) are the
spin groups that have a factor isomorphic to a symplectic group: Spin(3) = Sp(2),
Spin(4) = Sp(2) x Sp(2), and Spin(5) = Sp(4).) We deduce that for n > 6,

klca,...,crymr—1] ifn=2r+1
O(g)G = q kl[ca, ... erypp—1] if n=2r and r is even
klca, ... cry iy if n = 2r and r is odd.

For G = Spin(n) and any n > 6, we have homomorphisms
O(9) = Hir(BG/k) — Hip(BT/k)" = 0(1)",

whose composition is the obvious inclusion. (The first homomorphism comes from
the isomorphism of O(g)¢ with @©;H'(BG}, ), using that H(BGy, ) = 0 for
i < j.) In this case, the restriction O(g)¢ — O(t)" is a bijection. So H}(BG/k)
contains the ring computed above (with degrees multiplied by 2), and retracts onto
it. It follows that for all n > 6, H3(BG/k) has an indecomposable generator in
degree 2" if n = 2r + 1, in degree 2! if n = 2r and r is even, and in degree
2" if n = 2r and r is odd. (For this argument, we do not need to find all the
indecomposable generators of Hjy(BG/k).) For our application to Spin(11), we
note the following information:

Lemma 12.4. The image of Hjip (B Spin(2r 4 1)/k) — Hjg (BT /k) is the polyno-
mial ring klca, ..., cr,np—1], where |¢;| = 2i and |n.—1| = 2".

Compare this with Quillen’s calculation of the cohomology of the classifying
space of the complex reductive group Spin(n)c, or equivalently of the compact Lie
group Spin(n) [28, Theorem 6.5]:

H*(BSpin(n)c, k) = H*(BSO(n)c, k)/J & klwyn (Ag)].

Here Ay is a faithful orthogonal representation of Spin(n)c of minimal dimension,
and J is the ideal generated by the regular sequence

oh—2

w2)5q1w27"'75q '”Sq2Sq1w2
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in the polynomial ring H*(BSO(n)c, k) = klwa,ws,...,w,], where |w;| = i. Fi-
nally, the number h is given by the following table:

n h
8l+1 41+0
8l+2 4l+1
8I+3 4l+2
8l+4 4l+2
8l+5 41+ 3
8l+6 41+ 3
8l+7 41+ 3
8l+8 41+ 3

The Steenrod operations on the mod 2 cohomology of BSO(n)c, as used in the
formula above, are known, by Wu’s formula [25, Theorem II1.5.12]:

. - 1—1
Sqle:Z(j P >wlwi+jl

=0

for 0 <14 < j, where by convention (Bl) =1.

Write r» = [n/2]. If n = 2r+1, then the generator wqn(Ayp) is in degree 2" if r =
0,3 (mod 4) and in degree 2"+ if r = 1,2 (mod 4). If n = 27, then the generator
won (Ag) is in degree 2771 if r = 0 (mod 4) and in degree 2" if » = 1,2,3 (mod 4).
Therefore, for n > 11, H*(B Spin(n)c, k) has no indecomposable generator in degree
2" if n = 3,5 (mod 8), and no indecomposable generator in degree 2" 1 if n = 4
(mod 8). But Hji(BG/k) does have an indecomposable generator in the indicated
degree 2%, as shown above. Thus, for G = Spin(n), H*(BGc, k) is not isomorphic
to Hig(BG/k) as a graded ring when n > 11 and n = 3,4,5 (mod 8).

We want to show, more precisely, that for n = 11, H32(BG/k) is bigger than
H3%(BGc, k). We know the cohomology of BGc by Quillen (above), and so it
remains to give a lower bound for the de Rham cohomology of BG over k.

We do this by restricting to a suitable abelian k-subgroup scheme of G =
Spin(n). Assume that n # 2 (mod 4); this includes the case Spin(11) that we
are aiming for. Then the Weyl group W of Spin(n) contains —1. So Spin(n) con-
tains an extension of Z/2 by a split maximal torus 7' = (G,,)", where Z/2 acts by
inversion on 7. Let L be the subgroup of the form 1 — T[2] - L — Z/2 — 1;
then L is abelian (because inversion is the identity on T[2] = (u2)"). Since the field
k = Fq is perfect, the reduced subscheme of L is a k-subgroup scheme (isomorphic
to Z/2) [24, Corollary 1.39], and so the extension splits. That is, L = (u2)" x Z/2.

Let us compute the pullbacks of the generators u; of Hjy (BSO(n)/k) (Theorem
11.1) to the subgroup L of G = Spin(n). It suffices to compute the restrictions of
the classes u; to the image K of L in SO(n); clearly K = (u2)"~! x Z/2. In notation
similar to that used earlier in this proof, the ring of polynomial functions on the
Lie algebra of the subgroup (y2)"~! here is

k[tl,...,tr]/(tl—I—--'—I-tr).

This ring can be viewed as the Hodge cohomology ring of B(u2)"~! modulo its
radical, with the generators t; in H*(B(u2)""1, Q) (by Propositions 10.1 and 5.1).
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Using Lemma 10.2, we conclude that
H{(BK/k)/rad 2 k[s, t1,...,t;]/(t1 + -+ t,),

where s is pulled back from the generator of H!(B(Z/2),0). The Hodge spectral
sequence for BK degenerates at F1, since we know this degeneration for BZ/2 and
B(uz)"!. Therefore,

Hig(BK/E) rad = ks, th, ... t,]/(t1 + -+ + 1),

Note that the surjection L — K is split. So if we compute that an element of
H3r (BSO(n)/k) has nonzero restriction to K, then it has nonzero restriction to L,
hence a fortiori to G = Spin(n).

Now strengthen the assumption n # 2 (mod 4) to assume that n is odd and
n > 7. In Lemma 11.4, we computed the restriction of us, us, ..., us,+1 in de Rham
cohomology from SO(2r + 1) to its subgroup O(2)", and hence to its subgroup
(p2)" x (Z/2)". We now want to restrict to the smaller subgroup K = (ug)" 1 x
Z/2. This last step sends Hjp (B((p2)" x (Z/2)")/k)/rad = E[s1,..., S, t1,..., ;]
to Hiz (BK/k)/rad = k[s, t1,...,t.]/(t1+- - -+t.) by s; = s for all i and ¢; — t;. By
Lemma 11.4, the element ug, (for 1 < a < r) restricts to the elementary symmetric

polynomial
Cq = Z til"‘tia~
1<y < <ig <1
Thus wuso restricts to 0 on K, but ug, ug, . . . , ug, restrict to generators of the polyno-
mial ring

(k[t1, ... ]/ (t1 + - +1,.))5 C Hip(BK/k)/rad,

using that r > 3, by Lemma 12.3.

Next, by Lemma 11.4, for 1 < a < r, the restriction of ug,+1 to Hjg (BK/k)/rad
is (first restricting from SO(2r + 1) to its subgroup (u2)” x (Z/2)", and then to
K = (ua)" x Z/2)

.
U241 Z Sm Z tiy - iy
m=1

1<i1 < <tq <1
one equal to m

= as E til s tia
1<i1 < <ig <1

= asus,.

Thus, for all 1 < a <7, ugeqq restricts in Hjg (BK/k)/rad to sug, if a is odd, and
otherwise to zero. (But wug restricts to 0, and so this also means that us restricts to
0.)

This gives a lower bound for the image of Hj, (BSO(n)/k) — Hjip (B Spin(n)/k)
for n odd. In particular, for n = 11, this image has Hilbert series at least that of
the ring

klug, us, w7, ug, uio, ui1]/(uiue + uiouy),

since the latter ring is isomorphic to the image of restriction from SO(11) to
Hn (BL/k)/rad, where L C Spin(11).
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We now compare this to Quillen’s computation (above) in the case of Spin(11):

H*(BSpin(11)¢, k) = k[wa, we, wr, wg, wig, wi1, wea(Ag)]/(wi1we + wiowr,

3 2 2
w11 + W1 WrwW4 + wllwgw7).

Since the last generator wgs(Ap) is in degree 64 and the last relation is in degree
33, the degree-32 component of this ring has the same dimension as the degree-32
component of the lower bound above for Hjy (B Spin(11)/k). However, Lemma
12.4 shows that Hjy (B Spin(11)/k) has an extra generator ny in degree 32. This
is linearly independent of the image of restriction from SO(11), as we see by re-
stricting to a maximal torus 7' in Spin(11). Indeed, by Lemma 12.4, the im-
age of Hjp (B Spin(11)/k) — Hjg(BT/k) is the polynomial ring k[ca,. .., cs5, 4],
whereas the image of the pullback from SO(11) to 7' C Spin(11) is just k[ca, ..., cs]
(= klwy, we, wg, wip]). Thus we have shown that

dimy, H3% (B Spin(11)/k) > dimy, H3*(B Spin(11)c, k).
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