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Abstract

Calibration data are often obtained by observing several well-understood objects simul-
taneously with multiple instruments, such as satellites for measuring astronomical sources.
Analyzing such data and obtaining proper concordance among the instruments is challenging
when the physical source models are not well understood, when there are uncertainties in
“known” physical quantities, or when data quality varies in ways that cannot be fully quan-
tified. Furthermore, the number of model parameters increases with both the number of
instruments and the number of sources. Thus, concordance of the instruments requires care-
ful modeling of the mean signals, the intrinsic source differences, and measurement errors. In
this paper, we propose a log-Normal model and a more general log-t model that respect the
multiplicative nature of the mean signals via a half-variance adjustment, yet permit imper-
fections in the mean modeling to be absorbed by residual variances. We present analytical
solutions in the form of power shrinkage in special cases and develop reliable Markov chain
Monte Carlo (MCMC) algorithms for general cases, both of which are available in the Python
module CalConcordance. We apply our method to several datasets including a combination
of observations of active galactic nuclei (AGN) and spectral line emission from the supernova
remnant E0102, obtained with a variety of X-ray telescopes such as Chandra, XMM-Newton,
Suzaku, and Swift. The data are compiled by the International Astronomical Consortium for
High Energy Calibration (IACHEC). We demonstrate that our method provides helpful and
practical guidance for astrophysicists when adjusting for disagreements among instruments.
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1 Introducing Calibration Concordance

The calibration of instruments is fundamental for comparing or combining measurements obtained
with different instruments. Typically, calibration is conducted by using each of several instruments
to measure one or more well-understood objects, e.g., astronomical sources. The resulting data are
used to develop adjustments that can be applied to future observations to obtain reliable absolute
measurements. Convenient adjustments, such as ad hoc affine or ratio adjustments, however,
often result in poor calibration, and without justifiable quantification of the calibration error that
is essential for assessing the uncertainty of the final estimates of interest. The main difficulty of
deriving reliable adjustments for instruments springs from the variations that are intrinsic to the
sources and to the instruments, in addition to individual measurement errors.

First, the physical models, derived using various approximations based on scientists’ current
understandings of the instruments, may not be as reliable as we hope. Second, “known” physi-
cal quantities are typically estimates themselves; even when their estimated errors are available,
standard plug-in estimators and error propagation techniques may lead to biased and often overly
optimistic results. Third, data quality varies in ways that cannot be fully quantified, especially
across instruments or in the presence of outliers. Last, the number of unknown model parameters
increases with the number of instruments and the number of sources, leading to well-known model
challenges. Together these challenges and subtleties expose that, although calibration problems
have a long history, principled statistical adjustments are not in routine use or even understood.

This paper attempts to fill this gap for a variety of astronomical instruments, by developing
hierarchical models that respect the physical models for the mean signals, while permitting the
modeling imperfections to be captured by residual variances. We build effective fitting algorithms
and a software package, CalConcordance, which are used to test our models via simulated data,
and then applied to several datasets from the International Astronomical Consortium for High

Energy Calibration (IACHEC). The intended readers are both statisticians and astrophysicists.

1.1 Calibration Concordance for Astronomical Instruments

In astrophysics, various instruments such as telescopes are used by different teams of scientists

to understand intrinsic properties of astronomical objects, i.e., sources such as stars. Although it



is possible to make relative comparisons of different sources observed with the same instrument,
unless the instruments are properly calibrated (Sembay et al., 2010), we cannot make reliable abso-
lute measurements or make comparisons of sources observed with different instruments. Therefore,
calibration of different instruments is an important, and on-going, problem for astrophysicists (e.g.,
Seward, 1992; Matthews and Havey, 2010; Nevalainen et al., 2010; Tsujimoto et al., 2011; Read
et al., 2014; Schellenberger et al., 2015; Madsen et al., 2016).

As an example, space-based (e.g., X-ray) telescope calibration (Schwartz, 2014) is handled in
two phases: first, under controlled laboratory conditions (“ground” calibration), and second, while
in space using astrophysical sources (“in-flight” calibration; see Guainazzi et al. (2015)). At each
phase, the same set of well-understood sources is observed with multiple instruments. The intent
of in-flight calibration is usually to verify ground calibration but imperfect laboratory conditions
and evolving instrument characteristics (while in-flight) may result in discrepancies between dif-
ferent telescopes. The task of developing reliable adjustments for astronomical instruments based
on observing multiple sources with multiple instruments is known as the calibration concordance
problem, which aims to develop a concordance in the calibration among these astronomical instru-
ments. This paper aims to provide a statistically principled solution and it is a joint effort between
statisticians and astrophysicists, both of whose expertise are critical for appropriately quantifying
the uncertainties while incorporating scientific knowledge and judgments.

For the calibration problem discussed in this paper, the following two concepts are essential.

e Flux of an astronomical source. The absolute flux is the quantity of luminous energy
incident upon the aperture of a telescope per unit area per unit time. The absolute flux
of an astronomical source depends on the luminosity of the object and its distance from
the Earth, both of which are intrinsic to the object. For a fixed source spectrum, i.e., the
distribution of photon energies, the measured fluz is proportional to the number of photons
detected by an astronomical instrument. If the spectrum changes, or the detector on the

instrument changes, then so do the number of detected photons and the measured flux.

e Effective Area for an instrument. The geometric area of a telescope (instrument) is an
upper bound on its capacity to collect photons. Many factors can reduce the efficiency of

photon collection, including mirror reflectivity, structural obscuration, filter transmission,



detector sensitivity, etc. This reduction in efficiency is also photon-energy dependent. The
Effective Area is the equivalent geometric size of an ideal detector that would have the same
collection capability and it is empirically measured or theoretically calculated and tabulated
as a function of energy. An instrument’s Effective Area is used to estimate the absolute flux of
an astronomical source given its measured flux: the estimated absolute flux is the measured
flux divided by the Effective Area. Since the Effective Area varies with photon-energy,
astronomers often compare different energy bands in the way that we describe comparing

different instruments, a convention we also adopt (George et al., 1992; Graessle et al., 2006).

The calibration problem arises because the Effective Areas of the instruments are not known
precisely (Drake et al., 2006; Kashyap et al., 2008; Lee et al., 2011; Xu et al., 2014), and hence
different instruments can yield substantially different estimates of absolute fluxes for the same
unvarying source even after accounting for the measurement uncertainties in measured fluxes. This
is manifested in Figure 1, which shows the logarithm of estimates of absolute fluxes of three sources
(panels 1-3) using three instruments, “pn”, “MOS1” and “MOS2”, taken from the XCAL data

that we describe in detail in Section 4.3. Therefore, the problem of calibration concordance among
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Figure 1: Using (natural) logarithm of measured fluxes, correcting for existing “known” Effective
Areas, to estimate log absolute fluxes. Measured fluxes are collected with three instruments “pn,
MOS1, MOS2” for each of three sources, labeled on top of each panel; see Section 4.3. Estimates
are given by the dots with approximate 95% confidence intervals. The differences among the
estimates are particularly pronounced in the third panel. The estimates from “pn” is systematically

smaller than those from “MOS1” and “MOS2”, illustrating the need for adjustments.



different instruments is equivalent to reliably estimating the Effective Area of each instrument.
By reliably we mean that, after proper adjustments of the Effective Areas, instruments measuring
a common source should agree within stated and scientifically acceptable statistical uncertainty on

the absolute flux of each source.

1.2 A Multiplicative Physical Model

Suppose we observe photon counts, {c;;}, where i indexes N instruments and j indexes M ob-
jects/sources. The observed photon count ¢;; is known to follow a Poisson model with intensity
C;;, which is affected by the Effective Area A; and flux F} as follows. Because source fluxes have
units of expected photons per second and per square centimeter, they are multiplied by instrument

Effective Areas and a known factor, denoted by T;;, to obtain expected photon counts:

YR
Cyy =T AF;, 1<i<N, 1<j<M. (1.1)

The multiplicative constant T;; contains the exposure time, as well as other factors that can be
calculated approximately by astrophysicists such as corrections for enclosed energy fractions and
spectral shape correction factors; see Marshall et al. (2018) for details. With this in mind, we can
regard T;; as a fixed known constant, and any real uncertainties related to 7;; can be partially
captured by our residual modeling discussed later in this paper and in subsequent work. Intuitively,
the A; can be regarded as a measure of the efficiency of instrument ¢ in terms of photon collection.
Fundamentally, (1.1) presumes that the Effective Area for a particular instrument remains the
same regardless of which source it is applied to (and vice versa). By using a more homogeneous
subgroup of sources (see Section 1.3), we can increase the applicability of (1.1), as we illustrate
in Section 4.1. Of course, there is no free lunch — by using a subgroup instead of all M of the
sources, we have less data and hence higher variability of our estimator, a bias-variance trade-off.

Prior to observing {¢;;}, astronomers obtain initial estimates a; of A; from ground-based or in-
flight calibration measurements, and hence it is safe to assume these measurements are independent
of {¢;;}. Comparing with estimated fluxes of well-understood sources, astronomers can also place
a reasonable prior bound on the margin of relative error in a; at about 20% (Lee et al., 2011,

Drake et al., 2006). Additional prior knowledge on the measurement errors in {c;;} is available.



How to utilize this prior information, and whether these estimated uncertainties suffice to explain

the variations in the data, are among the questions that we investigate in this paper.

1.3 Sample Selection Mechanism

The sample selection mechanism, which involves both the selection of sources and the instru-
ment used to observe each source is important because a biased selection mechanism can lead to
misleading results. However, this is not a large concern in our setting for several reasons.

First, the instruments we consider share a broad common energy passband so an object ob-
served with one instrument will likely be seen with another. Indeed, for all the datasets we analyze
in this paper, each source is observed by each instrument, although this is not a requirement for
our methods. Second, the chance of a source not being observed because it is too faint is low. Since
dim sources are not used for calibration, we do not include them in the study. Instead, we include
sources with well-understood energy spectra, high intrinsic intensity, and stable spectral-temporal
variations. This selection of sources is favorable since our ultimate goal is to calibrate the instru-
ments and each of their Effective Areas is invariant to source fluxes. Furthermore, the vagaries of
scheduling introduces large variations in the completeness achievable in a fleet of spacecraft, but
this selection bias is negligible. Each spacecraft has several independent intrinsic constraints that
are related to the shape of its orbit (Chandra X-ray Center, 2017b); its Sun, Moon, and Earth
avoidance angles; and even its thermal environment histories; making scheduling of simultaneous
observations difficult (Chandra X-ray Center, 2017a). In other words, the missingness in the ob-
servation matrix, if any, is due to factors that are irrelevant to the intrinsic property of the sources
or instruments, i.e., the estimands. These considerations permit us to ignore the sample selection
mechanism in the sense of Rubin (1976).

The remainder of this paper is organized into 4 sections. Section 2 describes a statistical model
for calibration concordance, a log-Normal model, and extends it to a more general log-t model to
handle outliers. Using simulated and real data, Sections 3 and 4 assess and verify the empirical
performance of our methods. Section 5 briefly discusses a likelihood approach and its connection to
our Bayesian approach, and future work. All numerical results are reproducible using the Python

code and data available on GitHub at https://github.com/astrostat/Concordance.


https://github.com/astrostat/Concordance

2 Building and Fitting the Proposed Concordance Models

2.1 Modeling Multiplicative Means

To make distinctions between observed quantities (e.g., estimator) and unknown quantities (e.g.,
estimand) clear, we adopt the convention that the former is denoted by lowercase (Roman) letters

and the latter by uppercase, whenever feasible. We express (1.1) as
log Ci; —log T;; = B; + G, where B; =log A; and G, = log Fj. (2.1)

While this is a trivial relationship among the estimands, it does not hold for their corresponding
estimators. In fact, if we let y;; = log ¢;; —log T}; (and ignore the issue of ¢;; = 0 for the moment),
b; = log a; and g; = log f;, we cannot simultaneously expect that y;; = b; + g; + €;; and that ¢;; is
independent of {b;,¢;} with mean zero. If both were true, it would imply (incorrectly) that the
expectation of y;; is determined by b; and g;, rather than by their respective estimands: B; and
G;. Table 2.1 gives a summary of the notation used in this section.

The quantity that we observe and aim to model is y;; = logc¢;; — logT;;, assuming ¢;; > 0.
(The case when ¢;; = 0, which never occurs in our data, is discussed below.) We assume that the
measurement error in ¢;; for Cj; is multiplicative (i.e., in terms of a percentage), which results in

additive errors on the log-scale. Thus we postulate the regression model
Yij = —0.5 0'1-2 + Bl + Gj + €ij, €ij ini(]ep N(O, 0'1-2), (22)

where —0.5 07 is a half-variance correction for the multiplicative mean modeling in (1.1). This
correction ensures that E(¢;;) = Cy; because if log x ~ N (p, v), then E(x) = e®?**#. Consequently,
E(ci;) = Tj;E(e¥i) = Ty;e057 0592 eBieGi = (.. For convenience, when (and only when) o2 is
known, we treat ygj = Y + 0.50'1-2 as data. Since b; = loga; is an initial estimate of B; that is
available without access to the calibration data {c;;}, we formulate it as the prior mean for B; via
Biingfpj\/’ (b;, 7), where 7; is provided by astronomers as well.

Given the underlying Poisson nature of the photon counts, ¢;;, the log-Normal model in (2.2)
deserves some explanation. If the expected counts, Cj;, are reasonably large, the log-Normal
model approximates the Poisson model well. This is what we expect in practice since calibration

sources are typically relatively bright, as illustrated in our datasets in Section 4. However, the
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Counts Effective Area Flux Log-Data Correction
Estimand (Parameter) Cij A, =exp(B;) F; =exp(Gj) —0.502
Estimate (Data) Cij a; = exp(b;) Yij T
Relationship E(cij)=Cyj Bi~N(bi,7?) Ciy=AF; yij= log(;z_)

Table 1: Summary of notations for log-Normal model. The index ¢ ranges from 1 to N and the

index j ranges from 1 to M.

primary reason we adopt this approximation is because the log-Normal model permits separate
modeling considerations for the mean and variance of the (transformed) counts, whereas the
Poisson mean dictates the Poisson variance. This flexibility is especially important when the mean
model (1.1) is not perfectly specified, as we expect since the 7T;; are estimated or approximated
in practice (Marshall et al., 2018). The variance of the log-Normal model can (partially) capture
imperfections in the mean model; see Section 3 for discussions in our numerical experiments.

Because the log-Normal model works with the log counts, it cannot directly accommodate zero
counts; we observe zero counts in some of our simulations studies. Should an observed count of zero
be observed we suggest it be replaced by a pseudo count of ¢;; = 0.5. This is a standard strategy
(Bilder and Loughin, 2014, p. 42) known as a zero-modified Poisson; the mean and variance of a
zero-modified Poisson random variable approximate those of the corresponding Poisson well if the
mean of the Poisson is reasonable large.! We validate this strategy in our simulation studies.

In (2.2), the variance for the measurement error is assumed to depend only on the instrument.

This assumption works reasonably well in our applied examples. More generally, each e;; can have

its own variance, afj, but obviously some constraints are needed in order to ensure identifiability.
Other possible constraints include forcing the variances to be source-dependent only or to be

additive, i.e., ij = wl-2+)\?. We first consider a known variance model because astronomers provide

'For a Poisson random variable ¢ with mean A, this replacement leads to a zero-modified Poisson random

variable ¢ with mean and variance
E(G) = A+0.5e7*,  Var(q) = A1 — e ) +0.25¢ (1 — e ). (2.3)

With reasonably large A, ¢ approximates g extremely well.



best guesses of afj. However, as illustrated in subsequent sections, the unknown variance model is
more flexible, robust, and hence recommended in practice. This is because the inferred adjustment
of Effective Areas could be either overly-optimistic or overly-conservative if the specified afj are

inaccurate. Unfortunately, this is often the case in practice owing to an incomplete quantification

of measurement uncertainties or incomplete understanding of data preprocessing.

2.2 Log-Normal Hierarchical Model and Its Posterior Sampling

Embedding the log-Normal model (2.2) into a Bayesian hierarchical model requires a prior for G;.
Because astronomers do not know enough about the physical processes to place an informative
prior on the fluxes, they prefer to use a flat prior for the log-scale flux, i.e., G, on the grounds
that astronomical source fluxes cover many orders of magnitude in dynamic range (Appenzeller,
2012). When the o2 are treated as unknown, we adopt independent Inverse-Gamma distributions
with shape parameter o and scale parameter [, the values of which are chosen to reflect the

astronomers’ prior knowledge about the approximate scale of noise levels. Specifically, we assume

i | By Gy 0 'SP N (0507 + Bi + G, 07), (2.4)
o? o Inv-Gamma(a, f), Biing?pN(bi, 72), and G’jinf%p flat prior,

where B = (By,...,By)", G = (Gy,...,Gy)", 02 = (0},...,0%) ", and 72 = (72,...,7%) ", and
T denotes the usual transpose. Under (2.4), we can show that (see Appendix C.1) the posterior
distribution is proper with the weakest condition possible: each source is observed by at least one
instrument. This theoretical guarantee is especially important because the number of parameters,
2N + M, varies with the number of observations, NM. Furthermore, the MAP (maximum-a-
posterior) estimator of each ¢? is bounded away from zero by a constant which depends only on
the hyperparameters and the total number of sources (see Section 2.3). Last, the use of proper
conjugate priors for o2 avoids the problem of an unbounded posterior distribution, which can

occur when we use uniform prior distributions for o?.

We also remark that, because each o?
enters both the variance and the mean in (2.4), the impact of the choice of prior on the posterior
inference is nuanced, as we discuss in the context of astrophysical applications (see Section 4.1).

In general, we let J; be the set of indexes of the objects observed by detector ¢ and I; be the set



of indexes of the instruments that observe object 7, and hence they accommodate missing data.

Under (2.4), the posterior density of { B, G, a2}, if it exists, is proportional to

[ﬁaiJiZQa] {“ZZ ym+05a ~ B —G)) Z{b— g]} 25)

i=1 =1 jeJ; i1 i

This implies that the conditional distribution of the column vector @ = (B'",G")" given o2 is an
(N + M)-dimensional Normal density. A simple way of deriving the mean pu(o?) and covariance
3(0?) of this conditional distribution is to use partial derivatives of L(0,02), the logarithm of
the joint posterior density given in (2.5). Let

OL(0,0?) and (0?) — 0?L(0,0?)

00  le=o 002 le—o (2:6)

v(o?) =

7

Note the second “|g—g” is cosmetic because for Normal model the Fisher information is free of 6.

By the form of the Normal density, u(o?) = Q7 (o?)y(0?) and X(0?) = Q7 1(o?). Evalu-

ating these derivatives yields v = (Y1, ..., YN, YN+1,- - - Yn4ar) - and £ as functions of o2
y’L b 7
%z@+—+05u| 1,...N,  ~un= y]+05|]| 1,....M, (2.7)
of Ti ier; 7
Dy DR Dy = Diag{|Jilo;?+ 772 i=1,...,N},
Q(0?) = N ,  where o Bl il ‘ J (2.8)
R'D Dy Dy = Diag{Y,; 072 j=1...,M},

D = Diag{o;? i=1,...,N}, and R = {r;;}, with R the N x M data “recoding matrix”, i.e.,
r;; = 1 if source j is observed with instrument ¢, and r;; = 0 otherwise. When all the instruments
measure all the sources, as in all our applications, R and DR are rank-one. In such cases, the
inverse of 2(a?) can be calculated analytically, as seen in Appendix D.

When o2 is unknown, its marginal posterior density can be obtained by evaluating the identity
P(o?) = P(0,02)/P(0|a?) at 8 = 0, where the numerator is given in (2.5) and the denominator
is given by the conditional Normal distribution with mean and variance given in (2.6). For ease
of notation, we use P(-) as simplified notation for the posterior density P(-|{y;;}). In particular,

noting that P(0 = 0|o2) o« 1/|Q(c2)] e # (@)2Au()/2 p(g2) is proportional to

N

HO_Z‘J¢|22Q;)’€XP {%MT(U2)Q(02)M(02) N Z ZjeJ’i Yij +20 + |J18|0-22] } . (29)

2
i=1 ©2(o? i=1 207
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Because this is not a standard distribution, numerical methods are required. We can obtain a
Monte Carlo sample from the joint posterior in one of several ways, including applying an MCMC
algorithm to sample {B, G, a?} jointly, or sampling o2 from (2.9) via rejection sampling and
{B, G} from its conditional Normal distribution given 2. Incidentally, a good rejection proposal
density is a convenient independent-component inverse Gamma distribution found in the proof of
the posterior propriety; see Appendix C.1. The latter strategy is very efficient, especially as it
provides independent draws. However, it is less flexible when we extend the model (e.g., the log-t
extension of Section 2.4). Consequently, we adopt the more flexible MCMC approach.

Since the dimension of the parameter space, 2N + M, is typically large for calibration pur-
poses and the parameters are highly correlated, we use a Hamiltonian Monte Carlo (HMC) algo-
rithm (Neal, 2011), which delivers a less correlated sample than do other MCMC techniques (e.g.
Metropolis et al., 1953; Hastings, 1970; Geman and Geman, 1984). We implement HMC using the
STAN package in Python (Hoffman and Gelman, 2014; Stan Development Team, 2015, 2016), along
with a blocked Gibbs sampler as an independent cross-check of STAN. In the blocked Gibbs sam-
pling, we sample { B, G} jointly to improve mixing as opposed to one-at-a-time Gibbs sampling,
thanks to the joint normality of {B, G} conditioning on o?; see Appendix B for details.

As is well known, computational efficiency for posterior sampling often is affected by modeling
defects, such as near non-identifiability (e.g., Meng, 2018). Model (2.4) does not suffer from this

as long as 7; is not too large compared to the magnitude of o;; see Appendix C.2.

2.3 Building Intuition: Power Shrinkage and Variance Shrinkage

To communicate our model aims clearly, when o2 is known, we express the MAP estimators of 8 in
terms of the usual linear shrinkage estimators (Efron and Morris, 1975; Morris, 1983) of B and G.
Intuitively, shrinkage estimators combine information from all the instruments and sources as well
as experts’ prior information through weighted averages, which serve the purpose of calibration
concordance across instruments and sources well. Specifically, by setting the derivative of the
log posterior in (2.5) with respect to B and G to be zero, we find that the MAP estimators,

conditional on (72, ?) and denoted by B; = E(Tz, o?) and CA;j = @j(rz, o?), must satisfy
éi(Tz, 0'2) = I/Vl(g; — GZ) + (1 - Wl)bz and @j(Tz, 0'2) = g/] — Bj, (210)

11



where for notational simplicity we write 3}, = v;; + 0.502, suppressing the dependence on o?; /.. is
1) J 4 2 [

the precision (i.e., the reciprocal variance) weighted average of the y;; over j € J;, and 7 is the

;) =2 /52
Zje]i Yii0; Zielj Yii%:

—2 -2 -
zjeJ,L- 9; Zielj 9

In (2.10), G; is the precision weighted average of the @j(7'2,0'2) over j € J; and Bj is the

precision weighted average of the y;; over i € [, i.e., g = and y; =

precision weighted average of the B;(T2, o2) over j € J;, i.e.,

é' — ZjEJi Gj<7-27 0-2>O-i_2 and B _ Eielj Bi(Tz, 0'2)0';2
Z ZjEJi O-i_2 ’ Zielj O-i_2

Note that the expressions for B;(72,62) and G;(72,62) involve G; and B;, which are linear
combinations of §i(72,0'2) and @j(7'2,0'2). Therefore, when the variance parameters o? and
72 are known, (2.10) and the expressions for G; and Bj form a system of linear equations, the
solutions of which are the MAP estimators for the B; and G;. Finally, the weights

| Jilo;

—_— 2.11
Ti_2+|Ji|0'Z~_2 ( )

i =

serve as the shrinkage factor for estimating B;. The form of (2.11) is intuitive because it measures
the relative precision provided by the likelihood with respect to the total posterior precision. Hence
1 — W; is the proportion of information from the prior distribution. This metric permits us to
make judicious choices of the prior variances, 72, when they are not given by experts, so that our
results are not unduly prior-driven. See Sections 4.1, 4.2 and 4.3 for in-context discussions.

The linear shrinkage corresponds to “power shrinkage” on the original scale. Consider the case
where 72 and all G; = g; are known. In this case, (2.10) yields B\i(1'2, o?) = Wi(y.—g:)+(1—=W,)b;.
Consequently, the Effective Area is estimated by

o~

~ ~ ~ W;
A, = Ar.0%) = explB (72,07 =l (@ 2]

1/1J4 .
] This

wd . = [T )"

adjustment depends on the relative precision 1 — W; for the b;. If W; = 1, that is, if b; is not

where ¢;. and f; are the geometric means: ¢; = [Hje J. Cij
1

trustworthy at all, we ignore a; and estimate A; by g@ = [61-. f[l} ¢’i/2. Note that the bias

o2/2 —02/2

correction e is needed because otherwise ¢;. f{l converges to A;e as |J;| — oo. In contrast,

if W; =0, i.e., b; possesses no error, then we ignore any data and just use Al = a; to estimate A;.

12



Because W; grows with |J;|o; 2 for fixed o2, the more calibration data we have, the larger the
adjustment we make. However, the precision is not determined by the data size |J;| alone, but
also by the quality of the data, as reflected in o?. Hence if both |J;| and o7 are large, W; may not
be near 1 because the indirect information |.J;|o; ? may not be large compared to 7, 2.

When o? is unknown, we use the conjugate prior distributions for o2 as in Section 2.2. Taking

the derivative of the log of (2.5) with respect to o? reveals that the MAP estimators also satisfy

T R ] O S

€J;

where 3 is the shape parameter for the inverse Gamma prior distribution for o2 as given in (2.4).
We then solve (2.10) and (2.12) to obtain the MAP estimators {B, G,&2}. For finite |J;|, because
52, > B/(|Ji|+a) > B/(M+a), all 57 are bounded below by 24/1 + 8/(M + a)—2 > 0. Hence our

Yyt —

model, including its prior specifications, avoids the problem of an unbounded likelihood at o? = 0,
which is a known problem of hierarchical modeling with weak likelihood or prior information.

Intriguingly, the MAP estimator for the variance is also a shrinkage estimator,
~2 2 2 2 _ 2
0; = [ 1+ Sy,i - 1] = 5/ Sy,i = RiSy,i’
L+ 4/1+57,

where S;Z- of (2.12) is a natural extension of residual variance estimator, incorporating prior
information through {a,3}. The half-variance correction leads to a shrinkage of S7; because
R; < 1. The degree of shrinkage depends on S;i itself: the larger S;Z- is, the more shrinkage. Such

a self-weighted non-linear shrinkage phenomenon appears to be new.

2.4 Extensions to Handling Outliers: Log-t Model

Outliers are not uncommon in astronomical observations because the harsh environments in which
the detectors operate can be subject to large variations in background intensities, potentially lead-
ing to large errors in flux estimates. In addition, astronomical sources have intrinsic variabilities
covering many orders of magnitude, and some measurements could be performed in regimes where
the detectors do not respond linearly to the incoming signal. For these reasons, we propose a

robust log-t model as a generalization of the log-Normal model to better handle outliers (see,
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e.g. Lange et al. (1989)). Specifically, we introduce a latent variable &;; for each observation y;;

that is used to down-weight outliers. Formally, for each observation y;;, we assume

,{2 Zz
yi| B, G, ¢ = ——4+B;+G;+—L, (2.13)
! ’ ’ 2£ij ! \/5

Zijle ST N(0,k7), and  B;"S"N (b, 7P,

B,G) = E [E(evs

where £ = {;;}. Because E(e¥ B, G, &)|B, G| = A;F;, the multiplicative

model in (1.1) is maintained. Depending on the assumptions made for §;;, (2.13) includes:

Case 1: log-Normal model with known variances. If the §; are known constants, the noise
terms e;; = Z;;/+/&i; are independent Normals with mean 0 and variance afj = K2/ &ij. Thus

the model in (2.13) is equivalent to (2.4) with known variances.

Case 2: log-Normal model with unknown variances. If &§; = & ndp X2 for all j, then the

variances of Z;;/+/&; conditional on &; are k*/¢;, which are distributed as independent scaled
inverse x? with degree of freedom u and scale ux?. Thus (2.13) is equivalent to (2.4) with

a =u/2 and 8 = k?/2, noting the equivalence between y? and Gamma distributions.

Case 3: log-t model. If &jmf&?px?j, i.e., mutually independent y? random variables, which

are also independent of the Z;;, then the error terms Z;;/4/&;; follows independent (scaled)
student-t distributions: Z;;/+/&; P (k/\/V) t,.

All of these models can be fit using HMC via STAN in the package CalConcordance.

Besides down-weighting outliers, the latent & also permits a unique variance k*/¢;; for each
instrument-source combination. The log-t model is thus more flexible, but computationally more
demanding, than the log-Normal model: convergence of HMC is harder to achieve and the sampling
is more costly. When the &; are small, the half variance corrections x?/2¢;; are also likely to
dominate the error terms Z;;/+/&;;, because of their (much) smaller denominator. This results in
small y;;, and hence the model tends to generate heavier left tails than right tails.

Despite these challenges, which are topics for further study, we demonstrate the effectiveness
of log-t compared with log-Normal model for simulated and real data in the presence of serious

outliers. Among heavy-tailed distributions, we choose log-t because it is a natural extension of
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the log-Normal model and it carries the intuitive interpretation of “down-weighting” outliers: §;;
serves as the “weight” for y;;. The last point is confirmed in Simulation III in Section 3.2: outliers
have much smaller estimated &;; relative to other observations. Without outliers, however, we

recommend the log-Normal model for its adequacy and computational simplicity.

3 Testing the Concordance Models with Simulated Data

Our simulation studies aim to demonstrate that (1) the log-Normal model is reasonably robust
to the type of model specifications likely to occur in practice; (2) a commonly adopted plug-in
method treating guesstimated variances as known can lead to very poor adjustments; and (3) the
log-t model is preferred in the presence of serious outliers. We choose the simulation sample sizes

to be on the same order as those in our applied examples to make the results more interpretable.

3.1 Checking Robustness to Likely Misspecification

As seen in Section 2, we approximate the Poisson counts via a log-Normal distribution and treat

the T;; as known quantities in (1.1). These assumptions have reasonable justifications (Marshall
et al., 2018), but nevertheless we should exercise due diligence. Here we study the adequacy
of the log-Normal approximation. Further simulations (IV-VI) are presented in Appendix F to
investigate the effect of treating 7;; fixed and how it interacts with the log-Normal approximation.

In Simulations I and II, there are N = 10 instruments and M = 40 sources. The data
are generated as y;; = log¢;;, where {¢;;} are independent zero-modified Poisson counts with
Nij = AiF; = exp(B; + G5). We set {B; = 1,G; = 1} in Simulation I and {B; = 5,G; = 3}
in Simulation IT. We independently sample b; = loga; from N(B;,0.05%). Thus Simulation I
represents a low count scenario where the log-Normal approximation may not be appropriate.
When o2 = 0.121y, where 1y denotes an N x 1 column vector of 1s, we use the posterior for B;
and G; given in Section 2.2. Otherwise, we specify the prior of each o7 as independent inverse
Gammas with degree of freedom o = 2 and scale = 0.01, and use HMC to obtain draws from

the joint posterior distribution. Our choice of hyperparameters are set to match astronomers’

prior knowledge; for example, 0.1? is the maximum of their guesstimates of o2, reflecting the
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Figure 2: Simulation I. Posterior histograms of {B;,d;}2_;. The solid vertical black lines denote
the true/theoretical values of B; = 1 (top row) and of o; = 0.421 (second row). The dashed
vertical lines denote o; = 0.1 (second row). The black dashed density curves denote the exact

posterior densities of B; when we set the variances equal to their guesstimated value o2 = 0.1%.

general consensus that 10% or less relative error (recall y;; is on log scale) does not alter physical
interpretations in important ways. As expected, the fitted values of B; and G; are much closer to
their targets in Simulation II since it has more Poisson counts resulting from larger values of B;
and G; Figures 2 and 3 give detailed results (for B;, 0;) under Simulations I and II.

Given B; and G}, since ¢; is discrete, the theoretical variance Var[log(¢é;;)], which is a function
of A = exp(B; + G;), can be calculated numerically to any desired accuracy. For reasonably
large B; + G, we can also approximate ¢7; by the d-method: o7; = Var(é;)/E*(é;), where E(¢;;)
and Var(¢;;) are obtained from (2.3) with A\ = exp(B; + G;). For Simulations I, A\ = e* = 7.4,
which leads to o;; = 0.421 numerically; in contrast, the J-method gives o;; ~ 0.367, a poor
approximation due to the smallness of \. This is a warning as to the inadequacy of using the
log-Normal approximation. In contrast, for Simulation II, A = ¢ = 2981, and hence ¢;; = 0.018;
the d-method gives the same figure (to four significant digits). Note that the priors for o2 are

inverse Gammas with degrees of freedom 2 and scale 8 for both simulations; we use 8 = 0.01 for
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Figure 3: Simulation II. Posterior histograms of {B;, 0;}2_, corresponding to 3 = 0.01 (rows 1 &
2) and 8 = 0.001 (rows 3 & 4). The solid vertical black lines denote the true values of B; = 5
(rows 1 & 3) and of o; = 0.018 (rows 2 & 4). The dashed vertical lines denote the guesstimated
value 0; = 0.1 (rows 2 & 4). The black dashed density curves in rows 1 & 3 denote the exact

posterior densities of B; when we set the variances equal to their guesstimated value o2 = 0.1%.

Now suppose we set each 07 = (0.1? as guesstimates of the variances. Comparing the his-
tograms and the overlaying curves from Figures 2 and 3, we see in Simulation I that the posterior

distributions largely miss their targets, because o7 = 0.1? is significantly smaller than the vari-



ances estimated under the unknown variance model. In contrast, when the true value of o2 is
larger than its guesstimate, as in Simulation II, the posterior distributions of the B; do capture
the target, but exhibit longer tails compared to those resulting from estimated variances. Both
phenomena are expected and confirm that if one must guesstimate the variances, it is better to
err on the conservative side. Of course, larger variances imply less precision, which leads to less

informative results, an inevitable but small price for overestimating the variances.

3.2 Dealing with Outliers via log-t Model

Simulation III, which is the same as Simulation II except we set G; = —2 to induce outliers,
demonstrates the effectiveness of the log-t model in dealing with outliers. Setting G; = —2 leads
to more outliers in the first source as compared to other sources with G; = 3 because the data
generating model is Poisson with count rate exp(B; + G;). Under this model the variance of the

logarithm of counts is approximately e~ 5%~¢

i when B; + G| is large. Thus, a very small G yields
a much larger variance relative to the other sources (by a magnitude of e3™? = 150) and more
extreme observed values. This is a realistic mechanism for generating outliers because it represents
the case where one of the sources is much fainter than the others. Following the notation in Case
3 of Section 2.4, setting the shape parameter for the inverse Gamma prior to o = 2 is the same as
setting v = 2a = 4 in a x? prior; the scale parameter 3 = 0.01 corresponds to k = /23 &~ 0.141. In
this section, we use afj to denote the residual variance for y;;. From Simulation II, o;; = 0.018 for
j>1. For j =1, A = e 2" = 20.1, and hence the exact numerical calculation gives o;; = 0.232,
and the J-method yields ;1 &~ 0.223, which is quite a reasonable approximation.

Using the first three sources as an example, the upper panel in Figure 4 compares the results

from the log-Normal model and the log-t model through the (fitted) standardized residuals, which

are given respectively by (using the notation in Section 2.2 and Section 2.4):

o yy-Bi-G+05x3? 5 yy—Bi—G+05x 8/
Rij _ Yij ,\] + g; and Rij _ Yij jji_/z X K /5]7 (31>
i ﬁ/fij

where Ei, @j, 53» and 0, are the posterior means. We see some observations from the first source
(black circles) are outliers with standardized residuals outside [—2,2], in the log-Normal model

(upper panel) but not for the log-t model (lower panel). In the log-Normal model, setting afj = o?
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Figure 4: Simulation III. Rows 1 and 2 show standardized residuals of the log-Normal model and
the log-t model. The black circles, gray squares and silver rhombi represent the first three sources
respectively. The instruments are plotted on the x-axes. The dashed horizontal lines denote the
[—2, 2] intervals. Rows 3 and 4 show posterior histograms of {B;}?_; from the log-Normal model

and the log-t model, where the black vertical bars indicate true values.

2

causes large standardized residuals due to some source-dependent large variances: ¢ >> o2

ij
J = 2. In the log-t model, the outliers are down weighted by &;; and each observation is assigned
a unique conditional variance a?j = Kk?/&;;, illustrating the benefit of using the log-t model.

The lower panel in Figure 4 shows the posterior distributions of B; under the log-Normal and
log-t models, both capturing the true value. The log-t model exhibits slightly larger variances
between the two. This is comforting, especially considering the flexibility of the log-t model,
permitting individual o;; rather than the hard-constraint o;; = o; of the log-Normal model.

The first three rows of Table 2 give the (average) coverage of nominal equal-tailed 95% pos-

terior intervals for B; and G obtained from 2000 simulations with the same configurations as in
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Data Generating Coverage Probability Length of Interval
Model (Poisson) Parameter log-Normal log-t log-Normal log-t

N =10, M =40 B [0.941, 0.959] | [0.971, 0.975] | 0.067+0.005 | 0.073 & 0.002
N =10,M =40 G, 0.599 0.700 0.090+ 0.015 | 0.182+0.045
N =10,M =40 | Go,...,Gy | [0.967, 0.977] | [0.996, 0.999] | 0.0774+0.003 | 0.10440.002
N =40, M =40 B [0.953, 0.969] | [0.993, 0.998] | 0.04140.007 | 0.05040.001
N =40, M =40 G, 0.598 0.656 0.045+0.003 | 0.095+0.013
N =40,M =40 | Go,...,Gy | [0.965,0.977] | [0.996,0.999] | 0.0384+0.001 | 0.05140.001

Table 2: Coverage of nominal 95% posterior intervals calculated from 2000 datasets simulated
under a Poisson model using the same configurations as in Simulation III. The intervals in columns
3 and 4 give the smallest and largest coverage observed for the corresponding parameter. The last

two columns give the lengths of nominal 95% intervals in the format: mean + standard deviation.

Simulation III. The log-t model is more robust to outliers than the log-Normal model, exhibiting
significantly better coverage for G;. (Though coverage under the log-t model is still poor relative
to the nominal level.) Table 2 also indicates that outliers are not as problematic for estimating
B;, our primary interest, as they are for G;. This is because we are more “informed” about the
B, than the G; since (1) in this experiment N = 10, M = 40, and hence there are more sources
than instruments, and (2) each B; has an informative prior whereas each G; only has a flat prior.

As illustrated in Table 2, when N is increased from 10 to 40, the coverage of G changes
little. The coverage of B on the other hand increases noticeably even with narrower intervals,
especially under the log-t model. The narrowing of the intervals for G is expected with more
instruments per source. The simultaneous increase of coverage and decrease of interval widths for
B is intriguing. It is a welcome finding from the astrophysics application perspective. But it also
indicates potential defects in the log-Normal or the log-t approximation because over-coverage
suggests a non-optimal posterior uncertainty calibration. The half-variance correction likely plays
a role here because it permits uncertainty in variance estimation to directly affect inference for the
mean. Overall, we recommend the log-t model when one suspects serious outliers. This may lead

to unnecessarily larger error bars for flux estimates that are not (directly) affected by the outliers,
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a worthwhile premium against disastrous loss of coverages for estimands that are affected.

4 Applying the Proposed Methods to IACHEC Data

In this section, we fit the log-Normal model to three datasets (given in Appendix A) compiled
by researchers from TACHEC (2017), with the aim of increasing understanding of the calibra-
tion properties of various X-ray telescopes (a.k.a. instruments) such as Chandra, XMM-Newton,

Suzaku, Swift, etc. See Marshall et al. (2018) for details on data collection and preprocessing.

4.1 EO0102 Data

SNR 1E 0102.2-7219 (abbreviated as E0102) is the remnant of a supernova that exploded in a
neighboring galaxy known as the Small Magellanic Cloud (Chandra X ray observatory, 2009) and
is a calibration target for a variety of X-ray missions. We consider four photon sources associated
with E0102. Each is a local peak or “line” in the E0102 spectrum, which can be thought of as
a high-resolution histogram of the energies of photons originating from E0102. Our “sources”
corresponds to the photon counts in four bins of this histogram. Two of the lines are associated
with highly ionized Oxygen (Hydrogen Lyman-a like O VIII at 18.969A and the resonance line
of O VII from the He-like triplet at 21.805A) and the other two are associated with Neon (H-like
NeX at 12.135A and He-like resonance line NeIX at 13.447A). We consider replicate data obtained
with 13 different detector configurations respectively over 4 separate telescopes, Chandra (HETG
and ACIS-S), XMM-Newton (RGS, EPIC-MOS, EPIC-pn), Suzaku (XIS), and Swift (XRT).
Because the energies of the two Oxygen lines are similar, it is reasonable to assume that their
associated Effective Areas are also similar; likewise for the Neon lines and their Effective Areas.
Thus, we consider two separate datasets, one with O VII and O VIII and the other with Ne IX and
Ne X, each with M = 2 and N = 13. In this way, we have more confidence in the multiplicative
model (1.1) than if we were to combine the two into a single dataset with M =4 and N = 13. In
addition, standard astronomical practice is to work with dimensionless measurements in log space

(e.g., optical magnitudes in a given passband are defined as —2.5log;, g— flux ). Since our log

flux from Vega

transformation of brightness mimics this process, we also normalize the measured line fluxes by
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Figure 5: Adjustments of the logarithm of the Effective Areas for Oxygen (row 1) and Neon (row
2) in the E0102 dataset. The x-axis labels the detectors (instruments) and the y-axis is B. The
horizontal dashed lines represent zero, which indicates no adjustments for the Effective Areas.
The vertical bars denote 95% posterior interval for each B;, and the dots denote the posterior

means. The black and gray bars correspond to 7; = 0.025 and 0.05, respectively.

those from an arbitrarily chosen detector, as done in Plucinsky et al. (2017).

To apply the log-Normal model to the two datasets, we choose priors with hyperparameters
a=15 8=2x10"*for OVII, OVIII and 8 = 8 x 107° for NeIX, NeX. We set each b; = 0,
i.e., a priori we expect no adjustment is needed, with confidence 7;, taking two possible values
7; = 0.025 and 7; = 0.05. These (and subsequent) choices are based on astronomers’ knowledge.

Figure 5 shows the adjustments of the log-scale Effective Areas for Oxygen (row 1) and Neon
(row 2) data. We see that the estimated values of B; are not sensitive to the choices of 7; except
for detector XRT-PC. For XRT-PC, with the Neon data, the estimated shrinkage factor towards
the prior, 1 —W;, as given in (2.11), is 0.91 with 7; = 0.025 and 0.02 with 7; = 0.05. This indicates

that, if the prior variance of B; is too small (7; = 0.025 here), the model treats the observations
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as being less accurate (by fitting a large o;) instead of further adjusting the Effective Area of the
corresponding instrument (a larger deviation from b;). Numerical results presented in Table 5 in
Appendix A reveal that the estimated shrinkage factors can vary slightly or drastically with 7;.
Since M = 2, sensitivity to the choice of hyperparameters is expected. A feature of the log-Normal
model is the direct link between its mean and variance stemming from the half-variance correction.
This link indicates additional sensitivities that are neither commonly observed nor well studied.

From Figure 5 and Table 5 (Appendix A), XRT-PC has a much lower Effective Area than the
other instruments: about —0.15 versus between [—0.05,0.05] on the log scale. The corresponding
estimated shrinkage factor is more sensitive to the choice of 7;, for both the Oxygen and Neon data:
when 7; is small (= 0.025), the posterior mean of B; is constrained too much by its zero-centered
prior. Thus we need a larger o; to compensate for the the influence of the prior. In contrast, when
7; is larger (we also tried 0.05,0.075,0.1), the estimated shrinkage factor is not as sensitive to 7;.
Overall, Figure 5 suggests that the Effective Areas of MOS1, MOS2, XIS1, XIS2, XIS3 need to be
adjusted upward and those of pn, XRT-WT, XRT-PC need to be adjusted downward.

4.2 2XMM Data

The 2XMM catalog (Watson et al., 2009) can be used to generate large, well-defined samples of
various types of astrophysical objects, notably active galaxies (AGN), clusters of galaxies, inter-
acting compact binaries, and active stellar coronae, using the power of X-ray selection (XMM
Catalogue public pages, 2008). The 2XMM catalog data are collected with the XMM-Newton Eu-
ropean Photon Imaging Cameras (EPIC). Briefly, there are three EPIC instruments: the EPIC-pn
(hereafter referenced as “pn”) and the two EPIC-MOS detectors (hereafter referenced as “MOS1”
and “MOS2”). These detectors have separate X-ray focusing optics but are co-aligned so that the
sources in our samples are observed simultaneously in the pn, MOS1, and MOS2 detectors.

Our 2XMM data contain three datasets, corresponding to the hard (2.5 - 10.0 keV), medium
(1.5 - 2.5 keV) and soft (0.5 - 1.5 keV) energy bands. The three instruments (pn, MOS1 and
MOS2) measured 41, 41, and 42 sources respectively in hard, medium, and soft bands. The
sources are from the 2XMM EPIC Serendipitous Source Catalog (Watson et al., 2009), selected

to be sufficiently faint that the thorny issue of “pileup”, which occurs when several photons hit
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Figure 6: Adjustments of the log-scale Effective Areas for hard band (left), medium band (middle)
and soft band (right) of the 2XMM datasets. The legend is the same as in Figure 5.

the detector at the same time, can be ignored. With sufficient exposure, on average 1,500 counts
are collected from the faint sources in each band of the detector (Marshall et al., 2018).

The log-Normal model is fit to the three datasets separately, with # = 0.014,0.083 and 0.022
respectively for the hard, median, and soft bands, but with o« = 1.5 for all three. We again use
b; = 0 and try 7; = 0.025 and 7; = 0.05. Figure 6 shows the resulting adjustments of the log-
scale Effective Area, and confirms the astronomers’ expectation that no adjustment is needed for
2XMM, regardless of the choice of the 7;. In contrast to Table 5, Table 6 (also in Appendix A)

shows a much more stable patterns of proportion of prior information for 2XMM data.

4.3 XCAL Data

XCAL consists of bright AGN from the XMM-Newton cross-calibration sample?. The image data
are clipped, using a standard XMM software task (called epatplot), to eliminate the regions
affected non-trivially by pileup. The amount of clipping depends on the observed source intensity:
unused regions are larger for brighter sources (Marshall et al., 2018). The initial estimate of the
Effective Area is then adjusted according to lookup tables (from other in-flight data) to account
for the unused regions. Like the 2XMM data, XCAL data are composed of three datasets: the
hard (94 sources), medium (103), and soft (108) bands, all measured by three instruments, pn,
MOS1 and MOS2. We use the same procedure and hyperparameters as in Section 4.2, except we
set S =28.0x107% 8.6 x 1072 and 6.8 x 10~* respectively for hard, median, and soft bands.

2See Section 4 in http://xmm2.esac.esa.int/docs/documents/CAL-TN-0052.ps.gz

24


http://xmm2.esac.esa.int/docs/documents/CAL-TN-0052.ps.gz

PKS2155-304 3C120

-3.20 -35
-3.25 -3.6
172]
£ -3.30 -3.7
>
% -3.35 -38 } }
et} —
S -3.40 39
S -345 -4.0
—4.1
©» _350
o -42
e pn MOS1  MOS2 T1,=0.025 T,=0.05 pn MOS1  MOS2 1,=0.025 7,=0.05
S MS0737.9+7441 PKS2155-304
o —5.55 -2.30
3
& _5.60 =235
Ee)
2 ses -2.40
E .10 -2.45
a -2.50
=375 -2.55
—5.80 -2.60
pn MOS1  MOS2 T1,=0.025 7,=0.05 pn MOS1  MOS2 T1;=0.025 T1,=0.05

Figure 7: Comparison of estimated 95% intervals for log-fluxes using a standard astronomical
method (left three bars) and those from the log-Normal model (right two bars) for four represen-

tative medium-band sources in XCAL data, as indicated by the panel titles.

Figure 7 demonstrates that adjustment of the Effective Areas is needed to align the measured
fluxes across the detectors. Results are presented for four sources from the medium band data,
where the left three bars—corresponding to three instruments—depict the 95% intervals (mean +
2 given standard deviations) for the log-fluxes obtained by a standard astronomical method. The
right two bars—corresponding to two choices of the prior variance 7,—represent the 95% posterior
intervals of log-fluxes after adjustment using our log-Normal model. This visualization illustrates
the reliability of our calibration of Effective Areas, as it helps to bring together the varied flux
estimates from individual detectors in a statistically principled way. In particular, we see that the
posterior mean of the log-flux is rather robust to the choice of 7;, yet the corresponding posterior
variance respects astronomers’ a priori knowledge as coded into 7;.

Finally, we show how to adjust the Effective Areas of each instrument to obtain the results
illustrated in the rightmost interval in each panel of Figure 7. Figure 8 shows the necessary
adjustment of B for hard band (left), medium band (middle) and soft band (right). For all these
bands, we adjust the Effective Area of pn downward and that of MOS2 upward.
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and soft band (right) based on XCAL data. The legend is the same as in Figure 5.

4.4 Model Checking

To check how well the log-Normal model captures the observed variability in the data, we use
residual plots to visualize the goodness-of-fit. Figure 9 plots the standardized residuals ﬁij for the
data analyzed in Section 4.3 with 7; = 0.05, with the left panels denoting residuals from the log-
Normal model and the right panels from the log-t model (see the two expressions of 7%1-]- in (3.1)).
Nearly all residuals fall in [—3, 3] under the log-Normal model and [—2, 2] under the log-t model.
The observations of 3C111 in all three energy bands are the only outliers under the log-Normal
model but are not outliers under the log-t model, confirming the latter’s ability to handle outliers.
The adjusted Effective Areas and the estimated fluxes are not too sensitive to whether or not the
outliers are excluded. Thus the log-Normal model is acceptable for the data in Section 4.3.

We also employ a posterior predictive check (Meng, 1994; Gelman et al., 1996) for the log-
Normal model. In a posterior predictive check, one chooses test statistics and computes the

posterior predictive p-value. The test statistics we choose are

M N M N
{Tz =Y. — Y= Zj:l Yii it Zj:l Yij }

Y

M NM

i=1
which reflect the relative magnitudes of the log scale Effective Areas. None of the posterior
predictive p-values for any of our datasets are significant, i.e., we never fail the posterior predictive
check. This does not, however, imply that no serious model defects exist. Below we discuss
directions for improving our models and ultimately the reliability of the proposed concordance

adjustments.
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Figure 9: Standardized residuals for the XCAL data in Section 4.3 with 7; = 0.05. Left panel for
the log-Normal model and right panel for the log-t model. The black circles, gray squares and
silver thombi denote the instruments pn, MOS1 and MOS2 respectively. The dashed and dotted
lines depict respectively the [—3, 3] and [—2, 2] intervals.

5 Alternative Methods and Future Work

5.1 Comparing Likelihood and Bayesian Estimations

In Section 2, we adopt a Bayesian perspective, which leads to the log-Normal model. Alternatively,
we could view b; as a noisy observation with known variance 77: b; mEPA (B;, 7). Together with
(2.2), this gives a multivariate Normal regression model and can be fit via maximum likelihood
estimation (MLE). In particular, when o2 is known, Proposition 1 in Appendix E.1 gives closed-
form expressions when all the instruments measure all sources, which implies the asymptotic
properties of the MLEs (Corollary 1). Furthermore, the standardized residual sum of squares

follows a x? distribution, which enables testing of the goodness-of-fit; see Appendix E.2 for details.
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When the variances 2 are unknown, in principle, we can still obtain the (asymptotic) variance
of the MLEs by calculating the observed/expected Fisher information. However, the number of
unknown parameters we consider, 2N + M, grows with the number of observations NM + N.
Conditions on the relationship between N and M that would ensure the classical asymptotic
theory for MLEs would be of interest to those who prefer likelihood inference. Furthermore, under
such conditions, these estimators should be approzimately valid even if the Normal assumptions
made in (2.2) for the e;; fail. In this case, the variance of the estimator requires a more complicated
“sandwich” formula (Freedman, 2006), involving both the Fisher information and the variance of
the score function. We say approzimately valid because the half-variance correction of Section 2
would depend on the log-Normal assumption. Consequently, when the variance is large, the half-
variance correction can be misleading if the log-Normal assumption is severely violated.

As usual, the likelihood method is closely related to the Bayesian approach. For example, when
o2 is known, the MLEs of B and G correspond to the MAP estimates defined in (2.10), which also
have the intuitive interpretation as shrinkage estimators. When the variances are unknown, the
likelihood function is unbounded at the boundary of the parameter space (o2 = 0). The conjugate
priors for variance parameters in the Bayesian model regularize the likelihood and give a proper

posterior distribution. This is another reason we adopt the Bayesian approach.

5.2 Future and Related Work

The log-Normal model works reasonably well in our applied illustrations, and it yields important
findings that are welcomed by astronomers — concrete guidance about systematic adjustments of
the Effective Areas are given and thus concordance of an intrinsic characteristic of each astronom-
ical object across different instruments can be achieved. Calibration scientists are thus able to
make absolute measurements of characteristics of astronomical objects using different instruments.
The posterior distribution of the Effective Area of each instrument can and should be used for
downstream analysis of measured fluxes to obtain principled estimates of absolute flux and to
properly quantify their uncertainty. Furthermore, we highlight the danger of incorrectly fixing the
observation noise through simulation experiments that mimic possible realistic uncertainties.

There are several directions of future work in order to improve the current model. First, so far
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we have assumed that the Effective Areas are a priori independent, which is not always true in
practice. Sometimes the Effective Areas across different energy bands are noticeably correlated.
This correlation structure should be taken into account in future modeling to gain more efficiency
in estimation. Second, the log-Normal model gives conservative results under realistic model
misspecification, as revealed by our simulation studies. Unfortunately, the scope of simulation
studies is always limited. Hence theoretical properties of both the log-Normal and the log-t
approaches under model misspecification need to be further investigated. Third, the asymptotic
(sampling) properties of the proposed models need to be established, as both the number of
parameters and the number of observations approach infinity. Fourth, the robustness of the model
with respect to possible sample selection bias and non-ignorable missing data needs to be studied
more thoroughly. Although this is not of concern for our current analyses, it could become a more
severe problem if we include more instruments and more sources in the calibration data. Last,
possible hierarchical extensions of the model that addresses population characteristics, in which
we are interested in the flux distribution of a certain type or population of objects instead of each
individual object, as in the case of supernovae, could be considered. Of course, in such cases, a
representative sample of the population of objects is critical for a meaningful analysis.

Moving forward, to increase the impact of the proposed method, we need to involve more
[ACHEC members and datasets. Cooperation among IACHEC member projects can lead to
enacting adjustments as recommended from the concordance analysis, which will result in closer
agreement between different instruments that make similar measurements, to achieve a main goal
of IACHEC. Experts from the projects that comprise the IACHEC are needed to examine possible
bias in sample selection and to set the values of 7 that are needed for the concordance analysis.
In our follow-up paper (Marshall et al., 2018), we apply this concordance analysis more broadly
and allow the values of 7 to be instrument-dependent.

Finally, calibration is a well-known problem in several areas of applications. For example, inter-
laboratory calibration (motivated from analytical chemistry) is studied in Gibbons and Bhaumik
(2001) and Bhaumik and Gibbons (2005), where they also address simultaneously the issue of
multiplicative signals and additive noises, but with a different modeling strategy. More recently, a

fiducial approach is used in Hannig et al. (2017) to tackle similar problems. We therefore hope our
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modeling strategies add to the toolkits to conduct similar calibration and concordance analysis,
such as for environmental monitoring (e.g., Weatherhead et al., 1998). Much more work is needed
and can be done, and hence we invite and encourage interested researchers to join us to address

these theoretically challenging and practically impactful problems.
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A Tables of Data Description and Prior Influence

Tables 3 and 4 give summaries of the data used in Sections 4.1, 4.2 & 4.3.

Lines (Sources) | He-like OVII H-like OVIII | He-like NeIX H-like NeX
Spectrum 21.805A 18.969A 13.447A 12.135A

Telescopes Chandra XMM-Newton Suzaku Swift
Detectors (Instruments) | HETG, ACIS-S RGS, EPIC-MOS, EPIC-pn XIS  XRT

Table 3: Summary of E0102 data. The first table gives the sources for two data sets, Highly

ionized Oxygen and Neon. The second table gives instruments for both data sets.
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Observatory XMM-Newton European Photon Imaging Cameras (EPIC)
Detectors (Instruments) EPIC-pn (pn), EPIC-MOS (MOS1 & MOS2)
Data Acronym 2XMM XCAL
Energy Band Hard  Medium  Soft Hard  Medium Soft
Energy (keV) 2.5-10.0 1.5-2.5 0.5-1.5 | 2.5-10.0  1.5-2.5 0.5-1.5
No. Sources 41 41 42 94 103 108

Table 4: Summary of 2XMM data and XCAL data. The number of instruments is N = 3 (pn,
MOS1, MOS2) and the number of sources (M) is given in the last row for the six data sets, three
from different energy bands of 2XMM data and XCAL data respectively.

B Details of Fitting the Log-Normal Model

The following three MCMC algorithms are used for our posterior sampling.

1. Standard Gibbs Sampler: iterates the following three sets of conditional distributions,

all easily derived from (2.5):

(a) Conditioning on G and o2, sample B; independently for ¢ = 1,..., N from

bi/ T+ 3 e, (yig + 0507 — Gy) /o7 1
U1+ 1/07 C TR e Vel )

(b) Conditioning on B and o2, sample G; independently for 1 < j < M from

N(Zielj(yij +0.507 — B;)/o7 1 )
Ziefj 1/0? ’ Zz’elj 1/o?)

(c) Conditioning on B and G, sample o7 independently for i = 1,..., N from
220 { 13 e Wig — Bi — G)* +28 | J|o? }
o, exp § —= —

‘ 2 o? 8

via the Metropolis-Hastings algorithm using a simple random walk proposal (Gaussian

proposal) on the log-scale, i.e., log(c?).

2. Block Gibbs Sampler: same as above except replace the two conditional steps (la) and
(1b) by a joint draw of { B, G} from (N+M )-dimensional Gaussian with mean Q(o?) " 'v(o?)

and covariance matrix Q(o?)™!; see (2.7) and (2.8) in Section 2.2.
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Instrument Oxygen Neon

7=0.02 7=0.05]|7=0.025 7=0.05

RGS1 0.570 0.205 0.063 0.016
MOS1 0.279 0.077 0.075 0.019
MOS2 0.355 0.065 0.077 0.017

pn 0.250 0.041 0.620 0.218

ACIS-S3 0.218 0.040 0.270 0.088
ACIS-I3 0.906 0.640 0.099 0.026

HETG 0.648 0.341 0.129 0.034
XIS0 0.180 0.051 0.069 0.018
XIS1 0.298 0.078 0.071 0.019
X152 0.463 0.140 0.063 0.016
XIS3 0.772 0.364 0.062 0.018

XRT-WT 0.726 0.278 0.154 0.026
XRT-PC 0.934 0.235 0.906 0.017

Table 5: Proportion of prior influence, as defined by 1—W; (of (2.11)), for E0102 data in Section 4.1.

3. Hamiltonian Monte Carlo (HMC): samples the entire vector 8 = {B;, G;, 07} through
the non-U-turn HMC sampler (Hoffman and Gelman, 2014), implemented with the STAN
package. Here we give a brief description of HMC; see Neal (2011) for more details. Let
7(0) denote the (unnormalized) joint posterior 6, as given by (2.5). Define potential energy
as U(B) = —logn(@) and kinetic energy as k(p) = p' M~!p, where M is a symmet-
ric positive-definite matrix, thus the total energy is H(0,p) = U(0) + k(p). We can obtain
samples of 7(0) by sampling from the target density exp[—H (0, p)] & 7(0) exp(—p' M~'p),
which is essentially a data-augmentation technique (Tanner and Wong, 1987). By defining
the potential energy and kinetic energy, we can propose MCMC moves according to the
Hamiltonian dynamics, which explores the parameter space more efficiently by taking bigger
and less correlated moves, as opposed to random walk Metropolis-Hastings or a Gibbs sam-

pler. In practice, we use the leapfrog move to approximate the Hamiltonian dynamics. Due
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Data Name 7, = 0.025 7, = 0.05

pn  mosl mos2 | pn  mosl mos2
hard band 2XMM | 0.093 0.075 0.082 | 0.025 0.020 0.022

medium band 2XMM | 0.250 0.216 0.222 | 0.076 0.065 0.067
soft band 2XMM 0.093 0.075 0.069 | 0.025 0.020 0.018
hard band XCAL 0.010 0.019 0.031 | 0.003 0.005 0.008

medium band XCAL | 0.023 0.016 0.028 | 0.006 0.004 0.007
soft band XCAL 0.021 0.011 0.007 | 0.005 0.003 0.002

Table 6: Proportion of prior influence for data used in the analysis in Sections 4.2 and 4.3.

to the energy-preserving property of Hamiltonian dynamics, the acceptance rate of the re-
sulting HMC is approximately 1. It is not exactly 1 because we use the (discretized) leapfrog
moves to approximate (continuous) Hamiltonian dynamics. The tuning parameters of the
HMC algorithm include the covariance matrix M, the leapfrog step size €, and the number

of leapfrog steps L. These are all self-tuned in the STAN package.

We compare the performance of these three algorithms using auto-correlation plots of the
posterior samples and the effective sample size, in both the simulated and real data examples.
Not surprisingly, the Gibbs sampler converges very slowly relative to the other two algorithms.
We are able to cross check our results by comparing the samples obtained with the block Gibbs

sampler and HMC — they give practically the same posterior distributions.

C Proprieties of the Posterior Distribution

C.1 Propriety of Posterior

Theorem 1. Under the prior specifications for {B;,G;,0? : 1 < i < N,1 < j < M} given in
(2.4), the posterior is proper if each source is measured by at least one instrument, i.e., |I;| > 1

forall1 <3< M.

Proof. We prove the propriety of the posterior by first integrating out the G first, then the B;,
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and finally the 2. By (2.5), p(B, G,o?|D,1?) is proportional to

N

=|Ji|—2—2a 1 - —2(, 1 2 - (s _Bz')2 B
[I7 exp —522% (i = Bi = Gy =) a2 Tl (- (C.1)

=1 j=1 i€l i=1
Now for each 1 < j < M, if we define a random index Z on [; such that Pr(Z = i) 01»_2, then

Zielj ‘7;2<Z/£j - B — Gy)?
Zz‘elj o;?

Therefore, the first term in the exponential part of (C.1) is less than —0.5 <Zi61j a;2> (G;—C))?,

2 2

=B [y/Zj —Br-Gj|" =2 [E(ylzj — Br) - Gy (C.2)

where C; = E(yz; — Bz) is free of Gj. The property of Normal density (for G;) then yields

N M 112 N (b — B)? B
* —|Ji|—2—2« — i~ D
| #B.G.01D. 7 dG < TLo 2 T | o eXp{_Z [z—m—”
i=1 j=1 |ie; | i=1 i i
where C* is a constant that depends only on D, 72. Integrating out B then gives
- ~1/2
N M N 3
//p(B, G,o0’|D,7*) dG dB < C** HJ{MI_Z_M H 20;2 exp {— Z p} (C.3)
i=1 j=1 | i€l i=1 1

where C** is a constant that depends only on D, 72. Since I; is non-empty, it is meaningful to

invoke the well-known harmonic-geometric mean inequality to obtain that

o -z il
Yies; 117

[[|>e2  <IDw (e <I[" )

Jj=1 [iel; Jj=1 i€l i=1

Inequalities (C.3) and (C.4) together imply that the unnormalized p(a?| D, 72) is dominated above
by a constant times Hf\il pi(0?), where p;(x) is the density of the inverse Gamma distribution with

shape parameter o; = a+ [|.J;| = > I;]7']/2 and scale parameter 3. Because |I;| > 1, we have

JEJ;
a; > «a. Hence as long as the hyperparameter o > 0, which is always chosen to be so, p; is a

proper density. Consequently, p(o?| D, 7?) is a proper density after renormalization.

C.2 Identifiability

When 77 is large, the likelihood information for estimating B; (i.e., from ¢;;) dominates the prior

information (i.e., from b;). In the extreme case of 72 = oo, the model is not identifiable because for
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fixed variances, {B;, G,} and {B; 40, G; — ¢} yield the same posterior densities for { B, G} for any
constant §. Let Apax and Ay, be the maximum and minimum eigenvalues of ©(o?), as defined
in Section 2.2. Taking u = (1y, 1) and v = (1y,—1y)", the condition number of Q(o?) is

A uWTQ?) u N AN Jilo;
Auin — vTQ(0?) v ST

=1 "1

: (C.5)

where 1,, denotes an n X 1 vector of ones. As a consequence, when {77} are generally larger than
{02}, the ratio in (C.5) can be large, and the posterior contours, determined by €2, are elongated
in one direction and narrow in another. This provides a guideline that {77} should not be set too
large relative to {o7} in practice, because large {77} can lead to near model non-identifiability and
consequently more costly computation. A computationally cheaper way of dealing with possible
model non-identifiability is to set one of the {B;} equal to a fixed value, which is equivalent to
setting the corresponding 7, = 0. We experiment with this computationally cheap strategy in
our empirical evaluations, and find that it does not alter the results in substantive ways, but the
resulting estimators for the Effective Areas are relative to some (arbitrarily) chosen values instead

of in absolute terms/magnitudes.

D Derivation of Conditional Covariance Matrix

In this section, we give detailed derivations of Q7!(a?) when all instruments measure all sources. In
this case, W; defined in (2.11) becomes W; = m]\i{g—:,% 1 <i < N. Define 6% = (N‘l SV 0;2> -

Let A be the (N + M) x (N + M) diagonal matrix with diagonal elements equal to those of
Q(0?). Let U be an (N + M) x 2 matrix such that U;; = 0,2, Uy =0fori=1,...,N, and
Uisni =0, Ujpno =1forj=1,..., M. Let C be a 2x2 matrix such that C; ; = I,; (i, = 1,2).
Then Q(0?) = A+ UCU". By the Woodbury matrix identity, we have

Qe =A"'-A'U(C+UTA'U) 'UTAT, (D.1)
where A~! is a diagonal matrix with diagonal elements

<{mai2/M}1§i§N d {&2/N}1§j§M> .
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Therefore, we can derive the inverse of 2 x 2 matrix C + U ' AU as

-1

oy Wio? N - M?5?
imWiog N 2 5 —M
T 4—1 -1 M o Zz:l 0; N
(C+UTA'U) ' = v | S .o
1 NO 2im Wi, M i, Wio;

Further, let W be the N x 1 column vector with ith element W;, then we have

W /M Onx1
0M><1 5'2/N 1M><1

AU =

Consequently, A~'U (C + UTA_lU)_1 UTA™! is equal to

1
(o) (7w
= Z —1lyxaW' [N7157 Zf\il Wio? arsur

Finally, we arrive at the closed-form expression for Q~!(o?):

B 1 Majzl/VZ-
(2 1(02))m - {1 o } :

M0;2 + 7'[2

E Likelihood Method

E.1 MLEs and Their Asymptotic Variances

Note that the variance-covariance matrix of the MLEs {B,G} is in fact Q7 !(0?) as defined

in (2.8). Therefore, we have the following proposition.

Proposition 1. If all detectors measure all objects, i.e., J; = {1,...,M}, I; ={1,...,N} and

{02, 72} are known constants, then the variances of {B;}, {G,} are given by

171

-1
-1

Var(@j) = Sa, Var(éi) = [Ma;z + 7-[2} Sg), (E.1)
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where the inflation factors Sg, {Sg)} are given by

N -2 _9
SG:1+ZZ]\71#2, SW=1 gt
i T Wi D w1 T W

A -1
Moreover, we have Cov(B;, G;) = =W, |Son_ 72W,|
Remark 1. Under the additive model, B; and G; are negatively correlated for alli,j. The asymp-

totic variances of B; and G can be written as

Var(G;) = Var(G;)Se, Var(B;) = Var(Bi)Sg),

-1
N _ . . .. . . . A
where Var(G;) = [E i1 0; 2] is the inverse precision, i.e., asymptotic covariance, of G; when

the B; are known constants; Var(B;) = [Mo; 2+ 7,72]7" is the inverse precision, i.e., asymptotic
covariance, of B; when the G; are known constants. The inflation factors Sg and Sg) adjust for

the fact that none of the B; or the G; are known.
Proposition 1 directly yields the following asymptotic results as N, M — oc.

Corollary 1. If {o;/7;} are uniformly bounded from below and above by finite positive constants,

and Zf\il 0;2/N converges to a positive constant as N — oo, then for all i,j, as N, M — oo,

Var(G,) = O(N7Y), Var(B;) = O(N~' + M™Y), Cov(B;,G;) = —O(N7Y).

Specifically, when T =1 =--- =7y and 0 = 01 = --- = oy, (E.1) simplifies to
A o? A 1 Mo™2 N 72
Var(Gy) = 55 Var(B) = g (1477 ) Con(B) =T

Remark 2. The results above show that the asymptotic variances for {B;} and {G;} are not
‘exchangeable’ (i.e., switching B and G and correspondingly N and M ), mainly for three reasons:
first, for each B; we assign an informative prior N (b;, 7?) whereas for each G; we assign a flat

prior on the real line; second, for each instrument i, besides B;, we also need to estimate o?

; last,
the measurement uncertainty depends only on the instrument but not on the sources (recall that

o} = o} foralli,j).
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E.2 Goodness-of-fit

We now give a goodness-of-fit test statistic for the random-effect regression model. Under the

model (2.4), we have the following normalized residual sum of squares:

N N M 2
i=1 ¢ i=1 j=1 v

We see this sum of squares has two parts. The first part involves {b;} only, measuring how good
the prior means are relative to the prior variances {7;}. The second part depends on {y;;} only,
and it will allow us to access how good the fitted B, G are relative to the sampling variances o2
Here we put them together as an overall model check, but one can certainly use them individually

if one wants to check the prior distribution and likelihood model separately.

Theorem 2. When the variances o?,77 are known and we insert the MLEs of B; and G; into

(E.2), we obtain T(B,G) ~ X%/

Proof. This conclusion regarding x? distribution follows from standard results on residual sum of
squares of linear regression with Gaussian error. To figure out the correct degrees of freedom, we
have (NM + N) independent observations in total, but with N + M parameters. Therefore, the

degrees of freedom for the residual sum of squares is NM — M. O]

With unknown variances we do not have a closed-form distribution of 7' as defined in for-
mula (E.2). Heuristically, we invoke the standard large-sample arguments and to continuously use
the y? approximation, but reduce the degrees of freedom to M N — M — N to count for the number
of estimated variance parameter {o?}. The resulting p-values of the fitted data in Sections 4.2

and 4.3 are not significant.

F  More Simulation Results Under Misspecified Models

In Simulations IV and V, we generate data as ¢;; = \;;X;;, where X;; ~ Poisson(A;F}), and inde-
pendently \;; ~ Uniform[0.8,1.2] for Simulation IV and \;; ~ Uniform[0.4, 1.6] for Simulation V.
In Simulations VI and VII, we generate data from ¢;; ~ Poisson(\;;A;F;), where the \;; are ran-

domly generated from the uniform distribution on [0.8,1.2]. The other parameters are set to be
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the same as in Simulation II except that S = 0.01 for these simulations. Simulations VI and VII
resemble the cases where the true model is Poisson and the estimation of Tj; is volatile, whereas
Simulations IV and V resemble the cases that happen in practice, where the photon counts are
multiplied by an adjustment factor, such as Ti;l, as with the data pre-processing step for the
XCAL data.

Figure 10 gives the results of Simulations IV and V. Figure 11 gives the results of Simulation VI
with smaller counts (B; = 1 and G; = 3) and VII with larger counts (B; = 5 and G; = 3) under
this scenario. It shows with large Poisson counts, controlling the uncertainty in the multiplicative
constant can possibly lead to reasonably good results. Thus, even with compounded model mis-
specification, the log-Normal model is able to provide reasonable, though not as precise, results,
as compared with the correctly-specified case. However, when the misspecified “known constant”
is highly variable, the fit result is not as satisfactory; plugging in a “guesstimated” o; in this case

can give disastrously optimistic but biased results.
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Figure 10: Simulations IV (rows 1 & 2) and V (rows 3 & 4). The gray shades are the posterior

The solid vertical black lines denote the true values. The black dashed density curves on top of
the histograms denote the true posterior densities of {B;} and the {G;} with ‘known’ variances

distributions of {B;}
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Figure 11: Same as Figure 10 but with Simulations VI (rows 1 & 2) and VII (rows 3 & 4).
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