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Abstract

We study the problem of finding a minimum-distortion embedding of the shortest path metric
of an unweighted graph into a “simpler” metric X. Computing such an embedding (exactly or
approximately) is a non-trivial task even when X is the metric induced by a path, or, equivalently,
into the real line. In this paper we give approximation and fixed-parameter tractable (FPT)
algorithms for minimum-distortion embeddings into the metric of a subdivision of some fixed
graph H, or, equivalently, into any fixed 1-dimensional simplicial complex. More precisely, we
study the following problem: For given graphs G, H and integer c, is it possible to embed G
with distortion c into a graph homeomorphic to H? Then embedding into the line is the special
case H = K2, and embedding into the cycle is the case H = K3, where Kk denotes the complete
graph on k vertices. For this problem we give

• an approximation algorithm, which in time f(H) · poly(n), for some function f , either
correctly decides that there is no embedding of G with distortion c into any graph homeo-
morphic to H, or finds an embedding with distortion poly(c);

• an exact algorithm, which in time f ′(H, c) · poly(n), for some function f ′, either correctly
decides that there is no embedding of G with distortion c into any graph homeomorphic to
H, or finds an embedding with distortion c.

Prior to our work, poly(OPT)-approximation or FPT algorithms were known only for embed-
ding into paths and trees of bounded degrees.

1 Introduction

Embeddings of various metric spaces are a fundamental primitive in the design of algorithms
[16, 18, 23, 22, 1, 2]. A low-distortion embedding into a low-dimensional space can be used as a
sparse representation of a metrical data set (see e.g. [17]). Embeddings into 1- and 2-dimensional
spaces also provide a natural abstraction of vizualization tasks (see e.g. [9]). Moreover embeddings
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into topologically restricted spaces can be used to discover interesting structures in a data set; for
example, embedding into trees is a natural mathematical abstraction of phylogenetic reconstruction
(see e.g. [11]). More generally, embedding into “algorithmically easy” spaces provides a general
reduction for solving geometric optimization problems (see e.g. [7, 12]).

A natural algorithmic problem that has received a lot of attention in the past decade concerns
the exact or approximate computation of embeddings of minimum distortion of a given metric space
into some host space (or, more generally, into some space chosen from a specified family). Despite
significant efforts, most known algorithms for this important class of problems work only for the
case of the real line and trees.

In this work we present exact and approximate algorithms for computing minimum distortion
embeddings into arbitrary 1-dimensional topological spaces of bounded complexity. More precisely,
we obtain algorithms for embedding the shortest-path metric of a given unweighted graph into a
subdivision of an arbitrary graph H. The case where H is just one edge is precisely the problem of
embedding into the real line. We remark that prior to our work, even the case where H is a triangle,
which corresponds to the problem of embedding into a cycle, was open.

We remark that the problem of embedding shortest path metrics of finite graphs into any fixed
finite 1-dimensional simplicial complex C is equivalent to the problem of embedding into arbitrary
subdivisions of some fixed finite graph H , where H is the abstract 1-dimensional simplicial complex
corresponding to C1. Since we are interested in algorithms, for the remainder of the paper we state
all of our results as embeddings into subdivisions of graphs.

1.1 Our contribution

We now formally state our results and briefly highlight the key new techniques that we introduce.
The input space consists of some unweighted graph G. The target space is some unknown subdivision
H ′ of some fixed H; we allow the edges in H ′ to have arbitrary non-negative edge lengths.

We first consider the problem of approximating a minimum-distortion embedding into arbitrary
H-subdivisions. We obtain a polynomial-time approximation algorithm, summarized in the following.
The proof is given in Section 5.

Theorem 5.12. There exists a 8hnO(1) time algorithm that takes as input an n-vertex graph G, a
graph H on h vertices, and an integer c, and either correctly concludes that there is no c-embedding
of G into a subdivision of H, or produces a cALG-embedding of G into a subdivision of H, with
cALG ≤ 64 · 106 · c24(h+ 1)9.

In addition, we also obtain a FPT algorithm, parameterized by the optimal distortion and H.
The proof is given in Section 6.

Theorem 6.1. Given an integer c > 0 and graphs G and H, it is possible in time f(H, c) · nO(1) to
either find a non-contracting c-embedding of G into a subdivision of H, or correctly determine that
no such embedding exists.

1Here, a d-dimensional simplicial complex, for some integer d ≥ 1, is the space obtained by taking a set of simplices

of dimension at most d, and identifying pairs of faces of the same dimension. An abstract d-dimensional simplicial

complex A is a family of nonempty subsets of cardinality at most d + 1 of some ground set X, such that for all

Y
′ ⊂ Y ∈ A, we have Y

′ ∈ A; in particular, any 1-dimensional simplicial complex corresponds to the set of edges and

vertices of some graph.

2



1.2 Related work

Embedding into 1-dimensional spaces. Most of the previous work on approximation and
FPT algorithms for low-distortion embedding (with one notable recent exception [27]) concerns
embeddings of a more general metric space M into the real line and trees. However, even in the
case of embedding into the line, all polynomial time approximation algorithms make assumptions
on the metric M such as having bounded spread (which is the ratio between the maximum and the
minimum point distances in M) [3, 26] or being the shortest-path metric of an unweighted graph [5].
This happens for to a good reason: as it was shown by Bădoiu et al. [3], computing the minimum
line distortion is hard to approximate up to a factor polynomial in n, even when M is the weighted
tree metrics with spread nO(1).

Most relevant to our approximation algorithm is the work of Bădoiu et al. [5], who gave an
algorithm that for a given n-vertex (unweighted) graph G and c > 0 in time O(cn3) either concludes
correctly that no c-distortion of G into line exists, or computes an O(c)-embedding of G into the
line. Similar results can be obtained for embedding into trees [5, 6]. Our approximation algorithm
can be seen as an extension of these results to much more general metrics.

Parameterized complexity of low-distortion embeddings was considered by Fellows et al. [13],
who gave a fixed parameter tractable (FPT) algorithm for finding an embedding of an unweighted
graph metric into the line with distortion at most c, or concludes that no such embedding exists,
which works in time O(nc4(2c+ 1)2c). As it was shown by Lokshtanov et al. [24] that, unless ETH
fails, this bound is asymptotically tight. For weighted graph metrics Fellows et al. obtained an
algorithm with running time O(n(cW )4(2c + 1)2cW ), where W is the largest edge weight of the
input graph. In addition, they rule out, unless P=NP, any possibility of an algorithm with running
time O((nW )h(c)), where h is a function of c alone. The problem of low-distortion embedding into
a tree is FPT parameterized by the maximum vertex degree in the tree and the distortion c [13].

Due to the intractability of low-distortion embedding problems from approximation and pa-
rameterized complexity perspective, Nayyeri and Raichel [26] initiated the study of approximation
algorithms with running time, in the worse case, not necessarily polynomial and not even FPT.
In a very recent work Nayyeri and Raichel [27] obtained a (1 + ε)-approximation algorithm for
finding the minimum-distortion embedding of an n-point metric space M into the shortest path
metric space of a weighted graph H with m vertices. The running time of their algorithm is
(cOPT∆)ω·λ·(1/ε)

λ+2·O((cOPT)
2λ) · nO(ω) · mO(1), where ∆ is the spread of the points of M , ω is the

treewidth of H and λ is the doubling dimension of H . Our approximation and FPT algorithms and
the algorithm of Nayyeri and Raichel are incomparable. Their algorithm is for more general metrics
but runs in polynomial time only when the optimal distortion cOPT is constant, even when H is
a cycle. In contrast, our approximation algorithm runs in polynomial time for any value of cOPT.
Moreover, the algorithm of Nayyeri and Raichel is (approximation) FPT with parameter cOPT only
when the spread ∆ of M (which in the case of the unweighted graph metric is the diameter of the
graph) and the doubling dimension of the host space are both constants; when cOPT = O(1) (which
is the interesting case for FPT algorithms), this implies that the doubling dimension of M must
also be constant, and therefore M can contain only a constant number of points, this makes the
problem trivially solvable in constant time. The running time of our parameterized algorithm does
not depend on the spread of the metric of M .

Embedding into higher dimensional spaces. Embeddings into d-dimensional Euclidean space
have also been investigated. The problem of approximating the minimum distortion in this setting
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appears to be significantly harder, and most known results are lower bounds [25, 10]. Specifically, it
has been shown by Matoušek and Sidiropoulos [25] that it is NP-hard to approximate the minimum
distortion for embedding into R

2 to within some polynomial factor. Moreover, for any fixed d ≥ 3,
it is NP-hard to distinguish whether the optimum distortion is at most α or at least nβ, for some
universal constants α, β > 0. The only known positive results are a O(1)-approximation algorithm
for embedding subsets of the 2-sphere into R

2 [5], and approximation algorithms for embedding
ultrametrics into R

d [4, 9].

Bijective embeddings. We note that the approximability of minimum-distortion embeddings
has also been studied for the case of bijections [28, 15, 19, 21, 8, 20, 10]. In this setting, most known
algorithms work for subsets of the real line and for trees.

2 Notation and definitions

For a graph G, we denote by V (G) the set of vertices of G and by E(G) the set of edges of G. For
some U ⊆ V (G), we denote by G[U ] the subgraph of G induced by U . Let degmax(G) denote the
maximum degree of G.

Let M = (X, d), M ′ = (X ′, d′) be metric spaces. An injective map f : X → X ′ is called

an embedding. The expansion of f is defined to be expansion(f) = supx′ 6=y′∈X
d′(f(x′),f(y′))

d(x′,y′) and

the contraction of f is defined to be contraction(f) = supx 6=y∈X
d(x,y)

d′(f(x),f(y)) . We say that f is

non-expanding (resp. non-contracting) if expansion(f) ≥ 1 (resp. contraction(f) ≥ 1). The distortion
of f is defined to be distortion(f) = expansion(f) · contraction(f). We say that f is a c-embedding if
distortion(f) ≤ c.

For a metric space M = (X, d), for some x ∈ X, and r ≥ 0, we write ballM (x, r) = {y ∈ X :
d(x, y) ≤ r}, and for some Y ⊆ X, we define diamM (Y ) = supx,y∈Y d(x, y). We omit the subscript
when it is clear from the context. We also write diam(M) = diamM (X). When M is finite, the local

density of M is defined to be δ(M) = maxx∈X,r>0
|ballM (x,r)−1|

2r . For a graph G, we denote by dG
the shortest-path distance in G. We shall often use G to refer to the metric space (V (G), dG).

For graphs H and H ′, we say that H ′ is a subdivision of H if it is possible, after replacing every
edge of H by some path, to obtain a graph isomorphic to H ′.

3 Overview of our results and techniques

Here we present our main theorems and algorithms, with a short discussion. Formal proofs and
detailed statements of the algorithms are left to later sections in the paper.

Approximation algorithm for embedding into an H-subdivision for general H. Here, we
briefly highlight the main ideas of the approximation algorithm for embedding into H-subdivisions,
for arbitrary fixed H. A key concept is that of a proper embedding: this is an embedding where
every edge of the target space is “necessary”. In other words, for every edge e of H ′ there exists
some vertices u, v in G, such that the shortest path between u and v in H ′ traverses e. Embeddings
that are not proper are difficult to handle. We first guess the set of edges in H such that their
corresponding subdivisions in H ′ contain unnecessary edges; we “break” those edges of H into two
new edges having a leaf as one of their endpoint. There is a bounded number of guesses (depending
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on H), and we are guaranteed that for at least one guess, there exists an optimal embedding that is
proper. By appropriately scaling the length of the edges in H ′ we may assume that the embedding
we are looking for has contraction exactly 1. The importance of using proper embeddings is that a
proper embedding which is “locally” non-contracting is also (globally) non-contracting, while this is
not necessarily true for non-proper embeddings.

A second difficulty is that we do not know the number of times that an edge in H is being
subdivided. Guessing the exact number of times each edge is subdivided would require nf(H) time,
which is too much. Instead we set a specific threshold ℓ, based on c. The threshold ℓ is approximately
c3, and essentially ℓ is a threshold for how many vertices a BFS in G needs to see before it is able to
distinguish between a part of G that is embedded on an edge, and a part of G that is embedded onto
in an area of H ′ close to a vertex of degree at least 3. In particular, parts of G that are embedded
close to the middle of an edge can be embedded with low distortion onto the line, while parts that
are embedded close to a vertex of degree 3 in H can not - because G “grows in at least 3 different
directions” in such parts. Since BFS is can be used as an approximation algorithm for embedding
into the line, it will detect whether the considered part of G is close to a degree ≥ 3 vertex of H or
not.

Instead of guessing exactly how many times each edge of H is subdivided, we guess for every
edge whether it is subdivided at least ℓ times or not. The edges of H that are subdivided at least ℓ
times are called “long”, while the edges that are subdivided less than ℓ times are called “short”. We
call the connected components of H induced on the short edges a cluster. Having defined clusters,
we now observe that a cluster with only two long edges leaving it can be embedded into the line
with (relatively) low distortion, contradicting what we said in the previous paragraph! Indeed, the
parts of G mapped to a cluster with only two long edges leaving it are (from the perspective of a
BFS), indistinguishable from the parts that are mapped in the middle of an edge! For this reason,
we classify clusters into two types: the boring ones that have at most two (long) edges leaving them,
and the interesting ones that are incident to at least 3 long edges.

Any graph can be partitioned into vertices of degree at least 3 and paths between these vertices
such that every internal vertex on these paths has degree 2. Thinking of clusters as “large” vertices
and the long edges as edges between clusters, we can now partition the “cluster graph” into
interesting clusters (i.e vertices of degree 3), and chains of boring clusters between the interesting
clusters – these chains correspond to paths of vertices of degree 2.

The parts of G that are embedded onto a chain of boring clusters can be embedded into the line
with low distortion, and therefore, for a BFS these parts are indistinguishable from the parts of G
that are embedded onto a single long edge. However, the interesting clusters are distinguishable
from the boring ones, and from the parts of G that are mapped onto long edges, because around
interesting clusters the graph really does “grow in at least 3 different directions” for a long enough
time for a BFS to pick up on this.

Using the insights above, we can find a set F of at most |V (H)| vertices in G, such that every
vertex in F is mapped “close” to some interesting cluster, and such that every interesting cluster has
some vertex in F mapped “close” to it. At this point, one can essentially just guess in time O(hh)
which vertex of F is mapped close to which clusters of H. Then one maps each of the vertices that
are “close” to F (in G) to some arbitrarily chosen spot in H which is close enough to the image of
the corresponding vertex of F . Local density arguments show that there are not too many vertices
in G that are “close” to F , and therefore this arbitrary choice will not drive the distortion of the
computed mapping up too much.
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It remains to embed all of the vertices that are “far” from F in G. However, by the choice of
F we know that all such vertices should be embedded onto long edges, or onto chains of boring
clusters. Thus, each of the yet un-embedded parts of the graph can be embedded with low distortion
into the line! All that remains is to compute such low distortion embeddings for each part using a
BFS, and assign each part to an edge of H. Stitching all of these embeddings together yields the
approximation algorithm.

There are multiple important details that we have completely ignored in the above exposition.
The most important one is that a cluster can actually be quite large when compared to a long
edge. After all, a boring cluster contains up to E(H) short edges, and the longest short edge can
be almost as long as the shortest long edge! This creates several technical complications in the
algorithm that computes the set F . Resolving these technical complications ends up making it
unnecessary to guess which vertex of F is mapped to which vertex of H, instead one can compute
this directly, at the cost of increasing the approximation ratio.

FPT algorithm for embedding into an H-subdivision for general H. Our FPT algorithm
for embedding graphs G into H-subdivisions (for arbitrary fixed H) draws inspiration from the
algorithm for the line used in [14, 5], while also using an approach similar to the approximation
algorithm for H-subdivisions. The result here is an exact algorithm with running time f(H, cOPT) ·
nO(1).

A naive generalization of the algorithm for the line needs to maintain the partial solution over
f(H) intervals, which results in running time ng(H), which is too much. Supposing that there is a
proper c-embedding of G into some H-subdivision, we attempt to find this embedding by guessing
the short and long edges of H. Using this guess, we partitions H into connected clusters of short
and long edges (we call the clusters of short edges “interesting” clusters, and the clusters of long
edges “path” clusters). We show that if a c-embedding exists, we can find a subset of V (G), with
size bounded by a function of |H| and c, that contains all vertices embedded into the interesting
clusters of H. From this, we make further guesses as to which specific vertices are embedded into
which interesting clusters, then how they are embedded into the interesting clusters. We also make
guesses as to what the embedding looks like for a short distance (for example, O(c2)) along the long
edges which are connected to the important clusters.

Figure 1: The FPT algorithm follows this process: (a) A quasi-subgraph of the target graph is
chosen. (b) Short (solid line) and long (dotted line) edges are chosen. (c) The graph is divided into
interesting (left 2) and path (right 3) components.

Since the number of guesses at each step so far can be bounded in terms of c and H, we can
iterate over all possible configurations. Once our guesses have found the correct choices for the
interesting clusters and for a short distance along the paths leaving these clusters, we are able to
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partition the remaining vertices of G, and guess which path clusters these partitions are embedded
into. Due to the “path-like” nature of the path clusters, when we pair the correct partition and path
cluster, we are able to use an approach inspired by [14, 5] to find a c-embedding of the partition
into the path cluster, which is compatible with the choices already made for the interesting clusters.
The formal description and analysis of this algorithm is quite lengthy, and deferred to Section 6.

4 Preliminaries on embeddings into general graphs

Let G, H be connected graphs, with a fixed total order < on V (G) and V (H). A non-contracting,
cOPT-embedding of G to H is a function fOPT : V (G) → (HOPT, wOPT), where HOPT is a subdivision
of H, wOPT : E(HOPT) → R

>0, and for all u, v ∈ V (G),

dG(u, v) ≤ d(HOPT,wOPT)(fOPT(u), fOPT(v)) ≤ cOPT · dG(u, v),

where d(HOPT,wOPT) is the shortest path distance in HOPT with respect to wOPT. Stated formally, for
all h1, h2 ∈ V (HOPT), if P is the set of all paths from h1 to h2 in HOPT, then

d(HOPT,wOPT)(h1, h2) = min
P∈P

{

∑

e∈P

wOPT(e)

}

.

Definition 4.1. For a graph G1 and subdivision G′
1 of G1, for e ∈ E(G1), let SUBG′

1
(e) be the

subdivision of e in G′
1. For convenience, for each e ∈ E(H), we shall use eOPT to indicate the

subdivision of e in HOPT.

The following notion of consecutive vertices will be necessary to describe additional properties
we will want our embeddings to have.

Definition 4.2. Suppose there exists u, v ∈ V (G) and e ∈ E(H) such that fOPT(u), fOPT(v) ∈
V (eOPT) and fOPT(u) < fOPT(v). If for all w ∈ V (G) \ {u, v}, fOPT(w) is not in the path in eOPT

between fOPT(u) and fOPT(v), then we say that u and v are consecutive w.r.t. e, or we say that u
and v are consecutive.

The first property we will want our embeddings to have is that they are “pushing”. The intuition
here is that we want our embedding to be such that we cannot modify the embedding by contracting
the distance further between two consecutive vertices.

Definition 4.3. If for all u, v ∈ V (G) and e ∈ E(H) such that u and v are consecutive w.r.t. e we
have that

deOPT
(fOPT(u), fOPT(v)) = dG(u, v),

then we say that fOPT is pushing.

A B

C D

A B C D

Figure 2: A pushing embedding of the cycle on 4 vertices into a path of length 5.
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The next property we want for our embeddigns is that they are “proper”, meaning that all edges
of the target graph are, in a loose sense, covered by an edge of the source graph.

Definition 4.4. For any z ∈ V (HOPT), if there exists {u, v} ∈ E(G) such that

d(HOPT,wOPT)(fOPT(u), fOPT(v)) = d(HOPT,wOPT)(z, fOPT(u)) + d(HOPT,wOPT)(z, fOPT(v))

then we say that z is proper w.r.t. fOPT. If for all x ∈ V (G), x is proper w.r.t. fOPT, then we say
that fOPT is proper.

A B

C D

A B C D

A B C D

Figure 3: The cycle on 4 vertices, embedded into the two graphs on the left. The first embedding is
not proper. The second embedding is proper.

Given some target graph to embed into, there may not necessarily be a proper embedding.
However, for some “quasi-subgraph” (defined below) of our target, there will be a proper embedding,
which can be used to find an embedding into the target graph.

Definition 4.5. Let J and J ′ be connected graphs. We say J ′ is a quasi-subgraph of J if J can be
made isomorphic to J ′ by applying any sequence of the following rules to J :

1. Delete a vertex in V (J).

2. Delete an edge in E(J).

3. Delete an edge {u, v} ∈ E(J), add vertices u′, v′ to V (J), and add edges {u, u′}, {v, v′} to
E(J).

Figure 4: K4 and three quasi-subgraphs of K4.

We now show that by examining the quasi-subgraphs of our target graph, we can restrict our
search to proper, pushing, non-contracting embeddings.
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Lemma 4.6. There exists a proper, pushing, non-contracting cOPT-embedding of G to some (Hq, wq),
where Hq is the subdivision of some quasi-subgraph of H, and wq : E(Hq) → R

>0.

Proof. If fOPT yields a non-contracting cOPT-embedding of G to the line, then by a theorem of [14],
there exists a pushing, non-contracting cOPT-embedding of G to the line. Since G is connected, a
line embedding must also be proper. Therefore, in this case the claim of the lemma is true. For the
rest of the proof, we shall assume fOPT does not yield such an embedding.

Suppose that fOPT is not proper. Let

E¬ = {e ∈ E(H) : ∃z ∈ V (eOPT) such that z is not proper w.r.t. fOPT}

and
V ¬ = {v ∈ V (H) : v is not proper w.r.t. fOPT}.

Suppose that for some e ∈ E(H) there exists z1, z2 ∈ V (eOPT) such that z1 and z2 are both not
proper w.r.t. fOPT, and there exists v ∈ V (G) such that fOPT(v) is in the path in eOPT from z1 to
z2. Since G is a connected graph, we therefore have that fOPT embeds all of V (G) to the path
in eOPT from z1 to z2. Therefore, fOPT yields a non-contracting cOPT-embedding of G to the line,
contradicting our assumption above. Thus, for any vertex z3 in the path in eOPT from z1 to z2, we
have that z3 is not proper w.r.t. fOPT.

Using the following procedure, we can modify fOPT, (HOPT, wOPT) so that fOPT is still a cOPT-
embedding of G to (HOPT, wOPT and |V ¬|+ |E¬| is reduced by at least one.

If V ¬ 6= ∅, choose z ∈ V ¬. Modify HOPT by applying rule 2 of Definition 4.5 to all e ∈
E(HOPT) adjacent to z, and then rule 1 to z. With these modifications, HOPT is now a subdivision
of the quasi-subgraph of H found by applying rule 3 to all edges in E(H) adjacent to z, and
then rule 1 to all vertices in the component containing z. Before these modification, for all
u, v ∈ V (G), there exists a path Pu,v ∈ (HOPT, wOPT) from fOPT(u) to fOPT(v) such that |Pu,v| =
d(HOPT,wOPT)(fOPT(u), fOPT(v)) and z 6∈ V (Pu,v). Therefore, after the modifications, a corresponding
path P ′

u,v exists in (HOPT, wOPT), with |Pu,v| = |P ′
u,v|. Thus after these modifications, fOPT is again

a non-contracting, cOPT-embedding of G to (HOPT, wOPT), and |V 6=| is reduced by at least 1.
If V ¬ = ∅, choose {a, b} ∈ E¬. Modify HOPT by applying rule 1 of Definition 4.5 to every

z ∈ Z = {e ∈ V (eOPT) : e is not proper w.r.t. fOPT}. Before these modifications, for all u, v ∈
V (G), there exists a path Pu,v ∈ (HOPT, wOPT) from fOPT(u) to fOPT(v) such that |Pu,v| =
d(HOPT,wOPT)(fOPT(u), fOPT(v)) and Z ∩ V (Pu,v) = ∅. Therefore, after the modifications, path Pu,v

exists in (HOPT, wOPT). Therefore, there is a single connected component C of (HOPT, wOPT) \ Z
such that fOPT(V (G)) ⊆ (C,wOPT). Modify HOPT again by applying rule 1 to any v ∈ V (H) such
that fOPT(v) /∈ C. Thus fOPT remains a non-contracting, cOPT-embedding of G to (HOPT, wOPT),
and |E¬| is reduced by one.

The sum |V ¬| + |E¬| is finite, and so a finite number of iterations of the procedure above
will yield a proper, non-contracting cOPT embedding of G to (HOPT, wOPT), where HOPT is some
quasi-subgraph of H.

Suppose fOPT is a proper, non-contracting cOPT-embedding of G to (HOPT, wOPT), where HOPT

is some quasi-subgraph of H, and fOPT is not pushing. Therefore, there exists a, b ∈ V (G) such
that a, b are consecutive w.r.t some edge e ∈ E(HOPT), and since fOPT is non-contracting,

deOPT
(fOPT(a), fOPT(b)) > dG(a, b).
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ModifyHOPT to replace the path in eOPT between fOPT(a), fOPT(b) with a single edge {fOPT(a), fOPT(b)}.
Modify wOPT so that

wOPT({fOPT(a), fOPT(b)}) = dG(a, b).

Then for all u, v ∈ V (G), we either have that

d(HOPT,wOPT)(fOPT(u), fOPT(v))

is unchanged by the modification to eOPT, or

d(HOPT,wOPT)(fOPT(u), fOPT(v)) = d(HOPT,wOPT)(fOPT(u), fOPT(a))

+ d(HOPT,wOPT)(fOPT(b), fOPT(v)) + dG(a, b)

< d(HOPT,wOPT)(fOPT(u), fOPT(v)),

or

d(HOPT,wOPT)(fOPT(u), fOPT(v)) = d(HOPT,wOPT)(fOPT(v), fOPT(a))

+ d(HOPT,wOPT)(fOPT(b), fOPT(u)) + dG(a, b)

< d(HOPT,wOPT)(fOPT(u), fOPT(v))

If it is that case that

d(HOPT,wOPT)(fOPT(u), fOPT(v)) = d(HOPT,wOPT)(fOPT(u), fOPT(a))

+ d(HOPT,wOPT)(fOPT(b), fOPT(v)) + dG(a, b)

< d(HOPT,wOPT)(fOPT(u), fOPT(v)),

then by the triangle inequality we have that

d(HOPT,wOPT)(fOPT(u), fOPT(a))

+d(HOPT,wOPT)(fOPT(b), fOPT(v)) + dG(a, b)

≥ dG(u, a) + dG(b, v) + dG(a, b)

≥ dG(u, v)

and therefore

dG(u, v) ≤ d(HOPT,wOPT)(fOPT(u), fOPT(v))

< d(HOPT,wOPT)(fOPT(u), fOPT(v))

≤ cOPT · dG(u, v).

Similarly, if it is the case that

d(HOPT,wOPT)(fOPT(u), fOPT(v)) = d(HOPT,wOPT)(fOPT(v), fOPT(a))

+ d(HOPT,wOPT)(fOPT(b), fOPT(u)) + dG(a, b)

< d(HOPT,wOPT)(fOPT(u), fOPT(v))

10



then we have that

dG(u, v) ≤ d(HOPT,wOPT)(fOPT(u), fOPT(v))

< dL(HOPT,wOPT)(fOPT(u), fOPT(v))

≤ cOPT · dG(u, v).

Therefore, after these modifications fOPT remains a cOPT-embedding of G to (HOPT, wOPT).
By repeated modifications as described above, fOPT can be modified until it is a proper, pushing,

non-contracting cOPT-embedding of G to (HOPT, wOPT), with HOPT a quasi-subgraph of H.

Finally, we show the local density lemma.

Lemma 4.7 (Local Density). Let fOPT be a non-contracting cOPT-embedding of G to some (Hq, wq),
where Hq is the subdivision of some quasi-subgraph of H, and wq : E(Hq) → R

>0. Then for all
v ∈ V (G), for any r ≥ 0,

|ballG(v, r)| ≤ 2r · cOPT · |E(H)|.

Proof. Since fOPT is a non-contracting cOPT-embedding, for any u ∈ V (G) such that

dG(u, v) ≤ r

we have that

1 ≤ d(HOPT,wOPT)(fOPT(u), fOPT(v))

≤ dG(u, v)

≤ cOPT · d(HOPT,wOPT)(fOPT(u), fOPT(v))

≤ cOPT · r.

Therefore, for each edge e ∈ E(H), there are at most 2cOPT · r vertices x ∈ ballG(v, r) such that
fOPT(x) ∈ eOPT, and therefore

|ballG(v, r)| ≤ 2r · cOPT · |E(Hq)|.

Thus, by Definition 4.5,
|ballG(v, r)| ≤ 4r · cOPT · |E(H)|.

5 An approximation algorithm for embedding into arbitrary graphs

In this section we give our approximation algorithm for embedding into arbitrary graph. In particular,
we prove Theorem 5.12. By Lemma 4.6 there is a proper, pushing cOPT embedding of G into a
quasi-subgraph Hq of H with edge weight function wq. Furthermore, by subdividing each edge of
H sufficiently many times, for any ǫ > 0 any c-embedding of G into (Hq, wq) can be turned into an
(c+ ǫ)-embedding of G into a subdivision of H.

The weighted quasi-subgraph (Hq, wq) of H is a subdivision of a subgraph Hsub of H. Since
H only has 2|E(H)+V (H)| subgraphs our algorithm can guess Hsub. Thus, for the purposes of our

11



approximation algorithm, it is sufficient to find an embedding of G into a weighted subdivision
(HALG, wALG) of Hsub under the assumption that a proper, pushing cOPT embedding of G into
some weighted subdivision of Hsub exists. Furthermore, any proper and pushing embedding is
non-contracting and has contraction exactly equal to 1. Such an embedding f is a c-embedding if
and only if for every edge

uv ∈ E(G), d(H,w)(f(u), f(v)) ≤ c. (1)

Thus, to prove that our output embedding is a c-embedding (for some c) we will prove that it
is proper, pushing and that (1) is satisfied. Thus, the main technical result of this section is
encapsulated in the following lemma.

Lemma 5.1. There is an algorithm that takes as input a graph G with n vertices, a graph H and
an integer c, runs in time 2h · nO(1) and either correctly concludes that there is no c-embedding of G
into a weighted subdivision of H, or produces a proper, pushing c′-embedding of G into a weighted
subdivision of a subgraph H ′ of H, where cALG = O(c24h9).

Definitions. To prove Lemma 5.1 we need a few definitions. Throughout the section we will assume
that there exists a weighted subdivision (HOPT, wOPT) and a c-embedding fOPT : V (G) → V (HOPT).
This embedding is unknown to the algorithm and will be used for analysis purposes only. Every
edge e = uv in H corresponds to a path Pe in HOPT from u to v. Based on the embedding
fOPT : V (G) → V (HOPT) we define the embedding pattern function f̂OPT : V (G) → V (H) ∪ E(H)
as follows. For every vertex v ∈ V (G) such that fOPT maps v to a vertex of HOPT that is also a
vertex of H, f̂OPT maps v to the same vertex. In other words if fOPT(v) = u for u ∈ V (H), then
f̂OPT(v) = u. Otherwise fOPT maps v to a vertex u on a path Pe corresponding to an edge e ∈ E(H).
In this case we set f̂OPT(v) = e.

We will freely make use of the “inverses” of the functions fOPT and f̂OPT. For a vertex set
C ⊆ V (HOPT) we define f−1

OPT
= {v ∈ V (G) : fOPT(v) ∈ C}. We will also naturally extend functions

that act on elements of a universe to subsets of that universe. For example, for a set F ⊆ E(HOPT)
we use wOPT(F ) to denote

∑

e∈F wOPT(e). We further extend this convention to write wOPT(Pe)
instead of wOPT(E(Pe)) for a path (or a subgraph) of HOPT. We extend the distance function to
also work for distances between sets

Throughout the section we will use the following parameters, for now ignore the parenthesized
comments to the definitions of the parameters, these are useful for remembering the purpose of the
parameter when reading the proofs.

• h = |E(H)| (the number of edges in H),

• c (the distortion of fOPT),

• ℓ = 20c3 (long edge threshold)

• r = 5ℓh (half of covering radius)

• cALG = 64 · 106 · c24(h+ 1)9 (distortion of output embedding)

Using the parameter ℓ we classify the edges of H into short and long edges. An edge e ∈ E(H)
is called short if wOPT(Pe) ≤ ℓ and it is called long otherwise. The edge sets Eshort and Elong denote
the set of short and long edges in H respectively. A cluster in H is a connected component C of the
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graph Hshort = (V (H), Eshort). We abuse notation and denote by C both the connected component
and its vertex set. The long edge degree of a cluster C in H is the number of long edges in H
incident to vertices in C. Here a long edges whose both endpoints are in C is counted twice. A
cluster C of long edge degree at most 2 is called boring, otherwise it is interesting. Most of the time
when discussing clusters, we will be speaking of clusters in H. However we overload the meaning of
the word cluster to mean something else for vertex sets of G. A cluster in G is a set C such that
there exists a cluster CH of H such that C = {v ∈ V (G) : f̂OPT(v) ∈ V (CH) ∪ E(CH)}. Thus
there is a one to one correspondence between clusters in G and H.

The following lemma is often useful when considering embeddings into the line, or “line-like
structures”. We will need this lemma to analyze the parts of the graph G that the embedding fOPT

maps to long edges of H

Lemma 5.2. Suppose there exists a c-embedding fOPT of G into (HOPT, wOPT), and let a, b and v
be vertices of G such that dG(a, v) = dG(b, v) and a shortest path from a to v in G contains a vertex
w such that dH(fOPT(w), fOPT(b)) ≤ c. Then dG(a, b) ≤ 2c.

Proof. We have that dG(b, v) = dG(a, v) = dG(a, w) + dG(w, s) And also that dG(b, v) ≤ dG(b, w) +
d(w, s), but fOPT is non-contracting so dG(b, w) ≤ dH(fOPT(w), fOPT(b)) + d(w, s) ≤ c + d(w, s).
We conclude that dG(a, w) + dG(w, s) ≤ c + d(w, s), and cancelling d(w, s) on both sides yields
dG(a, w) ≤ c. Finally we have that dG(a, b) ≤ dG(a, w) + dG(w, b) ≤ c+ dH(fOPT(w), fOPT(b)) ≤ 2c,
concluding the proof.

A cluster-chain is a sequence C1, e1, C2, e2, . . . , et−1, Ct such that the following conditions are
satisfied. First, the Ci’s are distinct clusters in H, except that possibly C1 = Ct. Second, C1 and
Ct are interesting, while C2, . . . Ct−1 are boring. Finally, for every i < t the edge ei is a long edge in
H connecting a vertex of Ci to a vertex of Ci+1.

5.1 Using Breadth First Search to Detect Interesting Clusters

In this subsection we prove a lemma that is the main engine behind Lemma 5.1. Once the main
engine is set up, all we will need to complete the proof of Lemma 5.1 will be to complete the
embedding by running the approximation algorithm for embedding into a line for each cluster-chain
of H, and stitching these embeddings together.

Before stating the lemma we define what it means for a vertex set F in G to cover a cluster. We
say that a vertex set F ⊆ V (G) r-covers a cluster C in G if some vertex in F is at distance at most
r from at least one vertex in C. A vertex set F ⊆ V (G) covers a cluster C in H if F covers the
cluster CG corresponding to C in G.

Lemma 5.3 (Interesting Cluster Covering Lemma). There exists an algorithm that takes as input
G, H and c, runs in time 2hnO(1) and halts. If there exists a proper c-embedding f̂OPT from G to a
weighted subdivision of H, the algorithm outputs a family F such that |F| ≤ 2h, every set F ∈ F
has size at most h, and there exists an F ∈ F that 2r-covers all interesting clusters of H.

Towards the proof of Lemma 5.3 we will design an algorithm that iteratively adds vertices to a
set F . During the iteration the algorithm will make some non-deterministic steps, these steps will
result in the algorithm returning a family of sets F rather than a single set F .
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5.2 The SEARCH algorithm

We now describe a crucial subroutine of the algorithm of Lemma 5.3 that we call the SEARCH
algorithm. The algorithm takes as input G, c, a set F ⊆ V (G) and a vertex v. The algorithm
explores the graph, starting from v with the aim of finding a local structure in G that on one hand,
can not be embedded into the line with low distortion, while on the other hand is far away from
F . It will either output fail, meaning that the algorithm failed to find a structure not embeddable
into the line, or success together with a vertex û, meaning that the algorithm succeeded to find
a structure not embeddable into the line, and that u is close to this structure. We begin with
describing the algorithm, we will then prove a few lemmata describing the behavior of the algorithm.

Description of the SEARCH algorithm The algorithm takes as input G, c, a set F ⊆ V (G)
and a vertex v. It performs a breadth first search (BFS) from v in G. Let X1, X2, etc. be the BFS
layers starting from v. In other words Xi = {x ∈ V (G) : dG(v, x) = i}. The algorithm inspects
the BFS layers X1, X2, . . . one by one in increasing order of i.

For i < 2c2 the algorithm does nothing other than the BFS itself. For i = 2c2 the algorithm
proceeds as follows. It picks an arbitrary vertex vL ∈ Xi and picks another vertex vR ∈ Xi at
distance at least 2c+ 1 from vL in G. Such a vertex vR might not exist, in this case the algorithm
proceeds without picking vR. The algorithm partitions Xi into XL

i and XR
i in the following way.

For every vertex x ∈ Xi, if dG(x, vL) ≤ 2c then x is put into XL
i . If dG(x, vR) ≤ 2c then x is put

into XR
i . If some vertex x ∈ Xi is put both into XL

i and in XR
i , or neither into XL

i nor into XR
i the

algorithm returns success together with û = v.
For i > 2c2 the algorithm proceeds as follows. If any vertex in Xi is at distance at most r from

any vertex in F (in the graph G), the algorithm outputs fail and halts. Otherwise, the algorithm
partitions Xi into XL

i and XR
i . The vertex x ∈ Xi is put into XL

i if x has a neighbor in XL
i−1 and

into XR
i if x has a neighbor in XR

i−1. Note that x has at least one neighbor in Xi−1, and so x will
be put into at least one of the sets XL

i or XR
i . If x is put into both sets XL

i and XR
i , the algorithm

outputs success with û = x and halts. If |XL
i | > 2c2 or if two vertices in XL

i have distance at least
2c+ 1 from each other in G the algorithm picks a vertex x ∈ XL

i and returns success with û = x.
Similarly, if |XR

i | > 2c2 or if two vertices in XR
i have distance at least 2c+ 1 from each other in G

the algorithm picks a vertex x ∈ XR
i and returns success with û = x. If the BFS stops, (i.e Xi = ∅),

the algorithm outputs fail.

Properties of the SEARCH algorithm. We will only give guarantees on the behavior of the
SEARCH algorithm provided that there exists a c-embedding fOPT of G into (HOPT, wOPT), and
that v is at distance at least 4c2 from every cluster C in G. Therefore within this subsection, v
refers to the vertex SEARCH is started from, and all lemmas assume that these two conditions are
satisfied. In this case we have that f̂OPT(v) = e for a long edge e ∈ E(H). The edge e belongs to a
unique cluster-chain C1, e1, C2, e2, . . . , et−1, Ct. For some q ≤ t− 1 we have that eq = e.

The vertex v splits the cluster-chain in two parts, C1, e1, C2, e2, . . . , Cq−1 and Cq, eq+1, . . . , Ct,
we may think of these as the “left” and the “right” part of the chain. The edge e = eq is “split
down the middle” in the following sense, the path Pe is divided in two parts PL

e , defined as the
sub-path of Pe from the endpoint in Cq−1 to fOPT(v), and PR

e , defined as the sub-path of Pe from
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fOPT(v) to the endpoint in Cq. We now define the left and the right part of the chain:

L =





⋃

i≤q−1

f̂−1
OPT

(Ci) ∪ f̂−1
OPT

(ei)



 ∪ f̂−1
OPT

(Cq) ∪ f−1
OPT

(PL
e )

R = f−1
OPT

(PR
e ) ∪





⋃

i≥q+1

f̂−1
OPT

(Ci) ∪ f̂−1
OPT

(ei)





Note that L and R are vertex sets in G. The sets L and R intersect only in v, unless C1 = Ct, in
which case both L and R contain f̂−1

OPT
(C1) = f̂−1

OPT
(Ct). No other vertices are common to L and R.

We define ζ = L ∪R to be the set of all vertices of G on the chain.
We will say that the left and right side of the search met in iteration i if SEARCH put some

vertex x ∈ Xi both in XL
i and in XR

i . In this case the algorithm outputs success and halts in this
iteration. We also say that the algorithm left-succeeded (right-succeeded) if it output success with
û ∈ XL

i (û ∈ XR
i ) for some i.

The focus of our analysis is on how SEARCH explores ζ. We say that SEARCH leaves ζ
in iteration i if i is the lowest number Xi \ ζ 6= ∅. We say that the inner part of ζ is ζinner =
ζ \ (f̂−1

OPT
(C1) ∪ f̂−1

OPT
(Ct)). We say that SEARCH leaves the inner part of ζ in iteration i if i is the

lowest number such that Xi \ ζinner 6= ∅. The next lemma shows that that XL
i and XR

i correctly
classify the vertices of ζ into L and R as long as SEARCH has not yet left ζ, and as long as the left
and right side of the search have not met.

Lemma 5.4. if i ≥ 2c2, and SEARCH does not halt or leave ζ in any iteration j ≤ i, and vL ∈ L
then

XL
i = Xi ∩ L and XR

i = Xi ∩R.

If vL ∈ R then
XL

i = Xi ∩R and XR
i = Xi ∩ L.

Proof. We show the lemma when vL ∈ L, the case when vL ∈ R is symmetric. We first show the
statement of the lemma for i = 2c2, and start by proving that vR ∈ R. Suppose not, then either the
shortest path from vR to v in G contains a vertex w such that dHOPT,wOPT

(fOPT(w), fOPT(vL)) ≤ c or
the shortest path from vL to v in G contains a vertex w such that dHOPT,wOPT

(fOPT(w), fOPT(vR)) ≤ c.
In either case, Lemma 5.2 shows that dG(vL, vR) ≤ 2c, contradicting the choice of vR. We conclude
that vR /∈ L and therefore that vR ∈ R (if it exists).

We have that Xi ∩R 6= ∅ because the embedding fOPT is proper. Furthermore we have that

dHOPT,wOPT
(fOPT(vL), fOPT(v)) ≥ 2c2

and that for any x ∈ Xi ∩R we have that

dHOPT,wOPT
(fOPT(x), fOPT(v)) ≥ 2c2.

Thus
dHOPT,wOPT

(fOPT(x), fOPT(vL)) ≥ 4c2

implying that dG(x, vL) ≥ 4c. Thus, the SEARCH algorithm does indeed pick a vertex vR ∈ R.
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Now, for any vertex v′L ∈ Xi∩L we have that either the shortest path from v′L to v in G contains
a vertex w such that dHOPT,wOPT

(fOPT(w), fOPT(vL)) ≤ c or the shortest path from vL to v in G
contains a vertex w such that dHOPT,wOPT

(fOPT(w), fOPT(v
′
L)) ≤ c. In either case, Lemma 5.2 shows

that dG(vL, v
′
L) ≤ 2c, implying that v′L ∈ XL

i . An identical argument shows that every v′R ∈ Xi ∩R
is in XR

i . Since XL
i and XR

i form a partition of Xi this proves the statement of the lemma for
i = 2c2.

Suppose now that the statement of the lemma holds for every i′ < i (with i′ ≥ 2c2), we prove
the lemma for i. If SEARCH halts in iteration i there is nothing to prove, so assume that SEARCH
does not halt in iteration i. Then the left and right side of the search did not meet in iteration i.
This means that every vertex u in Xi either has a neighbor u′ in XL

i−1 = Xi∩L or in XR
i−1 = Xi∩R,

but not both.
If u′ ∈ XL

i−1 then SEARCH puts u into XL
i . Furthermore we have that u′ is in L, and

dHOPT,wOPT
(fOPT(u

′), fOPT(v)) ≥ 2c2,

while dHOPT,wOPT
(fOPT(u

′), fOPT(u)) ≤ c. Thus we conclude that u ∈ L. By an identical argument,
if u′ ∈ XR

i−1 then SEARCH puts u into XR
i and u ∈ R. Since both XL

i , X
R
i and Xi ∩ L,Xi ∩ R

form partitions of Xi the lemma follows.

Lemma 5.5. If SEARCH leaves the inner chain in iteration i, then before reaching iteration
i+ c+ ℓ · h+ 4c2, SEARCH either succeeds or fails by finding a vertex within distance r from F .

Proof. In iteration i, SEARCH visits a vertex u ∈ Xi\ζinner, u has a neighbor u′ ∈ ζinner∩Xi−1. We
have that u′ is either in L or in R, without loss of generality we have that u′ ∈ L. Since u /∈ ζ it follows
that f̂OPT(u

′) = e1. Since u′u ∈ E(G) and u /∈ ζinner it follows that dHOPT,wOPT
(fOPT(u

′), C1) ≤ c.
In HOPT the distance between all vertices of C1 is at most ℓ · h. Since fOPT is non-contracting a
BFS (and thus SEARCH) will visit all of f−1

OPT
(C1) by iteration i+ c+ ℓ · h.

At this point, either the left and right side of the search have already met (in which case the
algorithm succeeded), the algorithm encountered a vertex at distance at most r from F (in which
case it failed), or it leaves ζ within iteration i+ c+ ℓ · h+ 1. Since the embedding is proper, we
have that for some iteration j ≤ i + c + ℓ · h + 4c2, the search visits a vertex x ∈ Xj such that

f̂OPT(x) = ex for ex 6= e1 and 4c2 ≥ dHOPT,wOPT
(fOPT(x), C1) ≤ 4c2 + c. Let j be the first iteration

such that this event occurs, and x and ex as defined above for this iteration j. We remark that
technically ex might not be an edge different from e1 but rather the other endpoint of e1. This does
not affect the proof other than in notation, so we will treat ex and e1 as different edges.

We claim that unless SEARCH already has halted, in iteration j, XL
j contains a vertex y′ at

distance more than 2c from x, making SEARCH succeed. This is all that remains to prove in order
to prove the statement of the lemma.

Since C1 is an interesting cluster, C1 is incident to at least one more long edge ey distinct
from e1 and ex. Again, technically ey could be the other endpoint of the ex or e1, however this
does not affect the proof and thus we treat them as separate edges. Let y be a vertex in G
such that f̂OPT(y) = ey and 4c2 ≥ dHOPT,wOPT

(fOPT(y), C1) ≤ 4c2 + c. We have that dG(u
′, y) ≤

dHOPT,wOPT
(fOPT(u

′), fOPT(y)) ≤ c+ ℓ · h+ 4c2. By the choice of x we have that y is not discovered
by SEARCH before x is.

The subgraph of HOPT corresponding to the cluster C1 and the sub-path of Pey from C1 to
fOPT(y) is connected, and therefore there is an index j′ ≥ j such that j′ ≤ j+c such that XL

j′ contains

a vertex y∗ such that f̂OPT(y
∗) ∈ C1 ∪ {ey}. We have that dHOPT,wOPT

(fOPT(y
∗), fOPT(x)) ≥ 4c2,
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hence dG(y
∗, x) ≥ 4c. However there exists a predecessor y′ of y∗ in the BFS such that y′ ∈ XL

j

and dG(y, y
′) ≤ c. The triangle inequality yields that dG(y

′, x) > 4c − c > 2c and the statement
follows.

Finally we show that whenever SEARCH succeeds, the vertex it outputs is near a cluster.

Lemma 5.6. If SEARCH outputs success and a vertex û, then there exists a cluster C in G such
that dG(û, C) ≤ 2c+ ℓ · h+ 4c2 ≤ 2ℓh.

Proof. SEARCH can succeed either because the left and right side of the search meet, or because
SEARCH left-succeeds or because it right-succeeds. If the left and right side of the search meet in
iteration i, it means that in this or one of the previous iterations the search has visited a vertex
u such that dHOPT,wOPT

(fOPT(u), C1) ≤ c. By Lemma 5.5 it follows that SEARCH halts within
2c+ ℓ · h+ 4c2 iterations and outputs a vertex û within distance 2c+ ℓ · h+ 4c2 from C1.

Suppose now that SEARCH left-succeeds in iteration i, and assume for contradiction that
dG(û, C) > 2c + ℓ · h + 4c2 for every cluster C in G. If the output vertex û is not in ζinner,
then Lemma 5.5 again yields that dG(û, f̂

−1
OPT

(C1)) ≤ c + ℓ · h + 4c2. Therefore, assume that

û ∈ ζinner. In this case there is an edge ep on the cluster-chain of v such that f̂OPT(û) = ep. The

edge ep connects the clusters Cp and Cp+1. Since dG(û, f̂
−1
OPT

(Cp ∪ Cp+1)) ≥ 10c2 we have that
dHOPT,wOPT

(fOPT(û), Cp ∪ Cp+1) ≥ 10c2. Let u′ be the predecessor of û in the BFS, we have that
u′ ∈ XL

i−1. Since SEARCH did not succeed in iteration i − 1 we have that dG(u
′, u′′) ≤ 2c for

every u′′ ∈ XL
i−1. Since every vertex in XL

i has a predecessor in XL
i−1 we conclude that every

vertex in XL
i is at distance at most 2c + 2 from û in G. Thus, every vertex in fOPT(X

L
i ) is at

distance at most 2c2+2c in (HOPT, wOPT) from fOPT(û). Most importantly f̂OPT(u
′′) = ep for every

u′′ ∈ XL
i . Therefore, for every pair of vertices u′′ and u∗ in XL

i , either the shortest path from u′′ to
v contains a vertex w such that dHOPT,wOPT

(fOPT(w), fOPT(u
∗)) ≤ c or the shortest path from u∗ to

v contains a vertex w such that dHOPT,wOPT
(fOPT(w), fOPT(u

′′)) ≤ c. It follows from Lemma 5.2 that
dG(u

∗, u′′) ≤ c. Since this holds for every pair of vertices u′′ and u∗ in XL
i this contradicts that the

algorithm left-succeeded in iteration i. The proof if the algorithm right-succeeded is symmetric.

The COVER algorithm We are now almost in position to prove Lemma 5.3. We begin by
describing the COVER algorithm, and then prove that it satisfies the conditions of Lemma 5.3. We
will describe the COVER algorithm as a non-deterministic algorithm that takes as input G, H and
c, runs in time polynomial time, and outputs a single set vertex set F ⊆ V (G) of size at most h. If
there exists a proper c-embedding f̂OPT from G to a weighted subdivision of H , then in at least one
of the computation paths of the algorithm, the output set F 2r-covers all interesting clusters of H.
The algorithm will use only h non-deterministic bits. By defining F to be the family containing
all sets F output by the computation paths of COVER, the family F satisfies the conditions of
Lemma 5.3.

The COVER algorithm proceeds as follows, given G, H and c, it initializes F = ∅. It then
proceeds in stages. In stage i the algorithm loops over all choices of a vertex v ∈ V (G) \ ballG(F, r),
and runs SEARCH on G, starting from v, with the set F . If SEARCH fails for all choices of v
the COVER algorithm terminates and outputs F . Otherwise, let v be the first vertex that made
SEARCH succeed in stage i, and let û be the vertex output by SEARCH. The algorithm makes a
non-deterministic choice: in one computation path v is added to F , in the other computation path
û is added to F . Then the algorithm proceeds to stage i+ 1. If the algorithm reaches stage h+ 1 it
terminates without outputting any set. This concludes the description of the algorithm.
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Proof of the Interesting Cluster Covering Lemma (Lemma 5.3). Each stage of the COVER algo-
rithm ends when SEARCH started from a vertex v succeeds and outputs a vertex û. The entire
analysis of SEARCH is only valid if v is at distance at least 4c2 from every cluster C in G. The
non-deterministic guess of the COVER algorithm is whether this assumption is valid; i.e whether
GG(v, C) ≥ 4c2 for every cluster C. We proceed analyzing the computation path where the
non-deterministic guess is correct.

If v is at distance at least 4c2 from every cluster C in G, the COVER algorithm adds û to F ,
otherwise COVER adds v to F . In either case the vertex added to F is at least at distance r + 1
from every other vertex in F . Furthermore, if COVER adds v to F then v is within distance 4c2

from some cluster C in G. On the other hand, if COVER adds û to F then, by Lemma 5.6 there
exists a cluster C in G such that dG(û, C) ≤ 2c+ ℓ · h+ 4c2 ≤ 2ℓh.

Since every pair of vertices in a cluster C are at distance at most ℓ · h apart in G, every vertex
in F is at distance at most 2c+ ℓ · h+4c2 ≤ 2ℓh away from a cluster, and every pair of vertices in F
are at distance at least r ≥ 5ℓh apart, we have that in the computation path that makes the correct
guesses the algorithm terminates and outputs a set F of size at most h before reaching stage h+ 1.

To complete the proof we need to show that every cluster in C is 2r-covered by F . Suppose
not, and consider an un-covered cluster C in the last stage of the COVER algorithm. In this
stage, SEARCH failed when starting from every vertex v of G. Let v be a vertex at distance
exactly 4c2 from C such that such that f̂OPT(v) is a long edge incident to the cluster in H
corresponding to C. By Lemma 5.5, starting SEARCH from v will result in the algorithm halting
within 4c2 + c+ ℓ · h 4c2 ≤ 2ℓh iterations. Furthermore, if the algorithm does not succeed (which it
does not, since this was the last stage of COVER), it finds a vertex u at distance at most r from F .
But then dG(F,C) ≤ dG(F, u) + dG(u,C) ≤ r + 2ℓh+ 4c2 ≤ 2r, completing the proof.

5.3 STITCHing Together Approximate Line Embeddings

We now describe the STITCH algorithm. This algorithm takes as input G, H, c and F ⊆ V (G),
runs in polynomial time and halts. We will prove that if there exists a c-embedding fOPT of G into
a weighted subdivision (HOPT, wOPT) of H such that all F 2r-covers all interesting clusters of G,
the algorithm produces a cALG-embedding fALG of G into a weighted subdivision (HALG, wALG) of a
subgraph H ′ of H. Throughout this section we will assume that such an embedding fOPT exists.

The STITCH algorithm starts by setting R = 4r, ∆ = 4r and then proceeds as follows. As long
as there are two vertices vi and vj in F such that 2R ≤ dG(u, v) ≤ 2R +∆, the algorithm increases

R to R + ∆. Note that this process will stop after at most
(

|F |
2

)

iterations, and therefore when
it terminates we have R ≤ 4r · h2 ≤ 400c3h3. Define B = ballG(F,R), and B to be the family of
connected components of G[B]. Notice that the previous process ensures that for any B1, B2 ∈ B
we have dG(B1, B2) ≥ ∆. Notice further that for every interesting cluster C in H we have that
ballG(f̂

−1
OPT

(C), r) ⊆ G.
We now classify the connected components of G−B. A component Z of G−B is called deep if

it contains at least one vertex at distance(in G) at least ∆
2 from F , and it is shallow otherwise. The

shallow components are easy to handle because they only contain vertices close to F .

Lemma 5.7. For every shallow component Z of G−B, there is at most one connected component
B1 ∈ B that contains neighbors of Z

Proof. Suppose not, then there are two vertices v1 and v2 in Z that are neighbors, such that the
closest vertex in B to v1 is in B1 while the closest vertex in B to v2 is in B2, for distinct components
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B1 and B2 ∈ B. The distance from v1 to B1 is at most ∆
2 − 1, the distance from v2 to B2 is at most

∆
2 − 1, and hence, by the triangle inequality, the distance between B1 and B2 is at most ∆ − 1,
contadicting the choice of R.

The next sequence of lemmas allows us to handle deep components. We say that a component
Z in G−B lies on the cluster-chain χ = C1, e1, . . . , Ct if

Z ⊆





⋃

i≤t

f̂−1
OPT

(Ci) ∪ f̂−1
OPT

(ei)



 \ f̂−1
OPT

(C1 ∪ Ct).

Lemma 5.8. Every component Z of G−B lies on some cluster-chain.

Proof. Z does not contain any vertices in interesting clusters, or even within distance r of interesting
clusters. No two vertices that (a) are at least c from all interesting clusters and (b) are mapped by
fOPT on different cluster-chains can be adjacent, because the distance between their fOPT images in
H is at least 2c. The lemma follows.

Lemma 5.9. No two deep components Z1, Z2 of G−B can lie on the same cluster-chain χ

Proof. Suppose to such deep components exist. Because ∆ = 4r and r > ℓ · h, and every cluster of
G has at most ℓ · h vertices, it follows that Z1 contains a vertex v1 such that the distance from v1
to any cluster in G is at least 2c2 and dG(v1, B) ≥ ∆/4. Thus f̂OPT(v1) = ei for an edge ei on the
cluster chain χ. By an identical argument there is a vertex v2 in Z2 such that the distance from v2
to any cluster in G is at least 2c2 and d(v2, B) ≥ ∆/4. Thus f̂OPT(v2) = ej for an edge ej on the
cluster chain χ.

Without loss of generality i ≤ j and if i = j then fOPT(v1) is closer than fOPT(v2) to the
endpoint of Pei that lies in Ci.

The graph HOPT \ fOPT({v1, v2}) has two connected components, one that contains C1 and Ct,
and one that does not. Consider the connected component ζ that does not. Because the embedding
fOPT is proper, G[f−1

OPT
(ζ)] contains a path P with one endpoint within distance at most c2 from

v1, and the other within distance at most c2 from v2. Since d({v1 ∪ v2}, B) ≥ ∆/4 we have that one
endpoint of P is in Z1 and the other is in Z2. But any path from Z1 to Z2 (and in particular P )
must contain a vertex from B. This implies that ζ ∩B 6= ∅.

This yields a contradiction: we have that the component Bi of G[B] that has non-empty
intersection with ζ also has non-empty intersection with an interesting cluster. It follows that
Bi contains a vertex within distance at most c from either v1 or v2, contradicting the choice of
{v1, v2}.

Lemma 5.10. There is a polynomial time algorithm that given G, B and a component Z of G−B
computes an embedding of Z components of G−B into the line with distortion at most (ℓ · h · c)4.
Furthermore, all vertices in Z with neighbors outside Z are mapped by this embedding within distance
(ℓ · h · c)6 from the end-points.

Proof. Let Z be a component of G−B. By Lemma 5.8, Z lies on a cluster-chain χ = C1, e1, . . . , Ct.
Define a following total ordering of the vertices in Z: If f̂OPT(a) ∈ Ci∪{ei} and f̂OPT(b) ∈ Cj ∪{ej}

and i < j, then a comes before b. If f̂OPT(a) ∈ Ci and f̂OPT(b) = ei then a comes before b. If
f̂OPT(a) = f̂OPT(b) = ei and fOPT(a) is closer than fOPT(b) to Ci−1, then a comes before b. If
f̂OPT(a) ∈ Ci and f̂OPT(b) ∈ Ci break ties arbitrarily.
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At most ℓ · h vertices are mapped to any boring cluster Ci, and the distance between any two
vertices in the same boring cluster in HOPT is at most ℓ · h. Thus the distance (in G) between
any two consecutive vertices in this ordering is at most ℓ · h · c. The number of vertices appearing
in the ordering between the two endpoints of an edge is at most ℓ · h (all the vertices of a boring
cluster). Thus, if the ordering is turned into a pushing, non-contracting embedding into the line, the
distortion of this embedding is at most (ℓ · h)2 · c. Using the known polynomial time approximation
algorithm for embedding into the line [5] we can find an embedding of Z into the line with distortion
at most (ℓ · h · c)4 in polynomial time.

Because B is a union of at most h balls, it follows that at most c2 ·h2 vertices in Z have neighbors
in G, and that all of these vertices are among the ℓ · h first or last ones in the above ordering. Since
any two low distortion embeddings of a metric space into the line map the same vertices close to the
end-points, it follows that all vertices in Z with neighbors outside Z are mapped by this embedding
within distance (ℓ · h · c)6 from the end-points.

The STITCH algorithm builds the graph H ′ as follows. Every vertex of H ′ corresponds to a
connected component B ∈ B. Every deep component Z of G−B corresponds to an edge between
the (at most two) sets B1 and B2 ∈ B that have non-empty intersection with NG(Z). Note that the
graph H ′ is a multi-graph because it may have multiple edges and self loops. However, since each
set B ∈ B has a connected image in H under f̂ , Lemmata 5.8 and 5.9 imply that H ′ is a topological
subgraph of H . Hence any weighted subdivision of H ′ is a weighted subdivision of a subgraph of H .

The STITCH algorithm uses Lemma 5.10 to compute embeddings of each deep connected
component Z of G \ B. Further, for each component Bi ∈ B the algorithm computes the set B⋆

i

which contains Bi, as well as the vertex sets of all shallow connected components whose neighborhood
is in Bi. By Lemma 5.7 the B⋆

i ’s together with the deep components of G−B form a partition of
V (G).

What we would like to do is to map each set B⋆
i onto the vertex of H ′ that it corresponds to, and

map each deep connected component Z of G−B onto the edge of H ′ that it corresponds to. When
mapping Z onto the edge of H we use the computed embedding of Z into the line, and subdivide
this edge appropriately.

The reason this does not work directly is that we may not map all the vertices of B⋆
i onto the

single vertex vi in H ′ that corresponds to Bi. Instead, STITCH picks one of the edges incident to
vi, sub-divides the edge an appropriate number of times, and maps all the vertices of B⋆

i onto the
newly created vertices on this edge. The order in which the vertices of B⋆

i are mapped onto the
edge is chosen arbitrarily, however all of these vertices are mapped closer to vi than any vertices of
the deep component Z that is mapped onto the edge. This concludes the construction of HALG and
fALG. The STITCH algorithm defines a weight function wALG on the edges of HALG, such that the
embedding is pushing and non-contracting.

Lemma 5.11. fALG is a cALG-embedding of G into (HALG, wALG).

Proof. It suffices to show that the distance in (HALG, wALG) between the image of two endpoints of
an edge uv ∈ E(G) is never more than cALG. To that end, the main observation is every Bi ∈ B is
the union of at most h balls of radius R. Every vertex of B⋆

i is within distance ∆/2 ≤ R from some
vertex in Bi. Hence, for any two vertices a, b ∈ B⋆

i we have that dG(a, b) ≤ 2 ·R · (h+ 1). Thus, by
Lemma 4.7 we have that |Bi| ≤ 4Rh(h+ 1). Therefore, for any B⋆

i , the embedding fALG embeds B⋆
i

on a path of length at most 8R2h(h+ 1)2 ≤ 8R2(h+ 1)3 in (HALG, wALG).
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Every edge with both endpoints in B⋆
i is therefore stretched at most 8R2(h+ 1)3 by fALG. By

Lemma 5.10, every edge with both endpoints in a deep component Z of G \B is stretched at most
(ℓ · h · c)4. Furthermore, by Lemma 5.10, any edge with one endpoint in B⋆

i and the other in Z is
stretched at most 8R2(h+ 1)3 + (ℓ · h · c)6. Hence every edge is stretched at most cALG completing
the proof.

5.4 The Approximation Algorithm

We are now ready to prove Lemma 5.1, for convenicence we re-state the lemma here.

Lemma 5.1. There is an algorithm that takes as input a graph G with n vertices, a graph H and
an integer c, runs in time 2h · nO(1) and either correctly concludes that there is no c-embedding of G
into a weighted subdivision of H, or produces a proper, pushing cALG-embedding of G into a weighted
subdivision of a subgraph H ′ of H, where cALG = 64 · 106 · c24(h+ 1)9.

Proof. The algorithm runs the COVER algorithm, to produce a collection F , such that |F| ≤ 2h,
every set in F has size at most h, and such that if G has a c-embedding fOPT of into a weighted
subdivision of H , then some F ∈ F 2r-covers all interesting clusters (of fOPT) in G. For each F ∈ F
the algorithm runs the STITCH algorithm, which takes polynomial time. If STITCH outputs a
cALG-embedding of G into a weighted subdivision of a subgraph H ′ of H , the algorithm returns this
embedding.

By Lemma 5.11, for the choice of F ∈ F that 2r-covers all interesting clusters, the STITCH
algorithm does output a cALG-embedding of G into a weighted subdivision of a subgraph H ′ of H.
This concludes the proof.

The discussion prior to the statement of Lemma 5.1 immediately implies that Lemma 5.1 is
sufficient to give an approximation algorithm for finding a low distortion (not necessarily pushing,
proper or non-contracting) embedding G into a (unweighted) subdivision of H. The only overhead
of the algorithm is the guessing of the subgraph Hsub of H, this incurs an additional factor of
2|V (H)|+|E(H)| ≤ 4h in the running time, yielding the following theorem.

Theorem 5.12. There exists a 8hnO(1) time algorithm that takes as input an n-vertex graph G, a
graph H on h vertices, and an integer c, and either correctly concludes that there is no c-embedding
from G to a subdivision of H, or produces a cALG-embedding of G into a subdivision of H, with
cALG ≤ 64 · 106 · c24(h+ 1)9.

Finally, we remark that at a cost of a potentially higher running time in terms of h, one may
replace the (h+ 1)9 factor with c9. If c ≥ h+ 1 we have that cALG ≤ 64 · 106 · c33. On the other
hand, if c ≤ h+ 1 we may run the algorithm of Theorem 6.1 in time f(H)nO(1) instead and solve
the problem optimally.

6 A FPT algorithm for embedding into arbitrary graphs

In this section we design our FPT algorithm for embedding into arbitrary graph. In particular we
show the following result in this section.

Theorem 6.1. Given an integer c > 0 and graphs G and H, it is possible in time f(H, c) · nO(1) to
either find a non-contracting c-embedding of G into some subdivision of H, or correctly determine
that no such embedding exists.
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The proof of Theorem 6.1 will come at the end of the section. Using Lemma 4.6, for the rest of
this section we shall assume w.l.o.g. that fOPT is a proper, pushing, non-contracting cOPT-embedding
of G into (HOPT, wOPT), where HOPT is a subdivision of Hq, some quasi-subgraph of H, and
wOPT : E(Hq) → R

>0.

Definition 6.2. For any e ∈ E(Hq), we say e is short if wq(e) ≤ 16(cOPT)
4. Otherwise, e is long.

Based on this definition of short and long edges, we define the following notions of clusters in
Hq.

Definition 6.3. Let C the set of connected components of Hq \ {e ∈ E(H) : e is long}. We say
that C ∈ C is an interesting cluster of Hq if there exist at least 3 paths leaving C in Hq. Let

C≥3 = {C ∈ C : Cis an interesting clusters of Hq}

and let
C<3 = C \ C≥3.

Definition 6.4. For each connected component C of Hq \ C≥3, we say C is a path cluster of Hq.
Let P be the set of path clusters of Hq.

The following lemma describes the 3 categories these path clusters may fall into.

Lemma 6.5. For all P ∈ P, one of the following cases holds:

Case 1. There exists k > 0 and a sequence

e1, C1, . . . , ek, Ck

such that

1. e1, . . . , ek are long edges of Hq.
2. C1, . . . , Ck ∈ C<3.
3. P = e1 ∪ C1 ∪ . . . ∪ ek ∪ Ck.
4. There exists C ∈ C≥3 such that C ∩ e1 6= ∅.

Case 2. There exists k > 0 and a sequence

e1, C1, . . . , ek, Ck, ek+1

such that

1. e1, . . . , ek+1 are long edges of Hq.
2. C1, . . . , Ck ∈ C<3.
3. P = e1 ∪ C1 ∪ . . . ∪ ek ∪ Ck.
4. There exists C ∈ C≥3 such that C ∩ e1 6= ∅ and for all C ′ ∈ C≥3, C ′ ∩ ek+1 = ∅.

Case 3. There exists k > 0 and a sequence

e1, C1, . . . , ek, Ck, ek+1

such that
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1. e1, . . . , ek+1 are long edges of Hq.
2. C1, . . . , Ck ∈ C<3.
3. P = e1 ∪ C1 ∪ . . . ∪ ek ∪ Ck.
4. There exists C,C ′ ∈ C≥3 such that C ∩ e1 6= ∅ and C ′ ∩ ek+1 6= ∅.

Proof. Let H ′ be the graph which results from contracting all short edges of Hq. In H ′, each
C ∈ C<3 is expressed as a vertex of degree 1 or 2, and each C ′ ∈ C≥3 as a vertex of degree 3 or
more. If all vertices of degree 3 are removed, the remaining components must be paths. Since Hq is
a connected graph, each path component was connected to some vertex of degree 3 through one or
both of the endpoints of the path.

To find an embedding, it will be necessary to partition the vertices of G into those which must
be embedded near an interesting cluster, and those which do not. The following definition defines
which vertices these will be. The theorem and lemma following the definition show that finding
these vertices is a tractable problem.

Definition 6.6. Let v ∈ V (G) and α ≥ 1. We say that v is α-interesting if the metric space
(ballG(v, α), dG) does not admit a cOPT-embedding into the line.

Theorem 6.7 (Fellows et al. [14]). There exists an algorithm which given a weighted graph Γ, with
weights in {1, . . . ,W}, and some c ≥ 1, decides whether Γ admits a c-embedding into the line in
time O(n(cW )4(2c+ 1)2cW ).

Lemma 6.8 (Importance is tractable). There exists an algorithm which given v ∈ V (G) and α ≥ 0,
decides whether v is α-interesting, in time O(n(cOPT2α)

4(2cOPT + 1)4cOPTα).

Proof. Let Γ be the complete weighted graph with V (Γ) = ballG(v, α), and such that for all
{x, y} ∈

(

V (Γ)
2

)

, the length of {x, y} is set to dG(x, y). By the triangle inequality, it follows that the
maximum edge length in Γ is at most 2α. Thus, by Theorem 6.7 we can decide whether Γ admits a
cOPT-embedding into the line in time O(n(cOPT2α)

4(2cOPT + 1)4cOPTα), as required.

Our algorithm will proceed by finding partial embeddings of G into the interesting and path
clusters. Later, these partial embeddings will be “stitched” together to form a complete embedding.
To aid in the stitching process, we define a notion of compatibility between partial embeddings on
quasi-subgraphs of H.

Definition 6.9. Let H1, H2 be quasi-subgraphs of H such that there exists {a, b} ∈ E(H1) ∩ E(H2)
so that a is a leaf node in H1, and b is a leaf node in H2. Let f1 and f2 be pushing, non-contracting
cOPT-embeddings of subgraphs G1, G2 of G into (Hq

1 , w1) and (Hq
2 , w2). We say f1 and f2 are

compatible on {a, b} if

1. For all v ∈ V (G1) ∩ V (G2), f1(v) ∈ SUBH1
({a, b}) and f2(v) ∈ SUBH2

({a, b})

2. For all u, v ∈ V (G1) ∩ V (G2), we have u, v are consecutive w.r.t. {a, b} if and only if u, v are
consecutive w.r.t. {a, b}.

3. There exists u′ ∈ V (G1) ∩ V (G2) such that f1(u
′) = a.

4. There exists v′ ∈ V (G1) ∩ V (G2) such that f1(v
′) = b.

If f1 and f2 are compatible on {a, b}, then we can combine f1, f2 in the following way:
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1. For every u ∈ V (G1) ∩ V (G2), let f1(u) = f2(u).

2. For any u, v ∈ V (G1) ∩ V (G2) consecutive w.r.t. {a, b}, replace the shortest path in G1 from
f1(u) to f1(v) and the shortest path in G2 from f2(u) to f2(v) with a single edge of weight
dG(u, v). All other edges have their weight from w1 or w2.

The a parameter ∆ will appear in several places within the algorithm. We set the value of ∆
now.

Definition 6.10. Let
∆ = diam(Hq) + 8 · (cOPT)

4.

Our algorithm will make use of two sub-procedures, CLUSTER and PATH.

6.1 CLUSTER algorithm

The CLUSTER algorithm will find embeddings restricted to the interesting clusters of Hq. Let
S ⊆ V (G), C a subgraph of Hq.

Definition 6.11. Let e1, . . . , e|E(C)| be some fixed ordering of E(C), and for each i ∈ {1, . . . , |E(C)|},
let ei = {hi,1, hi,2}.

Definition 6.12. We say fC , (C
′, w′) is a solution of CLUSTER(S,C) if C ′ is a subdivision of C,

w′ : E(C) → R
>0, and fC : S → (C ′, w′) such that:

1. For all u, v ∈ S,
dG(u, v) ≤ d(C′,w′)(fC(u), fC(v)) ≤ cOPT · dG(u, v).

2. For all u, v ∈ S, if u and v are consecutive then

d(C′,w′)(fC(u), fC(v)) = dG(u, v).

Definition 6.13. A configuration of S,C consists of the following:

1. A partition E1, . . . , E|E(C)| of S.

2. An ordering Oi = oi,1, . . . , oi,|Ei| of each Ei. Let

|Oi| =

|Ei|−1
∑

j=1

dG(oi,j , oi,j+1).

3. Let
χ(oi,1) = hi,1,

χ(oi,|Ei|) = hi,|Ei|,

and
Ω = ∪

|E(C)|
i=1 {oi,1, oi,|Ei|}.

For each x, y ∈ Ω, the configuration has a simple path Px,y in C from χ(x) to χ(y).

The following algorithm will be used to generate solutions to CLUSTER(S,C):
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Step 1. For each choice of configuration of S,C:

Step 1.1.Minimize
∑|E(C)|

i=1 αi + βi subject to the following constraints:

• For all i ∈ {1, . . . , |E(C)|,
αi ≥ 0

and
βi ≥ 0.

For all z ∈ Ω, if z = oi,1 for some i ∈ {1 . . . , |E(C)|}, then let

ω(z) = αi,

and if z = oi,|Ei| for some i, then let

ω(z) = βi.

• For all a, b ∈ V (H), for each path P from a to b, let

|P | =
∑

ei∈E(P )

(αi + βi + |Oi|).

For all x, y ∈ Ω,
ℓx,y = ω(x) + ω(y) + |Px,y| ≥ dG(x, y)

and for all other simple paths P from χ(x) to χ(y),

ω(x) + ω(y) + |P | ≥ ℓx,y.

Step 1.2. Define the subdivision C ′. For each edge ei ∈ E(C), if

αi 6= 0 and βi 6= 0

then subdivide ei |Ei| many times. Otherwise, if

αi + betai 6= 0

then subdivide ei |Ei| − 1 many times. Otherwise, subdivide ei |Ei| − 2 many times.

Step 1.3. Define an embedding fC . For all i ∈ {1, . . . , |E(C)|}, let ei = {a, b}, a < b. If
αi = 0 then let

fC(oi,1) = a,

otherwise let fC(oi,1) be the first vertex in the subdivision of {a, b}. If βi = 0 then let

fC(oi,|Ei|) = b,

otherwise let fC(oi,1) be the last vertex in the subdivision of {a, b}. For each j ∈
{2, . . . , |Ei| − 1}, let fC(oi,j) be the fist vertex on the path in the subdivision of ei from
fC(oi,j−1) and b.
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Step 1.4. Define the weight function w′. For all ei = {a, b} ∈ E(C), a < b, if αi 6= 0 let

w′({a, fC(oi,1)}) = αi,

and if βi 6= 0 let
w′({ak, fC(oi,|Ei|)}) = βi,

and for all j ∈ {1, . . . , |Ei| − 1}, let

w′({fC(oi,j), fC(oi,j+1)}) = dG(oi,j , oi,j+1).

Lemma 6.14. The above algorithm finds O(|E(C)||S|·|S|!·(|V (C)|−2)!) solutions to CLUSTER(S,C).

Proof. The algorithm finds one solution for each configuration of S,C. There are no more than

|E(C)||S|

possible partitions E1, . . . , E|E(C)|. Given E1, . . . , E|E(C)|, there are no more than

|S|!

possible orderings O1, . . . , O|E(C)|. For any x, y ∈ V (C), there are no more than

(|V (C)| − 2)!

simple paths between x and y. Therefore, there are no more than

|E(C)||S| · |S|! · (|V (C)| − 2)!

configurations of S,C.

6.2 PATH algorithm

The PATH algorithm will find embeddings restricted to the path clusters of Hq.
Let P be a path cluster of Hq such that

P = e1, C1, e2, C2, . . . , ej , Cj

or
P = e1, C1, e2, C2, . . . , ej , Cj , ej+1.

Let X ⊂ V (G), S = s1, . . . , s4(cOPT)2+1, T = t1, . . . , t4(cOPT)2+1 or T = ∅, be sequences of vertices
such that V (S) ∪ V (T ) ⊆ V (G) \X and V (S) ∩ V (T ) = ∅. Let

Z = X ∪ V (S) ∪ V (T )

and

Zℓ = {v ∈ X ∪ V (S) ∪ V (T ) : |ballG(v, (4(cOPT)
2 + 1) · cOPT))| ≤ (4(cOPT)

2 + 1) · (cOPT)
2}.

Here we adapt the idea of feasible partial embeddings from [14] to our needs.
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Definition 6.15. A partial embedding of A ⊆ Zℓ is a bijective function

f : A → {0, . . . , 4(cOPT)
2 + 1}.

Let

1. fe be the embedding of Af into (e′, w′) derived in the following way:

(a) Let e = {a, b} ∈ E(Hq), a < b.

(b) Let e′ be the subdivision of e with 4(cOPT)
2 + 1 vertices. Let v1, v2, . . . , v4(cOPT)2+1 be the

sequence of vertices encountered when traversing e′ from a to b.

(c) For all a ∈ Af , let fe(a) = vf(a).

(d) For all i ∈ {1, . . . , 4(cOPT)
2 + 1}, let w′({vi, vi+1}) = dG(f

−1(i), f−1(i+ 1)).

2. AL
f = f−1({0, . . . , 2(cOPT)

2}).

3. AR
L = f−1({2(cOPT)

2 + 1, . . . , 4(cOPT)
2 + 1}).

4. L(A) is the union of the vertex sets of all connected components C of Zℓ \A such that C has
a neighbor in AL

f , and the union of the vertex sets of all connected components C ′ of Zℓ \A
such that ballG(C

′, cOPT) ∩ C 6= ∅.

5. R(A) is the union of the vertex sets of all connected components C of Zℓ \A such that C has
a neighbor in AR

f , and the union of the vertex sets of all connected components C ′ of Zℓ \A
such that ballG(C

′, cOPT) ∩ C 6= ∅.

Definition 6.16. A partial embedding f of A ⊆ Zℓ is called feasible if

1. fe is a proper, pushing, non-contracting cOPT-embedding of (Af , dG) into (e′, w′).

2. L(f) ∩R(f) = ∅.

3. ballG(f
−1(2(cOPT)

2), cOPT) is in A.

4. For all i ∈ {0, . . . , 4(cOPT)
2},

dG(f
−1(i), f−1(i+ 1)) ≤ cOPT.

Lemma 6.17. The number of feasible partial embeddings of Zℓ is n · (cOPT)
O(cOPT).

Proof. For every feasible partial embedding starting with v0, there exists a sequence v0, v1, . . . , v4(cOPT)2+1

such that for all i ∈ {0, . . . , v4(cOPT)2} we have

dG(vi, vi+1) ≤ cOPT,

and therefore for all i ∈ {1, . . . , v4(cOPT)2+1} we have

dG(v0, vi) ≤ (4(cOPT)
2 + 1) · cOPT.

Since for all v ∈ Zℓ, we have that

|ballG(v, (4(cOPT)
2 + 1) · cOPT))| ≤ (4(cOPT)

2 + 1) · (cOPT)
2,

and so there are at most (4(cOPT)
2 + 1) · (cOPT)

2 vertices which can be in any partial embedding
starting with v0. Therefore, the number of possible such sequences is

(

(4(cOPT)
2 + 1) · (cOPT)

2

4(cOPT)2

)

≤ (cOPT)
O(cOPT)

for each v0 ∈ Zℓ.
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Definition 6.18. Let f and g be feasible partial embeddings of Zℓ, with domains Af and Ag. We
say g succeeds f if

1. Af \ {f−1(0)} = Ag \ {g
−1(4(cOPT)

2 + 1)} = Af ∩Ag.

2. For every a ∈ Af ∩ ag, f(a) = g(a) + 1.

3. {g−1(4(cOPT)
2 + 1)} ⊆ R(f).

4. {f−1(0)} ⊆ L(g)

Definition 6.19. A feasible partial embedding of W ⊆ Z is a 3-tuple F = (f, r, R) such that

1. f is a feasible partial embedding of Zℓ

2. r ∈ {0, 1, . . . , j}.

3. If r = j then R = ∅.

4. If r < j and ej+1 ∈ P then R is a solution to

CLUSTER(ballZ(Af ,∆) ∩ (Af ∪R(f)), er+1 ∪ Cr+1 ∪ er+2)

such that R and f are compatible w.r.t. er+1.

5. If r < j and ej+1 /∈ P then R is a solution to

CLUSTER(ballZ(Af ,∆) ∩ (Af ∪R(f)), er+1 ∪ Cr+1)

such that R and f are compatible w.r.t. er+1.

Lemma 6.20. There are at most n · (cOPT)
O(cOPT) · 2|E(H)| · |E(H)|O(|E(H)|2) feasible partial

embeddings of Z.

Proof. By Lemma 6.17, we have that there are

n · (cOPT)
O(cOPT)

many feasible partial embeddings of Zℓ. Since P ⊆ Hq, we have that k ≤ 2|E(H)|, and thus

r ≤ 2|E(H)|.

Each of C1, . . . , Ck are subgraphs of Hq, and Z is a subgraph of G. Therefore, by Lemma 6.14, R is
one of at most

O(2|E(H)|2cOPT·|E(H)|2 · (2cOPT · |E(H)|2)! · (2|V (H)| − 2)!) = |E(H)|O(|E(H)|2).

solutions.
Therefore, there are at most

n · (cOPT)
O(cOPT) · 2|E(H)| · |E(H)|O(|E(H)|2)

feasible partial embeddings of Z.

Definition 6.21. Let F1 = (f1, r1, R1), F2 = (f2, r2, R2) be two feasible partial embeddings of Z.
We say F2 succeeds F1 if either of the following conditions are met:
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1. r1 = r2 and f2 succeeds f1.

2. r2 = r1 + 1, er2 ∈ P , and f2, R1 are compatible on er2.

Definition 6.22. Let F1, . . . , Ft be a sequence of feasible partial embeddings of Z such that L(F1) = ∅,
R(Ft) = ∅, and for all i ∈ {2, . . . , t}, we have that Fi = (fi, ri, Ri), and Fi succeeds Fi−1. Let
fP , (P

′, w′) be the embedding of Z derived from the sequence in the following way:

1. Step 1. While the r values do not change, proceed through the sequence in order, while
building fP , P

′, w′ in the obvious way, so that fP is a pushing embedding.

2. Step 2. If a value i is reached so that ri > ri−1, use Ri to find the subdivision, embedding,
and weights for Ci. Advance to edge eri where Ri left off, and return to Step 1.

Lemma 6.23. Let P be a path cluster of Hq, let

IP = {v ∈ V (Hq) : v connects P to some interesting cluster}

and let

ZP = {v ∈ V (G) : fOPT(v) ∈ SUB(HOPT,wOPT)(P ) and d(HOPT,wOPT)(v, I
P ) ≥ (4(cOPT)

2 + 1) · cOPT}

For any path cluster of Hq, there is a sequence F1, f2, . . . , Fk of feasible partial embeddings of ZP

such that L(F1) = ∅, R(Fk) = ∅, and for all i ∈ {2, . . . , k}, we have that Fi succeeds Fi−1.

Proof. Since P is a path cluster of Hq, we have that 1 ≤ |IP | ≤ 2. Choose s ∈ IP , and orient each
long edge of P away from s. If both ends of P connect to P , forming a cycle, choose a clockwise or
counter-clockwise direction in which to orient the long edges.

Let
Zℓ = {v ∈ Z : |ballG(v, (4(cOPT)

2 + 1) · cOPT))| ≤ (4(cOPT)
2 + 1) · (cOPT)

2}.

For each long edge e = {e1, e2} of P , let Ze be the sequence of vertices such that

V (Ze) = {v ∈ Z : fOPT(v) ∈ eOPT and d(HOPT,wOPT)(fOPT(v), {e1, e2}) ≥ (4(cOPT)
2 + 1) · cOPT}

and Ze has the order imposed on V (ZE) by fOPT, traversing e along the orientation. For any
z ∈ V (Ze), we have that

|ballG(v, (4(cOPT)
2 + 1) · cOPT))| ≤ (4(cOPT)

2 + 1) · (cOPT)
2,

since fOPT is a cOPT-embedding, and so fOPT must embed ballG(v, (4(cOPT)
2 + 1) · cOPT)) within e.

Therefore,
V (Ze) ⊆ Zℓ.

Let Zi be the contiguous subsequence of Ze starting from the i-th vertex of Ze such that
|Zi| = 4(cOPT)

2 + 1. Let gi be a function such that for any zj ∈ V (Zi),

gi(zj) = j.

Thus gi is a partial embedding of V (Zi). Since fOPT is a proper, pushing, non-contracting cOPT-
embedding, gi is a feasible partial embedding of V (Zi), and for all i ∈ {2, . . . , |V (Zi)|−4(cOPT)

2+1},
we have that gi succeeds gi−1.
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Let k be the number of long edges contained in P , so that

P = e1, C1, . . . , ek, Ck

or
P = e1, C1, . . . , ek, Ck

and e1 is connected to some interesting cluster of Hq. For j ∈ {1, . . . , k}, let gji be the i-th feasible
partial embedding created as described above for the j-th long edge of P .

If gji is that last feasible partial embedding for ej and j 6= k, we can construct Rj
i by copying

the embedding of fOPT restricted to SUB(HOPT,wOPT)(Cj) and the path of length 8(cOPT)
2 + 1 on

SUB(HOPT,wOPT)(ej+1) starting from SUB(HOPT,wOPT)(Cj). If g
j
i is that last feasible partial embedding

for ej , then take Rj
i to be the embedding fOPT restricted to the subpath of SUB(HOPT,wOPT)(ej) from

A
gji

to Cj .

For each gji , if j 6= k then let

Rj
i = (gji , j, R

j
i )

and if j = k then let
Rj

i = (gji , j, ∅)

By construction, each Rj
i is a feasible partial embedding, and the sequence ordered by j, i forms

a sequence of succeeding feasible partial embeddings with the desired attributes.

Definition 6.24. Let D(Zℓ) be the directed graph with feasible partial embeddings of Z as vertices,
and a directed edge between vertices which succeed one another. We call this graph the succession
graph of Z.

We present here the PATH algorithm.

Step 1. Compute Zℓ.

Step 2. Construct D(Zℓ).

Step 3. Let FS = (fS , 0, ∅) be the feasible partial embedding of Z implied by S. If FS /∈ V (D(Zℓ))
then halt.

Step 4. If P = e1, C1, e2, C2, . . . , ej , Cj :

Step 4.1. Perform a DFS of D(Zℓ), starting from FS . If a node with out-degree 0 is
discovered, output the embedding described in Definition 6.22.

Step 5. If P = e1, C1, e2, C2, . . . , ej , Cj , ej+1:

Step 5.1. If T = ∅:

Step 5.1.1. Perform a DFS of D(Zℓ), starting from FS . If a node with out-degree 0 is
discovered, output the embedding described in Definition 6.22.

Step 5.2. If T 6= ∅:

Step 5.2.1. Let FT = (fT , 0, ∅) be the feasible partial embedding of Z implied by T .
If FT /∈ V (D(Zℓ)) then halt.

Step 5.2.2. Perform a DFS of D(Zℓ), starting from FS . If FT is discovered, output
the embedding described in Definition 6.22.
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Lemma 6.25. The PATH algorithm runs in time n2 · f(H, cOPT).

Proof. For Step 1, for each vertex v ∈ Z, to decide if v ∈ Zℓ, explore the neighborhood around v
until it is revealed that

|ballG(v, 4(cOPT)
2
1) · cOPT ≤ (4(cOPT)

2 + 1) · (cOPT)
2

or that
|ballG(v, 4(cOPT)

2
1) · cOPT > (4(cOPT)

2 + 1) · (cOPT)
2.

Therefore, Step 1 can be performed in time O(n · (cOPT)
2).

By Lemma 6.20, |V (D(Zℓ))| = (cOPT)
O(cOPT), and so |E(D(Zℓ))| = (cOPT)

O(cOPT). For F1 =
(f1, r1, R1), F2 = (f2, r2, R2) ∈ V (D(Zt)), there is an edge from F1 to F2 if F2 succeeds F1. We can
check if f2 succeeds f1 in time O(n · 4(cOPT)

2), and check if R1 and g2 are compatible on er2 in time
O(n · 4(cOPT)

2).
For Step 3, we need time (cOPT)

O(cOPT) to find FS in V (D(Zℓ)).
For Steps 4.1, 5.1, and 5.2, we use DFS to find an a path in D(Zℓ), which take time (cOPT)

O(cOPT).
Therefore, the PATH algorithm tuns in time n2 · f(H, cOPT).

6.3 FPT algorithm

Given as input G, H , and an integer c > 0, the following algorithm either produces a non-contracting
c-embedding of G into (HALG, wALG), HALG a subdivision of some quasi-subgraph of H , or correctly
decides that no such embedding exists.

We provide first an informal summary of the algorithm:

Step 1. Choose a quasi-subgraph H ′ of H, and a set of short edges of H ′.

Step 1.1. Find and order the interesting clusters of H ′.

Step 1.2. Find the ∆-interesting vertices of G, and choose a subset I. Choose an assignment
of the vertices in I into the interesting clusters.:

Step 1.2.1. For each interesting cluster, use the CLUSTER algorithm to choose an
arrangement of the interesting vertices in the cluster, and along the start of the long
edges leaving the cluster.

Step 1.2.1.1. Find the path clusters of H ′ and T , which is the set of connected
components of G \ I.

Step 1.2.1.2. For each connected component in T , choose a path cluster f H ′ to
try embedding it into.

Step 1.2.1.2.1. and Step 1.2.1.2.2. Using the results of the cluster algorithm
above, we know what the embedding into the path cluster should look like
near where the path cluster meets an interesting cluster. This determines our
inputs to the PATH algorithm in the next step.
Step 1.2.1.2.3. For each path cluster Pj , use PATH to find an embedding.

Step 1.2.1.2.3.1. By construction the embeddings for the interesting and
path clusters are compatible on the edges they meet on, so they can be
combined into fALG and (HALG, wALG).
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Step 1.2.1.2.3.2. Test fALG and (HALG, wALG) to see if fALG is a non-
contracting c-embedding of G into (HALG, wALG). If it is, we halt and output
fALG, (HALG, wALG). Otherwise, we continue with different choices.

Step 2. If no embedding is found after all choices are exhausted, output NO.

Here we provide the formal algorithm:

Step 1. For each quasi-subgraph H ′ of H and S ⊆ E(H ′):

Step 1.1. Supposing that S is the set of short edges of H ′, let C≥3
H′ be the set of interesting

clusters of H ′. Let k = |C≥3
H′ |. Fix an ordering C1, . . . , Ck of C≥3

H′ .

Step 1.2. Let I∆ be the set of ∆-interesting vertices of G. For each I ⊆ I∆ and partition
UC1

, . . . , UCk
of I:

Step 1.2.1. For each i ∈ {1, . . . , k}, let Di = Ci ∪ {e ∈ E(H ′) : e is incident to Ci},
and choose a solution fi, (D

′
i, w

′
i) of CLUSTER(I,Di) such that for every long edge e

incident to Ci we have that 8c2 + 2 ≤ |{v ∈ V (G) : fi(v) ∈ SUBD′

i
(e)}|. Perform the

following:

Step 1.2.1.1. Let PH′ be the set of path clusters of H ′. Let p = |PH′ |. Fix an
ordering P1, . . . , Pp of P. Let T be the set of connected components of G \ I.

Step 1.2.1.2. For each partition Q1, . . . , Qp of T , and for each i ∈ {1, . . . , p}, let
Wj = ∪T∈Qj

V (T ):

Step 1.2.1.2.1. For each j ∈ {1, . . . , p}, let xj ∈ {1, . . . , k} such that Pj∩Dxj
6=

∅. Let {a, b} ∈ E(H ′) be a long edge connecting Pj and Dxj
with a ∈ Cxj

.
Let Sj = s1, . . . , s4c2+1 be the sequence of the last 4c2 + 1 consecutive vertices
fxj

embeds into SUBD′

xj
({a, b}), going from a to b.

Step 1.2.1.2.2. If there exists a second long edge {a′, b′} ∈ E(H ′) connecting
Pj to Dx′

j
from some x′j ∈ {1, . . . , k} with a′ ∈ Cx′

j
then let Tj = t1, . . . , t4c2+1

be the sequence of the last 4c2 + 1 consecutive vertices fxj
embeds into {a, b},

going from a to b. Otherwise, let Tj = ∅.

Step 1.2.1.2.3. For each j ∈ {1, . . . , p}, let gj , (P
′
j , w

′
j) be the output of

PATH(Wj , Pj , Sj , Tj):

Step 1.2.1.2.3.1. Construct fALG, (HALG, wALG) from the outputs of the
CLUSTER and PATH algorithms as follows: For all i ∈ {1, . . . , k} and
j ∈ {1, . . . , p}, if Ci and Pj are connected by an edge e, then by construction,
fi and gj are compatible on edge e. Combine fi, gi. Call the weighed
graph which results from these combinations (HALG, wALG). Let fALG be the
embedding of G into (HALG, wALG).

Step 1.2.1.2.3.2. If fALG is a non-contracting, c-embedding of G into
(HALG, wALG), then output fALG, (HALG, wALG) and halt.

Step 2. Output NO.

Lemma 6.26. If v ∈ V (G) is ∆-interesting, then there exists z ∈ V (Hq) such that

d(HOPT,wOPT)(fOPT(v), z) ≤ 2cOPT ·∆.
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Proof. Let v ∈ V (G) be a ∆-interesting vertex. Suppose that for all p ∈ V (Hq) we have that

d(HOPT,wOPT)(fOPT(v), p) > 2cOPT ·∆,

and we shall find a contradiction.
Since fOPT is a non-contracting cOPT-embedding, for all x ∈ ballG(v,∆), we have

d(HOPT,wOPT)(fOPT(v), fOPT(x)) ≤ cOPT ·∆,

and for all x, y ∈ ballG(v,∆),

d(HOPT,wOPT)(fOPT(x), fOPT(y)) ≤ d(HOPT,wOPT)(fOPT(v), fOPT(x)) + d(HOPT,wOPT)(fOPT(v), fOPT(y))

≤ 2cOPT ·∆.

Since for all p ∈ V (Hq) we have that d(HOPT,wOPT)(fOPT(v), p) > 2cOPT · ∆, we have that fOPT

embeds all x ∈ ballG(v,∆) into {a, b}OPT, for some {a, b} ∈ E(Hq). From the limits stated above,
we have that

min
x∈ballG(v,∆)

{d(HOPT,wOPT)(a, fOPT(x))} > cOPT ·∆

and
min

x∈ballG(v,∆)
{d(HOPT,wOPT)(b, fOPT(x))} > cOPT ·∆.

Therefore, for any x, y ∈ ballG(v,∆), the shortest path from fOPT(x) to fOPT(y) in (HOPT, wOPT) is
the path from fOPT(x) to fOPT(y) contained in {a, b}OPT. Let

z = argminx∈ballG(v,∆){d(HOPT,wOPT)(a, fOPT(x))},

and let g be a function so that for any x ∈ ballG(v,∆),

g(x) = d(HOPT,wOPT)(fOPT(z), fOPT(x)).

Then for all s, t ∈ V (G), we have that

|g(s)− g(t)| = |d(HOPT,wOPT)(fOPT(s), fOPT(z))− d(HOPT,wOPT)(fOPT(t), fOPT(z))|

= d(HOPT,wOPT)(fOPT(s), fOPT(t))

and therefore
dG(s, t) ≤ |g(s)− g(t)| ≤ cOPT · dG(s, t).

Therefore, g is a non-contracting, cOPT-embedding of ballG(v,∆) into the line, which is a contradiction.
Thus the supposition, that for all p ∈ V (Hq)

d(HOPT,wOPT)(fOPT(v), p) > 2cOPT ·∆,

is false.

Lemma 6.27. Let I∆ be the set of ∆-interesting vertices of G. Then

|I∆| ≤ 8cOPT ·∆ · |E(H)|.
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Proof. By Lemma 6.26, each ∆-interesting vertex is within distance 2cOPT ·∆ of a vertex of V (Hq).
Since fOPT is non-contracting, for each e ∈ E(Hq), fOPT can map at most

2cOPT ·∆+ 2cOPT ·∆

∆-interesting vertices to e. Therefore, there are at most

4cOPT ·∆ · |E(Hq)|

∆-interesting vertices in G. Thus,

|I∆| ≤ 8cOPT ·∆ · |E(H)|.

Lemma 6.28. Let C be any interesting cluster of Hq. For any v ∈ V (G) such that

d(HOPT,wOPT)(fOPT(v), fOPT(C)) ≤ 8cOPT,

we have that v is diam(C)-interesting.

Proof. Since C is an interesting cluster of Hq, there exist long edges e1, e2, e3 ∈ E(Hq) adjacent to C.
Since fOPT is proper, there exists vertices a1, a2, a3, b1, b2, b3 ∈ V (G) such that for all i ∈ {1, 2, 3},

fOPT(ai) ∈ eiOPT,

fOPT(bi) ∈ eiOPT,

4(cOPT)
3 + 2cOPT ≤ d(HOPT,wOPT)(fOPT(ai), V (C)) ≤ 4(cOPT)

3 + 4cOPT,

and
0 ≤ d(Hq ,wq)(fOPT(bi), V (C)) ≤ 2cOPT.

Since fOPT is a cOPT-embedding, for each i ∈ {1, 2, 3} we have that

4(cOPT)
3 ≥ dG(ai, bi) ≥ 4(cOPT)

2.

Let
VC = {v ∈ V (G) : d(Hq ,wq)(fOPT(v), (C,w

q)) ≤ 2(cOPT)
2}.

Suppose that b1 and b2 are in distinct connected components C1, C2 of G[VC ]. Let P1,2 be the shortest
path in ball(HOPT,wOPT)(C, (cOPT)

2) from fOPT(b1) to fOPT(b2). Let p1 be the vertex in C1 such that
fOPT(p1) ∈ P1,2 and d(HOPT,wOPT)(fOPT(b1), fOPT(p1)) is maximal. Let p ∈ V (G) \ V (C1) such that
fOPT(p) is in the subpath of P1,2 from fOPT(p1) to fOPT(b2) and d(HOPT,wOPT)(fOPT(p1), fOPT(p)) is
minimal. Since fOPT is proper we have

d(HOPT,wOPT)(fOPT(p1), fOPT(p)) ≤ 2cOPT,

and since fOPT is non-contracting we have

dG(p1, p) ≤ 2cOPT.
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Let S ⊆ V (G) be the set of vertices in the shortest path from p1 to p in G. For all s ∈ S,

fOPT(s) ∈ ball(HOPT,wOPT)(fOPT(p1), 2cOPT · cOPT),

and since fOPT(p1) ∈ P1,2, we have

fOPT(s) ∈ ball(HOPT,wOPT)(C, 2(cOPT)
2).

Therefore, p1 and p are in the same connected component of G[VC ], and thus p and b1 are in the
same connected component of G[VC ]. Therefore p ∈ C1 and p ∈ V (G) \ V (C1), a contradiction.
Therefore, b1 and b2 are in the same connected component of G[VC ], and by a similar argument, b2
and b3 are in the same connected component of G[VC ]. Thus, b1, b2, b3 are all in the same connected
component of G[VC ].

For all i ∈ {1, 2, 3}, let Pi be the set containing the vertices in the shortest path in G from ai to
bi, and let P cOPT

i be the set containing the first cOPT vertices in the shortest path in G from ai to bi.
Suppose there exists i, j ∈ {1, 2, 3}, i 6= j, such that

P cOPT

i ∩ P cOPT

j 6= ∅.

Then there exists y ∈ P cOPT

i ∩ P cOPT

j , and

dG(y, ai) ≤ cOPT

and
dG(y, aj) ≤ cOPT.

Therefore, since fOPT is a cOPT-embedding, we have that

d(HOPT,wOPT)(fOPT(y), fOPT(ai)) ≤ c2OPT

and
d(HOPT,wOPT)(fOPT(y), fOPT(aj)) ≤ c2OPT.

Since fOPT(ai), fOPT(aj) are not in the same edge of (HOPT, wOPT), and each are of distance greater
than (cOPT)

2 from either of the endpoints of the edges containing fOPT(ai), fOPT(aj), this is a
contradiction. Therefore, for all i, j ∈ {1, 2, 3}, i 6= j, we have that

P cOPT

i ∩ P cOPT

j = ∅.

Furthermore, since for all i ∈ {1, 2, 3} we have that

4(cOPT)
3 + 2cOPT ≤ d(HOPT,wOPT)(fOPT(ai), (C,

q )) ≤ 4(cOPT)
3 + 4cOPT,

for all p ∈ P cOPT

i , we have that

d(HOPT,wOPT)(fOPT(p), V (C)) ≥ 4(cOPT)
3 + 2cOPT − (cOPT)

2

≥ 3(cOPT)
3 + 2cOPT,

and therefore P cOPT

i ∩ VC = ∅.
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Let C1,2,3 be the connected component of G[VC ∪ P1 ∪ P2 ∪ P3] containing b1, b2, b3. For all
i ∈ {1, 2, 3}, C1,2,3 contains a path connecting ai and bi, with at least cOPT vertices not in VC .
Therefore, C1,2,3 consists of a central component with at least 3 paths of length ≥ cOPT leaving the
central component. Such a structure cannot be embedding into the line with distortion cOPT.

Let v ∈ ball(HOPT,wOPT)(V (C), diam(C) + 2(cOPT)
2). Then for all z ∈ V (C1,2,3), we have

dG(v, z) ≤ d(Hq ,wq)(fOPT(v), fOPT(z))

≤ max
i∈{1,2,3}

d(Hq ,wq)(fOPT(v), fOPT(ai))

≤ diam(C) + 8(cOPT)
3.

Therefore, for all v ∈ ball(HOPT,wOPT)(V (C), diam(C) + 2(cOPT)
2), we have that

ballG(v, diam(C) + 8(cOPT)
3) ⊆ ballG(v,∆)

does not embed into the line. Therefore, v is ∆-interesting.

Lemma 6.29. Let

IOPT = {v ∈ V (G) : ∃C ∈ C≥3 such that v ∈ ball(HOPT,wOPT)(C, 2(cOPT)
2)},

and let CG be any connected component of G \ IOPT. Then there exists a path cluster P of
(HOPT, wOPT) such that fOPT(V (CG)) ⊆ (P,wOPT).

Proof. Suppose there exists C, a connected component of G \ IOPT such that for some x, y ∈ V (C),
we have that fOPT(x) and fOPT(y) are in different path clusters of Hq. Therefore, any path in
(HOPT, wOPT) between fOPT(x) and fOPT(y) must intersect the subdivision of an interesting cluster
of Hq. So for any path in G between x and y, the path must contain a vertex z such that, for C ′

the subdivision of some interesting cluster of Hq,

d(HOPT,wOPT)(fOPT(z), V (C ′)) ≤ cOPT,

and thus x and y cannot be in the same connected component of G \ IOPT. Therefore, for all
connected components C of G\IOPT, there exists a path cluster P of Hq such that fOPT(C) ⊆ P .

Lemma 6.30. Let

IOPT = {v ∈ V (G) : ∃C ∈ C≥3 such that v ∈ ball(HOPT,wOPT)(C, 2(cOPT)
2)},

and let T be the set of connected components of G \ IOPT. Then |T | ≤ (4cOPT · |E(H)|)2.

Proof. Let CG be a connected component of G \ IOPT. Since G is a connected graph, we have that

ballG(V (CG), 1) ∩ IOPT 6= ∅.

Let z ∈ ballG(V (CG), 1) ∩ IOPT. Since fOPT is a cOPT-embedding, we have that

z ∈ IOPT \ {v ∈ V (G) : ∃C ∈ C≥3 such that v ∈ ball(HOPT,wOPT)(C, 2(cOPT)
2 − cOPT)}.
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For each edge in E(Hq), there are at most 2cOPT vertices in v ∈ V (G) such that

v ∈ IOPT \ {v ∈ V (G) : ∃C ∈ C≥3 such that v ∈ ball(HOPT,wOPT)(V (C), 2(cOPT)
2 − cOPT)},

and so there are at most 2cOPT ·|E(Hq)| ≤ 4cOPT ·|E(H)| vertices to which each connected component
of G \ IOPT is connected to one or more. From Lemma 4.7, for all v ∈ V (G), we have that

|ballG(v, 1)| ≤ 4cOPT · |E(H)|.

Therefore, there are at most (4cOPT · |E(H)|)2 connected components of G \ IOPT.

Lemma 6.31. The FPT Algorithm runs in time nO(1) · f(H, cOPT).

Proof. For Step 1, when creating a quasi-subgraph, the only rule which increases the number of
edges is rule 3. Since The quasi-subgraph must be connected, rule 3 can be applied at most once for
each edge in E(H). Therefore,

|E(H ′)| ≤ 2|E(H)|

and
|V (H ′)| ≤ 2|V (H)|.

We can find an upper bound on the number of quasi-subgraphs of H by first selecting a subset
of edges of H to apply rule 3 to, in which we have 2|E(H)| choices, and then selecting subsets of
vertices and edges for deletion, of which there are at most 22|V (H)| and 22|E(H)| sets to choose from.
There are therefore at most

2|E(H)| · 22|V (H)| · 22|E(H)| = 2|V (H)| · 23|E(H)|

choices for quasi-subgraph of H, and therefore

23|E(H)| · 22|E(H)| = 25|E(H)|

possible choices for Step 1.
For Step 1.1, we can find the interesting clusters of H ′ in time f(H).
For Step 1.2, Lemma 6.27 tells us that

|I∆| ≤ 8cOPT ·∆ · |E(H)|.

Therefore, there are at most
28cOPT·∆·|E(H)|

subsets of I∆. Each interesting cluster of H ′ must contain a vertex of H ′, and so there are at most

2|V (H)||I| ≤ 2|V (H)|8cOPT·∆·|E(H)|

possible partitions of I. Therefore, there are at most

28cOPT·∆·|E(H)| · 2|V (H)|8cOPT·∆·|E(H)|

choices for Step 1.2.
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For Step 1.2.1, we have that

|I| ≤ |I∆| ≤ 8cOPT ·∆ · |E(H)|,

and each Di is a subgraph of H ′, and thus by Lemma 6.14, each instance of CLUSTER(I,Di) has at
most

O(2|E(H)||I| · |I|! · (2|V (H)| − 2)!) = |E(H)|O(|E(H)|

solutions.
For Step 1.2.1.1, we can find the connected components of G \ I in time O(n).
For Step 1.2.1.2, by Lemma 6.30, we have that

|T | ≤ (4cOPT · |E(H)|)2.

Each path cluster contains at least one long edge of H ′, so there are at most 2|E(H)| path clusters.
Therefore, there are at most

(2|E(H)|)|T | = (2|E(H)|)(4cOPT·|E(H)|)2

possible partitionings of T .
Steps 1.2.1.2.1 and 1.2.1.2.2 can be done in time f(H, c).
For Step 1.2.1.2.3, by Lemma 6.25, the PATH algorithm runs in time n2 · f(H, cOPT).
Step 1.2.1.2.3.1 can be done in time O(n), by checking where each vertex in G is embedded.
Step 1.2.1.2.3.2 can be done by computing all-pairs shortest path on both G and (HALG, wALG),

then for each u, v ∈ V (G), compare dG(u, v) and d(HALG,wALG)(fALG(u), fALG(v)). Since each edge of
Hq is subdivided no more than cOPT · n times, |V (HALG)| ≤ 2|V (H)|cOPT · n, and so this check can
be performed in time O(f(H, cOPT) · n

3).
Therefore, the algorithm runs in time nO(1) · f(H, cOPT).

Lemma 6.32. If H contains an interesting cluster and c ≥ cOPT, then the FPT Algorithm outputs
fALG, (HALG, wALG), where fALG is a non-contracting c-embedding of G into (HALG, wALG).

Proof. Since the algorithm iterates over all possible choices of quasi-subgraphs and short edges, we
may assume that for some iteration, H ′ = Hq, and the correct short edges are chosen. By Lemma 6.8,
we can find all ∆-interesting vertices. By Lemma 6.28 and Definition 6.10, we have that all vertices
which fOPT embeds into a radius of 8 · (cOPT)

4 of any interesting cluster is ∆-interesting. Therefore,
since the algorithm tries all assignments of ∆-interesting vertices to interesting clusters, and all
possible orders in which the vertices might be embedded along the edges of and incident to the
interesting clusters, we may assume that the algorithm will reach a state where for each interesting
cluster C, fOPT and the algorithm match for each edge e ∈ E(C) on the vertices embedded into e,
the order of the vertices on e, and the order of vertices embedded into long edges leaving C, up to
distance at least 8 · (cOPT)

2 + 2.
For each path cluster, for each long edge in the path cluster connected to an interesting cluster, the

PATH algorithm is given as input a sequence of 4(cOPT)
2+1) vertices of distance at least 4(cOPT)

2+1)
from the interesting cluster, and in the order they are embedded, when traversing the edge away
from the interesting cluster. By Lemma 6.23, for each path cluster P , there exists a solution to the
PATH algorithm such that if P is connected by long edge e = {a, b} to interesting cluster C, and
a ∈ V (C), then the solution is compatible with fOPT restricted ball(HOPT,wOPT)(V (C), 8(cOPT)

2).
Therefore, we may assume that the algorithm computes fALG, (HALG, wALG) such that
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1. HALG is a subdivision of Hq.

2. For each interesting cluster CI of Hq, for each e ∈ E(CI),

fOPT(V (G)) ∩ eOPT = fALG(V (G)) ∩ SUB(HALG,wALG)(e)

and the order from imposed on fOPT(V (G)) ∩ eOPT by fOPT is the same as the order imposed
on fALG(V (G)) ∩ SUB(HALG,wALG)(e) by fALG.

3. For each path cluster CP in Hq, we have that

fOPT(V (G)) ∩ SUB(HOPT,wOPT)(CP ) = fALG(V (G)) ∩ SUB(HALG,wALG)(CP )

4. For any path cluster CP in Hq, for any {a, b} ∈ E(G) such that fOPT(a) ∈ SUB(HOPT,wOPT)(CP )
and fOPT(b) ∈ SUB(HOPT,wOPT)(CP ), we have that

1 ≤ d(HALG,wALG)(fALG(a), fALG(b)) ≤ cOPT.

5. For any path cluster CP in Hq, for any u, v ∈ V (G) such that fOPT(u) ∈ SUB(HOPT,wOPT)(CP )
and fOPT(v) ∈ SUB(HOPT,wOPT)(CP ), we have that

d(HALG,wALG)(fALG(u), fALG(v)) ≥ d(HOPT,wOPT)(fOPT(u), fOPT(v)).

Let u, v ∈ V (G), and let Pu,v be the shortest path in G from u to v.
If there exists an interesting cluster CI in Hq such that fOPT(Pu,v) ∈ SUB(HOPT,wOPT)(CI), then

the CLUSTER algorithm has ensured that

dG(u, v) ≤ d(HALG,wALG)(fALG(u), fALG(v)) ≤ cOPT · dG(u, v).

If there exists a path cluster CP in Hq such that fOPT(Pu,v) ∈ SUB(HOPT,wOPT)(CP ), then by the
observations above, we have that

dG(u, v) ≤ d(HOPT,wOPT)(fOPT(u), fOPT(v))

≤ d(HALG,wALG)(fALG(u), fALG(v))

≤
∑

e∈Pu,v

cOPT

≤ cOPT · dG(u, v).

If u and v are not in the same interesting or path cluster, then there is some minimum sequence
C1, C2, . . . , Ck such that fOPT(Pu,v) ∈ SUB(HOPT,wOPT)(C1 ∪ C2 ∪ . . . ∪ Ck). Since the embeddings
on these clusters are compatible, for each i ∈ {1, . . . , k − 1}, there is a sequence of 4(cOPT)

2 + 1
consecutive vertices embedded in the edge connecting Ci and Ci+1. For each i ∈ {1, . . . , k − 1},
there exists vi ∈ V (Pu,v) such that vi intersects the sequence between Ci and Ci+1. Therefore,

d(HALG,wALG)(fALG(u), fALG(v)) = d(HALG,wALG)(fALG(u), fALG(v1)) + . . .+ d(HALG,wALG)(fALG(vk−1), fALG(v))

≤ cOPT · dG(u, v1) + . . .+ cOPT · dG(vk−1, v)

= cOPT · dG(u, v).
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Since the CLUSTER and PATH algorithms do not allow contraction of distances, we also have that

d(HALG,wALG)(fALG(u), fALG(v)) = d(HALG,wALG)(fALG(u), fALG(v1)) + . . .+ d(HALG,wALG)(fALG(vk−1), fALG(v))

≥ dG(u, v1) + . . .+ dG(vk−1, v)

= dG(u, v).

Therefore, fALG is a non-contracting, cOPT-embedding of G into (HALG, wALG), where HALG is
some subdivision of Hq, and Hq is a quasi-subgraph of H.

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. To ensure the existence of interesting vertices in G, and thus interesting
clusters in H, we make the following modifications to G and H.

Let k = 8c · |E(H)|, and Kk the complete graph on k vertices. Note that there cannot be a
non-contracting c-embedding of Kk into H, since for at least one edge of any quasi-subgraph Hq of
H and |E(Hq)| ≤ 2|E(H)|, by the pigeonhole principle, for any embedding, at least 4c vertices of G
would be embedded into the same subdivsion of an edge of Hq, and so two vertices adjacent in Kk

would be embedded with distance greater than c.
We will now describe how to use Kk to find a non-contracting c embedding of G into H, if such

an embedding exists.
Create a new graph G′ in the following way: Connect a single copy of Kk to G by creating

3 paths of length 16c4 + 1 from a single vertex of Kk to 3 arbitrary vertices v1, v2, v3 in G. Let
Hk be the set of graphs creating in the following way: For all A ⊂ V (H) ∪ E(H) with |A| = 3,
connect single copy of Kk to H by connecting Kk to each a ∈ A through a single vertex of Kk. If
a ∈ V (H) then this connection is by an edge from Kk to a, and if a ∈ E(H) then the connection is
by subdividing a and connecting Kk to the new vertex.

If there exists a non-contracting c-embedding of G into H, then there must exist H ′ ∈ Hk

such that there is a non-contracting c-embedding of G′ into H ′. This is easy to see by taking
the embedding of G into H and extending it. Construct H ′′ by connecting a vertex of Kk to the
subdivision of H (call this subdivision Hs) used for the embedding with 3 paths of length 16c4+1 to
the vertices v1, v2, v3 are embedded to. Using the embedding of G into H , it is clear that there exists
H ′ ∈ Hk such that a subdivision of H ′ matches H ′′. By how H ′′ was constructed, the additional
vertices in V (G′) \ V (G) are all embedded into vertices in V (H ′′) \ V (Hs). By modifying our
algorithm so that only embeddings of this type are considered, if a non-contracting c-embedding of
G into H exists, the corresponding non-contracting c-embedding of G′ into H ′ can be found, and
then the corresponding non-contracting c-embedding of G into H can be extracted.

The rest of the theorem follows immediately from Lemma 6.32 and Lemma 6.31.
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