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Abstract

The multi-commodity flow-cut gap is a fundamental
parameter that affects the performance of several divide
& conquer algorithms, and has been extensively studied
for various classes of undirected graphs. It has been
shown by Linial, London and Rabinovich [15] and by
Aumann and Rabani [3] that for general n-vertex graphs
it is bounded by Oplog nq and the Gupta-Newman-
Rabinovich-Sinclair conjecture [9] asserts that it is Op1q
for any family of graphs that excludes some fixed minor.

The flow-cut gap is poorly understood for the case
of directed graphs. We show that for uniform demands
it is Op1q on directed series-parallel graphs, and on di-
rected graphs of bounded pathwidth. These are the first
constant upper bounds of this type for some non-trivial
family of directed graphs. We also obtain Op1q upper
bounds for the general multi-commodity flow-cut gap on
directed trees and cycles. These bounds are obtained
via new embeddings and Lipschitz quasipartitions for
quasimetric spaces, which generalize analogous results
form the metric case, and could be of independent in-
terest. Finally, we discuss limitations of methods that
were developed for undirected graphs, such as random
partitions, and random embeddings.

1 Introduction

The multi-commodity flow-cut gap is a fundamental pa-
rameter that has been proven instrumental in the design
of routing and divide & conquer algorithms in graphs.
Bounds on this parameter generalize the max-flow/min-
cut theorem, and lead to deep connections between al-
gorithm design, graph theory, and geometry [15, 3, 2].
While the flow-cut gap for several classes of undirected
graphs has been studied extensively, the case of directed
graphs is poorly understood despite significant efforts.
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In this work we make progress towards overcoming this
limitation by showing constant flow-cut gaps for some
directed graph families. Consequently we also develop
constant-factor approximation algorithms for certain di-
rected cut problems on these graphs.

1.1 Multi-commodity flow-cut gaps A multi-

commodity flow instance in an undirected graph G is
defined by two non-negative functions: c : EpGq Ñ R

and d : V pGq ˆ V pGq Ñ R. We refer to c and d as the
capacity and demand functions respectively. The maxi-

mum concurrent flow is the maximal value ε such that
for every u, v P V pGq, ε ¨ dpu, vq can be simultaneously
routed between u and v, without violating the edge ca-
pacities. We refer to this value as maxflowpG, c, dq.

For every S Ď V pGq, the sparsity of S is defined as
follows:

ř

pu,vqPEpGq cpu, vq|1Spuq ´ 1Spvq|
ř

u,vPV pGq dpu, vq|1Spuq ´ 1Spvq| ,

where 1S : V pGq Ñ t0, 1u is the indicator variable
for membership in S. The sparsity of a cut is a
natural upper bound for maxflowpG, c, dq. The multi-

commodity max-flow min-cut gap for G, denoted by
gappGq, is the maximum gap between the value of
the flow and the upper bounds given by the sparsity
formula, over all multi-commodity flow instances on G.
The flow-cut gap on undirected graphs has been studied
extensively, and several upper and lower bounds have
been obtained for various graph classes. The gap is
referred to as the uniform multi-commodity flow-cut
gap for the special case where there is a unit demand
between every pair of vertices. Leighton and Rao [14]
showed that the uniform flow-cut gap is Θplog nq in
undirected graphs. Subsequently Lineal, London and
Rabinovich [15] showed that the non-uniform multi-
commodity flow-cut gap for the Sparsest Cut problem
with k demand pairs is upper bounded by Oplog kq.
Besides these there are various studies of the flow-cut
gap for specific graph families. A central conjecture
posed by Gupta, Newman, Rabinovich, and Sinclair in
[9] asserts the following.
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Conjecture 1. (GNRS Conjecture [9]) For every

family of finite graphs F , we have gappFq “ Op1q iff F

forbids some minor.

Conjecture 1 has been verified for the case of series-
parallel graphs [9], Op1q-outerplanar graphs [5], Op1q-
pathwidth graphs [13], and for some special classes of
planar metrics [18]. For graphs excluding any fixed
minor the flow-cut gap with k terminal pairs is known to
be Op1q for uniform demands and Oplog kq for arbitrary
demands [11].

For the case of directed graphs, the flow-cut gap
is defined in terms of the Directed Non-Bipartite
Sparsest Cut problem which is an asymmetric variant of
the Sparsest Cut problem, and is defined as follows. Let
G be a directed graph and let c : EpGq Ñ Rě0 be a ca-
pacity function. Let T “ tps1, t1q, ps2, t2q, . . . , psk, tkqu
be a set of terminal pairs, where each terminal pair
psi, tiq has a non-negative demand dempiq. A cut in G is
a subset of directed edges of EpGq. For a cut S Ď EpGq
in G, let IS be the set of all indices i P t1, 2, . . . , ku
such that all paths from si to ti have at least one edge
in S. Let DpSq “ ř

iPIS
dempiq be the demand sepa-

rated by S. Let W pSq “ CpSq
DpSq be the sparsity of S.

The goal is to find the cut with minimum sparsity. The
LP relaxation of this problem corresponds to the dual
of the LP formulation of the directed maximum con-
current flow problem, and the integrality gap of this LP
relaxation is the directed multi-commodity flow-cut gap.
Hajiyaghayi and Räcke [10] showed an upper bound of
Op?

nq for the flow-cut gap. This upper bound on the
gap has been further improved by Agarwal, Alon and
Charikar to Õpn11{23q in [1]. For directed graphs of
treewidth t, it has been shown that the gap is at most
t logOp1q n by Mémoli, Sidiropoulos and Sridhar [16]. On
the lower bound side Saks et al. [17] showed that for gen-
eral directed graphs the flow-cut gap is at least k´ε, for
any constant ε ą 0, and for any k “ Oplog n{ log log nq.
Chuzhoy and Khanna showed a Ω̃pn 1

7 q lower bound for
the flow-cut gap in [8].

A natural generalization of the GNRS Conjecture
for directed graphs poses the question of whether the
multi-commodity flow-cut gap is Op1q for any family of
minor free directed graphs. In this paper, we provide the
first constant gaps for some non-trivial family of graphs.
Throughout this paper, when we refer to a directed
family of graphs we mean that it is obtained from
an undirected family of graphs by assigning arbitrary
directions to the edge sets. We state below our two
main results pertaining to the flow-cut gap.

Theorem 1.1. The uniform multi-commodity flow-cut

gap on directed series-parallel graphs and directed

bounded pathwidth graphs is Op1q.

Theorem 1.2. The non-uniform multi-commodity

flow-cut gap on directed cycles and directed trees is

Op1q.

1.2 Cut problems of directed graphs Better
bounds on the flow-cut gap typically also imply better
approximation ratios for solving cut problems. For the
Directed Non-Bipartite Sparsest Cut problem the flow-
cut gap upper bounds of [10] and [1] are also accompa-
nied by Op?

nq and Opñ11{23q polynomial time approx-
imation algorithms respectively. Similarly for graphs of
treewidth t, a t logOp1q n polynomial time approximation
algorithm is also provided in [16].

Another closely related cut problem is the Directed
Multicut problem which is defined as follows. Let G

be a directed graph and let c : EpGq Ñ Rě0 be a ca-
pacity function. Let T “ tps1, t1q, ps2, t2q, . . . , psk, tkqu
be a set of terminal pairs. A cut in G is a subset of
EpGq. The capacity of a cut S is cpSq “ ř

ePS cpeq.
The goal is to find a cut separating all terminal pairs,
minimizing the capacity of the cut. This problem is
NP-hard. An Op

?
n log nq approximation algorithm for

Directed Multicut was presented by Cheriyan, Karloff
and Rabani [6]. Subsequently an Õpn2{3{OPT1{3q-
approximation was given due to Kortsarts, Kortsarz and
Nutov [12]. Finally [1] also gives an improved Õpn11{23q-
approximation algorithm for this problem. Again for
graphs of treewidth t a t logOp1q n approximation algo-
rithm was also shown in [16].

On the hardness side [7] demonstrated
an Ωp logn

log logn
q-hardness for the Directed Non-

Bipartite Sparsest Cut problem and the Directed
Multicut problem under the assumption that NP Ę
DTIME pnlognOp1q q. This was further improved by

them in a subsequent work [8] to obtain an 2Ωplog1´ε nq-
hardness result for both problems for any constant
ε ą 0 assuming that NP Ď ZPP .

Our main results for these problems are the follow-
ing theorems.

Theorem 1.3. There exists a polynomial time Op1q-
approximation algorithm for the Uniform Directed

Sparsest Cut problem on series parallel graphs and

graphs of bounded pathwidth.

Theorem 1.4. There exists a polynomial time

Op1q-approximation algorithm for the Directed

Multicut problem on series parallel graphs and graphs

of bounded pathwidth.

We remark that in the above results the running
time in the case of graphs of pathwidth k is nOp1q. That
is, the running time does not depend on k. Typically,
algorithms for graphs of pathwidth k have running
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time of the form either fpkqnOp1q, or nfpkq, for some
function f , due to the use of dynamic programming.
Our algorithms are based on LP relaxations, and thus
avoid this overhead.

1.3 Quasimetric spaces and embeddings
Random quasipartitions. A Quasimetric space

is a pair pX, dq where X is a set of points and d :
X ˆ X Ñ R` Y t`8u, that satisfies the following two
conditions:

(1) For all x, y P X, dpx, yq “ 0 iff x “ y.

(2) For all x, y, z P X, dpx, yq ď dpx, zq ` dpz, yq.

The notion of random quasipartitions was intro-
duced in [16]. A quasipartition is a transitive reflexive
relation. Let M “ pX, dq be a quasimetric space. For
a fixed r ě 0, we say that a quasipartition Q of M is
r-bounded if for every x, y P X with px, yq P Q, we have
dpx, yq ď r. Let D be a distribution over r-bounded
quasipartitions of M . We say that D is r-bounded. Let
β ą 0. We say that D is β-Lipschitz if for any x, y P X,
we have that

Pr
P„D

rpx, yq R P s ď β
dpx, yq

r
.

Given a distribution D over quasipartitions we
sometimes use the term random quasipartition (with
distribution D) to refer to any quasipartition P sampled
from D. We consider the quasimetric space obtained
from the shortest path distance of a directed graph.
Mémoli, Sidiropoulos and Sridhar in [16] find an Op1q-
Lipschitz distribution over r-bounded quasipartitions of
tree quasimetric spaces. They also prove the existence
of a Opt log nq-Lipschitz distribution over r-bounded
quasipartitions for any quasimetric that is obtained
from a directed graph of treewidth t.

Our main results for finding Lipschitz quasiparti-
tions are the following theorems.

Theorem 1.5. Let G be a directed graph of treewidth

2 with a non-negative weight function on the edges. Let

M “ pV pGq, dGq denote the shortest-path quasimetric

space of G. Then for all r ą 0, there exists some Op1q-
Lipschitz distribution over r-bounded quasipartitions of

M .

Theorem 1.6. Let G be a directed graph of of path-

width k with a non-negative weight function on the

edges. Let M “ pV pGq, dGq denote the shortest-path

quasimetric space of G. Then for all ∆ ą 0, there ex-

ists some 2Opk2q-Lipschitz distribution over ∆-bounded

quasipartitions of M .

Random embeddings. Before stating our em-
bedding results, we first need to introduce some nota-
tions and definitions. LetM “ pX, dq andM 1 “ pX 1, d1q
be quasimetric spaces. A mapping f : X Ñ X 1 is
called an embedding of distortion c ě 1 if there ex-
ists some α ą 0, such that for all x, y P X, we have
dpx, yq ď α ¨ d1pfpxq, fpyqq ď c ¨ dpx, yq. We say that f

is isometric when c “ 1. Let D be a distribution over
pairs pM 1, fq, where f : X Ñ X 1. We say that D is a
random embedding of distortion c ě 1 if for all x, y P X,
the following conditions are satisfied:

(1) PrpM 1,fq„Drd1pfpxq, fpyqq ě dpx, yqs “ 1.

(2) EpM 1,fq„Drd1pfpxq, fpyqqs ď c ¨ dpx, yq.

Directed ℓ1 (Charikar et al. [4]) The directed
ℓ1 distance between two points x and y is given by
dℓ1px, yq “ ř

i

|xi ´ yi| ` ř

i

|xi| ´ ř

i

|yi|.
The following theorems are our main results for

random embeddings.

Theorem 1.7. Let G be a directed cycle and let M “
pV pGq, dGq be the shortest-path quasimetric space of G.

Then M admits a constant-distortion embedding into

directed ℓ1. Moreover the embedding is computable in

polynomial time.

Theorem 1.8. Let G “ pV,Eq be a directed tree, and

let X “ pV, dq be the quasimetric induced by G. Then

X embeds into directed ℓ1 with constant distortion.

Limitations. We further discuss some limitations
of methods that were developed for undirected graphs.
Klein, Plotkin, and Rao in [11] introduced the notion of
random partitions for undirected graphs. In Section 8,
we show that this method can not be used or generalized
for the case of directed graphs. Furthermore, we
complete our paper with a lower bound result that is
stated in the following theorem.

Theorem 1.9. There exists a directed cycle G “ pV,Eq
such that any non-contracting random embedding of G

into directed trees has distortion Ωpnq.

1.4 Organization In Sections 3 and 4, we provide ef-
ficient algorithms for computing random quasipartitions
for directed graphs of treewidth 2 and bounded path-
width graphs respectively. In Section 5, we describe an
algorithm for computing an Op1q-distortion embedding
of the directed cycles into directed ℓ1. In Section 6, we
provide an algorithm for embedding directed trees into
directed ℓ1 with distortion one. In Section 7 we discuss
the applications to directed cut problems. In Section
8 we discuss the limitations of random partitions for
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the directed case, and finally in Section 9 we provide a
lower for non-contracting embeddings of directed cycle
into directed trees.

2 Notation and preliminaries

We now introduce some notation that will be used
throughout the paper.

Treewidth and pathwidth A tree (resp. path)
decomposition of an undirected graph G, is a tree (resp.
path) T “ pX,F q where X “ tA1, A2, . . . , Amu is the
set of vertices, and each vertex is a subset of V pGq such
that:

1. A1 Y . . . Y Am “ V pGq.

2. For all px, yq P EpGq there exists Ai P X such that
x, y P Ai.

3. Let x P V pGq and Ap, Aq P X, with x P Ap and
x P Aq. For all Ai P X such that Ai is in the unique
path from Ap to Aq in T we have that x P Ai.

The width of the tree decomposition is given by

max
iPt1,...,mu

|Ai| ´ 1

The treewidth (resp. pathwidth) of G denoted by
twpGq is the minimum width over all tree (resp. path)
decompositions of G.

Treewidth and pathwidth of directed graphs.
From any directed graphG, we can obtain an undirected
graph GUN by ignoring the edge directions and removing
parallel edges until none remain. More formally, let
G be a directed graph. We can obtain an undirected
graph GUN as follows. We set V pGUNq “ V pGq, and
EpGUNq “ ttu, vu : pu, vq P EpGq _ pv, uq P EpGqu.

We say that G is a directed graph of treewidth k

(resp. pathwidth k) if its underlying undirected graph
GUN has treewidth k (resp. pathwidth k), for some
k ě 1. Similarly, we say that G is a directed tree
(resp. directed cycle) if GUN is a tree (resp. cycle).

Directed cut metrics and 0-1 quasimetrics
(Charikar et al. [4]) Given a set X and a subset
S Ă X, the corresponding directed cut metric distance
for any pair of elements u, v P X is given by,

dSpx, yq “
"

1 if x P S, y R S;
0 otherwise ;

A 0-1 Quasimetric space is a pair pX, dq where for
all u, v P X we have that dpu, vq “ 0 or dpu, vq “ 1
and for all u, v, w P X we have that dpu,wq ď dpu, vq `
dpv, wq.

3 Lipschitz quasipartitions of treewidth-2
directed graphs

In this Section we provide a proof for Theorem 1.5. Note
that since all series-parallel graphs have treewidth at
most 2 this result automatically holds for any series-
parallel graph. We present an efficient algorithm for
computing a random quasipartition of a directed graph
of treewidth 2. We begin by describing some special
type of graphs, which we refer to as trees of hexagons.
In Subsection 3.1, we show that any weighted digraph
G of treewidth 2 admits an isometric embedding into a
weighted digraph G1 whose underlying undirected graph
G1UN is a tree of hexagons. We then further show in
Subsection 3.2 how to preprocess G1 such that it can be
inductively constructed via a sequence of either slack or
tight paths similar to [9]. Finally in Subsection 3.3, we
present the algorithm for computing the random quasi-
partition, and we analyze the correctness of the algo-
rithm. The following Lemma justifies our embeddings.

Lemma 3.1. Let G, G1 be weighted directed graphs such

that G admits an embedding into G1 with distortion c ě
1 given by the mapping f : V pGq Ñ V pG1q. Further let

α ą 0 be the scaling factor such that for all x, y P V pGq
we have dGpx, yq ď α ¨dG1 pfpxq, fpyqq ď c ¨dGpx, yq. Let

the shortest path quasimetric induced by G and G1 be

denoted by MG “ pV pGq, dGq and MG1 “ pV pG1q, dG1 q
respectively. Let r, β ą 0 and let DG1 be a β-Lipschitz

distribution over r
α

bounded quasipartitions of MG1 .

Then there exists a cβ-Lipschitz distribution DG over r-

bounded quasipartitions of MG. Furthermore given DG1 ,

DG can be computed in polynomial time.

Proof. We can obtain DG as follows. First we observe
that every quasipartition Q1 of MG1 induces a quasi-
partition Q of MG in the following manner. For all
x, y P V pGq px, yq P Q iff pfpxq, fpyqq P Q1. It is easy
to verify that Q is also a transitive relation. Now DG

is chosen such that Q P sup pDGq iff Q1 P sup pDG1 q and
for all such Q,Q1,

Pr
P„DG

rP “ Qs “ Pr
P„DG1

rP “ Q1s

It remains to show that DG is a cβ-Lipschitz dis-
tribution over r-bounded quasipartitions of MG. First
we observe that since all Q1 P sup pDG1 q are r

α
-bounded

and dGpx, yq ď α ¨ dG1 pfpxq, fpyqq it follows that all
Q P sup pDGq are r-bounded. Next we have that for all
x, y P V pGq,
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Pr
Q„DG

rpx, yq R Qs “

Pr
Q1„DG1

rpfpxq, fpyqq R Q1s ď

β
dG1 pfpxq, fpyqq

r{α ď

cβdGpx, yq
r

3.1 Embedding into trees of hexagons First we
describe 2 families of undirected graphs that we call
trees of triangles and trees of hexagons. Given an
undirected tree T “ pX ,Fq, we can construct an
undirected graph GT as follows. For each vertex v P X

we add a cycle Cv of length 3 (resp. 6) to GT . For all
tu, vu P F we pick an arbitrary edge from Cu and an
arbitrary edge from Cv and identify them in GT . We
call the resulting graph GT a tree of triangles (resp.
tree of hexagons). It is easy to verify that T gives a
tree decomposition of GT of width 2 (resp. 5) where
v P X corresponds to the set of vertices in V pCvq. As
before we call a digraph G a directed tree of hexagons
(resp. directed tree of triangles) if GUN is a tree of
hexagons (resp. tree of triangles). Now let G be a
weighted directed graph of treewidth 2. In the following
paragraphs we are going to give an isometric embedding
of G into some weighted digraph G1, where G1UN is a tree
of hexagons.

It is known that any undirected graph of treewidth
2 can be constructed as follows. Start with a single edge
and sequentially perform the following operation. Pick
an existing edge e “ tu, vu. Add a new vertex x and
edges tx, uu and tx, vu. Let Γ “ pu, x, vq be the added
path. We say that e is the parent of Γ. It is clear that at
any step after the first one, we have a tree of triangles.
Finally, after the necessary number of such steps, from
the resulting tree of triangles remove a subset of edges.
This implies that GUN can be obtained by removing a
subset of edges from a tree of triangles G∆ as described
in the above procedure. Therefore we have that GUN

is a sub-graph of the tree of triangles G∆. Let T∆ be
the tree decomposition of width 2 of G∆ induced by the
above construction.

We construct a new graph G1 as follows. We start
with G∆ and modify it in the following fashion. For all
A P V pT∆q we consider the triangle G∆rAs and proceed
as follows. Let u, v, w be the vertices of G∆rAs. We
duplicate each vertex of G∆rAs and add them to V pG1q;
that is for every v P V pG∆rAsq, we have v1, v2 P V pG1q.
This implies a mapping f : V pG1q Ñ V pGq where
fpv1q “ fpv2q “ v. Every triangle G∆rAs corresponds
to a hexagon in G1UN, where u1, u2, v1, v2, w1, w2 are the

Figure 1: Hexagons

vertices of the hexagon. For the edges tu, vu, tv, wu,
and tw, uu in EpG∆q, we have pu1, v2q, pv2, u1q, pw2, v1q,
pv1, w2q, pu2, w1q, and pw1, u2q in EpG1q. Furthermore,
for every v P V pG∆q, we have pv1, v2q and pv2, v1q in
EpG1q where fpv1q “ fpv2q “ v.

Now for every directed edge px, yq P EpG1q we set
the weight of px, yq to be equal to dGpfpxq, fpyqq or
8 if there is no path from fpxq to fpyq in G. From
the construction it is easy to verify that for every edge
pa, bq in EpGq we have that EpG1q contains one of
pa1, b2q or pa2, b1q. Therefore it follows that G embeds
isometrically into G1 when we map each vertex v in
V pGq to an arbitrarily chosen duplicate v1 or v2 in
V pG1q. The following Lemma is immediate by the above
discussion.

Lemma 3.2. (Embedding into a tree of hexagons)
There exists a polynomial-time algorithm which given a

directed graph G of treewidth 2, computes an isometric

embedding of G into some directed tree of hexagons G1.

For any triangle tu,w, vu in G∆ where the edge
e “ tu, vu is the parent of the path Γ “ tu,w, vu, let the
corresponding hexagon in G1 be tu1, u2, w1, w2, v1, v2u.
We call the directed edge e1 “ pu1, v2q the parent

edge of the directed path Γ1 “ pu1, u2, w1, w2, v1, v2q
and of every directed edge in it. Similarly we call
e2 “ pv2, u1q the parent edge of the directed path Γ2 “
tv2, v1, w2, w1, u2, u1u and every directed edge in it. This
parent relation induces a rooted tree decomposition of
G1UN , T 1 of width 5. Let e1 “ pu1, v1q be the parent
edge of a path Γ1. For any edge e0 “ pu0, v0q in Γ1 we
define the tail of e0 denoted by tailpu0, v0q, to be the
subpath of Γ1 from u1 to v0.

3.2 Slack and tight paths Let G be the input
graph, and let w be a non-negative weight function
on the edges of G. By Lemmas 3.1 and 3.2 we may
assume w.l.o.g. that G is a directed tree of hexagons,
and we have a tree decomposition pT ,X q of GUN of
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Figure 2: Complementary path

width 5, rooted at some B˚ P X . For any two vertices
x, y P V pGq, we pick a unique shortest path from x to y

denoted by pxy to use in our algorithm. Note that by the
construction and definition of directed tree of hexagons,
there exists a directed path from x to y in G for any two
vertices. We always pick pxy to be a shortest path with
the fewest number of edges. If there are multiple such
paths we pick one satisfying the following condition: For
any x1, y1 P V ppxyq such that x1 is in the subpath of pxy
from x to y1, we have that px1y1 is a subpath of pxy.
For a path P , let lenpP q denote the length of P . Let
e P EpGq. Similar to [9], for any child path Γ of e, we
say that Γ is slack if lenpΓq ě 2wpeq, and we say that Γ
is tight if lenpΓq “ wpeq.

Let x P B˚ be an arbitrary vertex. Let l : X Ñ Zě0

be a level function where lpB˚q “ 0, and for any other
B P X , lpBq denotes the length of the shortest path
from B˚ to B in T . Let B1, B2, . . . , Bk be the leaf
vertices of T . For every i P 1, 2, . . . , k, let li P Bi be
an arbitrary vertex in G. For every i P 1, 2, . . . , k, let
Pi be the unique shortest paths in T from B˚ to Bi.
Let pi “ pxli and let qi “ plix. For every pi, we define
the complementary path p̂i as follows. Let Pi be the
path of hexagons corresponding to pi. Let P 1

i be the
subgraph of Pi obtained by deleting all the edges of pi,
i.e. P 1

i “ Pizpi. We set p̂i to be the unique path from
x to li in P 1

i (See Figure 2). For every pi, we define the
flattened complementary graph pi as follows. Start with
pi “ p̂i, and for every tight path Γ with a parent edge
e P pi add Γ to pi and repeat until we don’t add any
new paths. We can similarly define the complementary

path q̂i and the flattened complementary graph qi for
every qi.

Let P be a path in G. We say that P is down-

monotone if when traversing P we visit the bubbles of T
in non-decreasing distance from the root of T . Similarly,
we say that P is up-monotone if when traversing P we
visit the bubbles of T in non-increasing distance from

the root of T .
We say that some tree of hexagons G is canonical if

for all e P EpGq, every child of e is either tight or slack.
We first show that any directed graph of treewidth 2
admits a constant-distortion embedding into a canonical
directed tree of hexagons. This allows us to focus on
canonical graphs.

Lemma 3.3. (Embedding into a canonical graph)
Given a directed tree of hexagons G, we can compute

in polynomial time some embedding of G into some

canonical tree of hexagons G1, with distortion at most

2.

Proof. The algorithm proceeds by inductively modify-
ing the graph G. We intially mark all edges as unre-

solved. We mark all edges with no parent as resolved.
While there are unresolved edges, we pick some un-
resolved edge e, whose parent e1 is resolved, and let
Γ be the child path of e1 that contains e. If Γ is
neither slack nor tight then for all e P EpΓq, we set
wpeq “ wpeq ¨ wpe1q{lenpΓq. We mark all edges in Γ as
resolved. We set G1 be the graph obtained at the end of
this inductive process. It is immediate the G1 is canon-
ical. At each iteration the number of unresolved edges
decreases by at least one, so the algorithm terminates
in polynomial time. By the definition of tight and slack
paths, it follows that the length of each edge changes by
at most a factor of 2. Thus the distortion of the induced
embedding is at most 2, which concludes proof.

3.3 Computing a random quasipartition The
algorithm for computing a random quasipartition is as
follows. The input consists of some directed tree of
hexagons G, a non-negative weight function w on the
edges of G, and some r ą 0. The output is a random r-
bounded quasipartition of the shortest-path quasimetric
space of G.

Input: A directed canonical tree of hexagons G, and a
tree decomposition of GUN , pT ,X q rooted at some
B˚ P X . and r ą 0.

Output: Random quasipartition of the shortest-path
quasimetric space of G, pM,dGq.

Initialization. Set G˚ “ G and Q “ EpGq.

Step 1. Let x P B˚ be an arbitrary vertex. Pick
z P r0, rs uniformly at random.

Step 2. For all pu, vq P EpG˚q remove pu, vq from Q if
dGpx, vq ą i ¨ r ` z and dGpx, uq ď i ¨ r ` z for some
integer i ě 0.
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Step 3. For all pu, vq P EpG˚q remove pu, vq from Q

if dpj
px, vq ą i ¨ r ` z and dpj

px, uq ď i ¨ r ` z for
some integer i ě 0 and some integer j P t0, . . . , ku.

Step 4. For all pu, vq P EpG˚q that are removed from
Q in Step 3 do the following:

Step 4.1. For each uncut child path Γ “
pu,w, q, o, p, vq of pu, vq remove one of the
edges pu,wq, pw, qq, pq, oq, po, pq or pp, vq from

Q, chosen randomly with probability dpu,wq
lenpΓq ,

dpw,qq
lenpΓq ,

dpq,oq
lenpΓq ,

dpo,pq
lenpΓq and dpp,vq

lenpΓq respectively.

Step 4.2. Recursively perform Step 4.1 on the
removed edge.

Step 5. For all pu, vq P EpG˚q remove pu, vq from Q

if dpv, xq ď i ¨ r ` z and dpu, xq ą i ¨ r ` z for some
integer i ě 0.

Step 6. For all pu, vq P EpG˚q remove pu, vq from Q

if dqj pv, xq ď i ¨ r ` z and dqj pu, xq ą i ¨ r ` z for
some integer i ě 0 and some j P t0, . . . , ku.

Step 7. For all pu, vq P EpG˚q that are removed from
Q in step 6 do the following:

Step 7.1. For each uncut child path Γ “
pu,w, q, o, p, vq of pu, vq remove one of the
edges pu,wq, pw, qq, pq, oq, po, pq or pp, vq from

Q, chosen randomly with probability dpu,wq
lenpΓq ,

dpw,qq
lenpΓq ,

dpq,oq
lenpΓq ,

dpo,pq
lenpΓq and dpp,vq

lenpΓq respectively.

Step 7.2. Recursively perform Step 7.1 on the
removed edge.

Step 8. For any pu, vq P Q, if dpu, vq ą r
10
, remove

pu, vq from Q.

Step 9. Enforce transitivity on Q; that is, for all
u, v, w P V pGq if pu, vq P Q and pv, wq P Q then
add pu,wq to Q.

This concludes the description of the algorithm for
computing a random quasipartition.

Analysis. We now analyze the performance of the
above algorithm. We begin by showing that the prob-
ability that an edge is removed from the quasipartition
is small. This statement is shown by considering sepa-
rately all possible steps of the algorithm where an edge
can be removed.

Lemma 3.4. For all pu, vq P EpGq, we have

Prrpu, vq is removed from Q in Step 2s ď dpu,vq
r

.

Proof. The edge pu, vq is removed from Q in Step
2 when dpx, uq ď z ` ir and dpx, vq ą z ` ir for
some integer i ě 0. By the triangle inequality this
implies that Prrpu, vq is removed from Q in Step 2s ď
dpx,vq´dpx,uq

r
ď dpu,vq

r
, as required.

Lemma 3.5. For all pu, vq P EpGq, we have

Prrpu, vq is removed from Q in step 5s ď dpu,vq
r

.

Proof. The proof of this case is similar to the proof of
Lemma 3.4.

Lemma 3.6. Let pu, vq P EpGq. Suppose that pu, vq P
p̂i and pu, vq P p̂j for some i, j P t0, . . . , ku, then

dpi
px, uq “ dpj

px, uq and dpi
px, vq “ dpj

px, vq.

Proof. Let τ be the hexagon containing u and v. Let
py, oq be the parent edge of pu, vq. Note that it is
possible that y “ u or o “ v. Since any complement
subpath from x to pu, vq must end with the unique
subpath tailpu, vq, it follows that tailpu, vq P p̂i and
tailpu, vq P p̂j . The fact that the complement contains y
also means that pxo is contained in pi and pj . Therefore
we have that p̂i and p̂j share the same sub-path from
x to y. Combined with the fact that tailpu, vq P p̂i and
tailpu, vq P p̂j this implies that p̂i and p̂j share the same
sub-path from x to v ending with the edge pu, vq.

Since p̂i and p̂j share the same sub-path from x to
v ending with the edge pu, vq we have that dpi

px, uq “
dpj

px, uq and dpi
px, vq “ dpj

px, vq.

Lemma 3.7. Let i P t0, . . . , ku. Suppose that pi tra-

verses the parent edge pu, vq of a tight path Γ. Then pi
does not visit any vertex in Γ other than u and v.

Proof. Let Γ “ pu, o, w, f, y, vq. Since pu, vq is the
parent edge of a tight path pu, o, w, f, y, vq we have that
puy “ pu, o, w, f, yq. Suppose pi visits some vertex
in Γ other than u and v we have that pi intersects
the shortest path puy more than once which is a
contradiction.

Lemma 3.8. Let pu, vq P EpGq. Suppose that pu, vq P
pi, pu, vq R p̂i and pu, vq P p̂j for some i, j P t0, . . . , ku,
then dpi

px, uq “ dpj
px, uq and dpi

px, vq “ dpj
px, vq.

Proof. Let pt, zq P p̂i be the unique ancestor edge of
pu, vq that is contained in p̂i. We have that pt, zq is the
ancestor edge of a tight path that contains pu, vq. This
implies that ptv P pi. Now let pb, cq be the parent edge
of pt, zq. This implies that pxc Ă pi.

Let us suppose that the parent edge of pu, vq is
py, oq. This implies that pj contains o. Since py, oq
is the parent edge of a tight path we also have that
pyv “ tailpu, vq. This implies that ptv “ pty Y tailpu, vq.
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From Lemma 3.7 we have that pj does not contain py, oq.
Recursively applying Lemma 3.7 we have that pj does
not intersect with ptailpt, zqzpt, zqq Y ptv. Therefore we
have that pxc Ă pj and that ptailpt, zqzpt, zqq Y ptv Ă
p̂j . Since pxc is common to both pi and pj , we have
that pi and pj share the same subpath from x to b.
Moreover they both also contain ptailpt, zqzpt, zqq Y ptv
which concludes the proof.

Lemma 3.9. Let pu, vq P EpGq. Suppose that pu, vq P
pi and pu, vq P pj for some i, j P t0, . . . , ku, then

dpi
px, uq “ dpj

px, uq and dpi
px, vq “ dpj

px, vq.

Proof. Let pt, zq P p̂i be the unique ancestor edge of
pu, vq that is contained in p̂i. Let pb, cq P p̂j be the
unique ancestor edge of pu, vq that is contained in p̂j .
W.l.o.g. let pt, zq be the ancestor edge of a tight path
that contains pb, cq. From Lemma 3.8 we have that
dpi

px, bq “ dpj
px, bq. Since pb, cq is an ancestor edge of a

tight path that contains pu, vq it follows that pi and pj
both contain pbv. This implies that dpi

px, uq “ dpj
px, uq

and dpi
px, vq “ dpj

px, vq concluding the proof.

Lemma 3.10. For all pu, vq P EpGq, we have

Prrpu, vq is removed from Q in Step 3s ď dpu,vq
r

.

Proof. From Lemmas 3.6, 3.8 and 3.9 we have that
pu, vq is only removed when, for some integer i ě
0, and any j P t0, . . . , ku such that pu, vq is in pj ,
we have that dpj

px, uq ď z ` ir and dpj
px, vq ą

z ` ir . By the triangle inequality, this im-
plies that Prrpu, vq is removed from Q in Step 3s ď
dpx,vq´dpx,uq

r
ď dpu,vq

r
, as required.

Lemma 3.11. For all pu, vq P EpGq, we have

Prrpu, vq is removed from Q in Step 6s ď dpu,vq
r

.

Proof. The proof of this case is similar to the proof of
Lemma 3.10.

Lemma 3.12. For all pu, vq P EpGq, we have

Prrpu, vq is removed from Q in Step 4s ď 2dpu,vq
r

.

Proof. We prove this by induction. For the base case
suppose that pu, vq is an edge in B˚ then it has no
parent edge and therefore the assertion is immediate.
Otherwise let e be the parent edge of a child path Γ
containing pu, vq and assume, by the inductive hypoth-

esis, that Prrpeq is removed from Q in Step 4s ď 2dpeq
r

.
There are two cases:

Case 1: Suppose that Γ is a tight child path of e. Then

we have

Prrpu, vq is removed from Q in Step 4s

“ Prrpeq is removed from Q in Step 4s ¨ dpu, vq
dpeq

ď 2
dpu, vq

r

Case 2: Suppose that Γ is a slack child path of e. Then
we have

Prrpu, vq is removed from Q in Step 4s

“ Prrpeq is removed in Step 4s ¨ dpu, vq
lenGpΓq

` Prrpeq is removed in Step 3s ¨ dpu, vq
lenGpΓq

ď 2
dpeq
r

¨ dpu, vq
2dpeq ` dpeq

r
¨ dpu, vq
2dpeq

ď 2
dpu, vq

r

Thus in either case the assertion is satisfied, concluding
the proof.

Lemma 3.13. For all pu, vq P EpGq, we have

Prrpu, vq is removed from Q in Step 7s ď Op1qdpu,vq
r

.

Proof. The proof for this is similar to the proof of
Lemma 3.12.

Lemma 3.14. For all pu, vq P EpGq, we have

Prrpu, vq is removed from Q in Step 8s ď 10dpu,vq
r

.

Proof. Since only edges of length greater than r
10

are
removed in Step 8 we have that

Prrpu, vq is removed from Q in step 8s ď
1 ă

10
dpu, vq

r
.

Lemma 3.15. For all pu, vq P EpGq, we have

Prrpu, vq is removed from Qs ď 18dpu,vq
r

.

Proof. The assertion follows by combining Lemmas 3.4,
3.10, 3.12, 3.5, 3.11, 3.13 and 3.14 using the union
bound.

Finally we show that Q is 6r-bounded.

Lemma 3.16. Let e “ pu, vq P Q where u P Bu and

v P Bv. Suppose that Bu is in the path from B˚ to Bv

in T . If pu, vq P Q then there exists a monotone-down

path P “ ta1 “ u, a2, . . . , at “ vu in G, where for all

i P t1, 2, . . . , t ´ 1u we have pai, ai`1q P Q.
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Proof. Since pu, vq P Q, we have that at the beginning
of step 9 there must have been a path P0 “ ta1 “
u, a2, . . . , at “ vu such that for all i P t1, 2, . . . , t ´ 1u
we have pai, ai`1q P Q. If P0 is monotone-down, we
are done. Otherwise, we start with P0 and modify it to
obtain the desired P . Suppose that P0 is not monotone-
down. Let X “ pBu, ..., Bvq be the shortest path from
Bu to Bv in T . Let A “ YaPBi,BiPV pXqa. Since P0

is not monotone-down, there exists ai P V pP0q such
that ai R A. Let m P t1, 2, . . . , tu be the smallest
number such that am has such property. Let C 1

m,0 be
the hexagon containing am´1 and am´2 (See Figure 3).
Let as be the other neighbor of am´1 in C 1

m,0, and
let e0 “ pam´1, asq. Let C 1

m,1 be the next hexagon
traversed by P0 after C 1

m,0, and let e1 P C 1
m,1 be the

other edge in C 1
m,1 which is not traversed by P0. We

similarly define C 1
m,2, . . . , C

1
m,l, and e2, . . . , el´1.

The main idea is that we are able to replace the sub-
path of P0 from am´1 to as with e0. Suppose that we are
not able to do such replacement, and thus e0 is removed
in the algorithm. Let Γ “ pam´1, am, am`1, as´1, asq. Γ
is a child of e0. First suppose that Γ is tight. In this
case, since e0 is removed, at least one of the edges of
Γ should be removed after step 3, and thus e1 should
be removed by the algorithm. Second case is where Γ
is a slack. In this case, since e0 is removed, at least
one of the edges of Γ should be removed after step 4,
and again we have that e1 should be removed by the
algorithm. Using the same argument inductively, we
get that el´1 should be removed by the algorithm. But
note that none of the edges of the child of el´1 in C 1

m,l

are removed, which is a contradiction. Therefore, e0 is
not removed by the algorithm and we can replace the
subpath of P0 from am´1 to as with e0. Using the same
argument, we can modify P0 such that it only traverses
vertices in A, as desired.

Lemma 3.17. Let e “ pu, vq P Q where u P Bu and

v P Bv. Suppose that Bv is in the path from B˚ to Bu

in T . If pu, vq P Q then there exists a monotone-up

path P “ ta1 “ u, a2, . . . , at “ vu in G, where for all

i P t1, 2, . . . , t ´ 1u we have pai, ai`1q P Q.

Proof. A similar argument as in Lemma 3.16 applies
here.

Lemma 3.18. Let e “ pu, vq P Q where u P Bu and

v P Bv. Suppose that Bu is in the path from B˚ to Bv

in T . If pu, vq P Q then we have dpu, vq ď 3r.

Proof. Let P “ ta1 “ u, a2, . . . , at “ vu be the
monotone-down path obtained by Lemma 3.16. Sup-
pose that the path from B˚ to Bv in T , is a sub-
path of Pj for some j P t1, 2, . . . , ku, and let pj be

Figure 3: The path in Lemma 3.16.

the corresponding path in G. Let f “ minaiPPXpj
i,

and let l “ maxaiPPXpj
i. Let P 1 “ ta1, a2, . . . , afu,

P 2 “ taf , af`1, . . . , alu, and P3 “ tal, al`1, . . . , atu.
For any i P t1, 2, . . . , f´1u we have that pai, ai`1q is not
removed after step 4. This implies that dpa1, af q ď r.
With a similar argument, we can show that dpal, atq ď r.
Finally, for any i P tf, f ` 1, . . . , l ´ 1u we have that
pai, ai`1q is not removed after step 2, and thus we have
dpaf , alq ď r. Therefore by applying triangle inequality,
we get dpa1, atq ď 3r, as required.

Lemma 3.19. Let e “ pu, vq P Q where u P Bu and

v P Bv. Suppose that Bv is in the path from B˚ to Bu

in T . If pu, vq P Q then we have dpu, vq ď 3r.

Proof. A similar argument as in Lemma 3.18 applies
here.

Lemma 3.20. If e “ pu, vq P Q then we have dpu, vq ď
6r.

Proof. Since pu, vq P Q, we have that at the beginning
of step 8 there must have been a path P “ ta1 “
u, a2, . . . , at “ vu such that for all i P t1, 2, . . . , t´1u we
have pai, ai`1q P Q. Suppose that u P Bu and v P Bv

for some Bu, Bv P X . Let Bw P X be a vertex with
minimum level that has non-empty intersection with
V pP q. Let w P Bw X V pP q be an arbitrary vertex. By
the construction, we have that Bw is in the paths from
B˚ to Bv and Bu. Moreover, we have pu,wq P Q and
pw, vq P Q. Therefore, by Lemmas 3.18 and 3.19, we
have that dpu,wq ď 3r and dpw, vq ď 3r. This implies
that dpu, vq ď 6r, as desired.

Proof. [Proof of Theorem 1.5] The proof follows by
combining Lemmas 3.20 and 3.15.
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4 Lipschitz quasipartitions for bounded
pathwidth digraphs

In this Section we provide a proof for Theorem 1.6.
We present an efficient algorithm for computing a
random quasipartition of a directed graph with bounded
pathwidth. We begin by describing a specific family of
graphs of bounded pathwidth, which we refer to as path
of cliques. We show that any graph of pathwidth k

admits an isometric embedding into a path of k-cliques.
We then describe an algorithm to obtain a random
quasipartition of a path of k-cliques. Finally, we present
the analysis of the aforementioned algorithm.

4.1 Isometric embedding for bounded path-
width digraphs into path of cliques

Path of cliques We call a digraph G a path of k-

cliques if there exists a collection of pairwise disjoint
subsets of V pGq S1, S2, . . . Sl such that the following
conditions hold:

1) S1 Y S2 Y . . . Y Sl “ V pGq.

2) |Si| “ k for any integer i P t1, . . . , lu.

3) EpGq “ tpu, vq, pv, uq|u, v P Si YSi`1, i P t1, . . . , l´
1uu.
We refer to the subsets S1, S2, . . . Sl as cliques. We

call an edge pu, vq P EpGq a vertical edge if u, v P Si

for some i P t1, . . . , lu. We call all other edges in EpGq
horizontal edges. Furthermore if u P Si and v in Si`1

for some i P t1, . . . , lu we call the horizontal edge pu, vq
left horizontal. Otherwise if v P Si and u P Si`1 we call
the horizontal edge pu, vq right horizontal. Let p be a
directed path in G from u to v where u, v P V pGq. We
define dGppq “ dGpu, vq. Let x, y P V pGq be vertices
that are traversed by p in that order. Then we denote
the sub-path of p from x to y by ppx, yq. We define the
width of p to be max

iPt1,...,lu
|p X Si|.

Theorem 4.1. Let G be a weighted digraph of path-

width k. Then G embeds isometrically into a path of

pk ` 1q-cliques.

Proof. Let pX,P q denote a path decomposition of G

with pathwidth k where X “ tX1, . . . Xlu is a collection
of subsets of V pGq. First we observe that from the
definition of pathwidth we have that |Xi| ď k`1 for all
i P t1, . . . , lu. W.l.o.g we may assume that |Xi| “ k ` 1
for all i since otherwise we can add vertices to Xi from
either Xi`1 or Xi´1 and we know that there exists some
Xj such that |Xj | “ k ` 1. Now we construct a path of
cliquesH as follows. We initialize V pHq and EpHq to be
H. For all i and for each vertex u P V pGq in Xi we add
to V pHq a unique vertex ui. We call u the parent of ui in

G and denote this by u “ ppuiq. Next we define the sets
Si “ ui|u P Xi. Clearly S1 Y S2 Y . . . Y Sl “ V pHq.
Next for all i and for all x, y P Xi Y Xi`1 we add
the directed edges px, yq and py, xq to EpHq setting
their weights to be dGpppxq, ppyqq and dGpppyq, ppxqq
respectively. Now we are ready to define the isometric
mapping φ : V pGq Ñ V pHq. For each u P V pGq we
pick arbitrarily some v P V pHq such that ppvq “ u and
set φpuq “ v. This gives us the desired mapping. Now
we observe that every edge in H has weight equal to
the shortest path distance between the corresponding
parent vertices in G. This implies that distances don’t
contract in the embedding. Consider any directed path
q “ ta1, . . . , amu in G. For any u, v P V pHq such that
ppuq “ ppvq we have that there exist directed paths of
length 0 from u to v and from v to u. This follows
due to the fact that H is constructed from a path
decomposition of G. For the same reason it must also
be that for every directed edge pai, ai`1q in q there exist
u, v P V pHq such that ppuq “ ai and ppvq “ ai`1 and
u, v both belong to Xj for some j. This implies that
there is a corresponding directed edge pu, vq P EpHq.
Therefore there is a corresponding directed path in H

with the same length as q. So it follows that φ does not
dilate distances. Therefore φ is an isometric embedding.

4.2 Algorithm

Input: A graph G of pathwidth k ´ 1 and a corre-
sponding path of cliques B1, B2, ¨ ¨ ¨ , Bl, where for
each i P t1, 2, ¨ ¨ ¨ , lu we have |Bi| “ k.

Output: Random quasipartition Q of the shortest-
path quasimetric space of G.

Initialization. Set G˚ “ G, Q “ EpGq, and i “ 1.

Step 1. Pick z P r0, rs uniformly at random.

Step 2. Pick v1,i P B1 such that Bl is reachable from
v1,i in G˚ (There exists a directed path from v1,i
to Bl in G˚). Let si “ v1,i, and let ti P Bl be such
that ti is reachable from si. Let pi be a shortest
path from si to ti in G˚.

Step 3. For all pu, vq P EpG˚q remove pu, vq from Q if
dG˚ psi, vq ą j ¨ r ` z and dG˚ psi, uq ď j ¨ r ` z for
some integer j ě 0.

Step 4. For any pu, vq P pi, if pu, vq is horizontal in
G then delete pu, vq from G˚, and set i “ i ` 1. If
i ď k2, go back to Step 2.

Step 5. Set G˚ “ G, and i “ 1.

Step 6. Pick vl,i P Bl such that B1 is reachable from
vl,i in G˚ (There exists a directed path from vl,i to
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B1 in G˚). Let s1
i “ vl,i, and let t1

i P B1 be such
that t1

i is reachable from s1
i. Let qi be a shortest

path from s1
i to t1

i in G˚.

Step 7. For all pu, vq P EpG˚q remove pu, vq from Q if
dG˚ ps1

i, vq ą j ¨ r ` z and dG˚ ps1
i, uq ď j ¨ r ` z for

some integer j ě 0.

Step 8. For any pu, vq P qj , if pu, vq is horizontal in
G then delete pu, vq from G˚, and set i “ i ` 1. If
i ď k2, go back to Step 6.

Step 9. Remove every pu, vq P EpGq from Q with
dpu, vq ě r.

Step 10. Let G1 be the subgraph of G with V pG1q “
V pGq and EpG1q “ Q.

Step 11. Enforce transitivity on Q; that is, for all
u, v, w P V pGq if pu, vq P Q and pv, wq P Q then
add pu,wq to Q.

4.3 Analysis of the algorithm We call an edge
in G1 horizontal (resp. vertical) if the corresponding
edge in G is horizontal (resp. vertical). For all c P
t1, . . . , ku,i P t1, . . . , k2u and j P t1, . . . , k2u we define
Pc,i,j to be the set of all directed paths in G1 with width
c that do not traverse any horizontal edge in px and in
qy for all x ă i and y ă j and traverse at least one
horizontal edge in pi and qj .

Lemma 4.1. Let pu, vq P Q after Step 11 of the algo-

rithm. Then there exists a directed path from u to v in

G1.

Proof. We have that pu, vq P Q after Step 11 of the al-
gorithm. Combined with the fact that step 11 enforces
transitivity on Q this implies that there are two possi-
bilities. The first case is that pu, vq P EpGq and pu, vq
is not removed from Q by the algorithm in steps 3 or 7.
The other possibility is that it must have been that there
was a sequence of vertices a1 “ u, a2, . . . , am “ v such
that for all i ă m pai, ai`1q P EpGq and pai, ai`1q P Q

after step 9 of the algorithm. This implies that the cor-
responding directed edges are present in G1. Therefore
the directed path P “ ta1, . . . , amu is also present in
G1.

Lemma 4.2. Let e P EpGq be a horizontal edge. Then

there exists j P t1, 2, . . . , k2u such that either e P pj or

e P qj.

Proof. Let e “ pu, vq and w.l.o.g let u P Bi and v P Bi`1

for some i P t1, 2, . . . , lu. Since we delete horizontal
edges in step 4 and each pj begins at a vertex in B1 and
ends at a vertex in Bl it follows that each pj contains

a unique horizontal edge from Bi to Bi`1. Combined
with the fact that that there are exactly k2 directed
edges from Bi to Bi`1 for any i this implies that for all i
every horizontal edge from from Bi to Bi`1 is contained
in some pj . A similar argument can be used to show that
for all i every horizontal edge from from Bi to Bi´1 is
contained in some qj . This concludes the proof.

Lemma 4.3. For every pu, vq P EpGq, we have

Prrpu, vq is removed from Q by step 3s ď k2
dpu,vq

r
.

Proof. By the construction, an edge pu, vq is removed
from Q by step 3 if dG˚ psj , vq ą i¨r`z and dG˚ psj , uq ď
i¨r`z for some integer i ě 0. This means that each time
after running this step we have that pu, vq is removed

from Q with probabilty at most dpu,vq
r

. The algorithm
runs this step exactly k2 times, and thus we have

Prrpu, vq is removed from Q by step 3s ď k2
dpu,vq

r
, as

desired.

Lemma 4.4. For every pu, vq P EpGq, we have

Prrpu, vq is removed from Q by step 7s ď k2
dpu,vq

r
.

Proof. A similar argument as in Lemma 3.10 applies
here.

Lemma 4.5. For every pu, vq P EpGq, we have

Prrpu, vq is removed from Q by step 9s ď dpu,vq
r

.

Proof. If dpu, vq ă r, then pu, vq is not removed by step
9. Otherwise, pu, vq is removed from Q and we have

Prrpu, vq is removed from Q by step 9s “ 1 ď dpu,vq
r

.

Lemma 4.6. For every pu, vq P EpGq, we have

Prrpu, vq is removed from Qs ď p2k2 ` 1qdpu,vq
r

.

Proof. This follows immediately by Lemmas 4.3, 4.4,
and 4.5.

Now we show that Q is 2k
Op1q

r-bounded.

Lemma 4.7. Let u, v P V pGq and p P Pc,k2`1,k2`1 be

a directed path in G1 from u to v. Then dGpu, vq ď
pc ´ 1qr.

Proof. We have that p does not traverse any horizontal
edges in G1 that are in p1, . . . , pk2 or q1, . . . , qk2 . But
since all horizontal edges in G1 are either part of
p1, . . . , pk2 or part of q1, . . . , qk2 this implies that p

consists only of vertical edges of which there can be
at most c ´ 1 since each clique consists of at most k

vertices of which p can visit at most c since p has width
c. Since each edge in G1 has length at most r from step
9 of the algorithm it follows that dGppq ď pc ´ 1qr.
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Lemma 4.8. Let u, v P V pGq and i P t1, . . . , k2u such

that u and v are traversed by pi in that order. Suppose

there exists a path p from u to v that does not traverse

any horizontal edge of pj for all j ă i then dGpu, vq ď r.

Proof. The above lemma can be proved by considering
the ith iteration of step 3 of the algorithm. Since
p does not traverse any horizontal edge of pj for all
j ă i it follows that p is a path in G˚. However
since no edge of p is removed in step 3 this implies
that dG˚ psi, vq ´ dG˚ psi, uq ď r. This combined with
the fact that pi is a shortest path in G˚ implies that
dGpu, vq ď r.

Figure 4: The path p in Lemma 4.9.

Lemma 4.9. Let u, v P V pGq and p P Pc,i,j be a directed

path in G1 from u to v. Then dGpu, vq ď cOp2k2´i´jqr.

Proof. We prove this by induction. Lemma 4.7 will be
used as the base case. Suppose the statement is true
for directed paths in Pd,i,j ,Pc,z,j and Pc,i,o where d ă c,
z ą i, and o ą j. We denote by vleft and vright a pair
of leftmost and rightmost vertices traversed by p. More
precisely we pick a vertex vleft from Ba where a is the
smallest integer such that BaXp ‰ H. Similarly we pick
a vertex vright from Bb where b is the largest integer such
that Bb X p ‰ H. Suppose p traverses Ba before Bb,
then we pick vleft to be the first vertex in Ba visited by
p and we pick vright to be the last vertex in Bb visited
by p. Otherwise we pick vleft to be the last vertex in Ba

visited by p and we pick vright to be the first vertex in Bb

visited by p. Note that if c “ 1, then either vleft “ u and
vright “ v or vleft “ v and vright “ u. Consider the case
that p traverses vleft before vright (See figure 4). Then
we have that p “ ppu, vleftq Y ppvleft, vrightq Y ppvright, vq.
Next we observe that since the width of p is c and
the width of ppvleft, vrightq is at least 1 it follows that
ppu, vleftq and ppvright, vq have width at most c ´ 1.
Consider ppvleft, vrightq. Let u1 be the first vertex in
ppvleft, vrightq that intersects pi. Let v1 be the last vertex
in ppvleft, vrightq that intersects pi beyond u1. Suppose
ppv1, vrightq does not traverse any horizontal edges of pi

Figure 5: The sub-path of p in Lemma 4.9.

then we have that ppvleft, u1q and ppv1, vrightq are in Pd,z,o

for some integers d ď c,z ą i and o ě j. We also
have that ppu, vleftq, ppvright, vq P Pd,z,o for some integers
d ă c,z ě i and o ě j since ppvleft, vrightq has width
at least 1. So we can use the distance bounds from
the induction on ppvleft, u1q, ppv1, vrightq, ppu, vleftq, and
ppvright, vq. For ppu1, v1q we may bound the distance
using lemma 4.8. This gives us the required bound.
Suppose ppv1, vrightq traverses some horizontal edge of pi
then let u2 be the first vertex in ppvleft, vrightq traversed
after v1 that intersects pi. By the choice of v1 it must
be that u2 is a vertex traversed before u1 by pi. Let u1

belong to a clique Bt for some t P t1, . . . , lu. Now we
have that p traverses some vertex x1 P Bt after visiting
v1 and before visiting u2 since u2 is in a clique with a
lower index than u1. Let y1 P Bt be the last vertex
in Bt traversed by p. Now it follows that ppx1, y1q has
width at most c ´ 1. This is because ppx1, y1q does not
intersect ppvleftq, u1q and does not intersect ppy1, vrightq
except at y1. From our choice of v1 it must be that
ppy1, vrightq does not intersect any horizontal edge of pi.
Similarly ppv1, x1q does not intersect any horizontal edge
of pi from our choice of u2 and x1. Thus again we can
bound the distances of ppvleft, u1q, ppv1, x1q, ppx1, y1q,
ppy1, vrightq, ppu, vleftq, and ppvright, vq using induction
and bound the distance of ppu1, v1q using lemma 4.8
giving the required bound on the distance. For the
case that p traverses vright before vleft we use a similar
argument where we consider qj instead of pi.

Proof. [Proof of Theorem 1.6] The required quasipar-
tition is obtained from Algorithm 4.2 setting r “ ∆

2αk2

where α is the constant in the asymptotic notation from
Lemma 4.9. The proof follows from Lemmas 4.9 and 4.6.

4.4 Derandomization It is possible to derandomize
the algorithm in subsection 4.2 to get a polynomial
time algorithm that enumerates the support of the
distribution in Theorem 1.6. The approach is quite
similar to that used in Section 3 Theorem 14 of [16].
We observe that there can be at most n ´ 1 unique
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combinations of ordered pair removals in each iteration
of Step 3 of the algorithm. In order to enumerate these
we only need to consider values of z for which there
exists u P V pG˚q such that dG˚ psi, uq “ j ¨ r ` z. Using
a similar argument for each iteration of Step 3 we only
need to consider at most pn ´ 1qk2 unique values of z
in total to enumerate the support of the distribution
obtained in the algorithm.

Theorem 4.2. Let G be a directed graph of of path-

width k. Let M “ pV pGq, dGq denote the shortest-path

quasimetric space of G. Then for all ∆ ą 0, there ex-

ists a polynomial time algorithm with running time of

the form nOp1q that can compute the support of some

2Opk2q-Lipschitz distribution over ∆-bounded quasipar-

titions of M .

5 Embedding directed cycles into directed ℓ1

In this section we describe an algorithm for computing
a constant-distortion embedding of the shortest-path
quasimetric space of directed cycles into a convex com-
bination of 0-1 quasimetric spaces.

We begin by introducing some notation. Consider
a directed cycle G and fix a planar drawing of G where
G is drawn as a circle centered at the origin. Let w be
a weight function on the edges of G. Let X “ pV, dq
be the shortest-path quasimetric space of G. We may
assume w.l.o.g. that every edge pu, vq P E is the shortest
path from u to v in G. We denote by ∆ the diameter
of G. For all u, v P V we denote by ÐÝp pu, vq the path
from u to v in the counter-clockwise direction in the
drawing of G and by

ÐÝ
d pu, vq the length of ÐÝp pu, vq.

Similarly we denote by ÝÑp pu, vq the path from u to
v in the clockwise direction in the drawing of G and
by

ÝÑ
d pu, vq the length of ÝÑp pu, vq. We say that some

v P V pGq is the meet-point of u if
ÐÝ
d pu, vq “ ÝÑ

d pu, vq.
For some pu, vq P V pGq ˆ V pGq, we say that pu, vq is
short if

ÐÝ
d pu, vq ă ∆

10
and

ÝÑ
d pu, vq ă ∆

10
; otherwise we

that pu, vq is long. Let A Ď V where A “ tu : u P
V, Dv P V such that

ÐÝ
d pu, vq ă ∆

10
and

ÝÑ
d pu, vq ă ∆

10
u.

Similarly let B Ď V where B “ tv : v P V, Du P
V such that

ÐÝ
d pu, vq ă ∆

10
and

ÝÑ
d pu, vq ă ∆

10
u.

Lemma 5.1. Let u1, u2, u3 P V pGq with ÝÑp pu1, u2q X
ÝÑp pu2, u3q “ u2. Let pu1, v1q, pu2, v2q, pu3, v3q be short

pairs. Let A1 “ tu1, u2, u3u and B1 “ tv1, v2, v3u. Then

we have that all the vertices in B1 are contained within

one of ÝÑp pu1, u2q,ÝÑp pu2, u3q,ÝÑp pu3, u1q .

Proof. Suppose for the sake of contradiction that the
assertion does not hold. W.l.o.g. assume that ÝÑp pu1, u2q
and ÝÑp pu2, u3q each intersect B1. We consider the
following cases:

Case 1: ÝÑp pu1, u2q contains v1 and ÝÑp pu2, u3q con-
tains v2. In this case we have that

ÐÝ
d pu1, v1q ă ∆

10
and

Figure 6: The sets A and B.

ÐÝ
d pu2, v2q ă ∆

10
. But ÐÝp pu1, v1q Y ÐÝp pu2, v2q contains all

the edges of G in the counter-clockwise direction. This
implies that the sum of the lengths of all the edges in
the counter-clockwise direction is at most 2∆

10
. However

this means that the diameter of G is at most 2∆
10

which
is a contradiction.

Case 2: ÝÑp pu1, u2q contains v2 and ÝÑp pu2, u3q con-
tains v1. In this case we have that

ÝÑ
d pu1, v1q ă ∆

10
and

ÝÑ
d pu2, v2q ă ∆

10
. But ÝÑp pu1, v1q Y ÝÑp pu2, v2q contains all

the edges of G in the clockwise direction. This implies
that the sum of the lengths of all the edges in the clock-
wise direction is at most 2∆

10
. However this means that

the diameter ofG is at most 2∆
10

which is a contradiction.
Case 3: ÝÑp pu1, u2q contains v3, ÝÑp pu2, u3q contains

v1 and ÝÑp pu3, u1q contains v2. In this case we have thatÝÑ
d pu1, v1q ă ∆

10
,

ÝÑ
d pu2, v2q ă ∆

10
and

ÝÑ
d pu3, v3q ă ∆

10
.

But ÝÑp pu1, v1q Y ÝÑp pu2, v2q Y ÝÑp pu3, v3q contains all the
edges of G in the clockwise direction. This implies that
the sum of the lengths of all the edges in the clockwise
direction is at most 3∆

10
. However this means that the

diameter of G is at most 3∆
10

which is a contradiction.
Case 4: ÝÑp pu1, u2q contains v2 and ÝÑp pu3, u1q con-

tains v1. In this case we have that
ÝÑ
d pu1, v1q ă ∆

10
and

ÝÑ
d pu2, v2q ă ∆

10
. But ÝÑp pu1, v1q Y ÝÑp pu2, v2q contains all

the edges of G in the clockwise direction. This implies
that the sum of the lengths of all the edges in the clock-
wise direction is at most 2∆

10
. However this means that

the diameter ofG is at most 2∆
10

which is a contradiction.
Case 5: ÝÑp pu1, u2q contains v1 and ÝÑp pu3, u1q con-

tains v2. In this case we have that
ÐÝ
d pu1, v1q ă ∆

10
and

ÐÝ
d pu2, v2q ă ∆

10
. But ÐÝp pu1, v1q Y ÐÝp pu2, v2q contains all

the edges of G in the counter-clockwise direction. This
implies that the sum of the lengths of all the edges in
the counter-clockwise direction is at most 2∆

10
. However

this means that the diameter of G is at most 2∆
10

which
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is a contradiction.
All other cases are identical to the above cases up

to relabeling of the vertices. Since we end up with a
contradiction in every case, this concludes the proof.

Lemma 5.1 implies that A and B are two disjoint
consecutive segments of G. Let a1, a2, . . . , am be the
vertices of A in clockwise order. Let also b1, b2, . . . , bk
be the vertices of B in clockwise order. Let a1

1 and a1
m be

the meet-points of a1 and am respectively. If a1 and am
do not have such points we may introduce two vertices
a1
1 and a1

m by subdividing edges such that the induced
quasimetric does not change. By the construction, we
have dpa1, a1

1q ă ∆
10

and dpam, a1
mq ă ∆

10
. Therefore,

a1
1 lies between bi and bi`1 for some i P t1, 2, . . . , ku.

Similarly, a1
m lies between bj and bj`1 for some j P

t1, 2, . . . , ku (See Figure 6). Let B1 “ tb1, b2, . . . , biu,
B2 “ ta1

1, bi`1, . . . , a
1
mu, and B3 “ taj`1, . . . , bku.

5.1 The algorithm for embedding into directed
ℓ1 We are now ready to describe the algorithm for
computing a random quasipartition of G.

Input: A directed cycle G.
Output: A random quasipartition Q of the
shortest-path quasimetric space of G.

Initialization: Set Q “ EpGq.

Step 1. Pick an arbitrary v1 P V . Let v1, v2, . . . , vn be
the vertices of G in clockwise order. Let vn`1 “ v1.
Pick z1, z2 P r0, ∆

10
s uniformly at random.

Step 2. For every j P t1, 2, . . . , nu, remove pvj , vj`1q
from Q if

ÝÑ
d pv1, vjq ď i ¨ ∆

10
` z1 and

ÝÑ
d pv1, vj`1q ą

i ¨ ∆
10

` z1 for some integer i ě 0.

Step 3. For every j P t1, 2, . . . , nu, remove pvj`1, vjq
from Q if

ÐÝ
d pv1, vj`1q ď i ¨ ∆

10
` z1 and

ÐÝ
d pv1, vjq ą

i ¨ ∆
10

` z1 for some integer i ě 0.

Step 4. Pick z3 P r0,∆s uniformly at random.

Step 5. For every pu, vq P EpÝÑp pa1, a1
1qq, remove pu, vq

from Q if
ÝÑ
d pa1, uq ď z3 and

ÝÑ
d pa1, vq ą z3.

Step 6. For every pu, vq P EpÐÝp pa1, a1
1qq, remove pu, vq

from Q if
ÐÝ
d pa1, uq ď z3 and

ÐÝ
d pa1, vq ą z3.

Step 7. For every pu, vq P EpÝÑp pam, a1
mqq, remove

pu, vq from Q if
ÝÑ
d pam, uq ď z3 and

ÝÑ
d pam, vq ą z3.

Step 8. For every pu, vq P EpÐÝp pam, a1
mqq, remove

pu, vq from Q if
ÐÝ
d pam, uq ď z3 and

ÐÝ
d pam, vq ą z3.

Step 9. For every pu, vq P EpÝÑp pa1, a1
1qq, remove pu, vq

from Q if
ÝÑ
d pv, a1

1q ď z3 and
ÝÑ
d pu, a1

1q ą z3.

Step 10. For every pu, vq P EpÐÝp pa1, a1
1qq, remove

pu, vq from Q if
ÐÝ
d pv, a1

1q ď z3 and
ÐÝ
d pu, a1

1q ą z3.

Step 11. For every pu, vq P EpÝÑp pam, a1
mqq, remove

pu, vq from Q if
ÝÑ
d pv, a1

mq ď z3 and
ÝÑ
d pu, a1

mq ą z3.

Step 12. For every pu, vq P EpÐÝp pam, a1
mqq, remove

pu, vq from Q if
ÐÝ
d pv, a1

mq ď z3 and
ÐÝ
d pu, a1

mq ą z3.

Step 13. Enforce transitivity on Q. That is for all
u, v, w P V pGq if pu, vq P Q and pv, wq P Q, then
add pu,wq to Q.

This concludes the description of the algorithm.

5.2 Analysis We now analyze the random quasipar-
tition computed by the above algorithm. We first argue
that the “probability of separation” is small for all pairs
of vertices; this implies that the contraction of the re-
sulting embedding into ℓ1 is bounded.

Lemma 5.2. For every u, v P V we have

Pr
Q„D

rpu, vq R Qs ě dpu, vq
2∆

.

Proof. Let X1 be the random event that there exists an
edge e P ÝÑp pu, vq such that e R Q. Let X2 be the random
event that there exists an edge e P ÐÝp pu, vq such that

e R Q. We want to show that PrQ„DrX1 ^X2s ě dpu,vq
∆

.
First suppose that pu, vq is a long pair. That is,

either
ÐÝ
d pu, vq ě ∆

10
or

ÝÑ
d pu, vq ě ∆

10
. We may assume

w.l.o.g. that
ÝÑ
d pu, vq ě ∆

10
(the analysis for the other

case is similar). In this case, by the Step 2 of the
algorithm we have that PrQ„DrX1s “ 1. This is because

of the fact that
ÝÑ
d pu, vq ě ∆

10
. Also, from Step 3 of the

algorithm we get PrQ„DrX2s ě dpu,vq
∆

. Therefore, we

have PrQ„DrX1 ^ X2s ě dpu,vq
∆

.
Now suppose that pu, vq is a short pair. First

suppose that v P B1. In this case, by the construction
we have that dpu, vq “ ÝÑ

d pu, vq, and thus by Step 5 of

the algorithm we have that PrQ„DrX1s ě dpu,vq
∆

. Also,
by Steps 5 and 6 we have PrQ„DrX2|X1s “ 1, and hence

we have PrQ„DrX1^X2s ě dpu,vq
∆

, as desired. If v P B3,
a similar argument using Steps 7 and 8 of the algorithm

shows that PrQ„DrX1 ^ X2s ě dpu,vq
∆

.
Now suppose that v P B2. Let p1 “ ÝÑp pu, a1

1q,
p2 “ ÝÑp pam, vq, p3 “ ÐÝp pu, a1

mq, and p4 “ ÐÝp pa1, vq.
For every i P t1, 2, 3, 4u, let Yi be the random event
that there exists an edge e P pi such that e R Q. There
are four cases:

Case 1.
ÝÑ
d pu, a1

1q ě dpu, vq{2 and
ÐÝ
d pu, a1

mq ě
dpu, vq{2. First assume that

ÝÑ
d pu, a1

1q ď ÐÝ
d pu, a1

mq.
By Step 6 of the algorithm we have that
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PrQ„DrX1s ě PrQ„DrY1s ě
ÝÑ
d pu,a1

1
q

∆
ě dpu,vq

2∆
.

Also by the construction and Step 10 of the al-
gorithm, we have that PrQ„DrX2|Y1s “ 1. There-

fore, we have PrQ„DrX1 ^X2s ě dpu,vq
2∆

, as desired.

The argument for the other case where
ÝÑ
d pu, a1

1q ąÐÝ
d pu, a1

mq is similar by considering Steps 8 and 12
of the algorithm.

Case 2.
ÝÑ
d pu, a1

1q ě dpu, vq{2 and
ÐÝ
d pa1, vq ě dpu, vq{2.

If
ÝÑ
d pu, a1

1q ď ÐÝ
d pa1, vq, then we follow a similar

argument as in the first case by considering Steps
9 and 10 of the algorithm. Otherwise, we follow a
similar argument by considering Steps 6 and 10.

Case 3.
ÝÑ
d pam, vq ě dpu, vq{2 and

ÐÝ
d pu, a1

mq ě
dpu, vq{2. If

ÝÑ
d pam, vq ď ÐÝ

d pu, a1
mq then a similar

argument as in the first case by considering Steps 7
and 8 applies here. Otherwise, a similar argument
considering Steps 8 and 12 applies here.

Case 4.
ÝÑ
d pam, vq ě dpu, vq{2 and

ÐÝ
d pa1, vq ě

dpu, vq{2. If
ÝÑ
d pam, vq ď ÐÝ

d pa1, vq, the a similar
argument using Steps 7 and 11 of the algorithm
applies here. Otherwise, a similar argument using
Steps 5 and 6 applies here.

By considering all the above cases, we conclude that

PrQ„Drpu, vq R Qs ě dpu,vq
2∆

, as desired.

Next we prove that the probability of separation
is not too large; this implies that the expansion of the
resulting embedding into directed ℓ1 is bounded.

Lemma 5.3. For every pu, vq P E we have

Pr
Q„D

rpu, vq R Qs ď 14dpu, vq
∆

.

Proof. Consider any edge pu, vq P E. First we observe
that Steps 2,5,7,9 and 11 only remove edges in the
clockwise direction. Similarly Steps 3,6,8,10 and 12
only remove edges in the counter-clockwise direction.
W.l.o.g. let us assume that pu, vq is in the clockwise
direction. This means that it may be removed in Step 2

with probability at most wpu,vq
∆{10 “ 10dpu,vq

∆
. Now in each

of Steps 5,7,9 and 11 we remove pu, vq with probability

at most wpu,vq
∆

“ dpu,vq
∆

. Taking the union bound we
have that the probability that pu, vq is removed from Q

is at most 14dpu,vq
∆

.

Lemma 5.4. For every u, v P V we have

Pr
Q„D

rpu, vq R Qs ď 14dpu, vq
∆

.

Proof. Let p be a shortest path from u to v in G.
Suppose that pu, vq R Q. Since we enforce transitivity
in Step 13 this implies that an edge in p is removed
before Step 13. So we have that PrQ„Drpu, vq R
Qs ď PrrAn edge in p is removed before Step 13s ď

ř

pu,vqPp

PrQ„Drpu, vq R Qs using the union bound. Now

applying Lemma 5.3 to all the edges of p we have that

PrQ„Drpu, vq R Qs ď 14dpu,vq
∆

, which concludes the
proof.

We are now ready to prove the main result of this
Section.

Theorem 5.1. Let G be a directed cycle and let M “
pV pGq, dGq be its shortest-path quasimetric space. Then

M admits a constant-distortion embedding into some

convex combination of 0-1 quasimetric spaces denoted by

D. Moreover we can sample a random 0-1 quasimetric

space from D in polynomial time.

Proof. The required convex combination of 0-1 quasi-
metrics is obtained from the distribution D returned by
the Algorithm. Every quasipartition Q in the support of
D can be replaced with a 0-1 quasimetric where for any
u, v P V dpu, vq “ 0 iff pu, vq P Q otherwise dpu, vq “ 0.
SinceD is a probability distribution over quasipartitions
this gives us a convex combination of 0-1 quasimetrics
φ. Now it remains to show that the distortion is Op1q.

For any u, v P V we denote the distance from u to
v in φ dφpu, vq. Now we have that,

dφpu, vq “
1 ¨ PrQ„Drpu, vq R Qs ` 0 ¨ PrQ„Drpu, vq P Qs “

PrQ„Drpu, vq R Qs

From Lemmas 5.2 and 5.4 we have that,

dpu, vq ¨ 1

2∆
ď dφpu, vq ď 28dpu, vq ¨ 1

2∆

This implies that the distortion is at most 28. The
bound on the running time is immediate from the
description of the algorithm.

By using Theorem 5.1, we can obtain the following.

Proof. [Proof of Theorem 1.7] First we observe that any
quasipartition in the support of the distribution D re-
turned by the algorithm is obtained by removing at most
28 directed edges in EpGq and enforcing transitivity.
This follows immediately from our choice of z1, z2 and
z3. Next consider any u, v P V pGq and any Q P supppDq
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such that pu, vq R Q. Let S Ď EpGq denote the set
of edges that we remove before enforcing transitivity to
obtain Q. Now we have |S| ď 28. We also have that
there exist e1, e2 P S such that removing e1 and e2 from
EpGq and enforcing transitivity ensures that pu, vq is
not in the resulting quasipartition. This is because G is
a directed cycle and there are exactly two directed paths
from u to v. Therefore it suffices to remove a directed
edge from each of the two paths to obtain a quasiparti-
tion that does not contain pu, vq. This implies that if we
consider all possible ways to select two edges (one in the
clockwise direction and one in the counterclockwise di-
rection such that they don’t overlap i.e. we do not pick
px, yq and py, xq for all px, yq P EpGq) from S, and then
consider the quasipartition obtained by removing them
from EpGq and enforcing transitivity we have a set PQ

of at most
`

28
2

˘

possible quasipartitions and pu, vq is not
in at least one of them. Now we consider the following
distribution of quasipartitions. First we pick Q from
D. Then we pick uniformly at random a quasipartition
from PQ. This gives us a new distribution of quasiparti-
tions D1. Note that every quasipartition Q1 P supppD1q
is a directed cut metric. This is because removing two
directed edges in opposite directions as described ear-
lier and enforcing transitivity on the remaining edges to
obtain Q1 partitions V pGq into U Ă V pGq and V pGqzU
such that px, yq R Q1 if x P U and y P V pGqzU and
px, yq P Q1 otherwise. Therefore D1 is a convex combi-
nation of directed cut metrics. Since the bound from
lemma 5.2 decreases by at most a factor of 28 when ap-
plied to D1 it follows that the distortion of D1 is at most
28 times larger than that of D.

6 Embedding directed trees into directed ℓ1

In this section we describe a method for embedding
directed trees into directed ℓ1 with distortion one.
Let G “ pV,Eq be a directed tree, and let w be a
weight function on the edges of G. Let M “ pX, dq
be the shortest path quasimetric space induced by G.
The following algorithm gives us a distribution D over
quasipartitions of G.

Input: A directed tree G.

Output: A random quasipartition Q.

Initialization:: Set Q “ EpGq.

Step 1. Let W “ ř

ePE

wpeq.

Step 2. Let DE be a distribution over E, where each
edge e P E is sampled with probability wpeq{W .

Step 3. Pick an edge e P E from the above
distribution, and remove e from Q.

Step 4. Enforce transitivity on Q; that is, for all
u, v, w P V pGq if pu, vq P Q and pv, wq P Q then
add pu,wq to Q.

Lemma 6.1. For every u, v P V we have PrQ„Drpu, vq R
Qs “ dpu,vq

W
.

Proof. Let P “ pa1 “ u, a2, . . . , am “ vq be the
unique shortest path from u to v in G. We have that
pu, vq R Q iff there exists an i P t1, 2, . . . ,m ´ 1u such
that pai, ai`1q R Q. By the construction, for every
i P t1, 2, . . . ,m ´ 1u we have that PrQ„Drpai, ai`1q R
Qs “ dpai,ai`1q

W
. Now note that the algorithm only

removes one edge from Q, and thus we have

Pr
Q„D

rpu, vq R Qs “
m´1
ÿ

i“1

Pr
Q„D

rpai, ai`1q R Qs “ dpu, vq
W

,

as desired.

Now we are ready to prove the main result of this
section.

Proof. [Proof of Theorem 1.8] The above algorithm
gives us a convex combination of quasipartitions, and
thus a convex combination of 0-1 quasimetrics with
distortion one. The support of this convex combination
consists of 0-1 quasimetrics that are also directed cut
metrics. This is equivalent to an embedding into
directed ℓ1, as desired.

7 Applications to directed cut problems

Directed Multicut problem Consider the Di-
rected Multicut problem. Let P be the set of all directed
paths from a source terminal to its corresponding sink
terminal. For every e P EpGq, we define an indicator
variable xpeq that indicates whether e belongs to a cut
or not. We have the following integer program for the
problem:

minimize
ÿ

ePEpGq

cpeqxpeq

subject to
ÿ

ePp

xpeq ě 1, @p P P

xpeq P t0, 1u, @e P EpGq

By relaxing this integer program, we get the follow-
ing LP relaxation:
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minimize
ÿ

ePEpGq

cpeqxpeq

subject to
ÿ

ePp

xpeq ě 1, @p P P

xpeq ě 0, @e P EpGq

Let x be the solution to the above LP relaxation.
Let M be the quasimetric space induced by x. Suppose
there exists a p1 ´ εq-bounded β-Lipschitz distribution
over quasipartitions of M D. Then we can sample a
quasipartition Q of M from D. Let SQ “ EpGqzQ.
Since Q is p1 ´ εq-bounded, we have that SQ is a valid
Multicut solution. We have:

EpcpSQqq “
ÿ

ePS

Epcpeqq “
ÿ

ePS

cpeq ¨ Prpe R Qq ď

ÿ

ePS

cpeq ¨ β xpeq
1 ´ ε

ď

β

1 ´ ε
OPT

This means that in expectation SQ is a β
1´ε

-
approximation for the optimum Multicut solution.
Therefore it follows that there exists a quasipartition
Q˚ P supppDq such that cpSQ˚ q ď β

1´ε
OPT.

Proof. [Proof of Theorem 1.4] The proof follows by
combining the aforementioned result with the results
of Sections 3 and 4.

Directed Non-Bipartite Sparsest Cut The
standard LP relaxation for this problem is as follows:

minimize
ÿ

ePEpGq

cpeqxpeq

subject to
ÿ

psi,tiqPT

dempiqdxpsi, tiq ě 1

xpeq ě 0, @e P EpGq

Here dxpu, vq denotes the shortest path distance
induced by the function x in G. We also denote the
optimal value of the objective function by OPT. Note
that we may assume that

ÿ

psi,tiqPT

dempiqdxpsi, tiq “ 1

when the optimum is achieved.
It is shown in [11] that the existence of a pσq, σ1 C

q
q-

decomposition for undirected graphs implies that the

integrality gap for the (undirected) uniform demand
Sparsest Cut problem is Opσσ1q. A similar argument
to the one used in Lemma 3.5 in that paper gives the
following result.

Theorem 7.1. Let G be a directed graph. Suppose for

all r ą 0 and all w : EpGq Ñ t0 Y R
`u there exists an

r-bounded β-Lipschitz distribution over quasipartitions

of the shortest path quasimetric induced by w on G.

Then the integrality gap of the LP relaxation for the Di-

rected Non-Bipartite Sparsest Cut problem with uniform

demands and any choice of capacities on G is Opβq.

Proof. It is known that the solution of the LP relaxation
for the Directed Non-Bipartite Sparsest Cut
problem is a weight function w : EpGq Ñ t0 Y R

`u on
G that induces a quasimetric space M “ pV pGq, dq [16].
Let D be a 1

4n2 -bounded β-Lipschitz distribution over
M . Every quasipartition Q P supppDq induces a cut SQ

of G. If we pick randomly pick Q from D we have that

the E
Q„D

rCpSQqs ď
ÿ

i

cpeqβdpeq
r

ď 4n2βOPT. This

implies that there exists a quasipartition Q˚ P supppDq
such that SQ˚ ď 4n2βOPT. Now consider the cut
SQ˚ . Let T “ U1, U2, . . . , Um be the collection of vertex
sets of all maximal strongly connected components of

GrEzSQ˚ s. Suppose |Ui| ă 2n2

3
for all i P t1, . . . ,mu.

Then there exists r P t1, . . . ,mu such that n
6

ď |U1 Y
. . . Y Ur| ď 5n

6
and n

6
ď |Ur`1 Y . . . Y Um| ď 5n

6
.

Furthermore we have that DpSQ˚ q ě 5n2

36
. This is

because for all u P tU1 Y . . . Y Uru and v P tUr`1 Y
. . . Y Umu we have that either there is no path from u

to v or there is no path from v to u in GrEzSQ˚ s since
each Ui is a maximal strongly connected component. So

we have that the sparsity of SQ˚ s is at most 4n2βOPT
5n2{36 “

OpβOPTq. Suppose |Ui| ě 2n2

3
for some i P t1, . . . ,mu.

Then we have that for all u, v P Ui dpu, vq ď 1
4n2

and dpv, uq ď 1
4n2 . So we can use the same argument

from Lemma 16 in [14] to obtain a cut with sparsity
OpβOPTq. This implies that the integrality gap of the
LP relaxation is Opβq concluding the proof.

Proof. [Proof of Theorem 1.1] The proof follows by
combining Theorem 7.1 with Theorems 1.5 and 1.6.

Proof. [Proof of Theorem 1.3] The proof follows by
combining Theorem 7.1 with Theorems 1.5 and 4.2.

Proof. [Proof of Theorem 1.2] Theorem A.1 from [4] due
to Charikar, Makarychev and Makarychev implies that,
the non-uniform flow-cut gap for a digraph G is upper
bounded by the minimum distortion for embedding any
shortest path quasimetric space supported on G, into
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this walk. So this implies that Y ě ř

pu,vqPEpHq

dHpu, vq.

Now consider any directed edge pu, vq P EpHq. We
have that dHpu, vq ` dHpv, uq ě n. This is be-
cause H is non-contracting and for any u, v P V pGq
we have that dGpu, vq ` dGpv, uq “ n. Therefore
we have that X ě Y ě npn ´ 1q. This implies
that given our choice of q and for any H P S we

have E
pu,vq„q

rdHpu, vqs “ 1

n
X ě Ωpnq. Therefore

OPT ě Ωpnq, which concludes the proof.
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