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On Constant Multi-Commodity Flow-Cut Gaps
for Families of Directed Minor-Free Graphs*

Ario Salmasif

Abstract

The multi-commodity flow-cut gap is a fundamental
parameter that affects the performance of several divide
& conquer algorithms, and has been extensively studied
for various classes of undirected graphs. It has been
shown by Linial, London and Rabinovich [15] and by
Aumann and Rabani [3] that for general n-vertex graphs
it is bounded by O(logn) and the Gupta-Newman-
Rabinovich-Sinclair conjecture [9] asserts that it is O(1)
for any family of graphs that excludes some fixed minor.

The flow-cut gap is poorly understood for the case
of directed graphs. We show that for uniform demands
it is O(1) on directed series-parallel graphs, and on di-
rected graphs of bounded pathwidth. These are the first
constant upper bounds of this type for some non-trivial
family of directed graphs. We also obtain O(1) upper
bounds for the general multi-commodity flow-cut gap on
directed trees and cycles. These bounds are obtained
via new embeddings and Lipschitz quasipartitions for
quasimetric spaces, which generalize analogous results
form the metric case, and could be of independent in-
terest. Finally, we discuss limitations of methods that
were developed for undirected graphs, such as random
partitions, and random embeddings.

1 Introduction

The multi-commodity flow-cut gap is a fundamental pa-
rameter that has been proven instrumental in the design
of routing and divide & conquer algorithms in graphs.
Bounds on this parameter generalize the max-flow /min-
cut theorem, and lead to deep connections between al-
gorithm design, graph theory, and geometry [15, 3, 2].
While the flow-cut gap for several classes of undirected
graphs has been studied extensively, the case of directed
graphs is poorly understood despite significant efforts.

" *Work supported by NSF under award CAREER 1453472, and
grants CCF 1815145 and CCF 1423230.

TDept. of Computer Science & Engineering, The Ohio State
University, salmasi.1@osu.edu.

tDept. of Computer Science, University of Illinois at Chicago,
sidiropo@uic.edu.

8Dept. of Computer Science & Engineering, The Ohio State
University, vijay.sridhar.40@gmail.com.

Anastasios Sidiropoulos*

Vijay Sridhar®

In this work we make progress towards overcoming this
limitation by showing constant flow-cut gaps for some
directed graph families. Consequently we also develop
constant-factor approximation algorithms for certain di-
rected cut problems on these graphs.

1.1 Multi-commodity flow-cut gaps A multi-
commodity flow instance in an undirected graph G is
defined by two non-negative functions: c¢: E(G) — R
and d: V(GQ) x V(G) — R. We refer to ¢ and d as the
capacity and demand functions respectively. The maxi-
mum concurrent flow is the maximal value € such that
for every u,v € V(Q), € - d(u,v) can be simultaneously
routed between u and v, without violating the edge ca-
pacities. We refer to this value as maxflow(G, ¢, d).

For every S € V(G), the sparsity of S is defined as
follows:

Z(u,v)EE(G) C(U, U) |13(U) - 1S(v)|
zu,veV(G) d(u? U)‘]'S(u) - IS(U)| ’

where 1g: V(G) — {0,1} is the indicator variable
for membership in S. The sparsity of a cut is a
natural upper bound for maxflow(G,c,d). The multi-
commodity maz-flow min-cut gap for G, denoted by
gap(G), is the maximum gap between the value of
the flow and the upper bounds given by the sparsity
formula, over all multi-commodity flow instances on G.
The flow-cut gap on undirected graphs has been studied
extensively, and several upper and lower bounds have
been obtained for various graph classes. The gap is
referred to as the wuniform multi-commodity flow-cut
gap for the special case where there is a unit demand
between every pair of vertices. Leighton and Rao [14]
showed that the uniform flow-cut gap is O(logn) in
undirected graphs. Subsequently Lineal, London and
Rabinovich [15] showed that the non-uniform multi-
commodity flow-cut gap for the Sparsest Cut problem
with k& demand pairs is upper bounded by O(logk).
Besides these there are various studies of the flow-cut
gap for specific graph families. A central conjecture
posed by Gupta, Newman, Rabinovich, and Sinclair in
[9] asserts the following.
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CONJECTURE 1. (GNRS CONJECTURE [9]) For every
family of finite graphs F, we have gap(F) = O(1) iff F

forbids some minor.

Conjecture 1 has been verified for the case of series-
parallel graphs [9], O(1)-outerplanar graphs [5], O(1)-
pathwidth graphs [13], and for some special classes of
planar metrics [18]. For graphs excluding any fixed
minor the flow-cut gap with & terminal pairs is known to
be O(1) for uniform demands and O(log k) for arbitrary
demands [11].

For the case of directed graphs, the flow-cut gap
is defined in terms of the Directed Non-Bipartite
Sparsest Cut problem which is an asymmetric variant of
the Sparsest Cut problem, and is defined as follows. Let
G be a directed graph and let ¢ : E(G) — R be a ca-
pacity function. Let T = {(s1,%1), (s2,t2),- .., (Sk,tk)}
be a set of terminal pairs, where each terminal pair
(s, t;) has a non-negative demand dem(z). A cut in G is
a subset of directed edges of E(G). For a cut S € F(G)
in G, let Ig be the set of all indices i € {1,2,... k}
such that all paths from s; to ¢; have at least one edge
in S. Let D(S) = >,c;, dem(i) be the demand sepa-

rated by S. Let W(S) = % be the sparsity of S.
The goal is to find the cut with minimum sparsity. The
LP relaxation of this problem corresponds to the dual
of the LP formulation of the directed maximum con-
current flow problem, and the integrality gap of this LP
relaxation is the directed multi-commodity flow-cut gap.
Hajiyaghayi and Récke [10] showed an upper bound of
O(4/n) for the flow-cut gap. This upper bound on the
gap has been further improved by Agarwal, Alon and
Charikar to O(n'%?3) in [1]. For directed graphs of
treewidth ¢, it has been shown that the gap is at most
t10g°™M n by Mémoli, Sidiropoulos and Sridhar [16]. On
the lower bound side Saks et al. [17] showed that for gen-
eral directed graphs the flow-cut gap is at least k—¢, for
any constant ¢ > 0, and for any k& = O(log n/loglogn).
Chuzhoy and Khanna showed a (n7) lower bound for
the flow-cut gap in [8].

A natural generalization of the GNRS Conjecture
for directed graphs poses the question of whether the
multi-commodity flow-cut gap is O(1) for any family of
minor free directed graphs. In this paper, we provide the
first constant gaps for some non-trivial family of graphs.
Throughout this paper, when we refer to a directed
family of graphs we mean that it is obtained from
an undirected family of graphs by assigning arbitrary
directions to the edge sets. We state below our two
main results pertaining to the flow-cut gap.

THEOREM 1.1. The uniform multi-commodity flow-cut
gap on directed series-parallel graphs and directed
bounded pathwidth graphs is O(1).

THEOREM 1.2. The non-uniform  multi-commodity
flow-cut gap on directed cycles and directed trees is

0(1).

1.2 Cut problems of directed graphs Better
bounds on the flow-cut gap typically also imply better
approximation ratios for solving cut problems. For the
Directed Non-Bipartite Sparsest Cut problem the flow-
cut gap upper bounds of [10] and [1] are also accompa-
nied by O(y/n) and O(72'/?3) polynomial time approx-
imation algorithms respectively. Similarly for graphs of
treewidth ¢, a t logo(l) n polynomial time approximation
algorithm is also provided in [16].

Another closely related cut problem is the Directed
Multicut problem which is defined as follows. Let G
be a directed graph and let ¢ : E(G) — Rx¢ be a ca-
pacity function. Let T = {(s1,%1), (s2,t2), -, (Sk,tk)}
be a set of terminal pairs. A cut in G is a subset of
E(G). The capacity of a cut S is ¢(S) = > .qc(e).
The goal is to find a cut separating all terminal pairs,
minimizing the capacity of the cut. This problem is
NP-hard. An O(y/nlogn) approximation algorithm for
Directed Multicut was presented by Cheriyan, Karloff
and Rabani [6]. Subsequently an O(n??3/OPTY3)-
approximation was given due to Kortsarts, Kortsarz and
Nutov [12]. Finally [1] also gives an improved O(n!'/23)-
approximation algorithm for this problem. Again for
graphs of treewidth t a tlogo(l) n approximation algo-
rithm was also shown in [16].

On the hardness side [7] demonstrated
an Q(lolgc,’ﬁ) “—)-hardness for the Directed Non-
Bipartite Sgparsest Cut problem and the Directed
Multicut problem under the assumption that NP &
DTIME (nlosn°™).
them in a subsequent work [8] to obtain an 22(°8'”
hardness result for both problems for any constant
€ > 0 assuming that NP < ZPP .

Our main results for these problems are the follow-
ing theorems.

This was further improved by

“n)_

THEOREM 1.3. There exists a polynomial time O(1)-
approximation algorithm for the Uniform Directed
Sparsest Cut problem on series parallel graphs and
graphs of bounded pathwidth.

THEOREM 1.4. There exists a polynomial time
O(1)-approzimation  algorithm  for the Directed
Multicut problem on series parallel graphs and graphs
of bounded pathwidth.

We remark that in the above results the running
time in the case of graphs of pathwidth % is n®("). That
is, the running time does not depend on k. Typically,
algorithms for graphs of pathwidth %k have running
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time of the form either f(k)n®®), or n/(®)  for some
function f, due to the use of dynamic programming.
Our algorithms are based on LP relaxations, and thus
avoid this overhead.

1.3 Quasimetric spaces and embeddings

Random quasipartitions. A Quasimetric space
is a pair (X,d) where X is a set of points and d :
X x X — Ry u {400}, that satisfies the following two
conditions:

(1) For all z,y € X, d(z,y) =0 iff z = y.
(2) For all z,y,z € X, d(x,y) < d(z,z) + d(z,y).

The notion of random quasipartitions was intro-
duced in [16]. A quasipartition is a transitive reflexive
relation. Let M = (X,d) be a quasimetric space. For
a fixed r = 0, we say that a quasipartition @ of M is
r-bounded if for every z,y € X with (x,y) € Q, we have
d(x,y) < r. Let D be a distribution over r-bounded
quasipartitions of M. We say that D is r-bounded. Let
B > 0. We say that D is 5-Lipschitz if for any x,y € X,
we have that

Priay) ¢ Pl < p200.

Given a distribution D over quasipartitions we
sometimes use the term random quasipartition (with
distribution D) to refer to any quasipartition P sampled
from D. We consider the quasimetric space obtained
from the shortest path distance of a directed graph.
Mémoli, Sidiropoulos and Sridhar in [16] find an O(1)-
Lipschitz distribution over r-bounded quasipartitions of
tree quasimetric spaces. They also prove the existence
of a O(tlogn)-Lipschitz distribution over r-bounded
quasipartitions for any quasimetric that is obtained
from a directed graph of treewidth ¢.

Our main results for finding Lipschitz quasiparti-
tions are the following theorems.

THEOREM 1.5. Let G be a directed graph of treewidth
2 with a non-negative weight function on the edges. Let
M = (V(G),dg) denote the shortest-path quasimetric
space of G. Then for all v > 0, there exists some O(1)-
Lipschitz distribution over r-bounded quasipartitions of
M.

THEOREM 1.6. Let G be a directed graph of of path-
width k with a non-negative weight function on the
edges. Let M = (V(Q),dg) denote the shortest-path
quasimetric space of G. Then for all A > 0, there ex-
ists some 20(k2)—Lipschitz distribution over A-bounded
quasipartitions of M.

Random embeddings. Before stating our em-
bedding results, we first need to introduce some nota-
tions and definitions. Let M = (X,d) and M’ = (X', d’)
be quasimetric spaces. A mapping f : X — X' is
called an embedding of distortion ¢ > 1 if there ex-
ists some a > 0, such that for all z,y € X, we have
d(z,y) < a-d'(f(z), f(y)) < c-d(z,y). We say that f
is isometric when ¢ = 1. Let D be a distribution over
pairs (M’, f), where f : X — X’. We say that D is a
random embedding of distortion ¢ > 1 if for all z,y € X,
the following conditions are satisfied:

(1) Proae py~pld' (f(2), f(y)) = d(z, y)] = 1.

(2) Eqr py~pld (f(2), f(Y))] < ¢-d(z,y).

Directed ¢; (Charikar et al. [4]) The directed
¢y distance between two points z and y is given by

de, (z,y) = 2w — wil + X |ail — 2wl
2 2 K3
The following theorems are our main results for
random embeddings.

THEOREM 1.7. Let G be a directed cycle and let M =
(V(Q),dg) be the shortest-path quasimetric space of G.
Then M admits a constant-distortion embedding into
directed £1. Moreover the embedding is computable in
polynomial time.

THEOREM 1.8. Let G = (V, E) be a directed tree, and
let X = (V,d) be the quasimetric induced by G. Then
X embeds into directed ¢1 with constant distortion.

Limitations. We further discuss some limitations
of methods that were developed for undirected graphs.
Klein, Plotkin, and Rao in [11] introduced the notion of
random partitions for undirected graphs. In Section 8,
we show that this method can not be used or generalized
for the case of directed graphs. Furthermore, we
complete our paper with a lower bound result that is
stated in the following theorem.

THEOREM 1.9. There exists a directed cycle G = (V, E)
such that any non-contracting random embedding of G
into directed trees has distortion Q(n).

1.4 Organization In Sections 3 and 4, we provide ef-
ficient algorithms for computing random quasipartitions
for directed graphs of treewidth 2 and bounded path-
width graphs respectively. In Section 5, we describe an
algorithm for computing an O(1)-distortion embedding
of the directed cycles into directed #;. In Section 6, we
provide an algorithm for embedding directed trees into
directed ¢; with distortion one. In Section 7 we discuss
the applications to directed cut problems. In Section
8 we discuss the limitations of random partitions for
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the directed case, and finally in Section 9 we provide a
lower for non-contracting embeddings of directed cycle
into directed trees.

2 Notation and preliminaries

We now introduce some notation that will be used
throughout the paper.

Treewidth and pathwidth A tree (resp. path)
decomposition of an undirected graph G, is a tree (resp.
path) T' = (X, F) where X = {A;, 4s,..., A} is the
set of vertices, and each vertex is a subset of V(G) such
that:

1. Ayu...U A, =V(G).

2. For all (z,y) € E(G) there exists 4; € X such that
x,y € A;.

3. Let x € V(G) and Ay, A; € X, with € A, and
x € Ay Forall A; € X such that A, is in the unique
path from A, to A, in T we have that z € A;.

The width of the tree decomposition is given by

max }|AZ-| -1

i€{l,...,m

The treewidth (resp. pathwidth) of G denoted by
tw(G) is the minimum width over all tree (resp. path)
decompositions of G.

Treewidth and pathwidth of directed graphs.
From any directed graph GG, we can obtain an undirected
graph GUN by ignoring the edge directions and removing
parallel edges until none remain. More formally, let
G be a directed graph. We can obtain an undirected
graph GUN as follows. We set V(GUN) = V(G), and
E(GN) = {{u,v} : (u,v) € E(G) v (v,u) € E(G)}.

We say that G is a directed graph of treewidth k
(resp. pathwidth k) if its underlying undirected graph
GYN has treewidth k (resp. pathwidth k), for some
k > 1. Similarly, we say that G is a directed tree
(resp. directed cycle) if GUN is a tree (resp. cycle).

Directed cut metrics and 0-1 quasimetrics
(Charikar et al. [4]) Given a set X and a subset
S < X, the corresponding directed cut metric distance
for any pair of elements u,v € X is given by,

1 ifzeSyé¢sS;
ds(z,y) = { 0 otherwise ;

A 0-1 Quasimetric space is a pair (X, d) where for
all u,v € X we have that d(u,v) = 0 or d(u,v) = 1
and for all u,v,w € X we have that d(u,w) < d(u,v) +
d(v,w).

3 Lipschitz quasipartitions of treewidth-2

directed graphs

In this Section we provide a proof for Theorem 1.5. Note
that since all series-parallel graphs have treewidth at
most 2 this result automatically holds for any series-
parallel graph. We present an efficient algorithm for
computing a random quasipartition of a directed graph
of treewidth 2. We begin by describing some special
type of graphs, which we refer to as trees of hexagons.
In Subsection 3.1, we show that any weighted digraph
G of treewidth 2 admits an isometric embedding into a
weighted digraph G’ whose underlying undirected graph
G'N is a tree of hexagons. We then further show in
Subsection 3.2 how to preprocess G’ such that it can be
inductively constructed via a sequence of either slack or
tight paths similar to [9]. Finally in Subsection 3.3, we
present the algorithm for computing the random quasi-
partition, and we analyze the correctness of the algo-
rithm. The following Lemma justifies our embeddings.

LEMMA 3.1. Let G, G’ be weighted directed graphs such
that G admits an embedding into G’ with distortion ¢ >
1 given by the mapping [ : V(G) — V(G'). Further let
a > 0 be the scaling factor such that for all x,y € V(Q)
we have dg(z,y) < a-de (f(x), f(y)) < c-dg(x,y). Let
the shortest path quasimetric induced by G and G’ be
denoted by Mg = (V(G),dg) and Mg = (V(G'),dg)
respectively. Let v, > 0 and let Dg: be a B-Lipschitz
distribution over — bounded quasipartitions of Mgr.
Then there exists a cB-Lipschitz distribution Dg over r-
bounded quasipartitions of M. Furthermore given Dg,
Dg can be computed in polynomial time.

Proof. We can obtain Dg as follows. First we observe
that every quasipartition Q' of Mg induces a quasi-
partition @ of Mg in the following manner. For all
z,y € V(G) (z,y) € Q iff (f(x), f(y)) € Q. It is casy
to verify that @) is also a transitive relation. Now Dg
is chosen such that @ € sup (Dg) iff Q' € sup (Dgr) and
for all such @, Q’,

Pr [P=Q]= Pr [P=(Q]

P~Dg P~Dg,

It remains to show that Dg is a c¢f-Lipschitz dis-
tribution over r-bounded quasipartitions of M. First
we observe that since all Q" € sup (Dg) are ~-bounded
and dg(z,y) < a-dg(f(x), f(y)) it follows that all
Q € sup (Dg) are r-bounded. Next we have that for all
z,y € V(G),
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S [(.0) ¢ Q) -
Pr [(f() () # Q) <

Q'~Dg/
6dG/(f(9;), () <

cﬁdG (CL‘, y)

T

3.1 Embedding into trees of hexagons First we
describe 2 families of undirected graphs that we call
trees of triangles and trees of hexagons. Given an
undirected tree 7 = (X,F), we can construct an
undirected graph G7 as follows. For each vertex v € X
we add a cycle C, of length 3 (resp. 6) to Gy. For all
{u,v} € F we pick an arbitrary edge from C, and an
arbitrary edge from C,, and identify them in G3. We
call the resulting graph G a tree of triangles (resp.
tree of hexagons). It is easy to verify that T gives a
tree decomposition of G5 of width 2 (resp. 5) where
v € X corresponds to the set of vertices in V(C,). As
before we call a digraph G a directed tree of hexagons
(resp. directed tree of triangles) if GUN is a tree of
hexagons (resp. tree of triangles). Now let G be a
weighted directed graph of treewidth 2. In the following
paragraphs we are going to give an isometric embedding
of G into some weighted digraph G’, where G'YN is a tree
of hexagons.

It is known that any undirected graph of treewidth
2 can be constructed as follows. Start with a single edge
and sequentially perform the following operation. Pick
an existing edge e = {u,v}. Add a new vertex x and
edges {z,u} and {z,v}. Let I' = (u,z,v) be the added
path. We say that e is the parent of I'. It is clear that at
any step after the first one, we have a tree of triangles.
Finally, after the necessary number of such steps, from
the resulting tree of triangles remove a subset of edges.
This implies that GUN can be obtained by removing a
subset of edges from a tree of triangles G2 as described
in the above procedure. Therefore we have that GUN
is a sub-graph of the tree of triangles G2. Let T® be
the tree decomposition of width 2 of G induced by the
above construction.

We construct a new graph G’ as follows. We start
with G® and modify it in the following fashion. For all
A€ V(T?) we consider the triangle G*[A] and proceed
as follows. Let u,v,w be the vertices of GA[A]. We
duplicate each vertex of GA[A] and add them to V(G’);
that is for every v € V(G2[A]), we have v/,v" € V(G").
This implies a mapping f: V(G') — V(G) where
f(@') = f(v") = v. Every triangle GA[A] corresponds
to a hexagon in G'YN, where v/, v”,v,v",w’, w" are the

U
N\
—

/

0 —.
/TN
Figure 1: Hexagons

vertices of the hexagon. For the edges {u,v}, {v,w},
and {w,u} in E(G?), we have (uv/,v"), (v",u'), (w",v),
(v, w"), (v, w'), and (w',u") in E(G’) Furthermore,
for every v € V(G?), we have (v',v") and (v”,v') in
E(G") where f(v') = f(v") = v.

Now for every directed edge (z,y) € E(G’) we set
the weight of (z,y) to be equal to dg(f(x), f(y)) or
oo if there is no path from f(z) to f(y) in G. From
the construction it is easy to verify that for every edge
(a,b) in E(G) we have that E(G’) contains one of
(a’,b") or (a”,b"). Therefore it follows that G embeds
isometrically into G’ when we map each vertex v in
V(G) to an arbitrarily chosen duplicate v or v” in
V(G"). The following Lemma is immediate by the above
discussion.

LEMMA 3.2. (EMBEDDING INTO A TREE OF HEXAGONS)
There exists a polynomial-time algorithm which given a
directed graph G of treewidth 2, computes an isometric
embedding of G into some directed tree of hexagons G'.

For any triangle {u,w,v} in G® where the edge
e = {u, v} is the parent of the path I = {u, w, v}, let the
corresponding hexagon in G’ be {u/, v, w', w” v, v"}.
We call the directed edge ¢ = (u',v”) the parent
edge of the directed path TV = (u/,u”,w',w" v ,v")
and of every directed edge in it. Similarly we call
e’ = (v",u’) the parent edge of the directed path T =
{v" v, w" w' v’ u'} and every directed edge in it. This
parent relation induces a rooted tree decomposition of
G'"N | T" of width 5. Let e; = (u,v1) be the parent
edge of a path T'y. For any edge eg = (ug,vo) in T'; we
define the tail of eq denoted by tail(ug, vp), to be the
subpath of I'; from wu; to vg.

3.2 Slack and tight paths Let G be the input
graph, and let w be a non-negative weight function
on the edges of G. By Lemmas 3.1 and 3.2 we may
assume w.l.o.g. that G is a directed tree of hexagons,
and we have a tree decomposition (7,X) of GUN of
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Figure 2: Complementary path

width 5, rooted at some B* € X. For any two vertices
z,y € V(G), we pick a unique shortest path from z to y
denoted by p,, to use in our algorithm. Note that by the
construction and definition of directed tree of hexagons,
there exists a directed path from x to y in G for any two
vertices. We always pick p,, to be a shortest path with
the fewest number of edges. If there are multiple such
paths we pick one satisfying the following condition: For
any «’,y’ € V(pgy) such that 2’ is in the subpath of p,,
from z to y’, we have that p,s, is a subpath of pg,.
For a path P, let len(P) denote the length of P. Let
e € E(G). Similar to [9], for any child path T" of e, we
say that T is slack if len(T") = 2w(e), and we say that T’
is tight if len(T) = w(e).

Let 2 € B* be an arbitrary vertex. Let [: X — Zx
be a level function where [(B*) = 0, and for any other
B € X, I(B) denotes the length of the shortest path
from B* to B in 7. Let By, Bs,...,B; be the leaf
vertices of 7. For every ¢ € 1,2,...,k, let I; € B; be
an arbitrary vertex in G. For every ¢ € 1,2,... k, let
P; be the unique shortest paths in 7 from B* to B;.
Let p; = py1, and let ¢; = py,». For every p;, we define
the complementary path p; as follows. Let P; be the
path of hexagons corresponding to p;. Let P/ be the
subgraph of P; obtained by deleting all the edges of p;,
i.e. P/ = P;\p;. We set p; to be the unique path from
x to l; in P/ (See Figure 2). For every p;, we define the
flattened complementary graph p; as follows. Start with
Di = Di, and for every tight path I" with a parent edge
e € p; add T to p; and repeat until we don’t add any
new paths. We can similarly define the complementary
path ¢; and the flattened complementary graph q; for
every ¢;.

Let P be a path in G. We say that P is down-
monotone if when traversing P we visit the bubbles of T
in non-decreasing distance from the root of 7. Similarly,
we say that P is up-monotone if when traversing P we
visit the bubbles of T in non-increasing distance from

the root of T.

We say that some tree of hexagons G is canonical if
for all e € E(G), every child of e is either tight or slack.
We first show that any directed graph of treewidth 2
admits a constant-distortion embedding into a canonical
directed tree of hexagons. This allows us to focus on
canonical graphs.

LEMMA 3.3. (EMBEDDING INTO A CANONICAL GRAPH)
Given a directed tree of heragons G, we can compute
in polynomial time some embedding of G into some
canonical tree of hexagons G, with distortion at most
2.

Proof. The algorithm proceeds by inductively modify-
ing the graph G. We intially mark all edges as unre-
solved. We mark all edges with no parent as resolved.
While there are unresolved edges, we pick some un-
resolved edge e, whose parent €’ is resolved, and let
T" be the child path of ¢’ that contains e. If T is
neither slack nor tight then for all e € E(T'), we set
w(e) = w(e) - w(e')/len(T’). We mark all edges in T as
resolved. We set G’ be the graph obtained at the end of
this inductive process. It is immediate the G’ is canon-
ical. At each iteration the number of unresolved edges
decreases by at least one, so the algorithm terminates
in polynomial time. By the definition of tight and slack
paths, it follows that the length of each edge changes by
at most a factor of 2. Thus the distortion of the induced
embedding is at most 2, which concludes proof.

3.3 Computing a random quasipartition The
algorithm for computing a random quasipartition is as
follows. The input consists of some directed tree of
hexagons G, a non-negative weight function w on the
edges of G, and some r > 0. The output is a random r-
bounded quasipartition of the shortest-path quasimetric
space of G.

Input: A directed canonical tree of hexagons G, and a
tree decomposition of GUN | (T, X) rooted at some
B*e X. and r > 0.

Output: Random quasipartition of the shortest-path
quasimetric space of G, (M,dg).

Initialization. Set G* = G and Q = E(G).

Step 1. Let x € B* be an arbitrary vertex. Pick
z € [0, 7] uniformly at random.

Step 2. For all (u,v) € E(G*) remove (u,v) from Q if

dg(z,v) >i-r+zand dg(z,u) < i-r+ 2z for some
integer ¢ > 0.
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Step 3. For all (u,v) € E(G*) remove (u,v) from Q
if dp-(x,v) > i-r+ 2z and dp;(w,u) < i-7+ 2z for
some integer 7 > 0 and some integer j € {0, ..., k}.

Step 4. For all (u,v) € E(G*) that are removed from
Q@ in Step 3 do the following:

Step 4.1. For each uncut child path I' =
(u,w,q,0,p,v) of (u,v) remove one of the
edges (u,w), (w,q), (¢,0), (0,p) or (p,v) from
Q, chosen randomly with probability %)

len(T") *
d(w,q) d(g,0) d(o,p) d(p,v) :
Ien(lg)’ Ienq(F)’ Ien(Fp) and |ef(r) respectively.

Step 4.2. Recursively perform Step 4.1 on the
removed edge.

Step 5. For all (u,v) € E(G*) remove (u,v) from Q
if d(v,z) <i-r+zand d(u,z) >1i-r+ 2z for some
integer 7 > 0.

Step 6. For all (u,v) € E(G*) remove (u,v) from Q
if dg-(v,z) <i-r+z and dg;(u,x) > i-7+ 2z for
some integer i > 0 and some j € {0,...,k}.

Step 7. For all (u,v) € E(G*) that are removed from
Q@ in step 6 do the following:

Step 7.1. For each uncut child path I' =
(u,w,q,0,p,v) of (u,v) remove one of the

edges (1, ), (w,q), (4,0), (0.p) or (p,v) from
@, chosen randomly with probability ‘fé:(’li“)),
‘lie(:é’l?)), fi(nq(l?g , lci(no(ff; and Ti(rf’(’ff; respectively.

Step 7.2. Recursively perform Step 7.1 on the
removed edge.

Step 8. For any (u,v) € Q, if d(u,v) >
(u,v) from Q.

T
15+ remove

Step 9. Enforce transitivity on @; that is, for all
u,v,w € V(G) if (u,v) € Q and (v,w) € Q then
add (u,w) to Q.

This concludes the description of the algorithm for
computing a random quasipartition.

Analysis. We now analyze the performance of the
above algorithm. We begin by showing that the prob-
ability that an edge is removed from the quasipartition
is small. This statement is shown by considering sepa-
rately all possible steps of the algorithm where an edge
can be removed.

LEMMA 3.4. For all (u,v) € E(G), we have
d(u,v)

Pr[(u,v) is removed from Q in Step 2] < ===,

T

Proof. The edge (u,v) is removed from @ in Step
2 when d(z,u) < z + ir and d(z,v) > z + ir for
some integer ¢ = 0. By the triangle inequality this
implies that Pr[(u,v) is removed from @ in Step 2] <

d(xz,v)—d(z,u) < d(u,v)

- , as required.

LEMMA 3.5. For all (u,v) € E(G), we have
d(u,v)

Pr[(u,v) is removed from Q in step 5] < .

r

Proof. The proof of this case is similar to the proof of
Lemma 3.4.

LEMMA 3.6. Let (u,v) € E(G). Suppose that (u,v) €
pi and (u,v) € p; for some i,j € {0,...,k}, then
dp:(z,u) = dp-(x,u) and dp;(x,v) = dp=(z,v).

Proof. Let T be the hexagon containing u and v. Let
(y,0) be the parent edge of (u,v). Note that it is
possible that y = w or 0o = v. Since any complement
subpath from z to (u,v) must end with the unique
subpath tail(u,v), it follows that tail(u,v) € p; and
tail(u, v) € p;. The fact that the complement contains y
also means that p,, is contained in p; and p;. Therefore
we have that p; and p; share the same sub-path from
z to y. Combined with the fact that tail(u,v) € p; and
tail(u, v) € p; this implies that p; and p; share the same
sub-path from x to v ending with the edge (u,v).

Since p; and p; share the same sub-path from x to
v ending with the edge (u,v) we have that dp(z,u) =
dp= (2, u) and dp-(z,v) = dp;(x,v).

LEMMA 3.7. Let i € {0,...,k}. Suppose that p; tra-
verses the parent edge (u,v) of a tight path T. Then p;
does not visit any vertex in I' other than u and v.

Proof. Let T' = (u,o0,w, f,y,v). Since (u,v) is the
parent edge of a tight path (u, 0,w, f,y,v) we have that
Puy = (u,0,w, f,y). Suppose p; visits some vertex
in I' other than v and v we have that p; intersects
the shortest path p,, more than once which is a
contradiction.

LEMMA 3.8. Let (u,v) € E(G). Suppose that (u,v) €
Di, (u,v) ¢ p; and (u,v) € p; for some i,j € {0,...,k},
then dp:(z,u) = dp:(x,u) and dp;(x,v) = dp;(x,v).

Proof. Let (t,z) € p; be the unique ancestor edge of
(u,v) that is contained in p;. We have that (¢, z) is the
ancestor edge of a tight path that contains (u,v). This
implies that pg, € P;. Now let (b, ¢) be the parent edge
of (¢,z). This implies that p,. < p;.

Let us suppose that the parent edge of (u,v) is
(y,0). This implies that p; contains o. Since (y,0)
is the parent edge of a tight path we also have that
Pyv = tail(u,v). This implies that pg, = pyy U tail(u,v).
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From Lemma 3.7 we have that p; does not contain (y, o).
Recursively applying Lemma 3.7 we have that p; does
not intersect with (tail(¢, 2)\(¢, z)) U pty. Therefore we
have that p,. < p; and that (tail(t, 2)\(¢,2)) U pr <
Pj. Since py. is common to both p; and p;, we have
that p; and p; share the same subpath from = to b.
Moreover they both also contain (tail(t, 2)\(¢, 2)) U pry
which concludes the proof.

LEMMA 3.9. Let (u,v) € E(G). Suppose that (u,v) €
pi and (u,v) € p; for some i,5 € {0,...,k}, then
dp;(z,u) = dp—j(m, u) and dp;(z,v) = dp—j(x,v).

Proof. Let (t,z) € p; be the unique ancestor edge of
(u,v) that is contained in p;. Let (b,c) € p; be the
unique ancestor edge of (u,v) that is contained in p;.
W.lo.g. let (t,2) be the ancestor edge of a tight path
that contains (b,c¢). From Lemma 3.8 we have that
dp:(z,b) = dp(x,b). Since (b, c) is an ancestor edge of a
tight path that contains (u,v) it follows that p; and p;
both contain py,. This implies that dp; (7, u) = dp;(x, u)
and dp-(z,v) = dp;(x,v) concluding the proof.

LEMMA 3.10. For all (u,v) € E(G), we have
d(u,v)

Pr[(u,v) is removed from Q in Step 3] < .

T

Proof. From Lemmas 3.6, 3.8 and 3.9 we have that
(u,v) is only removed when, for some integer i >
0, and any j € {0,...,k} such that (u,v) is in pj,
we have that dp;(v,u) < =z + ir and dp(z,v) >
z + ar By the triangle inequality, this im-
plies that Pr[(u,v) is removed from @ in Step 3] <
d(z,v)—d(z,u) < d(u,v)

T

, as required.

LEMMA 3.11. For all (u,v) €
Pr[(u,v) is removed from Q in Step 6] <

E(G), we have
d(u,v).

Proof. The proof of this case is similar to the proof of
Lemma 3.10.

LEMMA 3.12. For all (u,v) €
Pr{(u,v) is removed from @ in Step 4] < 2

E(G), we have
d(u,v)

s .

Proof. We prove this by induction. For the base case
suppose that (u,v) is an edge in B* then it has no
parent edge and therefore the assertion is immediate.
Otherwise let e be the parent edge of a child path T"
containing (u,v) and assume, by the inductive hypoth-
esis, that Pr[(e) is removed from @ in Step 4] < 2@.
There are two cases:

Case 1: Suppose that I is a tight child path of e. Then

we have

Pr{(u,v) is removed from @ in Step 4]

= Pr[(e) is removed from @ in Step 4] - dg(b )
e

d(u,v)

r

Case 2: Suppose that I" is a slack child path of e. Then
we have

Pr[(u,v) is removed from @ in Step 4]

} l e 'S 3 d(u, U)
[( ) 1 e]“()\/ed m Slep 4] . I G( )
] 1 [(6) iS remo d il e 3] d(u7 ’U)
Ve St P .

d(e) d(u,v) d(e) d(u,v)
r o 2d(e) r o 2d(e)
d(u,v)

<2

<2
Thus in either case the assertion is satisfied, concluding
the proof.

LEMMA 3.13. For all (u,v) € E(G), we have
Pr[(u,v) is removed from Q in Step 7] < O(l)M.

Proof. The proof for this is similar to the proof of
Lemma 3.12.

LEMMA 3.14. For all (u,v) € E(G), we have
Pr[(u,v) is removed from Q in Step 8] < 10@_

Proof. Since only edges of length greater than
removed in Step 8 we have that

r
10 are

Pr{(u,v) is removed from @ in step 8] <

LEMMA 3.15. For all (u,v) € E(G), we have
Pr[(u,v) is removed from Q] < 18@.

Proof. The assertion follows by combining Lemmas 3.4,
3.10, 3.12, 3.5, 3.11, 3.13 and 3.14 using the union
bound.

Finally we show that @ is 6r-bounded.

LEMMA 3.16. Let e = (u,v) € Q where u € B,, and
v € B,. Suppose that B, is in the path from B* to B,
in T. If (u,v) € Q then there exists a monotone-down
path P = {a1 = u,aq,...,a; = v} in G, where for all
i€{l1,2,...,t — 1} we have (a;,a;+1) € Q.
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Proof. Since (u,v) € @, we have that at the beginning
of step 9 there must have been a path Py = {a; =
u,ag,...,a; = v} such that for all 7 € {1,2,...,¢t — 1}
we have (a;,a;41) € Q. If Py is monotone-down, we
are done. Otherwise, we start with Py and modify it to
obtain the desired P. Suppose that Py is not monotone-
down. Let X = (B, ..., By) be the shortest path from
By to B, in T. Let A = Uuep, Bev(x)a. Since P
is not monotone-down, there exists a; € V(P)) such
that a; ¢ A. Let m € {1,2,...,t} be the smallest
number such that a,, has such property. Let C,’mo be
the hexagon containing a,,_1 and a,,—o (See Figure 3).
Let as be the other neighbor of a1 in C}, ,, and
let e = (am-1,as). Let C}, ; be the next hexagon
traversed by Py after Cy, o, and let e; € Cj, ; be the
other edge in C;ml which is not traversed by P,. We
similarly define C}, 5,...,C}, ;, and ez,... e/ 1.

The main idea is that we are able to replace the sub-
path of Py from a,,_1 to as with eg. Suppose that we are
not able to do such replacement, and thus eg is removed
in the algorithm. Let T' = (am—1, @Gm, Gmy1,Gs—1,a5). T
is a child of eg. First suppose that T" is tight. In this
case, since eg is removed, at least one of the edges of
I' should be removed after step 3, and thus e; should
be removed by the algorithm. Second case is where I
is a slack. In this case, since ey is removed, at least
one of the edges of I" should be removed after step 4,
and again we have that e; should be removed by the
algorithm. Using the same argument inductively, we
get that e;—; should be removed by the algorithm. But
note that none of the edges of the child of ¢;_; in C{ml
are removed, which is a contradiction. Therefore, ¢q is
not removed by the algorithm and we can replace the
subpath of Py from a,,_1 to as with eg. Using the same
argument, we can modify Py such that it only traverses
vertices in A, as desired.

LEMMA 3.17. Let ¢ = (u,v) € Q where u € B, and
v € B,. Suppose that B, is in the path from B* to B,
in T. If (u,v) € Q then there exists a monotone-up
path P = {a1 = u,aq,...,a; = v} in G, where for all
i€{1,2,...,t — 1} we have (a;,a;+1) € Q.

Proof. A similar argument as in Lemma 3.16 applies
here.

LEMMA 3.18. Let e = (u,v) € Q where u € B, and
v € B,. Suppose that B, is in the path from B* to B,
in T. If (u,v) € Q then we have d(u,v) < 3r.

Proof. Let P = {a1 = w,as,...,a; = v} be the
monotone-down path obtained by Lemma 3.16. Sup-
pose that the path from B* to B, in 7T, is a sub-
path of P; for some j € {1,2,...,k}, and let p; be

Figure 3: The path in Lemma 3.16.

the corresponding path in G. Let f = mingepnp, i,
and let | = maxq,epnp; i- Let P’ = {a1,az,... a5},
P" = {ay,af11,...,a;}, and P" = {aj,a;41,...,a:}.
For any i € {1,2,..., f—1} we have that (a;,a;+1) is not
removed after step 4. This implies that d(aq,ar) < r.
With a similar argument, we can show that d(a;, a;) < r.
Finally, for any i € {f,f + 1,...,1 — 1} we have that
(a;, a;+1) is not removed after step 2, and thus we have
d(ay¢,a;) < r. Therefore by applying triangle inequality,
we get d(ay,a) < 3r, as required.

LEMMA 3.19. Let e = (u,v) € Q where u € B, and
v € B,. Suppose that B, is in the path from B* to B,
in T. If (u,v) € Q then we have d(u,v) < 3r.

Proof. A similar argument as in Lemma 3.18 applies
here.

LEMMA 3.20. If e = (u,v) € Q then we have d(u,v) <
6r.

Proof. Since (u,v) € @, we have that at the beginning
of step 8 there must have been a path P = {a; =
u,as,...,a; = v} such that for alli € {1,2,...,¢—1} we
have (a;,a;+1) € Q. Suppose that v € B, and v € B,
for some B,,B, € X. Let B, € X be a vertex with
minimum level that has non-empty intersection with
V(P). Let w € By, n V(P) be an arbitrary vertex. By
the construction, we have that B,, is in the paths from
B* to B, and B,. Moreover, we have (u,w) € Q and
(w,v) € Q. Therefore, by Lemmas 3.18 and 3.19, we
have that d(u,w) < 3r and d(w,v) < 3r. This implies
that d(u,v) < 6r, as desired.

Proof. [Proof of Theorem 1.5] The proof follows by
combining Lemmas 3.20 and 3.15.
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4 Lipschitz quasipartitions for bounded

pathwidth digraphs

In this Section we provide a proof for Theorem 1.6.
We present an efficient algorithm for computing a
random quasipartition of a directed graph with bounded
pathwidth. We begin by describing a specific family of
graphs of bounded pathwidth, which we refer to as path
of cliques. We show that any graph of pathwidth k
admits an isometric embedding into a path of k-cliques.
We then describe an algorithm to obtain a random
quasipartition of a path of k-cliques. Finally, we present
the analysis of the aforementioned algorithm.

4.1 Isometric embedding for bounded path-
width digraphs into path of cliques

Path of cliques We call a digraph G a path of k-
cliques if there exists a collection of pairwise disjoint
subsets of V(G) S1,S52,...5; such that the following
conditions hold:

1)SiuSyu...us =V(G).
2) |S;| = k for any integer i € {1,...,1}.

3) E(G) = {(u,v), (v,u)|u,v e S; U Sit1,i€{1,...,1—
1}}.

We refer to the subsets Si,.55,....5; as cliques. We
call an edge (u,v) € E(G) a wvertical edge if u,v € S;
for some i € {1,...,l}. We call all other edges in E(G)
horizontal edges. Furthermore if v € S; and v in S;41
for some i € {1,...,1} we call the horizontal edge (u,v)
left horizontal. Otherwise if v € S; and v € S;;1 we call
the horizontal edge (u,v) right horizontal. Let p be a
directed path in G from u to v where u,v € V(G). We
define dg(p) = dg(u,v). Let z,y € V(G) be vertices
that are traversed by p in that order. Then we denote
the sub-path of p from x to y by p(z,y). We define the
width of p to be ?faxz} lp N Sil.

ief{l,...,

THEOREM 4.1. Let G be a weighted digraph of path-
width k. Then G embeds isometrically into a path of
(k + 1)-cliques.

Proof. Let (X, P) denote a path decomposition of G
with pathwidth & where X = {X;,... X;} is a collection
of subsets of V(G). First we observe that from the
definition of pathwidth we have that | X;| < k+ 1 for all
ie{l,...,l}. W.lo.g we may assume that |X;| =k +1
for all 7 since otherwise we can add vertices to X; from
either X; .1 or X;_; and we know that there exists some
X such that |X;| = k+ 1. Now we construct a path of
cliques H as follows. We initialize V(H) and E(H) to be
. For all i and for each vertex u € V(G) in X; we add
to V(H) a unique vertex u;. We call u the parent of u; in

G and denote this by u = p(u;). Next we define the sets
Si = 'LLZ'|UE Xz'. Clearly Sl ) SQ U... U Sl = V(H)
Next for all ¢ and for all z,y € X; U X;,1 we add
the directed edges (z,y) and (y,x) to E(H) setting
their weights to be dg(p(x),p(y)) and da(p(y),p(x))
respectively. Now we are ready to define the isometric
mapping ¢ : V(G) — V(H). For each u € V(G) we
pick arbitrarily some v € V(H) such that p(v) = u and
set ¢(u) = v. This gives us the desired mapping. Now
we observe that every edge in H has weight equal to
the shortest path distance between the corresponding
parent vertices in GG. This implies that distances don’t
contract in the embedding. Consider any directed path
q = {a1,...,an} in G. For any u,v € V(H) such that
p(u) = p(v) we have that there exist directed paths of
length 0 from u to v and from v to uw. This follows
due to the fact that H is constructed from a path
decomposition of G. For the same reason it must also
be that for every directed edge (a;, a;+1) in g there exist
u,v € V(H) such that p(u) = a; and p(v) = a;4+1 and
u,v both belong to X; for some j. This implies that
there is a corresponding directed edge (u,v) € E(H).
Therefore there is a corresponding directed path in H
with the same length as g. So it follows that ¢ does not
dilate distances. Therefore ¢ is an isometric embedding.

4.2 Algorithm

Input: A graph G of pathwidth k£ — 1 and a corre-
sponding path of cliques B1, By, - - - , By, where for
each i € {1,2,---,1} we have |B;| = k.

Output: Random quasipartition ) of the shortest-
path quasimetric space of G.

Initialization. Set G* = G, Q = E(G), and i = 1.
Step 1. Pick z € [0, r] uniformly at random.

Step 2. Pick v ; € By such that B is reachable from
v1,; in G* (There exists a directed path from vy ;
to By in G*). Let s; = v14, and let ¢; € B; be such
that ¢; is reachable from s;. Let p; be a shortest
path from s; to ¢; in G*.

Step 3. For all (u,v) € E(G*) remove (u,v) from Q if
dgx(s;,v) > j-r+ z and dgx(s;,u) < j-r+ z for
some integer j = 0.

Step 4. For any (u,v) € p;, if (u,v) is horizontal in
G then delete (u,v) from G*, and set i =i+ 1. If
i < k2, go back to Step 2.

Step 5. Set G* =G, and 7 = 1.

Step 6. Pick v;; € B; such that B; is reachable from
vy,; in G* (There exists a directed path from v;; to
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By in G*). Let s, = vy, and let t; € By be such
that ¢; is reachable from s;. Let ¢; be a shortest
path from s/ to t; in G*.

Step 7. For all (u,v) € E(G*) remove (u,v) from @ if
dgx(s},v) > j-r+ z and dgx (s}, u) < j-r+ z for
some integer j = 0.

Step 8. For any (u,v) € gj, if (u,v) is horizontal in
G then delete (u,v) from G*, and set ¢ =i + 1. If
i < k2, go back to Step 6.

Step 9. Remove every (u,v) € E(G) from @ with
d(u,v) > r.

Step 10. Let G’ be the subgraph of G with V(G’) =
V(G) and E(G') = Q.

Step 11. Enforce transitivity on @; that is, for all
u,v,w € V(G) if (u,v) € Q and (v,w) € @ then
add (u,w) to Q.

4.3 Analysis of the algorithm We call an edge
in G’ horizontal (resp. wertical) if the corresponding
edge in G is horizontal (resp. wertical). For all ¢ €
{1,...,k}ie {1,...,k* and j € {1,...,k%} we define
P, ; ; to be the set of all directed paths in G’ with width
c that do not traverse any horizontal edge in p, and in
gy for all z < 4 and y < j and traverse at least one
horizontal edge in p; and g;.

LEMMA 4.1. Let (u,v) € Q after Step 11 of the algo-
rithm. Then there exists a directed path from u to v in

G'.

Proof. We have that (u,v) € Q after Step 11 of the al-
gorithm. Combined with the fact that step 11 enforces
transitivity on ) this implies that there are two possi-
bilities. The first case is that (u,v) € E(G) and (u,v)
is not removed from @ by the algorithm in steps 3 or 7.
The other possibility is that it must have been that there
was a sequence of vertices a; = u,aso,...,a,; = v such
that for all i < m (a;,a;+1) € E(G) and (a;,a;41) € @
after step 9 of the algorithm. This implies that the cor-
responding directed edges are present in G’. Therefore
the directed path P = {ay,...,a,} is also present in
G'.

LEMMA 4.2. Let e € E(G) be a horizontal edge. Then
there exists j € {1,2,...,k*} such that either e € p; or
e e qj-

Proof. Let e = (u,v) and w.l.o.glet u € B; and v € B;;1
for some i € {1,2,...,1}. Since we delete horizontal
edges in step 4 and each p; begins at a vertex in By and
ends at a vertex in B it follows that each p; contains

a unique horizontal edge from B; to B;11. Combined
with the fact that that there are exactly k2 directed
edges from B; to B; 1 for any 4 this implies that for all ¢
every horizontal edge from from B; to B;; is contained
in some p;. A similar argument can be used to show that
for all i every horizontal edge from from B; to B;_; is
contained in some g;. This concludes the proof.

LEMMA 4.3. For every (u,v) € FE(G), we have
. d(u,v)
Pr[(u,v) is removed from Q by step 3] < k* S22,

Proof. By the construction, an edge (u,v) is removed
from @ by step 3 if dg« (s, v) > i-r+2z and dgx (s, u) <
i-r+z for some integer ¢ > 0. This means that each time
after running this step we have that (u,v) is removed
from @) with probabilty at most M. The algorithm
runs this step exactly k% times, and thus we have
Pr[(u,v) is removed from @ by step 3] < kQM, as
desired.

LEMMA 4.4. For every (u,v) € E(G), we have
Pr[(u,v) is removed from Q by step 7] < kzw.

Proof. A similar argument as in Lemma 3.10 applies
here.

LeMMA 4.5. For every (u,v) € E(G), we have
Pr{(u,v) is removed from Q by step 9] < d(li,v)'

Proof. If d(u,v) < r, then (u,v) is not removed by step
9. Otherwise, (u,v) is removed from ) and we have

w,v)

Pr[(u,v) is removed from @ by step 9] =1 < d(T

LEMMA 4.6. For every (u,v) € E(G), we have
Pr[(u,v) is removed from Q] < (2k* + 1)@.

Proof. This follows immediately by Lemmas 4.3, 4.4,
and 4.5.

Now we show that @ is 2k hounded.

LEMMA 4.7. Let u,v € V(G) and p € P, 241 3241 be
a directed path in G' from u to v. Then dg(u,v) <
(c—1)r.

Proof. We have that p does not traverse any horizontal
edges in G’ that are in p1,...,pg2 OT q1,...,q,2. But
since all horizontal edges in G’ are either part of
P1,...,pp2 or part of qq,...,q,2 this implies that p
consists only of vertical edges of which there can be
at most ¢ — 1 since each clique consists of at most k
vertices of which p can visit at most ¢ since p has width
c. Since each edge in G’ has length at most r from step
9 of the algorithm it follows that dg(p) < (¢ — 1)r.
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LEMMA 4.8. Let u,v € V(G) and i € {1,...,k*} such
that w and v are traversed by p; in that order. Suppose
there exists a path p from u to v that does not traverse
any horizontal edge of p; for all j < i then dg(u,v) <.

Proof. The above lemma can be proved by considering
the ith iteration of step 3 of the algorithm. Since
p does not traverse any horizontal edge of p; for all
j < i it follows that p is a path in G*. However
since no edge of p is removed in step 3 this implies
that dg«(s;,v) — dg=(si,u) < r. This combined with
the fact that p; is a shortest path in G* implies that
da(u,v) <.

Figure 4: The path p in Lemma 4.9.

LEMMA 4.9. Letu,ve V(G) andp € P.; ; be a directed
path in G' from u to v. Then dg(u,v) < Ok —i=j)p

Proof. We prove this by induction. Lemma 4.7 will be
used as the base case. Suppose the statement is true
for directed paths in Py ; ;,P. . ; and P, ; , where d < c,
z > 1, and o > j. We denote by vief and vyight a pair
of leftmost and rightmost vertices traversed by p. More
precisely we pick a vertex wveq from B, where a is the
smallest integer such that B, np # . Similarly we pick
a vertex vright from By, where b is the largest integer such
that By, np # . Suppose p traverses B, before By,
then we pick v to be the first vertex in B, visited by
p and we pick vygnt to be the last vertex in By visited
by p. Otherwise we pick vy to be the last vertex in B,
visited by p and we pick vright to be the first vertex in By
visited by p. Note that if ¢ = 1, then either vjes, = u and
Uright = U OT Vet = U and Vgighe = u. Consider the case
that p traverses vief before vyghe (See figure 4). Then
we have that p = p(u, Vieft) U P(Vieft, Vright) U P(Vrights )-
Next we observe that since the width of p is ¢ and
the width of p(Vieft, Vright) is at least 1 it follows that
P(u, Vierr) and p(vright, v) have width at most ¢ — 1.
Consider p(vieft, Uright). Let ui be the first vertex in
D(Vleft, Uright) that intersects p;. Let vy be the last vertex
in p(Vieft, Vright) that intersects p; beyond u;. Suppose
P(v1, Vright) does not traverse any horizontal edges of p;

By

Figure 5: The sub-path of p in Lemma 4.9.

then we have that p(vief, u1) and p(v1, vrignt) are in Py ,
for some integers d < ¢,z > i and o = j. We also
have that p(u, vieft), P(Vright, V) € Pa, ., for some integers
d < cz > 1iand o > j since p(Vseft, Vright) has width
at least 1. So we can use the distance bounds from
the induction on p(vief, u1), p(vi, vright), P(U, Viert), and
P(Vright; v). For p(ui,vi) we may bound the distance
using lemma 4.8. This gives us the required bound.
Suppose p(v1, vright) traverses some horizontal edge of p;
then let uy be the first vertex in p(vief, vright) traversed
after v; that intersects p;. By the choice of vy it must
be that us is a vertex traversed before uy by p;. Let uq
belong to a clique B; for some t € {1,...,l}. Now we
have that p traverses some vertex x; € B; after visiting
v1 and before visiting us since usg is in a clique with a
lower index than u;. Let y; € B; be the last vertex
in By traversed by p. Now it follows that p(x1,y1) has
width at most ¢ — 1. This is because p(z1,y1) does not
intersect p(viert),u1) and does not intersect p(y1, vright)
except at y;. From our choice of vy it must be that
P(Y1, Uright) does not intersect any horizontal edge of p;.
Similarly p(v1, z1) does not intersect any horizontal edge
of p; from our choice of us and z;. Thus again we can
bound the distances of p(viest, u1), p(vi,z1), p(z1,y1),
p(ylvvright)a p(u, vief), and P(Uright,v) using induction
and bound the distance of p(uj,v1) using lemma 4.8
giving the required bound on the distance. For the
case that p traverses vignt before vier we use a similar
argument where we consider g; instead of p;.

Proof. [Proof of Theorem 1.6] The required quasipar-

tition is obtained from Algorithm 4.2 setting r = 25

ak?
where « is the constant in the asymptotic notation f%om

Lemma 4.9. The proof follows from Lemmas 4.9 and 4.6.

4.4 Derandomization It is possible to derandomize
the algorithm in subsection 4.2 to get a polynomial
time algorithm that enumerates the support of the
distribution in Theorem 1.6. The approach is quite
similar to that used in Section 3 Theorem 14 of [16].
We observe that there can be at most n — 1 unique
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combinations of ordered pair removals in each iteration
of Step 3 of the algorithm. In order to enumerate these
we only need to consider values of z for which there
exists u € V/(G*) such that dg=(s;,u) = j-r + z. Using
a similar argument for each iteration of Step 3 we only
need to consider at most (n — 1)k? unique values of z
in total to enumerate the support of the distribution
obtained in the algorithm.

THEOREM 4.2. Let G be a directed graph of of path-
width k. Let M = (V(G),dg) denote the shortest-path
quasimetric space of G. Then for all A > 0, there ex-
ists a polynomial time algorithm with running time of
the form n°® that can compute the support of some
20(k2)-Lipschitz distribution over A-bounded quasipar-
titions of M.

5 Embedding directed cycles into directed /¢,

In this section we describe an algorithm for computing
a constant-distortion embedding of the shortest-path
quasimetric space of directed cycles into a convex com-
bination of 0-1 quasimetric spaces.

We begin by introducing some notation. Consider
a directed cycle G and fix a planar drawing of G where
G is drawn as a circle centered at the origin. Let w be
a weight function on the edges of G. Let X = (V,d)
be the shortest-path quasimetric space of G. We may
assume w.l.0.g. that every edge (u,v) € E is the shortest
path from u to v in G. We denote by A the diameter
of G. For all u,v € V we denote by D (u,v) the path
from u to v in the counter-clockwise direction in the
drawing of G and by U(u,v) the length of P (u,v).
Similarly we denote by 7 (u,v) the path from u to
v in the clockwise direction in the drawing of G and
by 7(u,v) the length of P(u,v). We say that some
v e V(G) is the meet-point of u if d (u,v) = d (u,v).
For some (u,v) € V(G) x V(G), we say that (u,v) is
short if U(U,’U) < 1% and d (u,v) < %; otherwise we
that (u,v) is long. Let A € V where A = {u : u €
V,3v € V such that d (u,v) < & and d (u,v) < a1,
Similarly let B € V where B = {v : v € V,3u €
V such that U(u,v) < 1% and E(U,’U) < 1% .

LEMMA 5.1. Let U1, U2,U3 € V(G) with ﬁ(ul,’u,g) N
T (ug,u3) = ug. Let (ug,v1), (ug,v2), (us,vs) be short
pairs. Let A" = {u1,us,us} and B = {v1,va,v3}. Then
we have that all the vertices in B’ are contained within
one of P (u1,u2), P (uz,u3), P (us, u1) -

Proof. Suppose for the sake of contradiction that the
assertion does not hold. W.l.o.g. assume that 7 (uq, uz)
and 7 (ug2,u3) each intersect B’. We consider the
following cases:

Case 1: P (u1,uq) contains v; (a_nd 7 (ug,us) con-
tains vg. In this case we have that d (up,v1) < 1% and

a1 am
b by
Bs . | By
bjt1 / o !
a 1
" b, bit1
By

Figure 6: The sets A and B.

(E(UQ,UQ) < 1%. But 9 (u1,v1) U P (ug, v2) contains all
the edges of G in the counter-clockwise direction. This
implies that the sum of the lengths of all the edges in
the counter-clockwise direction is at most %. However
this means that the diameter of G is at most % which
is a contradiction.

Case 2: T (u1,us) contains vy and P (ug,us) con-
tains v;. In this case we have that 7(u1, vy) < 1% and
7(1@,1}2) < 1%. But 7 (u1,v1) U P (ug, v2) contains all
the edges of G in the clockwise direction. This implies
that the sum of the lengths of all the edges in the clock-
wise direction is at most %. However this means that
the diameter of GG is at most % which is a contradiction.

Case 3: T (u1,ug) contains vs, P (ug2,u3) contains
vy and P (ug,uq) contains vy. In this case we have that
U(ul,vl) < 1%, (ug,vg) < 1% and 7(1@,,’03) < 1%.
But 7' (u1,v1) U T (u2,v2) U P (us,v3) contains all the
edges of G in the clockwise direction. This implies that
the sum of the lengths of all the edges in the clockwise
direction is at most %. However this means that the
diameter of GG is at most % which is a contradiction.

Case 4: P (u1,us) contains vy and P (ug,u1) con-

tains v;. In this case we have that z(ul, V1) < 1% and

7(112,1)2) < 1%. But 7' (u1,v1) U P (ug,v2) contains all
the edges of GG in the clockwise direction. This implies
that the sum of the lengths of all the edges in the clock-
wise direction is at most %. However this means that
the diameter of G is at most % which is a contradiction.

Case 5: P (u1,ug) contains v; and 7 (u3,uq) con-
tains ve. In this case we have that d (u1,v1) < 1% and
A (ug,v2) < 1%. But 9 (u1,v1) U P (ug, v2) contains all
the edges of G in the counter-clockwise direction. This
implies that the sum of the lengths of all the edges in
the counter-clockwise direction is at most %. However

this means that the diameter of G is at most % which
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is a contradiction.

All other cases are identical to the above cases up
to relabeling of the vertices. Since we end up with a
contradiction in every case, this concludes the proof.

Lemma 5.1 implies that A and B are two disjoint
consecutive segments of G. Let a1,aq,...,a, be the
vertices of A in clockwise order. Let also by, bs,..., by
be the vertices of B in clockwise order. Let a} and a/,, be
the meet-points of a; and a,, respectively. If a¢; and a.,
do not have such points we may introduce two vertices
ay and a, by subdividing edges such that the induced
quasimetric does not change. By the construction, we
have d(ai,a}) < 1% and d(am,a,,) < 1%. Therefore,
ay lies between b; and b;y; for some i € {1,2,...,k}.
Similarly, a], lies between b; and bj;q for some j €
{1,2,...,k} (See Figure 6). Let By = {b1,ba,...,b;},
B2 = {all,bi+1, ce ,a;w}, and Bg = {aj+1, ce ,bk}

5.1 The algorithm for embedding into directed
{1 We are now ready to describe the algorithm for
computing a random quasipartition of G.

Input: A directed cycle G.
Output: A random quasipartition @ of the
shortest-path quasimetric space of G.

Initialization: Set @ = E(G).

Step 1. Pick an arbitrary v; € V. Let vy, va,...,v, be
the vertices of GG in clockwise order. Let v,11 = v1.
Pick z1, 22 € [0, &] uniformly at random.

Step 2. For every j € {1,2,...,n}, remove (v;,v;+1)
from @ if E)(vl,vj) <i- 1% + 2z and 7(1}1,1)]»“) >
i- 1% + 21 for some integer i > 0.

Step 3. For every j € {1,2,...,n}, remove (v;41,v;)
. <« . <
from Q if d (v1,vj41) < Z-% + 2 and d (v1,v5) >
i 1% + 21 for some integer i > 0.

Step 4. Pick z3 € [0, A] uniformly at random.

Step 5. For every (u,v) € E(7 (ay,a})), remove (u,v)
from @ if g(al,u) < zz and d (a1,v) > z3.

Step 6. For every (u,v) € E(p (9_1, ay)), remove (u, v)
from Q if d(al, u) < zz3 and d (a1,v) > z3.

Step 7. For every (u,v) € E(P(am,a,,)), remove

(u,v) from @ if Z(Qm,u) < zz and d (am,v) > z3.

Step 8. For every (u,v) € E(p (amz_a/ )), remove
(

&T%

(u,v) from Q if d (ap,,u) <

Step 9. For every (u,v) € E(7P (ay,a})), remove (u,v)
from Q if d (v,a}) < z3 and d (u,d}) > zs.

zz and d (am,v) > z3.

Step 10. For every (u,v) € E(‘_(a(ha'l)), remove
(u,v) from Q if d (v,d}) < z3 and d (u,a}) > z3.

Step 11. For every (u,v) € E(P (am,al,)), remove
(u,v) from Q if Z(v,a’m) < zz and d (u,al,) > zs.

Step 12. For every (u,v) €
(u,v) from Q if d (v,al,) <

E(p (am,aﬁn)), remove
z;;andd( al)) > zs.

Step 13. Enforce transitivity on ). That is for all
u,v,w € V(G) if (u,v) € Q and (v,w) € @, then
add (u,w) to Q.

This concludes the description of the algorithm.

5.2 Analysis We now analyze the random quasipar-
tition computed by the above algorithm. We first argue
that the “probability of separation” is small for all pairs
of vertices; this implies that the contraction of the re-
sulting embedding into ¢; is bounded.

LEMMA 5.2. For every u,v € V we have

d(u, v)
2A

Pr [(00) ¢ Q] >

Proof. Let X; be the random event that there exists an
edge e € T (u,v) such that e ¢ Q. Let X5 be the random
event that there exists an edge e € P (u,v) such that
e ¢ Q. We want to show that Pro.p[X1 A Xo] = w.

First suppose that (u,v) is a long pair. That is,
either ‘d (u,v) > 1% or d (u,v) = %. We may assume
w.l.o.g. that 7(u7v) > 1% (the analysis for the other
case is similar). In this case, by the Step 2 of the
algorithm we have that Prg..p[X;] = 1. This is because
of the fact that E(U, v) = 1%. Also, from Step 3 of the
algorithm we get Prg.p[Xz] = w. Therefore, we
have Prg.p[Xi A Xo] = w.

Now suppose that (u,v) is a short pair. First
suppose that v € By. In this case, by the construction
we have that d(u,v) = d (u,v), and thus by Step 5 of
the algorithm we have that Pro.p[X:] > w. Also,
by Steps 5 and 6 we have Prg.p[X2|X1] = 1, and hence
we have Pro.p[X1 A Xa] = d(zv), as desired. If v € B3,
a similar argument using Steps 7 and 8 of the algorithm
shows that Pro.p[X1 A Xa] > w.

Now suppose that v € Bs. Let p1 = P (u,d}),
p2 = P(am,v), p3 = P(u,a;,), and ps = P (a1, v).
For every i € {1,2,3,4}, let Y; be the random event
that there exists an edge e € p; such that e ¢ Q. There
are four cases:

Case 1. E)(u ay) = d(u,v)/2 and d( a,) =
d(u,v)/2. First assume that ﬁ(u ay) < d (u ar,).
By Step 6 of the algorithm we have that
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d(wa
PrQ~D[X1] = PrQ~D[Y1] > (Z7a1) > d(QuAU)~

Also by the construction and Step 10 of the al-
gorithm, we have that Pro.p[X2|Y1] = 1. There-

fore, we have Prg.p[X1 A X2] > d(QuA’U), as desired.

The argument for the other case where E)(u, ay) >
d (u,al,) is similar by considering Steps 8 and 12
of the algorithm.

Case 2. U(U,a’l) > d(u,v)/2 and F(al,v) > d(u,v)/2.
If F(U,a’l) < (E(al,’u), then we follow a similar
argument as in the first case by considering Steps
9 and 10 of the algorithm. Otherwise, we follow a
similar argument by considering Steps 6 and 10.

Case 3. d(am,v) > d(u,v)/2 and d(u,a,) >
d(u,v)/2. If d (am,v) < d(u,a’,) then a similar
argument as in the first case by considering Steps 7
and 8 applies here. Otherwise, a similar argument
considering Steps 8 and 12 applies here.

Case 4. U(Qm,v) > d(u,v)/2 and (E(al,v) >

d(u,v)/2. If d (am,v) < d(a1,v), the a similar

argument using Steps 7 and 11 of the algorithm
applies here. Otherwise, a similar argument using

Steps 5 and 6 applies here.

By considering all the above cases, we conclude that
Pro-pl(u,v) ¢ Q] > %%Y, as desired.

Next we prove that the probability of separation
is not too large; this implies that the expansion of the
resulting embedding into directed ¢; is bounded.

LEMMA 5.3. For every (u,v) € E we have

Pr [0 ¢ Q] < 1100

Proof. Consider any edge (u,v) € E. First we observe
that Steps 2,5,7,9 and 11 only remove edges in the
clockwise direction. Similarly Steps 3,6,8,10 and 12
only remove edges in the counter-clockwise direction.
W.lo.g. let us assume that (u,v) is in the clockwise
direction. This means that it may be removed in Step 2

with probability at most “’A(?ig) = IOd(Au’“). Now in each

of Steps 5,7,9 and 11 we remove (u,v) with probability
w(u,v) d(u,v)

at most —g— = —x~. Taking the union bound we
have that the probability that (u,v) is removed from @
. 14d(u,v)
is at most ——.

LEMMA 5.4. For every u,v € V we have

Prf(,0) ¢ Q) < 1Y),

Proof. Let p be a shortest path from u to v in G.
Suppose that (u,v) ¢ Q. Since we enforce transitivity
in Step 13 this implies that an edge in p is removed
before Step 13. So we have that Prg.p[(u,v) ¢
Q] < Pr[An edge in p is removed before Step 13] <

>, Proop[(u,v) ¢ Q] using the union bound. Now

(u,v)ep
applying Lemma 5.3 to all the edges of p we have that

Pro-pl(u,v) ¢ Q] < %, which concludes the
proof.

We are now ready to prove the main result of this
Section.

THEOREM 5.1. Let G be a directed cycle and let M =
(V(Q),dg) be its shortest-path quasimetric space. Then
M admits a constant-distortion embedding into some
convex combination of 0-1 quasimetric spaces denoted by
D. Moreover we can sample a random 0-1 quasimetric
space from D in polynomial time.

Proof. The required convex combination of 0-1 quasi-
metrics is obtained from the distribution D returned by
the Algorithm. Every quasipartition ) in the support of
D can be replaced with a 0-1 quasimetric where for any
u,v € V d(u,v) = 0 iff (u,v) € @ otherwise d(u,v) = 0.
Since D is a probability distribution over quasipartitions
this gives us a convex combination of 0-1 quasimetrics
¢. Now it remains to show that the distortion is O(1).

For any u,v € V we denote the distance from w to
v in ¢ dg(u,v). Now we have that,

dcﬁ(“a”) =
1- Prg.p[(u,v) ¢ Q] +0- Pro.p[(u,v) € Q] =
PTQND[('U’ U) ¢ Q]

From Lemmas 5.2 and 5.4 we have that,

1 1
A < dg(u,v) < 28d(u,v) - 2K
This implies that the distortion is at most 28. The
bound on the running time is immediate from the
description of the algorithm.

d(u,v) -

By using Theorem 5.1, we can obtain the following.

Proof. [Proof of Theorem 1.7] First we observe that any
quasipartition in the support of the distribution D re-
turned by the algorithm is obtained by removing at most
28 directed edges in F(G) and enforcing transitivity.
This follows immediately from our choice of 27, zo and
z3. Next consider any u,v € V(G) and any Q € supp(D)
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such that (u,v) ¢ Q. Let S € E(G) denote the set
of edges that we remove before enforcing transitivity to
obtain Q. Now we have |S| < 28. We also have that
there exist eq, e5 € S such that removing e; and ey from
E(G) and enforcing transitivity ensures that (u,v) is
not in the resulting quasipartition. This is because G is
a directed cycle and there are exactly two directed paths
from u to v. Therefore it suffices to remove a directed
edge from each of the two paths to obtain a quasiparti-
tion that does not contain (u, v). This implies that if we
consider all possible ways to select two edges (one in the
clockwise direction and one in the counterclockwise di-
rection such that they don’t overlap i.e. we do not pick
(z,y) and (y,x) for all (x,y) € E(G)) from S, and then
consider the quasipartition obtained by removing them
from E(G) and enforcing transitivity we have a set Py
of at most (228) possible quasipartitions and (u, v) is not
in at least one of them. Now we consider the following
distribution of quasipartitions. First we pick @ from
D. Then we pick uniformly at random a quasipartition
from Pg. This gives us a new distribution of quasiparti-
tions D’. Note that every quasipartition @’ € supp(D’)
is a directed cut metric. This is because removing two
directed edges in opposite directions as described ear-
lier and enforcing transitivity on the remaining edges to
obtain @’ partitions V(G) into U < V(G) and V(G)\U
such that (z,y) ¢ Q" if x € U and y € V(G)\U and
(z,y) € Q' otherwise. Therefore D’ is a convex combi-
nation of directed cut metrics. Since the bound from
lemma 5.2 decreases by at most a factor of 28 when ap-
plied to D’ it follows that the distortion of D’ is at most
28 times larger than that of D.

6 Embedding directed trees into directed /¢,

In this section we describe a method for embedding
directed trees into directed ¢; with distortion one.
Let G = (V,E) be a directed tree, and let w be a
weight function on the edges of G. Let M = (X,d)
be the shortest path quasimetric space induced by G.
The following algorithm gives us a distribution D over
quasipartitions of G.

Input: A directed tree G.

Output: A random quasipartition Q.

Initialization:: Set Q = E(G).

Step 1. Let W = > w(e).
eeE

Step 2. Let Dg be a distribution over E, where each
edge e € E is sampled with probability w(e)/W.

Step 3. Pick an edge e € FE from the above
distribution, and remove e from Q.

Step 4. Enforce transitivity on @Q; that is, for all
u,v,w € V(G) if (u,v) € Q and (v,w) € Q then
add (u,w) to Q.

LEMMA 6.1. For everyu,v € V we have Prgp|[(u,v) ¢
Q] _ d(u,v)
et

Proof. Let P = (a1 = w,a,...,a,, = v) be the
unique shortest path from u to v in G. We have that
(u,v) ¢ Q iff there exists an ¢ € {1,2,...,m — 1} such
that (a;,a;41) ¢ Q. By the construction, for every
i e {1,2,...,m — 1} we have that Prg.p[(a;,a;y+1) ¢
Q] = w Now note that the algorithm only
removes one edge from @, and thus we have

—1

s d
Prltn0) ¢ Q1= 3 Pl o) ¢ Q1 = 7

as desired.

Now we are ready to prove the main result of this
section.

Proof. [Proof of Theorem 1.8] The above algorithm
gives us a convex combination of quasipartitions, and
thus a convex combination of 0-1 quasimetrics with
distortion one. The support of this convex combination
consists of 0-1 quasimetrics that are also directed cut
metrics. This is equivalent to an embedding into
directed ¢;, as desired.

7 Applications to directed cut problems

Directed Multicut problem Consider the Di-
rected Multicut problem. Let P be the set of all directed
paths from a source terminal to its corresponding sink
terminal. For every e € E(G), we define an indicator
variable z(e) that indicates whether e belongs to a cut
or not. We have the following integer program for the
problem:

minimize Z cle)z(e)
eeE(G)

subject to Z xz(e) =1, Vpe P
eep

z(e) € {0,1}, VYee E(G)

By relaxing this integer program, we get the follow-
ing LP relaxation:
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minimize Z c(e)x(e)
ecE(G)

subject to Z z(e) =1, VpelP
eep

z(e) =0, Vee E(G)

Let x be the solution to the above LP relaxation.
Let M be the quasimetric space induced by x. Suppose
there exists a (1 — ¢)-bounded S-Lipschitz distribution
over quasipartitions of M D. Then we can sample a
quasipartition @ of M from D. Let Sqo = E(G)\Q.
Since @ is (1 — €)-bounded, we have that Sq is a valid
Multicut solution. We have:

E(c(Sq)) =
D E(c(e) =
eeS
diele) Pr(e¢ Q) <
eeS
z(e)
ce) - B <
;s 1—¢
p OPT
1—e¢
This means that in expectation Sg is a li—

approximation for the optimum Multicut solution.
Therefore it follows that there exists a quasipartition
Q* € supp(D) such that ¢(Sgx) < %OPT.

Proof. [Proof of Theorem 1.4] The proof follows by
combining the aforementioned result with the results
of Sections 3 and 4.

Directed Non-Bipartite Sparsest Cut The
standard LP relaxation for this problem is as follows:

minimize Z cle)z(e)
eeE(G)
subject to Z dem(i)dy(s;,t;) =1
(si,ti)ET
z(e) =0, Ve € E(G)

Here d,(u,v) denotes the shortest path distance
induced by the function x in G. We also denote the
optimal value of the objective function by OPT. Note
that we may assume that Z dem(i)dy(s;,t;) = 1

(siti)eT
when the optimum is achieved.

It is shown in [11] that the existence of a (og, UI%)—
decomposition for undirected graphs implies that the
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integrality gap for the (undirected) uniform demand
Sparsest Cut problem is O(oo’). A similar argument
to the one used in Lemma 3.5 in that paper gives the
following result.

THEOREM 7.1. Let G be a directed graph. Suppose for
allr >0 and all w : E(G) — {0 U R"} there exists an
r-bounded (-Lipschitz distribution over quasipartitions
of the shortest path quasimetric induced by w on G.
Then the integrality gap of the LP relaxation for the Di-
rected Non-Bipartite Sparsest Cut problem with uniform
demands and any choice of capacities on G is O(B).

Proof. 1t is known that the solution of the LP relaxation
for the Directed Non-Bipartite Sparsest Cut

problem is a weight function w : E(G) — {0 U R} on
G that induces a quasimetric space M = (V(G), d) [16].
Let D be a ﬁ—bounded [B-Lipschitz distribution over
M. Every quasipartition @) € supp(D) induces a cut Sq
of G. If we pick randomly pick(Q) from D we have that

Bd(e 5 .

the Q]ED[C(SQ)] < Zi]c(e) = < 4n?BOPT. This
implies that there exists a quasipartition Q* € supp(D)
such that Sgx < 4n?BOPT. Now consider the cut
Sgx. Let T'= Uy, Us, ..., U, be the collection of vertex
sets of all maximal strongly connected components of
G[E\Sg*]. Suppose |U;| < 202 for all i € {1,...,m}.

3
Then there exists r € {1,...,m} such that § < |U; u
Lo U < “%" and § < |Upqy u...u[z)]m| < ‘%".
Furthermore we have that D(Sgx) > 5. This is

because for all w € {Uy v ... v U,} and v € {U,41 U
... U Up} we have that either there is no path from wu
to v or there is no path from v to u in G[E\Sgx] since

each Uj; is a maximal strongly connected component. So
4n?BOPT
5n2/36
2
O(BOPT). Suppose |U;| = 2% for some i € {1,...,m}.
Then we have that for all u,v € U; d(u,v) < #
and d(v,u) < ;53. So we can use the same argument
from Lemma 16 in [14] to obtain a cut with sparsity
O(BOPT). This implies that the integrality gap of the

LP relaxation is O(f8) concluding the proof.

we have that the sparsity of Sg«| is at most

Proof. [Proof of Theorem 1.1] The proof follows by
combining Theorem 7.1 with Theorems 1.5 and 1.6.

Proof. [Proof of Theorem 1.3] The proof follows by
combining Theorem 7.1 with Theorems 1.5 and 4.2.

Proof. [Proof of Theorem 1.2] Theorem A.1 from [4] due
to Charikar, Makarychev and Makarychev implies that,
the non-uniform flow-cut gap for a digraph G is upper
bounded by the minimum distortion for embedding any
shortest path quasimetric space supported on G, into
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a convex combination of 0-1 quasimetrics. Combined
with Theorems 1.8 and 5.1 this implies the statement of
the theorem.

8 Limitations of the Klein-Plotkin-Rao
partitioning scheme

Let G be a directed planar graph, and let M denote
the shortest-path quasimetric space of G. In order to
find a constant Lipschitz distribution over r-bounded
quasipartitions of M, one may try to generalize previous
algorithm of [11], where their work is on undirected
graphs. The following algorithm is implicit in their work
for planar undirected graphs.

Input: A planar connected graph G.

Output: A random r-bounded partition @ of the
shortest-path metric space of G.

Initialization. Set G* = G and @ = F(G).

Step 1. Pick z € [0,r] uniformly at random. Let
c=3.

Step 2. For every connected component C' of G*,
proceed as follows. Pick an arbitrary z € V(C).
For all (u,v) € E(G*) remove (u,v) from @ and
E(G*)ildgs(z,v) > i-r+zand dgx (z,u) <ir+z
for some integer ¢ = 0. Set ¢ :=c— 1.

Step 3. If ¢ > 0, recursively call Steps 1 — 2 for every
connected component of G*.

Step 4. Enforce trasitivity on Q).

v1 Vg
- .
0 (e o] 0 « OO
. .
- A3 .
g
Vo 0 Va1 0 Vg +2

Figure 7: The construction of graph G

Note that in this algorithm, we start with ¢ = 3,
and thus the resulting partition is constant Lipschitz.
They show that for planar graphs, 3 rounds is enough
to get an r-bounded partition. However, this might not
be true in the directed setting. A natural generalization
of the above algorithm to the directed setting is as
follows. Instead of undirected edges in step 2, we
consider directed ones, and in step 3, we consider weakly
connected components of G*. This generalization fails
to result in an r-bounded quasipartition for the directed
case. We provide the following counter example. Let G

be the graph as shown in figure 7. It is easy to check
that G is a graph of path-width 2. Now suppose that
the first time we call step 2 of the algorithm, we pick
x = vg. Therefore, no edges will be removed from Q.
Now suppose that the next call of step 2, picks z = vy,
and the next call picks x = vo, and so on. After 3 levels
of calling the second step, we do not get an r-bounded
quasipartition. This means that in order to get an r-
bounded quasipartition, we need to call this step Q(n)
times, and thus the resulting quasipartition will not be
O(1)-Lipschitz.

9 Lower bound for random embeddings of the
directed cycle into trees

Proof. [Proof of Theorem 1.9] We will consider the
directed cycle in the following description. Let the set
of vertices V' = {vg,ve,...,v,_1}. Let the set of edges
be E = {(vi,V(i+1 mod n))|? € [0,7 — 1]}. Furthermore
let all the edges have unit weight.

Let S denote the set of all non-contracting embed-
dings of G into directed trees. Let @ denote the set of
all distributions over edges in G. Let D denote the set of
all distributions over S. The least distortion of any ran-
dom embedding of G into directed trees is denoted by

OPT where OPT = min max [ M =
heD (u,w)eE H~F dc;(u,l))

min max [ [dg(u,v)] since all edges have
FeD (uw)eE H~F

unit  weight. This is lower bounded by
the Von Neumann dual problem given by

maxmin [ Therefore for all ¢ € @

dg(u,v)].
wmin B [duoe0)

we have that min E [dg(u,v)] < OPT. Now we
HeS (u,v)~q
will set ¢ to be the uniform distribution over edges

in E. Next consider any H € §. We have that

E [dH(U7U)] = l Z dH(UhU(H»l mod n)) Let
(wv)~q " ie[0,n—1]
us denote the expression >
ic[0,n—1]
by X. Let L be the set of vertices of degree 1 in
the underlying undirected graph of H.  Further-
more let the vertices in L be labeled as follows.
L = {v4,Vsy,.-,Vz,, ,} where for any j € [0,m — 1]
we have that z; € [O,n — 1] and 21 < z2... < Zp,.

We have that X > > dE(Vi, V(41 mod m))- Let
jel0m—1]
dr(Vi, V(i41 mod my) by Y. Note

dg (Uz‘7 V(i4+1 mod n))

us denote >
je[0,m—1]
that Y is the length of a walk traversing all the leaf
vertices in H in the order given by the indices of the
vertices in L and terminating at the starting vertex
Vg, Since every directed edge in H separates at least
one pair of leaves in one direction it must be that every
directed edge in H is traversed at least once during
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this walk. So this implies that ¥ > > du(u,v).
(u,v)eE(H)
Now consider any directed edge (u,v) € E(H). We
have that dgy(u,v) + dg(v,u) = n. This is be-
cause H is non-contracting and for any u,v € V(G)
we have that dg(u,v) + dg(v,u) = n. Therefore
we have that X > Y > n(n — 1). This implies
that given our choice of ¢ and for any H € S we
have E [dg(u,v)] = lX > Q(n). Therefore
(u,v)~q n

OPT = Q(n), which concludes the proof.
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