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Abstract. We extend the K-means and LBG algorithms to the frame-
work of the Grassmann manifold to perform subspace quantization. For
K-means it is possible to move a subspace in the direction of another us-
ing Grassmannian geodesics. For LBG the centroid computation is now
done using a flag mean algorithm for averaging points on the Grassman-
nian. The resulting unsupervised algorithms are applied to the MNIST
digit data set and the AVIRIS Indian Pines hyperspectral data set.
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1 Introduction

The Grassmann manifold provides a robust geometric framework for analyz-
ing complex, high-dimensional data sets where observations are characterized
by a variation in state. For example, variations in illumination confound pat-
tern recognition systems given the sensitivity of the representation to the angle
of illumination. The use of the Grassmannian greatly mitigates this problem
[6,4]. Similarly, satellite imaging systems collect hyperspectral data with high-
resolution both spectrally and spatially. A given substance, e.g., a field of corn,
will show significant variability in the spectral signature over even small image
patches. In one study, it was shown that the classes soybean with tilling ver-
sus soybean with no tilling could be separated with perfect accuracy using the
Grassmannian, whereas the best vector space methods could not [7]. Also, since
the Grassmannian is itself a manifold, this framework lends itself naturally to
analysis using topological and geometric methods, see, e.g., [9,8,2,13]. Given
the robust performance of the Grassmannian in these examples, it is desirable
to explore the extension of core tools in data analysis in the geometric setting of
the Grassmann manifold. Two building blocks for algorithms on the Grassman-
nian are a means to compare distances between points and a means to compute
averages of points on the Grassmann manifold. These techniques are described
in Sections 2 and 3. We note that the self-organizing mapping algorithm of Ko-
honen has been adapted to this geometric framework with success [16]. The goal
of this work is to extend the K-means and LBG vector quantization algorithms
to Grassmann manifolds in order to provide a robust unsupervised method for
quantizing data subspaces. In this work, K-means refers to the online method
by MacQueen [18] while LBG refers to the the batch version of the algorithm
developed by Linde, Buzo, and Gray [17].
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The outline of this paper is as follows: In Section 2 we provide background
on the Grassmann manifold. In Section 3 we describe how to average points on
the Grassmannian via the flag mean. Section 4 outlines the Grassmann K-means
algorithm, and Section 5 presents Grassmannian LBG. In Sections 6.1 and 6.2
we present applications.

2 The Grassmannian

The real Grassmann manifold Gr(p,n) is a manifold whose points parameterize
the linear subspaces of dimension p in R™ [1]. One can construct Gr(p,n) as a
quotient manifold of the Stiefel manifold St(p,n) [12]. This relationship allows
for an intuitive representation of points on the Grassmannian that lends itself
well to computations. Any point on Gr(p,n) can be identified with a matrix
X € St(p,n) whose column space spans the desired subspace [X]. Orthogonally
invariant norms on the Grassmannian may be expressed in terms of principal
angles 0; between subspaces [12]. This is computationally appealing since prin-
cipal angles can be determined from the singular values of the SVD of XTY [5].
For example, the chordal norm is given by

de([X], [Y]) = [Isin0]l2. (1)

Moreover, any set of points on the Grassmannnian, with distances measured
in this way, can be isometrically embedded into Euclidean space using multi-
dimensional scaling (MDS). In practice, the smallest angle pseudometric gen-
erally gives the best data separation, although the embedding into Euclidean
space is no longer isometric [7].

3 Averaging Subspaces

The flag mean is an algorithm for computing averages of points on Grassmanni-
ans [19, 20, 11]. One can use such an algorithm to determine common attributes,
within a set of points on the Grassmannian, expressed as a set of nested sub-
spaces [19]. The flag mean algorithm, which we summarize below, is at the heart
of the Grassmannian LBG procedure.

A flag is a nested sequence of subspaces. Given a finite collection of subspaces,
the flag mean algorithm computes the best flag representation of the collection.
Denote the flag by {[u1], [u2], ..., [ur]}, where the u; are orthogonal unit vectors
with » < n. Let {[X;]} be a set of points in Gr(p,n) and {X;} be their corre-
sponding matrix representations. To construct the flag mean, iteratively solve
the optimization problem

[uj]:arg min Zd (2)

[u]leGr(1, n)

subject to [u] L [u] for all I < j
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for [ui], ..., [u,] [11]. Optimality is achieved when

(ixixf>uxu

i=1

and the problem is reduced to an eigenvector computation [11].

4 Grassmann K-means Algorithm

The K-means algorithm operates on a stream of data, assigning each data point
to its nearest center [18]. The chosen center is then updated in the direction
of the new data point. Let  be the n'" data point assigned to a center c. In
Euclidean space, the center ¢ is then updated by

Crnew = C + %(m —0) (3)

To adapt this algorithm to the Grassmann manifold, we require a way to move
one subspace a specified distance towards another. This is accomplished by pa-
rameterizing the geodesic between two subspaces [X] and [Y] [1,15]. Given or-
thonormal matrix representations X and Y, respectively, the velocity matrix H
that induces a geodesic between [X] and [Y] is given by

H=(I-XxX")yxTy)™L (4)

The singular value decomposition of the velocity matrix H = UXV7' is then
used to parameterize a geodesic curve between X and Y by

&(t) = XV cos(Ot) + U sin(6t) (5)

where © = arctan(X). Note #(0) = X and ¢(1) = Y, with [Y] = [Y]. Using
this, we can update K-means by letting ¢ = 1/n. The K-means algorithm on the
Grassmannian is then:

1. Construct points on Gr(k,n) using raw data.

2. Select k random initial centers from the data on Gr(k,n).

3. For each data point [X]:
(a) Find the center [C;] nearest to [X].
(b) Update [C};] according to Equation (5).

4. Calculate the average distortion error and check if it is smaller than the
specified threshold. If not, repeat step 2.

This process can be applied several times to improve the clusters.
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Fig. 1: MDS embedding of handwritten digit 2 and centers selected by each algorithm;
the LBG center is beneath the K-means center.

5 The LBG Algorithm on the Grassmannian

The Linde-Buzo-Gray algorithm (LBG) performs vector quantization in Eu-
clidean space by associating all points to their nearest center [17]. These centers
serve as prototypes for the data in the sense that they minimize the distortion
error locally. On the Grassmannian, the centroid of all points closest to a given
center C; is obtained using the flag mean [uq,...,u,]. The averaging is done
over elements of Voronoi sets, i.e., the collection of data points closest to a given
center. The definition of a Voronoi set S; is given by

Si ={z:d(z,¢) <d(z,c;), i#j}

The centroid is found using ¢; = M (S;) where the function M represents a
mapping from the members of the Voronoi set S; to its “mean”. In Euclidean
space the mean is the usual centroid

D@ (6)

for z € R™. For Grassmannians this mean is the output of Equation (2), i.e., the
flag mean. On Gr(p,n), the distortion of the clusters with centroids [C;] is given
by

{5}11 sz

The Grassmannian LBG algorithm is as follows:

1. Initialize k random centers on Gr(p,n).
2. Assign each subspace [X;] to its nearest center [Cy«].
3. Update the centers using Equation (2).
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4. Calculate the average distortion associated with the new partition using
chordal distances on the Grassmannian.
5. If stopping citerion not met, then go to step 2.

The paper by Gruber and Theis contains a similar algorithm for clustering on
the Grassmannian [14] based on the projection Frobenius norm, though they do
not approach centroid calculations from the framework of flag subspaces.

6 Numerical Experiments

One goal of clustering methods is for each center to contain, as nearly as possible,
points from only one class. We can express the purity of a cluster by the fraction
of points belonging to the majority class for that cluster. We use this measure
to establish quantitative comparisons below.

6.1 MNIST Results

We use the MNIST handwritten data set to illustrate these algorithms [10].
This data set contains 28 x 28 images of handwritten digits vectorized into a
data point in R4, To construct points on Gr(p,784) we select p data points
from the same class and form a p x 784 orthonormnal matrix using the QR-
decomposition. Subspaces are assigned the same label as the points used to
construct them. Figure 1 illustrates the performance of both algorithms on a set
of 156 data points in Gr(5,784) generated using the handwritten digit 2. One
centroid was selected at random to initialize each algortihm. One LBG iteration
and one K-means epoch generated essentially identical means. The visualization
of the results was achieved by using MDS with the chordal matric to isometrically
embed the subspaces and centroids into R2.

LBG Center
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Fig. 2: Visualization of orthonormal components for each center.

Component 2
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Fig. 3: Results from the Euclidean space algorithms applied to all ten MNIST digits.
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Fig. 4: Results the Grassmannian algorithms applied to all ten MNIST digits.

A closer look at the orthonormal components of each center reveals details
about variations in the cluster. Figure 2 shows the five orthonormal components
of each center reshaped to the original image size. In particular, because the flag
mean yields an orthonormal basis ordered by energy [11], the first component of
the LBG center contains the elements most commonly found among all points in
the cluster, and represents first dimension of the “true” mean. Each consecutive
component captures information about the most common variations from the
mean, ordered from most common to least. K-means captures similar information
about within-cluster variation but does not have any special ordering.

To further explore these methods, both algorithms were applied to all the
MNIST digits. For each digit, 500 data points were randomly selected from the
MNIST training set and used to construct subspaces. As a baseline comparison
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Fig. 5: Visualization of the first flag vector for each of the 10 LBG centers.

for the algorithms on the Grassmannian, the Euclidean versions of both K-
means and LBG were performed on the randomly selected data in Euclidean
space. The Grassmannian versions of both algorithms were then tested on a
data set consisting of 1000 points in Gr(5,784), with 100 points per class. All
tests were performed multiple times on the data set to account for variations due
to randomized starting conditions. The best result for each algorithm was chosen
based on lowest cluster distortion. The average purity across the ten clusters for
Euclidean K-means is 58.84% 4 .22, and the average cluster purity for Euclidean
LBG is 58.05% =+ .23; see Figure 3.

In contrast to the Euclidean algorithms, the Grassmannian algorithms per-
formed the unsupervised clustering task very well; see Figure 4. For K-means,
centers 0 through 7 have purity > 98%, whereas center 8 has a purity of 60.24%
and center 9 has purity of 74.63%. The average purity for the K-means algorithm
is 93.19% = .13. For the LBG trial, center 2 has a purity of 90.91%, center 6 has
purity of 52.63% while all other centers are 100% pure, resulting in an average
purity of 94.35% =+ .14. Figure 5 shows the first component of each center cho-
sen by LBG. Clearly, centers 4 and 8 can both be classified as the number 6,
whereas center 6 appears to be a combination of digits 4 and 9. This highlights
an interesting facet of subspace analysis. Because 4 and 9 are similar in overall
shape, there is some amount of overlap in the subspaces spanned by these digits,
making it difficult to distinguish the two. A similar effect is often seen with digits
7 and 9.

6.2 Indian Pines Results

Select classes from the Indian Pines data set [3] were used to further evaluate
the performance of K-means and LBG. The classes alfalfa and corn were com-
pared to test the algorithms on separable but unbalanced clusters. The data set
contains 237 data points for corn, but only 46 for alfalfa. Points were generated
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Alfalfa v. Corn|Pasture v. Trees|Pasture v. Trees
Manifold Gr(5, 200) Gr(5, 200) Gr(10, 200)
Method |K-means| LBG |K-means| LBG |K-means| LBG
Class 1 4 1 4 5 6 5 6 |5 6 5 6
Center 0|0 47 |9 0 |94 0 |2 145 |0 23 |4 8
Center 1|9 0 0 47 |2 146 |94 1 |4 0 0 15

Table 1: Results on two-class experiments on several Indian Pines classes.

in Gr(5,200) in the same manner used for the MNIST trials. Due to the class
size disparity and the reduction in the total number of points when generat-
ing subspaces, class 1 (alfalfa) contained 9 points and class 4 (corn) contained
47. As seen in Table 1, both algorithms clustered the data perfectly. A second
trial was performed on the classes for pasture and trees, which are unbalanced
and contain overlap. Both algorithms were tested using points generated first in
Gr(5,200), then in Gr(10,200). There are 483 data points for pasture and 730
data points for trees. In Gr(5,200), class 5 (pasture) contained 96 points and
class 6 (trees) contained 146 points, and both methods yielded cluster purity
> 98%. In Gr(10,200), class 5 contained only 4 points and class 6 contained 23
points. K-means succeeded in clustering the data perfectly, but LBG had a clus-
ter with only 66% purity. In this case, the randomly selected initial conditions
were poor, which caused the algorithm to terminate in a local minimum rather
than obtaining the optimal clustering. This highlights one of the pitfalls of these
clustering algorithms, especially in cases where the data set is small. Results for
both experiments are included in Table 1.

The final test was performed on the soybean classes soybean with tilling (class
10), soybean with no tilling (class 11), soybeans clean (class 12). We explore two
options for clustering this data. First, we embed the points on the Grassmannian
into Euclidean space by applying MDS to a matrix of pairwise smallest principal
angle distances and then cluster using the standard Euclidean space algorithms.
Second, we cluster directly on the manifold using the pseudometric. Constructing
subspaces in Gr(5,200) similar to previous experiments resulted in 194 points in
class 10, 491 points in class 11, and 118 points in class 12. A total of 10 trials were
performed, and some for these experiments are displayed in Figure 6. Once again,
the Euclidean algorithms yielded mediocre results, with average cluster purity
less than 60%. For the LBG algorithm, it appears to be beneficial to embed the
points in Gr(5,200) back into Euclidean space using MDS before clustering. This
resulted in an average cluster purity of 83.74% = .14, verses 72.44% =4 .18 when
clustering was done on the manifold itself. For K-means, however, performing
clustering after embedding yielded an average purity of 83.50%=+.19, with all but
one trial yielding at least one cluster containing only a single point. Clustering
directly on the manifold raised the average purity to 85.92% =4 .13 and resulted
in a much more even and consistent distribution of points among centers. The
best method for clustering appears to vary based on the algorithm used, and
likely also changes based on the data itself.
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Fig.6: A sample of the comparison trials of the K-means and LBG algorithms on
classes 10-12 of the Indian Pines data set.

7 Conclusions

In this paper we extend the K-means and LBG algorithms to the framework
of the real Grassmannian. We demonstrate that both approaches result in high
classification purity, i.e., the cluster membership consists of either exclusively, or
predominantly, data from a single label. The flag mean provides nested subspaces
that capture the essence of the signature of the data in the centroid. We are
able to capture the constituent patterns and their variations, which is vital for
discovering new patterns of the same class but in a different variation of state.
On the Indian Pines data set, we demonstrate clustering directly on the manifold
and on embeddings. These algorithms for subspace quantization provide a robust
means to characterize the variability in complex, high-dimensional data sets.
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