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35B35 additionally fulfills a comparison principle while the thin-film
76A20 equation does not.

In this note, we consider traveling waves h = %z3 + vz? for
Keywords: x > 0, where x = y — Vit and V,v > 0 are free parameters.

Thin film equation

Free boundary problems
Degenerate-parabolic equations
Fourth-order equation
Traveling waves

These traveling waves are receding and therefore describe de-
wetting, a phenomenon genuinely linked to the fourth-order
nature of the thin-film equation and not encountered in the
porous-medium case as it violates the comparison principle.

Stability The linear stability analysis leads to a linear fourth-order

degenerate-parabolic operator for which we prove maximal-
regularity estimates to arbitrary orders of the expansion
in x in a right-neighborhood of the contact line z = 0.
This leads to a well-posedness and stability result for the
corresponding nonlinear equation. As the linearized evolution
has different scaling as z \( 0 and *x — oo, the analysis is
more intricate than in related previous works. We anticipate
that our approach is a natural step towards investigating other
situations in which the comparison principle is violated, such
as droplet rupture.

© 2019 Elsevier Inc. All rights reserved.
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1. Introduction and statement of results

1.1. The thin-film equation formulated as a classical free boundary problem

Consider the free boundary problem for the thin-film equation
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he + (hhyyy), =0 for t>0 and y>Yo(), (1.1a)
h=h,=0 for t>0 and y=Yo(t), (1.1b)

dY
Ryyy = d—;’(t) for t>0 and y=Yy(t). (1.1c)

The dependent variable h = h(t,y) models the height of a two-dimensional thin viscous
film on a one-dimensional flat substrate as a function of the independent variables time ¢
and base point y on the substrate (cf. [6,13,35]). In the particular case (1.1) one may view
the problem as the lubrication approximation of Darcy’s flow in the Hele-Shaw cell: We
refer to rigorous results in [20,29,30]. Here we assume a droplet with support (Yy(t), 00),
where Yy (t) denotes the free boundary. The boundary conditions (1.1b) determine the
position of the free boundary Y(t) (also known as contact line or triple junction, since
liquid, gas, and solid border here) and the slope of the film at this position. We assume
that the slope vanishes (zero contact angle), which is commonly referred to as com-
plete (perfect) wetting regime. Finally, the third condition (1.1c¢) determines how the free
boundary evolves. Since (1.1) is in divergence form, one can read of the transport veloc-
ity hyyy (in lubrication theory, this is in fact the vertically-averaged horizontal velocity),
which by compatibility has to be the same as the velocity of the free boundary %(t).
As a consequence, the mass of the droplet is conserved.

1.2. Special solutions to the thin-film and porous-medium equation

1.2.1. Stationary and source-type self-similar solutions to the thin-film equation

The simplest generic solutions to (1.1) are equilibrium-stationary solutions. Here one
may assume a time-independent profile h(t,y) = H(y) fulfilling C};TI;[ = 0 subject to (1.1Db)
(the condition (1.1c) is trivially fulfilled). This leads to the solution H(y) = C(y — Yp)?
for y > 0, where Yj fixes the position of the contact line and C' > 0 is an arbitrary
constant. By shift and scaling one may without loss of generality assume

H(y) =y* for y>0. (1.2)

This is indeed the profile around which the perturbative earlier results in [7,14,19] have
been obtained: There unique solutions exist if the initial data is close to H given through
(1.2) in sufficiently strong norms. While the analysis in [7,19] is limited to 1+1-dimensions
and a Besov-type norm is employed, the assumptions in [14] are weaker and only say

that 8y\//1|t—:0 has to be uniformly close to 0,/ H (y) (L) 1 for y > Yy and the result
also applies in higher dimensions.

In the case of compactly supported droplets, generic solutions have source-type self-
similar shape, i.e., they are of the form

h(t,y) = (t+1)"5H(z) with z=(t+1) 5y, (1.3)
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where the scaled variable x can be read off from (1.1a) under the assumption of con-
servation of mass. These solutions converge to M{y distributionally as ¢ N\, —1, where
M > 0 denotes the mass of the droplet. Inserting (1.3) into (1.1a), we arrive at a fourth-
order linear ordinary differential equation (ODE) with constant coefficients, giving the
solution

1
1 225M \ 7
H(z) = m(ﬁ - X?)? for |z[ <X, where X := (T) ’ (1.4)

also known as Smyth—Hill solution (cf. [38], by scaling it is possible to assume X = 1).
A linear stability analysis of (1.4), also discussing higher asymptotics, is contained in
[4,33] while convergence of weak solutions of (1.1a) to (1.4) is proved for instance in [8,
9,11,32] mainly using entropy-dissipation arguments.! In [21] existence and uniqueness
of solutions to (1.1) for small perturbations of (1.4) have been proved including refined
asymptotic results.

1.2.2. Special solutions to the porous-medium equation

The common feature of (1.2) and (1.3) and the representative analyses presented there
is that they have their counterpart in analogous special solutions and analyses for the
second-order porous-medium equation

Oh—2(h")=0 in {h>0}, where m>1. (1.5)

Equations (1.1a) and (1.5) both are degenerate-parabolic, but the second-order porous-
medium equation (1.5) additionally fulfills a comparison principle while the thin-film
equation (1.1a) does not. Equilibrium-stationary solutions for (1.5) are given by profiles
of the form H(y) = C(y — Yo)% for y > Yy. Again, by scaling without loss of generality
C =1and Yy =0, so that

H(y) =y for y>0. (1.6)

Traveling waves to (1.5) can be written as h(t,y) = H(z) where x :=y—Vtand V € R
is the velocity of the wave. They can be computed as H(z) = (=V(m — 1)/m)ﬁ gt
where we have assumed Yg;—o = 0 and necessarily V' < 0 holds true. By scaling without
loss of generality

H(z)=am71 for x>0, (1.7)

which is a traveling-wave front. Finally, source-type self-similar solutions have the shape

! In [11] it is stated that “strong” solutions to (1.1a) are considered, although only two spatial derivatives
are controlled and uniqueness is not known.
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ht,y) = (t+ 1) 7" H(z) with @ = (t+1) miiy, (1.8a)

where

H(z) = <(m;ni)(£lx+1_)x )> ot el < X,

- (1.8b)
S r (3m—2) m+1

m—1

2
VAT (725)

and M > 0 denotes the mass (by scaling without loss of generality X = 1 can be
assumed). The solutions in (1.8) are the famous Barenblatt—Pattle profiles (cf. [1,36]).
Note that a well-posedness theory of perturbations of (1.7) or (1.8) has been developed in
[25] or [31], respectively, also covering higher dimensions, while a linear stability analysis
(including higher asymptotics) is presented in [37,39]. Convergence of general solutions of
(1.1a) to (1.8) using entropic arguments was studied in [10]. In fact, the entropy studied
in [11] is a special case of the entropy considered in [10]. The spatial part of the linear
operator in [14] is simply the square of a special case of the corresponding linear operator
considered in [25], while it was observed in [4,21,33] that the spatial part of the linear
operator is given by P(P+2), where P is the spatial part of a linearized porous-medium
operator. Then the governing idea of the previously cited thin-film papers is to transfer
as much knowledge as possible from the porous-medium case to the thin-film case. On
the other hand, there are known features of (1.1a) such as de-wetting phenomena or
rupture of droplets which violate the comparison principle and therefore require different
techniques compared to those applied to (1.5).

1.2.3. Traveling-wave solutions to the thin-film equation

In the present note our goal is to slightly change this perspective and to concentrate
on qualitative behavior that has no counterpart in the second-order case (1.5). To this
end, it is convenient to use a traveling-wave ansatz, i.e., we assume that h(t,y) = H(x),
where z := y — V't (the contact point is fixed to y = 0 at time ¢ = 0) and V' € R denotes
the velocity of the wave. Using this in (1.1a), we obtain?

dH d _d°H

de+dx 13 0 for x>0,

which we can integrate once using conditions (1.1b) and (1.1¢), so that

d3H dH
—— =V for x>0 subjectto H=—=0 at x=0.
da3 dx

2 Throughout the paper, we drop unnecessary parentheses so that differential operators act on everything
on their right-hand side, whereas derivatives denoted by indices only act on the particular function.
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After three integrations we arrive at H(z) = %m?’ +va? for x > 0, where v > 0 is a free
integration parameter. As we require a non-negative and moving profile, we necessarily
have V' > 0, that is, the traveling wave is receding and the thin fluid film de-wets
the surface. From now on, we assume the generic situation v > 0. Using the scaling
transformations

h= 35};313 and H = 33’;3151 with H = #° + 12, (1.9a)
t= ?;E—;/ (1.9b)
y= 6%17 and Yp = 671/170, (1.9¢)
r= 67”:%7 (1.9d)

we see that for the rescaled quantities fL, H 1, lv/, }v/o, and ¥ the dependence on V and v
disappears. Hence, we can assume without loss of generality V =6 and v = 1, so that

H(z) =

{333 +22 for x>0, (1.10)

0 for z<0.

The profile (1.10) is one of the simplest examples of a special solution to (1.1) violating
the comparison principle: compare to the stationary solution (1.2) at time ¢t = 0 and
for an arbitrary time ¢ > 0. It also has the remarkable feature that the scaling of H is
different in the limiting cases x N\, 0 and x — oo. This sets (1.10) apart from all special
solutions presented above: The equilibrium-stationary solution (1.2) has distinct scaling
and can be expressed as a power of the corresponding equilibrium-stationary solution
in the porous-medium case (1.6). Obviously, a solution with distinct scaling in  cannot
be compactly supported, but nevertheless the Smyth-Hill profile (1.4) is simply a power
of the Barenblatt—Pattle solution (1.8), having the same scaling at both boundaries
2 = £X. The traveling wave (1.10) cannot be expressed as a power of a known special
solution to (1.5).

A natural question is to ask whether the traveling wave (1.10) is stable with respect
to small perturbations which will be the subject that we are pursuing in what follows.
We believe that this is also relevant for another striking phenomenon, that is, thin-film
rupture (cf. [5,12] for examples in the case of thin films under the action of van der Waals
forces). A situation in which this can happen may be modelled by two traveling waves of
the form (1.10) with contact lines at y = 0 as t = 0, but moving away from one another
as time passes. Small perturbations of these traveling waves should allow for a positive
profile hj;—g, but one should expect a topological change of the support as time evolves.
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1.8. Perturbations of traveling waves and linearization

For studying perturbations of (1.1) around the traveling-wave profile H given in (1.10),
the von Mises transform

h(t,Y (t,z)) = 2® + 2% for t,2>0 (1.11)

is convenient. Similar transformations have been used in [31] in the context of the
porous-medium equation, and in [14,16,21-23] in the thin-film case. This transformation
automatically fixes the free boundary to the point z = 0 in the new coordinates. Fur-
thermore, the traveling wave is given by the (simpler) linear function Yrw (¢, z) = =+ 6t.
The point Yy = Y|,—¢ determines the position of the contact line, so that ddlto = 0Y|z—0
is its velocity. We briefly outline how from (1.11) a structurally simpler equation can be
derived:
First, we differentiate (1.11) with respect to time ¢, which yields

he +hyYe =0 for t,z>0
and upgrades to
hyY: = (hhyyy)y for t,x >0 (1.12)

by making use of the evolution equation (1.1a). Derivatives transform according to 0, =
Y, 10,, so that employing (1.11) once more in (1.12), we arrive at the nonlinear equation

(327 4 22)0;Y = 0,(2® + 2?) (Y$_181)2 Y, (322 +2x) for t,x>0. (1.13)

Note that problem (1.13) for Y subject to initial conditions Y};—o = Y (©) is formally well-

posed, that is, no further boundary conditions are necessary. The boundary conditions

(1.1b) and (1.1c¢) are automatically fulfilled through the von Mises transform (1.11).
For deriving a linear problem associated to (1.13), we set

Y =1z+6t+uv, (1.14)
where v denotes the perturbation of the traveling wave. Note that v does not fulfill
any boundary condition as the velocity of the wave might be perturbed as well. The
linearization of the left-hand side of (1.13) reads

6(32% + 2x) + (322 + 22)9v (1.15)

and the right-hand side is given by

6(32” + 22) — 0, (2° + 2%) (V202 + 02040, + O2vy) (37% 4 22). (1.16)
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Apparently the first summands in expressions (1.15) and (1.16) cancel. Furthermore, we
can use the operator identity

vwai + 00,0, + 821)35 = 3311 — vc’)g,
and the fact that 92(32z3 4+ 2z) = 0. Thus we arrive at the linearized problem for v:
(322 4+ 22)0pv + Oy (23 + 2%)P2v(32% +22) = f for t,x >0, (1.17)
where f denotes a general right-hand side. It is apparent that by setting
u = (322 + 2z)v (1.18)

and using the fact that uj,—o = 0 if v is bounded at x = 0, we can study instead of (1.17)

ou+ Au=f for t,x>0, (1.19a)
u=0 for t>0, x=0, (1.19b)

where we may introduce the linear operator
A= 0, (2% +2%)02 = 27 'p(D) + 2 2¢q(D), (1.20)

with D := 20, the scaling-invariant (logarithmic®) derivative and where p(¢) and ¢(¢)
are fourth-order polynomials. As p(D) = 0,293 vanishes on {2 2°Inz,z*,2?} and
q(D) = 220,293 vanishes on {z°, 2!, 2" Inz,2?}, we infer that

PO =¢(C-1(C~-2) and ()= -1)*(¢~2) (1.21)

Notice that differentiating (1.19b) with respect to ¢, we get diuj,—o = 0 and that for
sufficiently smooth u with u|,—o = 0 we also have Au|,—¢ = 0. This makes the condition

f=0 for t>0, z=0 (1.22)

for the right-hand side f necessary.

In the first part of this paper (cf. §2), we will concentrate on the study of the linear
problem (1.19) for given right-hand sides f : (0,00)?> — R fulfilling (1.22) and ini-
tial data uy—g = u® : (0,00) — R meeting (1.19b). More precisely, we are going to
prove existence and uniqueness of solutions u for every f and u(?) in suitable function
spaces. Moreover, u fulfills maximal-regularity estimates in terms of f and the initial
data u(0),

3 Note that D = 8, if we set s := Inz.
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Note that in the afore-mentioned previous approaches in weighted Hilbert—Sobolev
spaces (cf. [7,19]) and (weighted) LP-spaces (cf. [14]) the linearization around the equi-
librium stationary profile (1.2) (having distinct scaling in z) leads to a scaling invariant

2 is dominant as

spatial part of the linear operator. The fact that in (1.10) the term x
z \, 0 and 2% is dominant as x — oo is reflected by the feature that the corresponding
linear operators 8,292 = x~1p(D) and 9,2%93 = 272q(D) (cf. (1.20) and (1.21)) domi-
nate in the respective limits. For the contribution x~2¢(D), originating from the addend

22 in the traveling wave (1.10), we find the special structure
7 2q(D) = 2%0} + 2202 = (20?)?,

where 202 can be interpreted as a linearized porous-medium operator. This is not sur-
prising, as the addend 22 corresponds exactly to the equilibrium profile (1.2) for which
this structure is known from [7,14,19]. However, the contribution z~*p(D), even after
multiplication with an arbitrary power of x, cannot be written as the square of a de-
generate second-order operator of the form x~%9,2%t#dx with real constants o and j3,
so that the strong analogy to the porous-medium equation (1.5) is lost. The core of our
linear analysis lies in balancing contributions coming from these two operators.

1.4. Comparison to works on the thin-film equation with general mobility

We remark that a more general version of the thin-film equation (1.1a) exists that
reads

Oh+ 9y (h"93n) =0 in {h >0}, (1.23)

where n € (0, 3) is the exponent of the now nonlinear mobility h™. The restrictions on
n come from the fact that for n < 0 solutions to (1.23) can be non-positive and the
speed of propagation is infinite, while for n = 3, coming from a no-slip condition at
the liquid-solid interface, a singularity of h at the free boundary occurs which cannot
move unless the dissipation is allowed to be infinite (no-slip paradoz, cf. [15,24,34]).
Of particular interest is the case n = 2 (quadratic mobility), which can be derived by
means of formal asymptotic expansions from the Navier—Stokes system with Navier-slip
at the substrate and film heights h that are small compared to the slip length (cf. [6,
13,35]). A stability analysis for perturbations of traveling waves has been carried out in
[16,22,23], while the linear stationary profile with partial-wetting boundary conditions
(nonzero equilibrium contact angle) was considered in [26] and for mobility exponents
n € (0, %) \{2, 3, %, 111 in [27-30]. The regularity of the source-type self-similar solution
was discussed in [2,3,17] covering all possible mobility exponents and zero as well as
nonzero dynamic contact angles. While the analysis in these situations is more delicate
than in the case of linear mobility in [7,14,18,19,21] due to singular terms appearing for
the solution at the contact line, the traveling wave for quadratic mobility is H(z) = m%,
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where the velocity has been normalized to V = —%. Although comparison with (1.2)
demonstrates that the comparison principle for H(z) = 23 is violated as well, this
traveling wave still has distinct scaling in = and is wetting the whole surface (as do the
source-type self-similar solutions discussed in [2,3,17]). This leads to a linear operator
having the same scaling as = N\, 0 and z — oo and thus the coercivity and elliptic
regularity estimates are simpler compared to the present work.

Finally, we anticipate that the techniques developed in this paper are not only ap-
plicable to the situation at hand, but that a similar reasoning may be applied to the
thin-film equation

Oh+ 9y ((B* +AR*) 93h) =0 in  {h >0}

with partial-wetting boundary conditions (nonzero equilibrium contact angle), where
A > 0 is the slip length. The latter equation can be derived from the Navier—Stokes
system with Navier slip at the liquid-solid interface (cf. [6,13,35]). In view of [26], where
a quadratic mobility and partial-wetting boundary conditions have been employed, we
expect, however, logarithmic corrections to occur, which are not present in the setting
considered here.

1.5. The nonlinear equation

Let us now formulate the nonlinear problem associated to (1.19). We start by writing
the nonlinear equation (1.13) in terms of v =Y —x — 6t (cf. (1.14)):

(32 + 22)0pv + 6(32% + 22) = 0, (2® + 2%) ((1 + vx)*lar)2 (14 v,) "1 (322 +2x) (1.24)

for t,x > 0. Using u = (322 + 22)v (cf. (1.18)) and equations (1.19a) and (1.20), we
separate into linear and nonlinear parts:

Ou+ Au=N(u) for t,x>0, (1.25a)
u=0 for t>0,z=0, (1.25b)

where the nonlinearity N (u) is given by*

N(u) := 0, (z® + 2?) (((1 F02)710,)° (14 v) "1 (32% 4 22) — 6 + 0P (32 + 2u) v) .
(1.26)

From (1.26) we infer that the nonlinearity N (u) is a linear combination (with constant
coefficients) of terms of the form®

4 Again note that derivatives 9, act on everything on their right-hand sides.
5 Here, the derivatives 8, only act on the factors separated by X.
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’ s/ . § 3
(14+v,)737% x apott (2° +2%) x 92 (2° + 2°) x X 91w, (1.27a)
j=1

with

sot+sot+sit...+sp,=3, so<1, ne{2...,6}
s'i=#{s;: j>1ands; > 1}, (1.27b)

where #M denotes the cardinality of a finite set M and where u and v are related
through (1.18). Indeed, in (1.26) three derivatives 0, need to be distributed on the
individual factors, leading to s;+ so + $1 + ... + s, = 3, at most one can act on the first
factor 23 4+ 2, so that sy < 1, and at least one acts on the other factor z3 + z2 to give
322+ 2z, leading to the expression a;f’“ (z® + #%). Since N(u) has no contribution that
is constant or linear in v, we have n > 2. The constant s’ simply counts the number of
times a derivative 0, acts on a factor (1 + v;)~7, where j > 3, since only then a new
factor v, is generated and the exponent —j decreases by 1. Because we have 3 + s’ < 6,
we obtain the upper bound n < 6 after subtracting the contributions that are constant
and linear in v.

The nonlinear problem (1.25) and in particular estimates on the nonlinearity (1.26)
will be the subject of §3.

1.6. Outline and statement of results

The paper is structured as follows:

The linear theory is contained in §2. In §2.1 we first discuss the coercivity properties
of the linear operator A. This requires joint coercivity of its summands in suitably chosen
weighted inner products

o0 k
dx . )
— —2a —
(U, 0)q := /JL‘ uv— and  (u,v)pq = E (Du, D’v) _, (1.28a)
0

=0

with corresponding norms

lul, ==V (u,u)o and |ulpq =/ (U, W)k, q, (1.28b)

where k£ € Ny and o € R. Note that increasing the number & in (1.28) does not lead to
more regularity of u at x = 0 since every additional derivative 9, is multiplied with
a factor z. However, |u|, , < oo implies u = o(2%) as ¥ N, 0, that is, the larger
«, the stronger the decay of uw as = \, 0. Loosely speaking, the constant k deter-
mines the regularity in the interior, while o measures the regularity at the boundary
z=0.
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In fact, we will not show coercivity estimates directly for A but for differential oper-
ators A and A fulfilling the commutation relations

(D-1)A=A(D—-1) and (D-2)A=A(D-2). (1.29)

Indeed, for right-hand sides f that are smooth in x for positive times, the solution u to
(1.19) turns out to be a smooth function in z for positive times, that is,

u(t,r) = ur(t)x +ug(t)2® +usz(t)z® + ... as 2 \,0. (1.30)

The formal expansion (1.30) suggests |u|, < oo for a@ < 1 which automatically restricts
the set of admissible exponents « in order to have coercivity of A, the coercivity range
of A, to be empty. Applying the operators (D — 1) and (D — 2)(D — 1) to (1.19a),
respectively, we obtain

i+ Au=f for t,xz>0, (1.31a)
o+ Au=f for t,x>0, (1.31b)

where we have set
w:=(D-1Nw, w:=(D-2)w=(D-2)(D-1w (1.32)

for a locally integrable function w : (0,00) — R. Thus, in view of (1.30) we have

a(t,z) = ug(t)a® 4+ 2uz(t)a® + 3ug(t)x* +... as 0, (1.33a)
U(t,z) = 2uz(t)r® + 6ug(t)z* + 12us(t)2° +... as x\,0, (1.33b)

that is, norms |i|; with & < 2 and ||, with & < 3 are finite, so that not surprisingly
coercivity estimates for larger weights for the operators A and A hold true (cf. Lemma 2.2
and Lemma 2.3).

By accessible arguments, which mainly use the additive structure of A given by (1.20),
coercivity of A or A implies parabolic maximal regularity of (1.31), respectively. This is
discussed in §2.2 (cf. Proposition 2.4). In §2.3 we additionally prove that corresponding
estimates for % and % imply estimates for u or u — u1x or u — u1x — usx?, respectively.
This is a consequence of Hardy’s inequality (cf. Proposition 2.5). The resulting estimates
control the expansion of the solution u to (1.19) in the sense of

u(t,z) = up () + ug(t)z? + o(z?) as x\,0,

where u; € BC([0,0)), and up € L?((0,00)). Due to (1.18) the corresponding parabolic
estimates only imply control of the norm sup, ,q |v(¢, z)|. However, such an estimate
appears not to be sufficient in order to treat the corresponding nonlinear problem for v as
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the validity of transformations (1.11) and (1.14) can only be ensured for functions v with
small Lipschitz norm. This can be also seen by taking the structure of the nonlinearity
as in (1.27a) into account since factors (1+wv,)~! cannot be controlled otherwise. Hence,
we require in particular to control the expansion (1.30) with uy € BC?([0,0)) which
corresponds to uz € L?((0,00)). While one may expect to achieve this by applying the
operator D — 3 to (1.31b), corresponding manipulations as in (1.29) and (1.32) do not
yield a coercive operator. Observe that unlike w2z and ugz?, the monomial usz? is not
contained in the kernel of A (cf. (1.20) and (1.21)) and has to be controlled using a
different reasoning. Notice that applying the operator A to (1.31a), we get

Oy (./Zlﬂ) —|—/~l(/~lﬂ) = (flf) for t,x >0,

that is, the tuple (flﬂ, flf) fulfills the same equation as (ﬂ, f) and since ;-9 = 0, also
Aﬂ|z:0 = 0in view of (1.20) and (1.29). Therefore, corresponding estimates for (./Iﬂ, ./Zlf)
hold true. However, this again requires to pass from norms in A to estimates in u, i.e.,
we require knowledge about the elliptic regularity of A. Note that because of (1.20) and
(1.28b) the operator A scales like 272 when z \, 0, so that by this method indeed stronger
control of the solution u to (1.19) at z = 0 can be expected. We conclude this part by dis-
cussing the resulting maximal-regularity estimates of (1.19) that appear to be sufficient
for the treatment of the full problem for v in §2.4 (cf. Proposition 2.10). Applying elliptic
regularity here also requires arguments relying on the polynomial equation originating
from inserting a power series of v and f in form of (1.30) into the linear equation (1.19a).
In §2.5-§2.7 we finally demonstrate how the presented arguments can be made rigorous
using the resolvent equation (cf. Proposition 2.13) and a time-discretization argument
(cf. Proposition 2.16 and Proposition 2.17). We remark that §2.6-§2.7 do not contain
new methods and are included in the paper for the sake of completeness. Furthermore,
we also remark that a semi-group approach in §2.7 is equally-well possible.

In §3 we present the nonlinear estimates connected to (1.25). In § 3.1 we give an
overview of the main results, in particular the main nonlinear estimates leading to a
well-posedness result for (1.25). This relies on structural observations on the nonlinearity
(cf. §3.2) and control of v in C-based norms (cf. §3.3, Lemma 3.4 and Lemma 3.5). These
arguments are put together in §3.4, thus concluding the paper and leading to our main
result, Theorem 3.2, of which we state a simplified version already at this stage:

Theorem 1.1. For any 0 < § < % there exists € > 0 such that for all locally integrable
indtial data u® : (0,00) — R with

2 2 2

+ ‘u(o) - ugo)ac — ugo)xz <e? (1.34)

[« <
8,246

2
= ‘u(o)‘ + ‘u(o) - u(lo)x‘
8,6

init 8,1+6

the nonlinear problem (1.25) with initial condition uj;—y = u® has ezactly one locally
integrable solution in a suitably chosen norm (cf. (2.71) with N =1 and k = 3). This
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solution fulfills the a-priori estimate sup;q [[u(t)llny So ||| |||, and meets the ex-
pansion

u(t,r) = u1(t)x +uz(t)z® + R(t,x)2® as N\, 0.
This also implies

5 (1wl

init

(a) w € BC' ([0, 00)) with sup;sg \“(T“ for 6 =0,1,
(b) uy € BCY ([0,00)) with SUP;> lua| <s ’Hu(o H’mlt,
(c) R=R(t,x) € L? ((0, ); BCY(]0, oo))) with fo sup,>o | R(t, ac)| dt <s H|u 0)|Hmlt

Furthermore, we have |[|u(t)||;,;; — 0 as t — oo, that is, the traveling wave (1.10) is
asymptotically stable.

Note that the norm (1.34) is quasi-minimal in the sense that taking weights up to
2 + 6 just gives control of the expansion of u up to us in BCY in (1.30) which is the
critical scaling such that Lipschitz control of v (cf. (1.14) and (1.18)) can be obtained.

Higher-regularity results and estimates on the coefficients u; will be presented later
on as well (cf. Theorem 3.2 and Corollary 3.3). We also note that by parabolic regularity
theory, the function w is smooth in the interior {(¢,z) : ¢ > 0 and x > 0}. Furthermore,
smallness of sup,~g [|u(t)||;,;; implies by virtue of (1.11), (1.14), and (1.18) that such
defined h solves (_11) and is smooth in {h > 0}. Additionally, we obtain from (1.11),
(1.14), and (1.18) that almost everywhere in time ¢ > 0

1 R
+_w_y_6t as N\, 0
2 1+§$

— 6t — tu IR —3uy+ 2u 1 1
=2 2 1 <1— 2 gtz T g (y—ﬁt——ul) as y \(6t+ —uq,
+

1+%UQ7%U1 2 2

where R = R (t,y — 6t — 2u;) and R = R(t, ) € L*((0,00); BC?([0,00))) fulfills an
a-priori estimate in terms of |||u(0) |Hinit. Inserting this into (1.11), we infer that h meets
the expansion

y — 6t—lu1 S 1R+ 2us—dur [ y— 6t—lu1 s 1
1 — 3 1 1 — 3 1 — 3 as y\6t+§U1
+ U2 U1 +5u2 — jw1 + U2 TU1
almost everywhere in t > 0.

Remark 1.2. Scaling back V and v according to (1.9), we see that because of (1.14) and
(1.18) we have

Sc

14 . v2 vV,
=50 and o= 36,80 where wu := <SE:U + 2Vx) . (1.35)
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As Theorem 1.1 is formulated for the rescaled quantities @ and &, the condition (1.34)
on the initial data reads in the original (unrescaled) variables

7 \*? 2 v\ 2 2 2
v ‘u(o)‘ (L )U(O) _ ugo)x‘ + ‘U(O) _ ugo)x _ uéo)mz
6v 8,8 6v 8,146 8,246

20
<P (%) 2. (1.36)

(a) The limit V' \, 0 corresponds to the equilibrium-stationary solution (1.2), which
was treated already in [7,14,19]. From (1.36) we see that the initial data has to be
of order O (Vz‘s) as V N\, 0, where § > 0 can be chosen arbitrarily small. Note,
however, that ¢ is a function of ¢ as well and that € \, 0 as § \, 0, because coercivity
of the linear operator ceases to hold for 6 = 0 (cf. (2.11)). An in V (quasi-)uni-
form result would therefore require to explicitly characterize the dependence of ¢
on 4.

(b) The limit v N\, 0 corresponds to a non-generic situation in which instead of (1.10)
the traveling wave

2 for >0,
(1.37)

0 for . <0

is considered. Using instead of (1.11) the transform

and defining ¥ as in (1.14), we need to set i := 3%%¥ instead of using the definition
(1.18). This gives corresponding linear and nonlinear equations (1.19a) and (1.25a),
where the operator A in (1.20) reduces to A = & 'p(£d;) and the nonlinearity
(1.26) attains the simpler form

o 2
N (i) = 855 (((1 + )t a;c) (1+0:) 352 — 6+ ag:ﬁ%) .

Because of @ = 3#2%, the boundary conditions (1.19b) and (1.25b) need to be re-
placed by

W=03u=0 for {>0,%=0.

Tt is an open problem whether this problem (including the additional boundary con-
dition) is well-posed. However, we notice that the right-hand side of (1.36) vanishes
as v \, 0. This is not surprising, as because of % = 32?0 boundedness of ||il];
only implies control of ||¥]| Lo but not |9zl Lee- While Theorem 3.2 would allow for
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larger weights that remove this issue, we would still need ‘u(0)|86 =0 (1/3_5),
© _ (0 O (2%} and ‘ © _,0_ (0 2‘ O (L1-9) as
‘u Uy x&l—s-é (1/ ), nd |u U T — Uy T . (1/ )

v N\, 0, making the choice of the norm in (1.34) or (2.74) unnatural for this sit-
uation. In fact our analysis relies in part on a gain of regularity due to the operator

#72q (£83), which is precisely the addend in A (cf. (1.20)) that is not present any-
more for v = 0.

We believe that the questions raised in (a) and (b) are interesting directions to pursue
in future research. In particular, we expect that the methods developed in this work can
be adapted to address these scaling limits by employing a suitable interpolation norm
built from the norms used here. This is in fact also a motivation why in the present
work we do not rely on control coming from the operator z=2¢(D) only and treating
2~ p(D) as a perturbation, which would be more in line with the approaches in [7,14,
19].

1.7. Notation

> 4 f, whenever

~

For f,g > 0 and a finite set A, we write f <4 g or equivalently g
a constant C = C(A), only depending on A, exists such that f < Cg. In this case,
we say that f can be estimated (or bounded) by g. If f <4 g and g <a f, we write
f ~a g. For a finite set A and a real variable x, we say that a property P(z) is true for
>4 1 (or x <4 1) if where exists a constant C' = C(A) > 0 such that P(x) is true for
x> C (or x < C71). In this case we say that P(z) is true for sufficiently large (small) .
Furthermore, if the constant C' is universal or its dependence is specified in the context,
we simply write f < g etc. For any function w € CV ([0, 00)), we write

1 ddw
w(x) :w0+w1x+w2x2+...+wNmN+o(:vN) as ¢ \0 & w;= ﬁ@( ),
where j = 0,...,N. As noted in the context of (1.27), we write E; X ... x Ejy for a
product, where the E; are expressions of the form F; = Hznzl D?itw; ¢ with sufficiently
regular w;; = wj(z) and where differential operators D act on everything to their
right-hand side within Fj;.

2. Linear theory
2.1. Coercivity

We begin by introducing some terminology and making preparatory observations in
§2.1. Coercivity estimates to be used at later stages are the subject of §2.1.2.
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2.1.1. Definition of norms and preliminary remarks
In this section, we repeat some of the notions introduced in [16, §4 and §5]. First, we
introduce a scale of inner products and norms given by

L o©
d
|u|i,a = (u7u)k,aa where (U U Z/IiQa DJ ’U)—x
j=0 0 €
(1.28a)
= (DJu,DJ V), (2.1)
7=0

where u,v: (0,00) — R are locally integrable such that the expressions in (2.1) are finite.
We remark that using the transformation s := Inz, we have

k
- Z/e—QaS (87u)(870) ds ~ (it, V) gy - (2.2)
=0

where i := e~ u, ¥ := e~ **v and W*2(R) is the standard unweighted Hilbert—Sobolev
space on R.

We are interested in the coercivity of the operator A, that is, we would like to know
if

(u, Au); 2 (u,u), forall u e C5°((0,00)), (2.3)

where (-,-); are scalar products to be specified in what follows. Therefore, we may use
the structure of A given by its definition in (1.20) as a sum of two operators z~!p(D)
and x72¢(D) (again, note that these operators have a distinct scaling in z, ~ 2~ or
~ 172, respectively). For u € C§°((0,00)) we have

(u, Au), = (u, p(D)u)q 1+ (w,q(D)u) 4y - (2.4)

Equation (2.4) shows that the study of coercivity of the linear operator .4 can be reduced
to the study of coercivity of an operator P(D), where P(({) is a fourth-order polynomial

4
= [I€¢ =) with 7 <92 <93 <7 (2.5)
j=1

Observe that by employing @ := e~ *u and the Fourier transform JFu of %, we obtain by
Plancherel’s theorem

[0

(u, P(D)u) , = /eiQO‘SuP(ﬁs)uds: /uP(@ +a)t s—/@?P i&+a) | Ful* dg. (2.6)

R R
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In the last equality we have used that the integral (u, P(D)u), is real. Now the operator
P(D) is coercive in the sense of

(u, P(D)u), Za |uly, forall ue C§°((0,00)) (2.7)

if and only if we can bound the fourth-order polynomial RP (i + «) by a positive con-
stant from below. Note that by an approximation argument using (2.2) and replacing
the left-hand side of (2.7) by ((D + 3 —2a)(D + 74 — 2a)u, (D — v1)(D — v2)u),, co-
ercivity in the sense of (2.7) holds true for a larger class of functions, i.e., u is locally
integrable with [u|, , < oo (cf. [16, Lem. 5.2]). We will use this approximation argument
later on without further mentioning it.

The range of « for which (2.7) is satisfied will be called the coercivity range of P(D).
In [16, Prop. 5.3] by explicit computation a criterion for coercivity was derived:

Lemma 2.1. The differential operator P(D) given in (2.5) is coercive with respect to (-, ) q
in the sense of (2.7) if the weight « fulfills

a € (—00,71) U (72,73) U (74, 00), (2.8a)
a(v) a(v)
ae (m(v) - W’m”) + W) ) (2.8b)
where
m(7) EZ% and o(y) = EZ(% —m(y))?

are mean and square root of the variance of the zeros ;, respectively.

We conclude from (1.21) and (2.8) that the operator p(D) is coercive for all a; satis-

fying
1 /11 3 3 1 /11 3 1 /11
Y el E R i DN=|-—-—>4/—,1]. 2.

The criterion (2.8) on the other hand does not yield coercivity for ¢(D). However, we
obtain that ¢(D) is a non-negative operator with respect to (-,-),, provided that we
choose ag := 1. We can even quantify non-negativity in this case:

(u g(Dyu), = / g(i€ +1) | Fif* e = / (€ 1 €Y | Fif? de = / ((0.i0)? + (8%0)?) ds
R R

R

— (D = Duf2 + |(D = 1)%uf?. (2.10)
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Due to (2.4) and (2.10) we are forced to take o = 0, so that a; = 3 (one may verify by
using (2.9) that indeed oy = 3 is admissible) and (2.4) yields

(u, Au)o = (u, p(D)u) 1 + (u, q(D)u)r

Wl + 1D} + (D] + (0 - Dul} + [0 -1%f}) . @1

:\“\2);

The constant in estimate (2.11) is universal. Note that estimate (2.11) is inconvenient
for all subsequent arguments. To see this, observe

(D=1} = [a2(0 =102 L = [ 22 @) L.
0 0

While it is true that 9, (z~'u) (29, (z7 u— ul) = upx +uzz® + -+ as x \( 0 and

the integrals fo (ac Ly — ul) 7‘ and fl (x u) d;’” are finite, the estimates

/acQ (8m(x_1u—u1))2d?x Z/(:L“_lu—ulfd—m lu —uzl|], (2.12a)

0 0

/w2 (Op(z u — ul))2 da z / (x_lu)2 dr _ |u|? (2.12b)
x T

0 0

correspond to the critical-case Hardy inequalities and are known to fail: A detailed study
of the resolvent equation (cf. [16, §6]) shows that « = u(z) can be assumed to be smooth
on [0, 00) and rapidly decaying as @ — oo and therefore a logarithmic divergence of the
right-hand side in (2.12a) occurs at £ = oo and of the right-hand side in (2.12b) at = 0.
This is a quite general feature making weight exponents a ¢ Z for the norms |-[, , and
inner products (-, ) k,o More convenient. Since taking the time trace later on will shift
the weight a by —5, we assume « §Z =7 in what follows.

We further note that unlike in [7,19] it is not convenient to study derivatives 0%u with
k > 1. In order to recognize this, observe that if u solves (1.19a), then d*u solves

01(0%u) + Ap(9%u) = 0% f  for t,z >0, (2.13)

where the operator A;, is defined by the identity 0¥ A = A,9*. Using (1.20) and (1.21)
we have
A=a"'p(D) +27%(D)
=27 'D*(D—-1)(D—-2)+2"'Dz™'D(D - 1)(D — 2)
=0,D(D —1)(D —2)+ 02(D — 1)(D - 2).
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Hence, an easy induction shows that we have
A =0,(D+E)(D —(1—k)(D—(2—k)+0*2(D—(1—-k)(D—(2-k)). (2.14)
From (2.14) we infer that
Ap = 27 pr(D) + 27 2qi(D), (2.15)

where

(2.16)
@ (D) =D(D -1)(D = (1= k))(D - (2—k))
The equality (2.4) can be generalized to
(v, Arv)q = (0, Pk (D)) gyt + (0, @k (D)) gy 5 (2.17)

where v = 9%u. Now we can study the coercivity of px(D) and gi(D) separately using the
coercivity result (2.8) and obtain that px(D) (gx(D)) is coercive with respect to (v, )a,

((5)an) if

ag =0 for k=1 (only non-negative), (2.18a)
. 31—k)— k2 —2k+ 1 31— k)+/k? —2k+ 1}
(0% )
' 4 4 (2.18b)

N(1—k2—k) for k>2,

1
as € (0, — for k=1, 2.18¢
’ ( \/6> (245
ag =0 for k=2 (only non-negative), (2.18d)
2—-k VE>-2k+3 2—-k Vk2-2k+3
Qg € - s +
2 2v/3 2 2V/3 (2.18e)

N(2—-k,0) for k>2.

In view of (2.17), (2.18) leads to restrictions on « (that is, coercivity constraints on Ay),
so that a non-negative operator Ay is obtained only for £ = 2 and coercivity does not
hold for any k£ > 0.

2.1.2. Coercivity estimates for commutated linear operators
In the previous section we have recognized that coercivity of the operator A in our scale
of weighted inner products and norms (1.28) requires joint coercivity (non-negativity) of
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the operators p(D) and ¢(D) with respective weights. Thus the coercivity range shrinks
to a single value for which the operator ¢(D) is only non-negative. This is due to the
double “middle” root of g(D) (cf. (1.21) and (2.8)). Here we show how we can shift
this root so that the intersection of the coercivity ranges of the appropriately shifted
operators is indeed a non-empty interval. In fact, having the possibility to slightly shift
the weight is convenient for applying Hardy’s inequality (see below).

As outlined in §1.6, we can obtain better control on u and allow for a larger range of
weights if we apply (D — 1) to equation (1.19a):

8,511—%411:]; for t,z >0,

where @ = (D — 1)u and f = (D — 1)f have been defined in (1.32). Note that this
operation in particular preserves the boundary conditions (1.19b) and (1.22). In view of
(1.20) and (1.21), the commutation of (D — 1) with the operator A yields

(1.20) (1.29) =

2z (D — 2)p(D) + 27 2(D — 3)q(D) (D-1)A A(D - 1) (2.19a)
with
o (1:21)
A=2"'p(D) +27%§(D) and PO (1;1) GE-27% (2.19b)

q(¢) ="¢C=1(C=2)(¢=3).
We obtain the following coercivity result:

Lemma 2.2. The operator A (cf. (2.19b)) fulfills coercivity in the sense of

(A%, @) 5 Za laly a0y + il for all @€ CF((0,00)) (2.20)

ae(0,1). (2.21)

Proof. Using the criterion (2.8) of Lemma 2.1, we can explicitly calculate that p(D) and
G(D) are coercive in the sense of (2.7) with respect to (-, )a, OF (, *)a,, respectively, if

1 1
o €(l——,1+— and a9 €(1,2). 2.22
ve (1-g51+ ) L€ (12) (222
Since by testing we have

(Aw, @), = (B(D)ai, @) 5,

+(4(D)a, @) g4y 5

we obtain & + 1/2 = a7 and & + 1 = ag and due to (2.22) estimate (2.20) under the
constraint (2.21) follows. O
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Due to (2.20) and since we can choose & > 0, we expect control of the solution u to
(1.19) in form of u(t, z) = uy(t)x +o(z) as  \, 0. It appears to be convenient to take in
what follows & = §, where 0 < § < %, as then & is subcritical with respect to uix and
& + 1 is supercritical with respect to ujx.

For obtaining control up to usz?, we may consider the function @ := (D —1)(D — 2)u
(cf. (1.32)). Indeed, applying (D — 1)(D — 2) cancels the expansion of u (cf. (1.33b)) so
that we have & = O(z3) as  \, 0 and in particular the boundary conditions (1.19b) and
(1.22) are preserved. Hence, we can expect higher-regularity estimates for @ that include
weights larger than 2. Using (1.29) and (2.19b), we can compute

. D ="C%(C-2)(¢-3),
A=z"'p(D) +2"%¢(D) with PO (1.21) Cle=2-3) (2.23)
q(¢) =<1 =3)(C—4)
By the same reasoning a coercivity result analogous to Lemma 2.2 holds:
Lemma 2.3. The operator A (cf. (2.23)) fulfills coercivity in the sense of
(,Zm, a)d 2 [l gy + il gy Sor all € CF((0,00)) (2.24)

de (1—\/2,;) (2.25)

In particular ¢ =1+ for 0 < § < % is an admissible weight exponent, so that ¢& is
supercritical with respect to the addend u;z and & + 1 is supercritical with respect to
the addend usz? in the respective cases.

2.2. Parabolic mazimal regularity I: heuristics

In this section we make use of the coercivity estimates (2.20) and (2.24) of Lem-
mata 2.2 and 2.3, respectively, in order to obtain maximal regularity for the operators
Aand A (cf. (2.19b) and (2.23)), respectively. A rigorous justification of the subsequent
arguments is not difficult and can be carried out by a time-discretization argument con-
tained in §2.6-§2.7. However, since the arguments are relatively technical and hide the
simplicity of the reasoning, we stick to the time-continuous formulation for the time
being and concentrate on deriving estimates assuming existence of sufficiently regular
solutions from the outset.

Throughout the paper, we use the notation

w
= 2.26
@ x+1 ( )
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for a function w : (0,00) — R. Note that for w : [0,00) — R smooth, we have by power
series expansion for all N € N

=St (St 10005 = 010,

k=0

where for s > 0

w, =Y (=1)" Fuwy. (2.27)

From (2.27) we see that indeed
w, + 210, = w,. (2.28)
We begin by testing equation (1.31a) with @ in the inner product (-,-), and obtain
(Orti, @) + (Aa, @), = (f,a) (2.29)

Observe that (9,@, @) = 35 \1l|d and that by Young’s inequality,®

()= (at.a) + (F), < g0 ([, + 2] ) + 5 (1 + 1)

for any ¢ > 0. Assuming & as in (2.21) and employing coercivity in form of (2.20), after
adjusting ¢, the tested equation (2.29) upgrades to

’ 1) . (2.30)

d o2 12 12

S+ 1By + 108 as Sa ([72] +[F]
2

This is a weak estimate since only two spatial derivatives D are controlled although

the operator A is of order four. It can be upgraded to a higher-regularity estimate by

applying D* with k£ > 2 to (1.31a), that is,
0,.D*a + DF A = DFf for t,x > 0.

Testing this equation with D¥4 in the inner product (-, ) &> We arrive after some elemen-
tary manipulations (using (2.19b)) at

(8:D*a, D*a) . + (B(D)(D — 1)*a, D*a) .., + (4(D)(D — 2)*a, D*a)

N

2.31
= (Dkf’ Dka)& ( )

5 Note that the operations ( ..) and (...) do not commute. We first apply (...) and afterwards m
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Apparently ((“)tDkﬂ, Dkﬂ)& = 2 i ’D"”‘u’ for the first term in (2.31). Furthermore, since

p(D) and §(D) are fourth-order operators, integration by parts and a standard interpo-
lation estimate show that

. o

(A(D)(D — 1)*a, D@ @) 4 atl 2 B} |U|k+2,a+2 C|u|0¢+1 ’
- U 1 2

(Q(D)(D - 1)kU7DkU)d+1 > ) |U|k+2,a+1 c |“|a+1 )

where C' > 0 is chosen sufficiently large. Finally, skew-symmetry of D with respect to
(*,+)o in conjunction with z=%D = (D + &) = yields

(D*f,D*a), = (D’Hf, (D — 2a)° Dka) ]

2
2 12
e ()wf‘k 2,6-1 ‘f‘k2,&1> e <|u‘k+2’&+% * |u|k+2’&+1>

for any ¢ > 0, so that by enlarging C, equation (2.31) turns into the estimate

d k-2 k422 A .12 k422 A2
E|D il +|D u|a+l — Clalayy +[D gy — Ol
2 (2.32)
ealoi] , +JE]
k—2, af— k—2,6— 1
The combination of (2.30) with (2.32) yields
(a2 + 6|p*af) + ap if? < |7f] 2.33
3 \ala + Dl ) + il 264y + llis2,a41 Ska |2f k2o fk pat’ (2.33)

In order to obtain control on d;u as well, observe that with help of (2.26) we have

__ (1.19a) ~,

d7u = xf —wAu. (2.34)

In conjunction with the commutator Dx~! = x=1(D—1) and A (129 z~'p(D)+z~2¢(D),
where both p(D) and ¢(D) have the linear factor D — 1 (cf. (1.21)), we arrive at

\@@M—Q,a—% Sk ‘xi‘k—&d—% + |a|k+2,&+% : (2.35)

Indeed, from (2.34) the first term on the right-hand side of (2.35) is trivial and we only
need to treat the term

(1.20)

[ (D =)@+ 1) p(D)ul,_y .

k—2,6—1

+[(D -1z z+1)""g(D)u
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Now observe that

(D—1)(z+1)"'p(D)u= (D —1)(z +1)"'D*(D - 2)a.
Using

(a) the operator identity D(x 4+ 1) = —yz(z +1)"7" 1 + (z + 1)77D for v € R,
(b) the bound (z +1)™7 < min{1,277} for any vy > 0,

we infer

|(D —1)(z+ 1)_1P(D)U’k_2,d_% Sk |a|k+2,54+

1.
2

We skip the details for the term |(D — Dz Yz + 1)_1q(D)u’k_2 51 as there are no

1
material differences to the one just treated. ’

With an analogous reasoning also

|at@|k72,d71 Sk,&

i’k—Z a—

)

. |0l g2 51 - (2.36)

Using (2.35) and (2.36) in (2.32) leads to an upgraded version of estimate (2.33) that
reads

d ~ 2 _

= (1@ + ¢ | pkal} ) + |0}y o

2 12 12
1 + |8tﬂ‘k72,5471 + |U|k+2,&+% + |u|k+2,d+1

2 ~2
Ska |o| + 7] . (2.37)
“lk—2,a—1 “lk—2,a—1

In integrated form we obtain

o0
_ 12 —~— 2 ~2 Jo o
igg ]k & +/ (|8tx@|k72,d7% +10kuly 551+ |u|k+2,d+% + |U"k+2,d+1) dt

0 (2.38)

2 7 I
Ska |“|t:0’k& +/ <’:rf‘k 2.6 + ‘i’k 2,& 1> @t
) —4,a— e
0

1
2

Indeed, on the left-hand side, four spatial derivatives and one time derivative more on
4 (with appropriate weights) are controlled than for f on the right-hand side, which is
the maximal regularity gain possible.

Since equation (1.31b) is structurally the same as (1.31a) and the above reasoning
only required coercivity of A in form of (2.20) and some extra effort to derive (2.35) and
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(2.36) which can be easily adapted, under the coercivity assumption (2.25) for & we also

have
o0
.2 — 12 ~12 .12 v 12
igg %54 +/ (‘aﬁxﬁkfz,df% + ‘at@’kfz,dq + |u|k+2,&+% + ‘u|k+2,d+1) dt
= 0

(2.39)

o0
. 2 7|7
Ska |u|t:0|k,d +/ (‘xf‘k 2,6—1 ‘i‘kﬁ a1> dt.
0

We additionally notice that by applying ¢ time derivatives and by applying the operator
A or A m-times to (1.31a) or (1.31D), respectively, we obtain

0y (0 A™a) + A (9 A™a) = (0, A™f)  for t,z >0, (2.40a)

~

o (o Ama) + A (of Ami) = (9f A ) for t.w >0, (2.40b)

This implies that the tuples (85./4’” LA™ f) or (87{,[\’”11,6?;1’” f) fulfill exactly the

same equations as (ﬂ, f) or (11, f), respectively. Furthermore, if u : [0,00) — R is smooth

with uy—o = 0, then t,—9 = ,Uj,—0 = 0 and thus p(D)a (2.19P) 0] (ac?’) as x N\, 0 and

g(D)a (>:10) O (x ) as z \, 0, so that A = (xg) as ¢ \, 0. In particular, the boundary
condition (1.19b) remains valid for u replaced by @ and by the same argumentation also
(1.22) remains satisfied for f replaced by f . An analogous reasoning also applies for the

tuple (Aﬂ,f{f) and inductively we infer that (85/\7”11,8{3%{"1]?) and <8ff{m1i,8ff{mf>
meet the same boundary conditions as (u, f). Therefore, maximal-regularity estimates
in the form of

o0
sup of Al + [ (ol Anaul]

0

ATy o) i

1

2

b [ (Al oy + AT ) (2:41a)
0

)dt
—lk—-2,a4—1

Sk

:O‘**

(%ﬂiﬁo +7UNN%A
0

and
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+ 7 (]a“lA + Jog+ ] ) dt
4 k 2a—— k—2,a—1

t>0

4 7 ( Amv Amv ) dt (2.41b)
) k+2, a+2 k42,641
Sk (aZAmv>|t:0 Z /(‘82.,4’”3:]“‘ k—2,6— 14 ’afAmf’k 2,68— 1) dt

for all £k > 2, £ > 0, and m > 0 need to be satisfied. We additionally observe that
inductively from (2.40) it follows

£—1

OFA™ G = (—1)P A a4+ 3 (—1)f g Al
0'=0
-1

6fAma = (_1)€Am+é,ﬁ+ Z(_l)é—l—é 8f Am+[_1_g :

=0
so that for higher-regularity estimates by taking the boundary value at time ¢ = 0 the
following time-trace identities
|
(0 A7),y = (~ 1) A u® 4 37 (1) (910 At f)ltzo’ (2.42a)

0'=0
¢ Am > — (_1)¢ gm+E,,(0) 1\ (—1—0" ym+e F
(8tA “)u:o (—1)fAm+y +0§::0( 1) (at A f)‘tzo (2.42b)

are fulfilled almost everywhere. A rigorous statement reads as follows:

Proposition 2.4. For locally integrable functions f : (0,00)> = R and u(¥ : (0,00) — R
such that the right-hand sides of (2.41) are finite for all k > 2, ¢ > 0, and m > 0,
problem (1.19) subject to uj—y = u©) has exactly one locally integrable solution u :
(0,00)2 — R with finite left-hand sides of (2.41) for all k > 2, £ > 0, and m > 0.
Furthermore, the maximal-reqularity estimates (2.41) are satisfied for k > 2, £ > 0,
and m > 0, where & fulfills (2.21), & meets (2.25), and the compatibility conditions
(2.42) are satisfied almost everywhere. Here, all estimates only depend on k, £, m, and
a or &, respectively. Furthermore, uniqueness holds under the weaker assumption that
u: (0,00)% = R is locally integrable with

o0 o0

) 12 12 12
/ (|“‘4,d+% + |U|4,a+1> dt <oo or / (|“‘4,d+% + |u‘4,d+1) dt < co.
0 0

We will rigorously prove Proposition 2.4 in §2.6 and §2.7.
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2.3. Elliptic maximal reqularity

In this section, we discuss a main ingredient in how the maximal-regularity estimates
of Proposition 2.4 yield higher-regularity estimates for the solution u to (1.19) at the
boundary x = 0. This is formulated in the following statement:

Proposition 2.5. For v € (—2,00) \ Z and k, m € Ny we have

m lv]+m—+r m

Z w — Z wia! ~ }Amlﬂkﬂ + Z P re—
j=1

r=0 kdmA41y+mtr r=1

,  (2.43a)

m ly]+m+r ' ] .
N o’ ~ AT il (2.43b
r—0 v ; wr ’ w Ky +; ’wMJr + | ( )

k+4m4-2,v+m+r

where w : [0,00) = R is smooth with w = 0 at x = 0 and the constants in (2.43) only
depend on k, m, and 7.

Indeed, the terms appearing in Proposition 2.4 are exactly of the form Vtmu?‘kw
or ‘Amﬁ) o The remaining coefficients on the right-hand sides of (2.43) will make
ot

additional considerations necessary, which will be addressed in §2.4.
First, observe that by the commutation relations (1.29) and by (1.32) we have

A= (D - 1)A™u= A"y and A™i= (D -2)(D - 1)A™u= A",  (2.44)

and analogous expressions for A* f and Ak f . Furthermore, we observe that the operator
A factorizes (by commuting D-derivatives with x, cf. (1.20) and (1.21)):

A=2"22D*(D—-1)(D - 2)+22D(D - 1)*(D - 2)
=27 %(D-1)*(D-2)(2(D—-2)+D). (2.45)

The last factor in (2.45) vanishes on the function (z+1)2, so that (2.45) can be rewritten
as

A=2"%D-1)*D—-2)B, where B:=z(D—-2)+D=(zx+1)3D(x+1)"2 (2.46)

Note that on smooth functions f : (0,00) — R such that |f[ < oo for some v > 0, we
can invert B and have

x

B () = (x4 1)? / (@ + 1) f (')

0

dz’

'

(2.47)

In view of (2.44) and (2.46), we need to study the elliptic regularity of
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(a) a polynomial operator P(D) = Hévzl(D — ;) with N € N and v; € R for all
j=1,...,N,
(b) the operator B e (x+1)3D(x+1)72

In fact, the elliptic regularity of a polynomial operator P(D) follows by a straightforward
application of Hardy’s inequality (cf. [16, Lem. 7.2, Lem. 7.4] and [19, Lem. A.1] for
similar statements):

Lemma 2.6. Suppose that w € C*([0,0)), k € Ny, P(D) = H;.V:l(D -7, V5,0 €R,
|w|N+k’Q < 00, and

D" w(z) =o0(z°) as 0 for k' =0,--- N +k—1.
Then
W4 N ~j0 [P(D)w]y - (2.48)
The elliptic regularity of the operator B requires special consideration:
Lemma 2.7. The operator B~ defined in (2.47) satisfies for any k € Nog and v > 0
-1 -1
’B f’k—l—l,'y + |B f’k—‘rl,’y—l S.;IC,’Y |f‘k‘,’y’ (249)
where f: (0,00) = R is locally integrable and the constant in (2.49) is independent of w.

Proof. We may assume without loss of generality |f]; . < oo and start by proving (2.49)
for k = 0. We set g := B~ f and notice that

(2.46)
2= (@(D - 2)g + Dg,x(D — 2)g + Dy),,

= (D ~2)g[;_, +|Dgl; +2((D ~2)9,Dg),_,
(D = 2)gl5_, +Dgl3 +2((D = 1)g —g,(D = 1)g +9),_3

= (D =2)gl>_, +2|(D = V)gl5_, +|Dgl5 —2|gl5_, -

If12 =By

~

(2.50)

Now observe that by Hardy s inequality (see for instance [19, Lem. A.1]) we have because

of g(x) = B~ f(2) "= 0(a7) as 2\, 0

Dal? = 2-2y dg de 21 12
gl = [ a2 () s (g a2, (251a)

T d 2 4o 5\ 2
2 - - 2
(D—1)gl5_, Z/x5 2y (@x 19) — 2 <7—§) lglh—1 (2.51b)
0
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r d 2 dx
2 _ 8—2 —2 2 12
0-298, = [0 (La2) L20-0tf,. a9
0

Using (2.51b), we recognize that the last term —2 |g|i_% in the last line of (2.50) can be

absorbed by the second term 2|(D — 1)g|i7% of that line for v € (0,3) U (,00). For

v E [%, %], we may estimate by using Young’s inequality
2 2 —12
2|gl5_s <clgli_y + ¢ gl (2.52)

for some ¢ > 0. Absorbing the right-hand side of (2.52) with the first and third term of
the last line of (2.50) using (2.51a) and (2.51¢), we only need to fulfill the constraints

(y—=1)?>c¢ and (y—4)2>c!,

which can be fulfilled if L(7) := (y—1)?(y—4)? > 1. Note that this holds true since L has
its maximum at v = 2 and takes on its minima at v € {2, 7}, where L(y) = (5/4)? > 1.
Because of g = B~ f we have proved (2.49) for k = 0. The general case follows by an
induction argument:
Indeed, we may assume that (2.49) holds for some k € Ny. Since we know from (2.49)

applied to BDB~!f that
DB flissy + DB gy oy Sk IBDBTH (2.53)

we need to understand the commutation properties between B and the scaling-invariant
derivative D. Observe that due to (2.46) the operator identity

BD = (z(D—-2)+D)D=(D—-1)z(D—-2)+D?>=DB—xz(D—2)
holds true. Thus we may conclude

’BDBilf‘k,y 5’“77 |Df|k,7 + ‘(D o 2)Bilf‘k,y71 5 |f|k+1,w + ’Bilf‘kﬂ,wq (2 54)

Sk,'y |f|k+1,»y )

where the last estimate follows by the induction assumption. The combination of (2.53)
and (2.54) with the induction assumption finishes the proof. O

Now, we demonstrate how estimates (2.48) and (2.49) of Lemmata 2.6 and 2.7 can be
used to prove Proposition 2.5: Suppose that w, k, m, and v are chosen as stated there.
First observe that

(1.29),(1.32)

’Amw|k,'y

m 2.48) | [A"w — (A™w), x for v > 1,
<D—nAumﬁ&d{' ATh Tt

|A™ W]y 4y ., for v <1,
(2.55)
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and

‘Amuﬁ (1.29),(1.32)

(D= 1)(D =2 A,

|A™w — (A™w), 2 — (A™w), x2yk+2 , fory>2.
~k,y A" w — (A" w)y @, for 2>+ >1. (2.56)
|A™ W] 4 for v < 1.

By an induction argument, we may without loss of generality study the following case:

Lemma 2.8. For k € Ny and v € (—2,00) \ Z we have

[v]+1 [v]+2
w—ijmj —i—w—ijxj
i=1 ktd,y+1 =1 ktd,y+2
2
~ky |Aw — Z(Aw)jxj + ’whHg} , (2.57)
j=1 oy

where w : [0,00) = R is a smooth function with w =0 at x = 0.
Proof of Proposition 2.5. Indeed, by noticing that
j (1.20) N oG—1 N . - . .
Az? =" p(j)a’ ™" +q(j)a’ ™", thatis, (Aw); =p(j + Dwjt1 +q(j + 2)wj2,

replacing w with Aw in (2.57), and using the original estimate (2.57) twice afterwards,

we get
lv]+2 ' v]+3 4 [v]+4 ,
w—ijxJ —i—w—ijac] —i—w—ijxj
5=l k48,742 7=1 k48,743 =1 k+8,7+4
[v]
2 2 j
iy [APw =D (APw)jad |y sa] + [wgs ]
7=l kyy
Iterating this procedure yields
m [v]+m+r
w — Z w;a?
r=0 J=1 k4+4m,y+m-+r
7] ) m
~k,m,y A" w — Z(Amw)jxj + Z |w\_’YJ+m+r . (258)
j=1 r=1

kyy
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Now combining (2.55) or (2.56), respectively, with (2.58), we arrive at estimates (2.43). O

Proof of Lemma 2.8. Observe

L] ‘ (2.46) Lyl +2
Aw = " (Aw);az’ = 2D -1)XD-2) | Bw— Y (Bw);a’

j=l1 k,y J=3 kyy

[v]+2
~r [(D=1)*(D—-2) | Bw — Z (Bw);a’
=1 k,y+2
(2.48) L2 :
<~y |Bw— Y (Bw);a’ : (2.59)
7=l k+3,9+2

where we have used Lemma 2.6. Now we may use

(2.45),(2.46)

Bz’ (j —2)x?t +jad,  thatis, (Bw); = (j—3)wj_1+jw; for j€N,
(2.60)
where by assumption wy = 0. This leads to the identity
lv]+2 _ [v]+2 _
Bw — Z (Bw)z’! =B | w— Z w;z? |+ |v] wm+2xM+3, (2.61)
j=1 j=1
which can be rephrased as
[v]+2 ‘ [v]+2 ‘
w — Z wir! =B~ | Bw - Z (Bw)jz? | — [v] w428~ Lpll+s, (2.62)
, i

We note that the term B~ 127143 cannot be estimated using Lemma 2.7 as inserting any
power of z into the right-hand side of (2.49) produces infinity. However, in this case we
may use the explicit representation of B~1 given by (2.47), so that we can infer

/
Bzt = (2 +1) 2/ o +1)7° )M”d—"”, (2.63)
X
0
and thus
‘B—lxmwf — /$—4—27(x+1)4 /(x/+1)—3 (x/)m+3d_13/ d_x
Y42 ! T
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1 00
= /0 ($2—27+2L7J d_ +/O —27+2L7J> dx
x x
0 1
~ L. (2.64)
Furthermore,
—1,ly)+3 (2:69) -1 -1 lv)+3
DB 'z = (z+1) (2B 4+ 1) ) (2.65)
and since HDJ:E x4+ 1) ||BC0([O 00)) <; 1 and
9 o0
)(ac + 1)_133“”3‘ = /1:2_27+2m (z + 1)_2d_x
v+2 x
0
1 00
~ /x2*27+2md_$ +/I*2v+2md_x
x x
0 1
~y 1,
an induction argument using (2.64) and (2.65) shows
’B*lxhﬁ?” ~po 1. (2.66)
k44,742
The combination of (2.59), (2.62), and (2.66) implies with help of Lemma 2.7
lv]+2 '
w— Z w;a?
j=1 k+4,v+2
(2.62) lyJ+2
—1 j —1 3
S BT Bu— Y (Bu)e? oo B0 .
J=1 kt+d,y+2
(2.49),(2.66) ly]+2 .
Ska |Bw= ) (Bw);a? + |wiy) 2]
=t k3,742
(2.59) 2 )
S/y Aw—Z(Aw)jx] + |w\_’YJ+2|'
=t kY
Next, we repeat the same steps for the norm ’w ZMH wjx? . . Using (2.60)
+47+1

and (2.61), we have
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ly]+1 ‘ lyl+2 ‘
w— Z wiz? =B~ | Bw — Z (Bw);z? | + (7] +2) wi,2B 220 (2.67)
j=1 j=1

Employing (2.66) with v replaced by v — 1, we have

’B*lxmﬂk“ L (2.68)

Hence, with help of Lemma 2.7

[v]+1 )
J=1 k+4,7+1
(2.67) lv]+2 )
<, 1B Bw- Z (Bw);z? + w12 ‘B_1xm+2‘k+4 y+1
J=1 k+4,9+1 |
(2.49),(2.68) lyl+2 -
Ska  |Bu— ) (Bw)a’ + w42
Jj=1 k+3,7+2
(2.59) Lv] )
Sy [Aw =D (Aw)al |+ w4
j=1

k,y

thus finishing the proof of one direction of estimate (2.57).
For proving the other direction of estimate (2.57), we first observe that (2.46) and
(2.60) imply

[v]+2 . [v]+2 4
Bw— Y (Bw)ja? =2(D 2w+ Dw— Y ((j — 3)wj_1 + jw;) 2’
j=1 j=2
[y]+1 [v]+2

=z(D -2) w—ij:cj +D w—ijxj ,
j=1 j=1

so that (2.59) yields

el [v]+2
Aw — Z(Aw)jxj Sy |[Bw — Z (Bw) 2’
i=1 ky i=1 k+3,9+2
lv)+1 [v]+2
<k wawjxj +w72wjzj
J=1 ktd,y+1 =t k+4,7+2
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Hence, it remains to bound ’wh H_Q}: Observe that by quite elementary arguments we

have
, 2 2 2\ 7
W) 42| §/ w(z) — Z wjz’ dm—i—/ w(z) — Z wiz’ | dx
1 Jj=1 1 j=1
i lv)+1 2 dz
hS /x72772 w(z) — Z wx! | —
0 j=1
® [v]+2 da
+/m_27_4 w(zx) — Z wjz’ ~
0 j=1
Ly +1 lvJ+2 ?
:waw]xJ +w72wjxj ,
j=1 y+1 =1 y+2

thus completing the proof of Lemma 2.8. O
2.4. Parabolic maximal reqularity II

2.4.1. Definition of norms

Our aim is to show maximal-regularity estimates for the solution u to arbitrary or-
ders of the expansion given in (1.30). This can be achieved by combining the parabolic
estimates (2.41) in conjunction with (2.42) (cf. Proposition 2.4) and (2.43) (cf. Proposi-
tion 2.5), where k is replaced by k 4+ 4(N —m —£) in (2.41a) and k +4(N —m —¥¢) — 1
in (2.41b). The resulting parabolic estimate reads

lellor S |[u@ ], + 17+ B (2.69)

with norms ||| II"llinie> and |||l for the solution w, the initial data u(®) and the
right-hand side f, respectively, and a remainder term R due to the summed absolute
values of the coefficients on the right-hand sides of (2.43). Therefore, we introduce the
index sets

Ins = {(a,f,m): a€{0,1+6} and ¢{,m € Ny with 0 <l+m < N — |«a]} (2.70a)

and
1
Ins =InsU {(Ox,f, m) : (a + 5,4, m) S INﬁ} . (2.70b)

Then we can define our norms in compact form:
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The norm for the solution u is defined through

2
la]+m—+r ¢
2 a d Uj j
el == Y- Zsup LN DR
(a,tm)€Tn, s 7=0 7 j=1 k+4(N—0)+1,a+m+r
2
m % laJ+mtr=1 qeq1,,
n 9ty — D dt
t U dtf—l-l z
(a,t,m)ETN 5 7=0 J=l1 k+4(N—£)—1,a+m+r—1
m oo la]+m+r+1 ., 2
0 d Uj j
+ O,u — Z T dt.
(a,8,m) eJN 5= 0 0 J=1 kt-4(N—£)+3,atm4r+1

(2.71)

Here, N € Ny and the choice of k > 3 will be addressed later. For the right-hand side f
we are first led to choose instead of |||, the squared norm

m+e'

W = > Z sup )

(ant,m)€Tn.s =0 20 r=0

la]+m+e' +r A
Y A g
dr—1-7 z
[¢=0

—1—4"
0y fie=o0

2

Jj=1 k+4(N+L —0)+1,a+m+L'+r
m la]+m+r—1 dlZf 2
lr =J .j
S D5l 7o at.
(at;m)€TNsy =0 j=1 k+4(N—6)—1,a+m+r—1

(2.72)

Notice that the first two lines in (2.72) originate from inserting the time-trace identities
(2.42) into (2.41). The expression in (2.72) can be simplified by setting / = £ — 1 — ¢,
m=m+0 =m+{—1—1,so that

m—+e
L—1—4'
o, Jit=0
0

-1
(a,8;m)ELn 5 /=0

la|+m+e +r Ay
dé 1 [fj i
- Z dr—1-7 z
[t=0

Jj=1

r=

2

k4+4(N+L —0)+1,04+m-+L'+r

mo| Lo +m+7 d‘zf 4 2
~N Z Z aff\t:o - Z (ﬁ) a’
[t=0

(alm)€In_1,5T i=1 k+4(N—0)—3,c+m+7
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Hence, we may choose instead of (2.72) the slightly stronger norm

Loe] 447 2

ip
T S S > Sl

(o8 m)€TN_1,5T =0 120 J=1 k+4(N—£)—3,a+m+7
) —0)—=3,a+m—+7r

la]+m+r—1 def

00 2
+ > Z/afi— Y. dt.

(e t,m)€Tn .5 7=0] 7= k+4(N—0)—1a+m+r—1
(2.73)

Because we have used the time-trace identities (2.42), the initial data norm reads

Lo +m—+r

S ium)_ 3 u§0>xj _ (2.74)

[l
a,,m)€Ly s r=0 J=1 E+4AN+1,04m+r

init

As for m > 1 in (2.43) remnant coeflicient terms appear, our considerations up to now

lead to a remainder of the form

du ?
la]+m+r
def

R? = Z Z sup

(c,t,m)€In,s T=1 t20

DS

(afm)eTN,s T=

oy

(a,¢,m)ETN,s T=1

2

dé+12\_a]+m+r—1 dt

dé+1

' 2
d* Ul | tmtri1

e dt.

0\8 0\8

In view of the definitions of Zy 5 and Jn s in (2.70), we can deduce the bound

, 2N— 1 S oo dg+1
R < Z z sup i +z Z / St
Jj=1 = j=1 0
an g1 [P a1
+ / L) dt
; ; ) dt?
2N J 2N—1—j
(2. 2() (2 o7) 2N L 2 2 2N—1[ 2 J x FTASTNE:
e T
Jj=1 (=0 j=1 =0
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on1 |25 L
e [
j=1 {=0 0
[ZN_—lJ 2N+1— oo
oN | 2 dou |2 2N+1 B .
- w oy / ’ j (2.75)
~ 7 7
i = AT 2 / |at

The fact that coefficients of the solution w appear on the right-hand side of (2.69) is in-
convenient. Furthermore, highest-order terms like sup,~ |uz N|2, appearing in the second
but last sum in (2.75), cannot be controlled with a trace estimate using the L2-parts in
the last term only. In what follows, we first demonstrate how these remnant terms can
be estimated and thus simplified using the fact that expansions of u and f have to meet
equation (1.19a), leading to an infinite-dimensional system of ODEs.

2.4.2. The polynomial equation
We start by noting that

- (1.20) . .
Az? V=7 p()al T 4 ()2’ 2 = (Au)j = p(i + Dujr1 +q(J + 2)uj1o

and therefore, if u, f € C°°([0, 00)) meet equation (1.19a), then the polynomial equation

du, . .
E +p(j+Dujr1+q(f+2)ujye=f; for t>0 and j€N (2.76)

is satisfied. Notice that (2.76) is an infinite-dimensional first-order ODE for (u,u2,us, . ..)
with right-hand side (fi, f2, f3,...) and initial data (ugo), ué ), (0 ), .. ) We can prove:

Lemma 2.9. If u, f € C*°(]0,00)) meet equation (1.19a), then we have

" LM;J'J v 2 M 22 ] [MZ_IJ LMz—2J

d“u déf dfu dfu
Sy @ o[ 2w S w e
j=1 ¢=0 j=1  ¢=0 0=0 =0

for any M € N with M > 1, where the constant in (2.77) only depends on M.

Proof. The proof is a simple induction argument employing (2.76). For M = 1 and
M = 2 there is nothing to show.

Now suppose that (2.77) holds up to some fixed M > 2. Differentiating (2.76) in time,
we have

41
d“
det+1

d‘f;
dtf

duj o
dt

+ for jeN (2.78)

dtt

'dgujﬂ
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Now consider the term on the left-hand side of (2.77) with M replaced by M + 1 and
observe

ZW+1—Z’J

an M5 [*5=]

M
deu]‘ L 2 J déul ’ dZUQ Nl ’ deu]‘
Z Z dtt dtt + dtt + Z Z dt |
j=1 =0 =0 =0 =3 =0

Since the first two sums on the right-hand side appear in (2.77) with M replaced by
M + 1, it remains to estimate the last term. Using (2.78), we get

M+1 L 2 J y M1 {M 1— ]J , LM;J'J , M1 {M+217JJ ,

du; d Al Al
> > [WaE T T T
I=3 = i=1 =0 j=2 (=0 j=1 (=1

(2.79)

The first term on the right-hand side of this estimate is bounded by the first term on the
right-hand side of (2.77) with M replaced by M + 1, while the second is controlled by
the left-hand side of the original estimate (2.77), that is, it is treated by the induction
assumption. The addends with j € {1,2} in the last term of (2.79) appear on the
right-hand side of (2.77) with M replaced by M + 1 as well, so that it remains to bound

[NI+1 jJ
the sum Z Zz 1 ‘

. Applying (2.78), we have:

dt"
e 1[NI+21—jJ N[_gLMf;fjJ Ao LM;J‘J M_3[NI+21—jJ
dbu, dtf; du,; du,
Y Y@ @ s W @
7j=3 = j=1 £=0 j=2 (=0 j=1 =0

where the first two terms on the left-hand side are treated as before. The last term is the
same as in (2.79) except that j < M — 3 instead of j < M — 1. Iterating this procedure
reduces this last term to j € {1,2} only, which appear on the right-hand side of (2.77)
with M replaced by M + 1. This concludes the induction step. 0O

Lemma 2.9 implies the bound

(27)2N o | 252 O 21v L[ 21 1] oo
R? < N E sup fJ + /’d fj
j=1 =0 20 dt j= 1 0 dt
N-1 N — -1 %
dfuy / ‘d u / 'd"uz
+ su + — dt+ su —|—
; o0 | dtf KZ; att ; t>13 dtff 2 | [arf
= =07 = =07

(2.80)

For treating the terms in the first line of (2.80), observe that by the first line of (2.73)
we have
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, m S 2 on—2 | 2] dlf P
(0% m-r
|||fH|rhs 2N Z ZSUp 7 2N Z Z sup gj )
(o m)etn =0 20| 4t =
3%y N-—1,5 - -

while the second line of (2.73) yields

2N1 727

Zf 1 o d
2 al+m+r—1
k. 2y XS / bt g Z / =
(a,l,m)eTN,s T=0 j=1 L= 0
LZN—l—jJ o
(2.26),(2.27) 2N 1 2 défj 2
ooy |G e
j=1 =0
Together with (2.80) this implies
R? Sn (111
2 N % N-1 1 ®
déul dEUQ
15 ETILAT NS o LA ) SR LTI Sy A
= >0 dt = dt = Z dt = dt
(2.81)
For treating the remaining terms in d;;f} and d;t“f observe that using Lemma 2.6 in

Proposition 2.4 with m = 0, Proposition 2.5 is not applied a single time and we ob-
tain (2.69) with R = 0 if we take m = 0 in all the sums > ., , ez, (.-.) and
Z(a’z’m)e‘%]é(...), and m = 0 in all the sums Z o i) €Tn 1 5( ..) in the definition
of the norms (2.71), (2.73), and (2.74). On the other hand the resulting norm replacing
[lw]ls, controls the remnant terms in the second line of (2.81), because

2 2
dbuy |2 d‘u ? 2 duy |? 2
‘ dtzl g/(@fu— ﬁx) dx—|—/(8fu) dz < |0fu — ?élx + |8fu|6 (2.82)
/ / 145
2 2
and
2 2
dZUQ 2 ¢ dful dZUQ 2 2 Y] dlul 2
’ T §/<8tu— Tt ) dx—l—/ <8tu— T a:) dz
3 3
df dluy | dhuy |
< |0fu — —ulla: - —ufm2 or —ullx (2.83)
dt dt 245 dtt |, 5

Thus we have concluded all arguments leading to

lellor S [[u @]+ 17l (2.84)



M.V. Gnann et al. / Advances in Mathematics 347 (2019) 1173-1243 1213

instead of (2.69) upon increasing the constant in the estimate. This is the desired
maximal-regularity estimate with arbitrary regularity of the solution close to the free
boundary {x = 0}. We summarize our findings in the following statement:

Proposition 2.10. Tuke N € Ny, k > 2, and 0 < § < 3, and suppose that f : (0,00)* — R

and u® : (0,00) — R are locally integrable with |||, < oo and |[[u@]]. . < occ.

init

Then problem (1.19) has exactly one locally integrable solution u : (0,00)?> — R with
[l < 00. This solution fulfills the maximal-regularity estimate (2.84).

A rigorous justification of Proposition 2.10 only requires to make the heuristic argu-
ments in §2.2 mathematically precise. The respective reasoning will be detailed in §2.6
and §2.7.

2.5. Properties of the norms

The following estimates for the coefficients follow by an elementary reasoning as in
(2.82) or (2.83) (see also [16, Lem. 4.3] or [22, Lem. 3.3]):

Lemma 2.11. Suppose that k, N € Ny and 0 < § < % Further suppose that u : (0,00)% —
R, f:(0,00)2 = R, and u® : (0,00) — R are locally integrable with finite norms ||ull.;,
I flll,pe and H|u(0)||‘init. Then the following estimates with constants independent of u,
f, and u© hold true:

il;.%) TZJ Skons ullyy for j=1,...,2(N—-4¢), £=0,...,N, (2.85a)
T de’LLj 2 2 .
| A Skl for G=1,. 2N =041, £=0,....N, (285b)
0
KT - a0
init
lr. - .
i&g’ﬁ Seons 1l for j=1,...,2(N-1-¢), ¢=0,...,N—1,
(2.85d)
2

d‘f;

5| At ks Iz for G=1,...,2(N—=£) -1, £=0,...,N. (2.85¢)

[

Lemma 2.11 will be useful for the treatment of the nonlinear problem (1.25) in §3.
Furthermore, it enables us to properly define suitable function spaces for our solution u,
the initial data «(?), and the right-hand side f:
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Definition 2.12. For k >0, N > 1, and 0 < § < % we define the spaces U = U(k, N, ¢),
Uo = Up(k,N,d), and F = F(k,N,d) as the closure of all smooth u : [0,00)? — R,
ul® : [0,00) = R, or f: [0,00)% — R with [|ul,, < oo, ||u(0)m
respectively.

< 00, 0r ||| flllps < o0,

init

Note that in view of Lemma 2.11 the coefficients of the expansion of u € U, u(?) € Uy,
or f € F at x = 0 is still defined, so that the representation of the norms in (2.71),
(2.73), and (2.74) remain valid. Also note that a theorem in the sense of “H = W?”
holds, that is, we obtain the same space if we define our function spaces in the sense of
Definition 2.12 or as the space of all locally integrable u : (0,00)? — R for which (1.30)
holds true locally almost everywhere to order O(xz?V*!) and the norm |[|uf|,,, is finite.
This is also the case for the spaces Uy and F. We refer to [16, Lem. B.3, Lem. B.4] for
details in an analogous situation.

2.6. The resolvent equation

In this section, we start with lifting the arguments of §2.2-§2.4 to mathematical rigor.
At the core of our reasoning is a solid understanding of the resolvent problem to (1.19a).
Suppose we are given initial data u;—o = u(9) satisfying the boundary condition (1.19b).
Using the method of lines, at time dt > 0 sufficiently small we obtain an approximate
solution u®® to (1.19) by solving the ordinary differential equation (ODE)

(6t) _ ,(0)

% + Au® = Y for 2 >0, (2.86)
where the right-hand side is averaged over the interval (0, 6t), i.e., f(O0) := % O6t ft)de.
Setting g := f0) + %u(o) and writing v := u(®") and X\ := %, we arrive at the resolvent
equation

M+ Au=g for z>0, (2.87)

where A4 2" Oy (2% 4 22) 82 = 7 'p(D) + x2¢(D) with D = z0,, and p(¢) and ¢(¢)
are as in (1.21). Additionally observe that gj,—o = 0 by compatibility with (1.19b). We
note that, since (2.87) is not time-dependent anymore, we cannot find a rescaling as
in the time-dependent setting (1.19) to eliminate the small constant §t, or the large
constant \ in (2.87), respectively.

Our aim is to construct solutions to the ODE (2.87), having suitable asymptotic
properties as x \, 0 and = " co. The basic idea is to construct two-parameter solution
families in a right-neighborhood of z = 0 and for x > 1 and to match these solution
families using the coercivity of A in form of (2.11):
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Proposition 2.13. Suppose X > 0 and g € C* ([0, 00)) with gj,—o = 0 satisfies

u4m@

e d
day

lim sup (2.88)

T—00

1
(m)'<oo forall jeNy and VE[O,—

5

Then the resolvent equation (2.87) has exactly one locally integrable solution u : (0,00) —
R with |u\27% < 00, (D —1)u|; < oo, [(D - 1)2u|1 < 00, and uj,—o = 0. This solution
obeys u € C* ([0,00)) and satisfies (2.88).

Here, we give a summary of the arguments based on a similar reasoning contained in
116, §6].

Proof of Proposition 2.13. Step 1: A solution family close to the contact line. As x \, 0
and for A > 0 fixed, the term ~ 272 on the left-hand side of (2.87) is dominant. First,
we may reformulate (2.87) in form of a fixed-point problem

u="T]:=8(g— M) +arx+ax® for =<1, (2.89)

where a1, as € R are free parameters and S is the inverse of A such that %Sg =0 for

j = 0,1,2. Note that an explicit representation of S in terms of (singular) integrals is
straight-forward by using the factorization of A as in (2.46):

A=2"%(D~-1)*(D-2)B, where B:=xz(D—-2)+D=(z+1)*D(z+1)"2
Further note that from (2.15) and (2.16), i.e., %A = Ak%, where
A =2 'pp(D) + 2 %qx(D)

with

we can derive

Ay =2?D-1)(D+k—1)(D+k—2)By 290
with Bk = Jf(D+k—2)+D:(1‘+1)3ka($+1)]€727 .

which generalizes (2.46). Since D — v = 21277 and due to uniqueness of S if

ds da2s
T (0) =T

(0) = 0, we have after four integrations from x =0
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ak (S
d;kg) (z)

r T1 T2 I3

d¥g dry dzs dzy dx

)2~ k k=3, 2 k—1_k 4 dx3 ATz ATy

1) - J a7 T2 L

////ler Ty T3Xy (dx’f)(m) va @3 T3 71
0

d* dry drg dre d
o1 k//// (i + 1) rirgrs g (r‘Z) (ryrorgrar) S22 2 L
x Ty Ty T T1

[0,1)*
(2.91)

Note that S is defined through (2.91) with k& = 0, so that by uniqueness of S under
the constraint %Sgpmo = 0 for j = 0,1,2, the general formula (2.91) is valid for
all k& € Ng. Then, one may verify that a fixed-point argument can be carried out in a
right-neighborhood of the origin « = 0 using ||-|| _-based norms:

Take ||g|| := maxg=1, x MaXo<z<e ’(‘i—g(x)‘ with K € N arbitrary. From (2.91) for
0<zx<e<1andk>1it follows:

d*Sg 9 9 k 1 2k k dr4 drs dry dr
< — +1 i i A
o (z)| <= max{(m—l—l) (x4 }////r1r2r3 o —
[0,1j4
dk
X su T
0<an dak ( )
z? dFg
< v - J
Sy Freatl
whence
&2
ISgll = < llgll- (2.92)

We apply estimate (2.92) to (2.89) for fixed a;, a2 € R and note that

e 7 maps the space {u: ©(0) =0 and ||u| < co} into itself,
o for u™ and u® with ||u(1)|| < oo and Hu(2)|| < 0o we have

fr{e] - 5 o -0

that is, 7 is a self map for £ < \/g = V26t.

Thus, the contraction-mapping theorem yields for every fixed (a1,a2) € R? a unique
fixed-point v in {u : |Jul| < oo} provided ||g|| < co. Due to the choice of the norm |||
and the fact that K can be chosen arbitrarily large, we have u € C* ([0, 1]) and inverting
S, we see that u is a solution to the resolvent problem (2.87).
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Denote by u and u(? the solutions u to (2.89) with ¢ = 0 and (a;,as) = (1,0)
or (a1,a2) = (0,1), respectively. We also write u =: T¢g for the solution u to (2.89)
with (a1,a2) = (0,0). These solutions can be extended to the whole interval (0,00) by
standard theory.

Step 2: A solution family as x — oo. The above reasoning shows that we have a
two-parameter family of solutions that are well-behaved as x \, 0. For constructing
solutions with analogous features as z — 0o, note that now the terms ~ z~! and ~ =2
are small compared to the addend Au in (2.87), so that we need to adapt our arguments.

First take r := 4{/x with r > 0, so that equation (2.87) changes to

d4 d
()\—l—@)u—i—r_lQ <T_1,5>u:g for r >0, (2.93)
where @ (ril, %) is a fourth-order linear operator in 4, with coefficients that are

bounded for r > 1. The operator A + (f—?: is simple and a fundamental solution G,
fulfilling

d* . .

can be found using the fundamental system of A+ 92, i.e., by looking for the fourth roots
of —\. Note that with # := vAr and G := AG, the dependence on A in (2.94) disappears
and we are in the same situation as in [16, Eq. (6.25)], that is, we have

Far Fxr
1 (A 1 2N
) = /\—ﬂsm(\/{)eﬁ —)\—ﬁcos(\/{)eﬁ for r <0, (2.95)
) in (L) g (%) ~F forr<0 '
ok 7)€ s cos (g )e or r .
Cutting off with ng, where ng(r) := n(r/R) and n € C*°(R) fulfills M)(~00,1] = 0 and
7M[1,00) = 1, we can then express u as a fixed point
1 d
u=Gx*[nrg—17"Q el for r>2, (2.96)
r

which is the same problem as the one treated in [16, §6.3] giving a solution Ts.g :=u €
C* ((R,00)), where R > 1, with decay (2.88) (coming from the decay of g, cf. (2.95),
and the transformation r = 4{/x) provided g € C* ((R, c0)) fulfills (2.88) as well (cf. [16,
Def. 6.2, Lem. 6.6] for details). Note, however, that this only gave us a particular solution
to (2.87). The more subtle part is to find two linearly independent solutions to the
homogeneous version of (2.87). Here, the problem is that setting g = 0 in (2.96), our
fixed-point iteration will merely select the trivial solution u = 0. This requires a more
involved change of variables, also taking terms ~ r~! into account. This is done by

substituting u =: r%"e#"% and g =: r"eH"§ in (2.93), where p = *f" and 8 € R is

chosen suitably such that
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d\* o ep (i 4
u+—| +1ja+r—=Qr ,— )u=g for r>0,
dr dr

where Q (r’17 %) is a fourth-order linear operator in % with coefficients that are

bounded for r > 1. A solution can be found by a contraction principle through inverting
the linear operator (u + %)4 + 1. We refer to [16, §6.3] for details in an analogous case.
Take real and imaginary parts and denote these smooth and in the sense of (2.88) de-
caying real-valued solutions by u(®) and u(*). Again, we can extend u® and u® to the
whole interval (0, 00) by standard theory.

Step 3: Global solutions to the resolvent problem. In summary, we have obtained a
two-dimensional solution manifold with suitable regularity properties as x \, 0 and a
two-dimensional solution manifold with suitable decay properties as x — oo. Our aim is
to construct a solution to (2.87) with suitable (decay/regularity) properties as x \, 0 and
x /" 0o. This can be achieved by employing a uniqueness result for the resolvent equation
(2.87). The latter can be obtained using the (partial) coercivity of the operator A given
through (2.11): Test the homogeneous equation (2.87) with u in the inner product (-, -),
assuming that |u\27%, |(D —1)ul,, and |(D — 1)2u’1 are finite. This gives

0= O+ Au,u)y > Auf® + ¢ (|u\§7% + (D = 1uf? + |(D - 1)%’3)

for some ¢ > 0. Then we obtain in particular |u|27% = 0 and therefore u = 0.

Let us first demonstrate that the above sketched uniqueness result for (2.87) in partic-
ular implies that the functions «"), u® 43 u¥ are linearly independent and thus form
a fundamental system of solutions to (2.87): Suppose that there are a1, aq,as,a4 € R
with

auM + . 4+ au® =0 foral z>0.

Hence, in particular v := a1u™® + au® = —a3u® — a,u® is a solution to the homo-
geneous resolvent equation (2.87) that (including derivatives) decays super-algebraically
as © — oo in the sense of (2.88), and is smooth in x = 0 with u|,—o = 0. This implies
in particular that the norms |u|2’%, (D —1)ul;, and |(D — 1)2u‘1 are finite, and so by
uniqueness necessarily u = 0. Then linear independence of (u(M,u() and (u®,u®),
respectively, also implies a; = ... = a4 = 0.

Now take a smooth g with g|,—o = 0 and sufficient decay as x — co. We know that
Tsg— T<g is a solution to the homogeneous resolvent equation (2.87) and therefore can
be written as a linear combination of v, ..., u® ie.,

2) 4)

T>g—T<cg= aju + aqu® — agu(3) — aqul for some aq,...,a4 € R.
Define u := Tg + aju® + ayu® = Ts.9 + asu® + agu®. From the first equality we

learn that u is smooth in z = 0 with u,—o = 0 and from the second equality we know
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that u decays in the sense of (2.88). This implies finiteness of |u\27%, |(D —1)ul,, and
|(D — 1)2u|1.

Hence, we have proved existence and uniqueness of solutions to (2.87) for g smooth
with gj;—o = 0 and super-algebraic decay as x — oo in the sense of (2.88) under the
assumption |u|27% < 00, [(D = 1)u|; < o0, and |(D — 1)2u{1 < oo. This solution fulfills
u € C*([0,00)), ujz—o = 0, and meets the decay estimates (2.88). O

2.7. Rigorous treatment of the linear equation

2.7.1. Statement of results

The goal of this section is to prove Propositions 2.4, from which Proposition 2.10
follows immediately, since all arguments in §2.3 and §2.4 have been rigorous. To this end,
consider again the time-discrete problem (2.86) for which we can prove the analogue of
the differential estimate (2.33):

Lemma 2.14. Suppose that k > 2, 6t > 0, and f,u(®) € C* ([0, 00)), with fla=0 = 0 and

u|(2)=0 = 0, satisfy the decay properties (2.88). Then the solution u € C* ([0, 00)), with

ujz—o meeting (2.88), satisfies

1 e LA Rt A rriC: — 2 — 2
- ’D () +c|u<6t> - ]D u® —C’u(o) + ‘u(‘”) + ]uwt)
ot a a a a k+2,641 k42,641
2 2
Skoa o0 +‘f(‘”) (2.97a)
- k—2,a—1 o k—2,a—1
1 2 2 2 2 2 2
— ’Dku(‘”) +C a9 — ‘Dku(o) —C + |u®) + (w0
ot & & & & k+2,64 1 k+2,4+1
— 2 2
Sk 2O +‘f(‘”) (2.97b)
- k—2,6—1 o k—2,6—1

where & and & are in the coercivity ranges of A and A, respectively (cf. Lemma 2.2 and
Lemma 2.3), and C = C (k,a) > 0 and C = C (k,&) > 0 (j = 1,2) only depend on k
and & or &, respectively.

The following interpolation estimate is valid, which is crucial for being able to give
the initial value at {¢ = 0} (the trace in time) a precise notion:

Lemma 2.15. For T € (0, 00] and any locally integrable w,w®,w(™ : (0,T) x (0,00) — R
with w = w™ 4+ w0 we have
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T

sup \w|i7 Skoy |w‘t:0|i’y +/ ( d,w® 2 4 ’atw(n‘) 2 ) »
t20 T 27— k—2,y—1
T
+/ <|w|i+2,v+% + |w‘i+2,7+1) dt, (2.98)
0

where v € R and k > 2.

Lemma 2.14 can be used to construct solutions to the linear problem (1.19) and to
rigorously derive the parabolic maximal-regularity estimates (2.38) and (2.39):

Proposition 2.16. Suppose k > 2 and & and & are in the coercivity ranges of the opera-
tors A and A (& € (0,1) and & € (1 - \/%7 %) are sufficient, cf. (2.21) and (2.25) of
Lemma 2.2 and Lemma 2.3). Assume T € (0,00] and suppose that u(®) : (0,00) — R
and f: (0,T) x (0,00) = R are locally integrable with

W] <o O] <oc
k& k&

as well as

° 2 ~2 d r — |2 <2 d

t < , ‘ ‘ ‘ ‘ t < .
/ <‘xf‘k2,d§ + ’f‘kz,dl) = / ( zf k—2,6—1 i k—2,a-1 =
) 0

Then there exists a locally integrable solution u: (0,T) x (0,00) = R to (1.19) fulfilling
the parabolic mazimal-regularity estimates

T
12 — 2 ~2 12 12
sup |“|k& + / (|atl@|k72,&7% + |at@|k72,&71 + |U|k+2,&+% + |u‘k+2,d+1) de
0

. 2 2 (2.99a)
- 2 —~ ~
’Sk’& |u|t:0|kv5‘ +/ (‘xi k—2,6—3% + ’i‘k—z&—l) dt
0

and

. -2
sup |u|i,d+/ (’atxgykfldf
T (2.99b)

. ~|? 77
Sk.a ‘“It:()’k,a +/ <‘xi heogo1 T ‘i‘k72 a—1 .
0

12 2 12
=+ |atﬂ‘k7275[71 + |U\k+2’d+% + |u|k+2,d+1) dt

[N
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A uniqueness result holds under weaker conditions

Proposition 2.17. For T € (0, co] suppose that u : (0,T)x (0,00) — R is locally integrable
and solves (1.19) distributionally on the time interval (0,T) with homogeneous initial
data u9) = 0 and right-hand side f = 0 such that one of the following conditions holds
true

(a) We have fOT (|il|i ari t \ﬂﬁ d+1) < 0o, where & is in the coercivity range of A
(& € (0,1) is sufficient, cf. (2.21) of Lemma 2.2).
(b) We have fOT (|’lv1,|i ars T |ﬁ|i_&+1) < oo, where & is in the coercivity range of A

(¢ € ( \/g, %) is sufficient, cf. (2.25) of Lemma 2.3).
Then u = 0. In particular the solution u constructed in Proposition 2.16 is unique.

As a corollary of Propositions 2.16 and 2.17 we can infer that Proposition 2.4 and
Propostion 2.10 have to hold true as well.

2.7.2. Proofs

Proof of Lemma 2.14. Since the proof in essence only uses coercivity of A or A and the
fact that the operators are of order four, we restrict ourselves to proving estimate (2.97a).
We first apply D — 1 to equation (2.86) and get (cf. (1.32))

1 L — —
w(0t) — 4,(0) (6t) = f(ot)
&( u®) + Aul) = f (2.100)

Next, we test (2.100) with «(%%) in the inner product (-, )4, so that

— 2 — o o
% <‘u(6t) - (u(O)’u(ét)) ~) + (Au(ét),u(ét)) = (f(5t)7u(5t)) B (2.101)

Using the elementary estimate

— — 2
(u,u) < 1’ o 41 e
> >

&

a

coercivity of A (cf. Lemma 2.2) and Young’s inequality for the right-hand side as for the
arguments leading from (2.29) to (2.30), we obtain

L (1,60 ’ o0 < (5|
ot <‘u &) + (’u &+1> ~a =

2

—‘J@T)

+ ‘u(ﬁt
+1

& 2,&
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Estimate (2.102) is the discrete analogue of the differential estimate (2.30). For upgrading
it to a strong estimate, apply D* to (2.100) and test the resulting equation with D¥%(t)
in the inner product (-,-),. This gives

L (‘D’%ﬁ)
4

2 — — — L __ __

_ (Dku(m, Dkuwt)) ) " (Dku(éw, Dk Au(ét)) _ (Dk F0), Dkuwt))
& & & &
(2.103)

Again we have

(Dk (5t) Dkum)) ‘

and we may treat the other terms in (2.103) as done in the context of going from (2.31)
0 (2.32), so that

5 ([~ o) + \u«m) ~c|uen|
k+2,64 % a+3
+ ‘“W ‘ -C ‘ = (2.104)
k+2,a+1 a+1 :
2
Ska |2 f ‘f(“) :
B N 1 k—2,a-1

Adding a multiple of (2.102) to (2.104), we arrive at (2.97a). O

Proof of Lemma 2.15. By approximation, we may assume without loss of generality that
w is smooth and continuous up to the boundary. Then we can compute, using a standard
interpolation estimate (cf. [16, Lem. B.1]),

d . y
g — 2(8 @ ) 2(3 (@) )
dt|w|k77 tW, W ’v+ hw'™ w .

, k,

2
<k -~ ‘6{(1}(1 + |w|k+2,'y+1 '

2 @
(23
: + |w‘kz+2,'y+% + ‘@w P

k—2
Integrating this inequality, we immediately obtain (2.98). O

Proof of Proposition 2.16. The arguments for proving (2.99b) are analogous to those for
proving (2.99a), so we concentrate on proving the latter. For simplicity we may further
assume T < co. Take J € N, 6t := L and take piece-wise time averages of the right-hand
side f according to fU9) .= + é‘s_tl) s¢ /(') dt" where j € N. Note that by approximation
(cf. Definition 2.12) we can assume f to be smooth and rapidly decaying in the sense of

(2.88). We discretize the linear problem (1.19) as in (2.86), i.e

w38t _ y(G=1)5t)

= + AulU% = U for  j > 1. (2.105)
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Proposition 2.13 yields a smooth solution u%) : [0,00) — R with decay as in (2.88).
In particular, estimates (2.97) of Lemma 2.14 are satisfied, so we may start out with
(2.97a) at time step jot, i.e.,

2 ~
-C

2

—_~—

( DEuGab w(G-1)5t)

2
4+ -

— 2
+ ot (( 6| + |u ﬂ”)( >
k+2,64+3% k42,641

[

’ DFu(G-1)st)

2
<o 6t [ o pao ‘ fwt) ,
’ a k—2,6—1 k—2,6—1
Summation over j =1,...,J’ where J € {1,...,J}, gives

u(J'(St)

’Dku(""”) +C

ot ’ 7675)‘ ‘ (50t) ’
& + Z < k+2,6+5 * k+2,6+1

2 _—p I
O]+ Y . (2.106)
& a =1 k—2,a—1

By interpolation and noting that the second line of (2.106) is increasing in J', we have

2
xi(j&)

< ‘ DFu(0)
k—2,6—

f(J5t)
%

—— 2 J —_— 2
max ‘u(]ét)‘ + Z(St ‘u(]ét)‘ -+ ‘u(]ét)‘
j= J k,a = k+2,6+1 k+2,a+1

Jj=1,...,
2
) . (2.107)

k—2,6— k—2,6—1

2 J — |2 —
<, s ‘uw)‘ T Y ) 1| o)
Sk, ha ; / - f

Now, we define a piece-wise in time constant right-hand side ¢; and interpolate linearly
in time for our approximate solution vy, that is,

J J
, 1
¢s(t,x) =Y fI (@)L 1ystjon () = Y 52 / F (@) ALy _1yse jony (1),
J=1 =l G st
(2.108a)
J .
t— Dot ot —t i
balt,) = <(T) G0 () + JTU((’ 1)‘”)) Li(—1)st,561) (1) (2.108D)

Il
-

J

Then we note that

—_— 2

sup |y, 7 5 <2 max ’uww
te[0,T) =1,...,J

2.1
" (2.109a)

)
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and

T

at<25 st ‘ (aét)‘ ‘ (m)‘
/ (‘wJ k+2, a+% ‘wJ‘k+2 a+1> Z ( v k42, a+% +|u k+2,a+1
0

(2.109b)
as well as
r J - —2
dt=> 6t (76t) (3ot) .
/<‘¢J a—1 ’¢J’k 2,6— 1) Z (a:i k72~7l+ i foa 1
0 ji=1 ,a— 3 &
(2.109¢)
Utilizing (2.109) in (2.107), we get
T
2
sup ‘7/&1 ~+/<’¢J‘ ) ’1/1 ‘ )dt
te[0,T) k,& k+2,a+1 k+2,a+1
) T
Sk A(OJ)‘ ‘ ‘ ‘ ‘ dt. 2.110
Sk, ‘u k,d+/(x¢k2a% ¢>k2a1 ( )
0

For getting control of the time derivative Oytp; (defined almost everywhere in [0,7") by
virtue of (2.108b)), observe that for j € {1,...,J} and t € ((j — 1)dt, jot) we have

wlddt) _ ,((G—1)5t) (2.105)
ot B

Oppy = —AulI%t) 4 oY),

so that with (2.108) we obtain

@wJ+A¢Jf¢J+A(¢J ﬂﬂ) where j e {1,....J}, te((j—1)6t jot).
(2.111)

In exactly the same manner as in the time-continuous case (cf. (2.35), (2.36)), we obtain

control on ‘ﬁtxrz\b;‘ and ‘6,51,/;;’ , that is, (2.110) upgrades to
- I k—2,a-1

1
2

s [, + / (o, + o], )

T
+/Ow 4[]} >a
k+2,a+ B k+2,a+1
0
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T
— 2
Sea [uO[ / (\m i y¢ y )dt.
k,& k—2,6— k—2,a—1
0

Furthermore, observe that by Jensen’s and Hélder’s inequality

T
/(m¢ ‘k 2,a— ‘d) ‘k 2a1)dt
0

jot st 2 jot 2
21()8a~ - ~
t'ydt / t')dt dt
Z: | @l | ao o [ Iw
=1 1)s¢ J—1)dt k—-2,6-1 [I-1dt k—2,6—1
J L jot 2 jot 2
— 1 ~
Slal [ el o) 5| [ o], e
7=1 (j—1)dt ’ (j—1)6t
J jot jot
— 2
< ¢ ] dt ‘ ¢ ‘ dt
- Z / ’xi( ) k—2,6—% + / i( ) k—2,6—1

and therefore

!

s il [ (], lodf )

0
/(W 1] )
k+2a+§ k+2,6a+1
T
< ‘7072 +/ ’7(t)’2 el at 2.112
~ha UL RCA) PPN ‘—()'kfz,afé ' (2.112)
0

Note that the root of the first two lines of (2.112) defines a norm for ¢; up to adding
ax, where @ is constant in time, which is fixed by the initial datum u(?). Taking the
limit J — oo we infer that a subsequence of 1 ; weak-*-converges to a locally integrable
function w : (0,7") x (0,00) — R. By weak lower semi-continuity, estimate (2.112) turns
into (2.99a) in the limit J — oo. Because of Lemma 2.15, necessarily uj;—g = u(©)
holds true. Furthermore, due to (2.111), equation (1.19a), i.e., dyu+ Au = f, is satisfied
distributionally. O
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Proof of Proposition 2.17. We concentrate on proving Proposition 2.17 under the as-
sumption (a). We take a test function n : R — [0, 1] with 7_1 1) = 1 and suppn C [-2, 2],
and define 1, := n(s/n), where s := Inz and n € N. Next, we apply 7,(D — 1) to equa-
tion (1.19a) and test the resulting equation with 7,4 in the inner product (-,-), to the
result

(M Oy, ) 5 + (Al mn i), = 0. (2.113)

Now employing coercivity of A (cf. Lemma 2.2) is not directly possible, since we need
to commute 7, with the operator A. Note that every term in the commutator [nn, A]
must contain at least one derivative D = J, acting on 0, giving a factor n~!. Hence,
we can conclude that there exists a constant é = ¢ (&) such that

TP . 2 2
(0 Atl, i) ;, > € (|77nu|2,&+§ + |77n“|2,a+1) — R, (2.114)

where R,, = R, (t) is a uniformly integrable remainder (one may recognize that through
integration by parts it is up to a multiplicative constant dominated by |fb|g7&+% + |ﬂ\§7&+1)
with R,,(t) — 0 as n — oo almost everywhere in ¢ € (0,7"). By arguments analogous to
those in the context of (2.35) and (2.36), we have

T o]

~ 2 ~12 12 <12
/ (|8txg|k72’d7% + |8tg|5_1) dt S / (|u|4,&+§ + |“|4,a+é) dt < oo,
0 0

that is, we have & € W12 ((0, T); L. ((0, oo))) In particular, uj;—o is well-defined and
we arrive at

_ _ 1d _
(nnatua nnatu)d = 5& \%U@Y . (2'115)

Utilizing (2.114) and (2.115) in (2.113) gives after integration in time

T T
sup |nail? + é/ (|nna|§)&_l + |nna\§7&_1) at < /Rn at. (2.116)
te(0,T) / 2 /

Taking n — oo in (2.116), we note that by dominated convergence the right-hand side
vanishes and therefore sup;¢ o 1y @4 = 0, i.e., (D —1)u = @ = 0. Hence, u € ker{D —1},
which implies u(t, ) = uq(t)x. Using this in (1.19a) gives

1.20) d
0=z + Auz = %x for (t,x) € (0,T) x (0, 00)

whence
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d
% =0 for te(0,T),

which together with the initial condition u;|,_, = 0 amounts to u; =0. O
3. Nonlinear theory
3.1. Main results

Our aim is to prove that the nonlinearity N (u) (defined in (1.26) and with a structure
detailed in (1.27)) fulfills the following nonlinear estimate:

Proposition 3.1. Suppose N > 1, k > 3, and 0 < 6 < n 1. Then for |||, and |||l ns
defined as in (2.71) and (2.73), we have

IV (@) = N (@)l Sv6 (lulllsor + Mllon) v = oo (3.1)

for all smooth u,w € U with ||ul|y; <k n5 1, [|8]]s <r,n,6 1.

sol

The combination of Proposition 2.10 and Proposition 3.1, and a standard fixed-point
argument yield existence, uniqueness, and stability for the nonlinear problem (1.25), i.e.,

Ou+ Au=N(u) for ¢,z >0,
u=0 for t>0,2=0,

subject to the initial condition u;—y = u(9) | where A and N (u) are given through (1.20),
(1.26), and (1.27). The main theorem reads as follows:

Theorem 3.2. Suppose that N > 1, k > 3, and 0 < § < % Then there exists € > 0
such that for initial data u'®) € Uy with H
with initial condition uj—g = u® has exactly one locally integrable solution w € U. This

u(o)minit < ¢, the nonlinear problem (1.25)

solution fulfills the a-priori estimate ||ulll.; Sk,N,s H’u(o)|||init. Furthermore, we have
llw() ;e — 0 as t — oo, that is, the traveling wave (1.10) is asymptotically stable.

Note that by estimates (2.85a) and (2.85b) of Lemma 2.11 also regularity in time and
a-priori estimates for the coefficients u; (j =1,...,2N + 2) follow, that is, we have:

Corollary 3.3. In the situation of Theorem 5.2 it holds
u(t,z) = up () +ug(t)z? + ... +uan ()2*Y + Ry (t, 2)2*N T as \,0, (3.2)

where the remainder Ry (t,x) and the coefficients u; fulfill
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(a) Ry € L?((0,00); BC?([0,00))) with

o0

/Sup |Ry(t,2)[* dt Spovs H‘u(o
x>0

)
init

(b) d;tu,/ € BC*(]0,00)) forj=1,...,2(N —¥) and £ =0,..., N such that

d@
dte

<

aup | 25 o |

t>0

‘u(o>

init

(c) dug € L?([0,00)) forj=1,...,2(N—4)+1 and £ =0,...,N such that

dtt
(oo}
0

Proof of Theorem 3.2. Denote by S : Uy x F — U the linear solution operator con-
structed in Proposition 2.10. Then the nonlinear problem (1.25) turns into the fixed-point

¢ 2
d’LLj

it | 4 Sk (H““”

init

equation

w="Tu =S8 (u<0>,N(u)) , (3.3)
where ©(® € U, with H|u(0 |H < ¢ and € > 0 will be determined in what follows.
For 0 < w < N, 1 and u,uV), u(z) € U with ul(t) = u(0), ul(z) = uO Jullly < w,

|||u 1)H|bol < w, and |Hu 2)|||501 < w, we have by Proposition 2.10 and Proposition 3.1
(2 84), (3.1)
Tl S [[u®] -+ IV Sens e+ (3.4)
and

JI7[] =7 s

w = s EN ()~ ()
Lo |3 () v (u)
S(ZJV(sw

sol

rhs

H‘u(l —u® (3.5)

sol

Under the assumptions 0 < ¢ <pnes w <pn,s 1, estimates (3.4) and (3.5) imply
existence of a unique fixed-point to (3.3) in {u: ||ull,, < w}.

Note that this does not imply the uniqueness assertion of Theorem 3.2 up to now
as uniqueness of u only holds in the closed ball {u : [|ul|,, < w}. Therefore observe
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that by approximation with smooth functions (cf. Definition 2.12) we need to have
Nullsor,o,77 = H|u(0)|Hlmt, where ||uls) 0,7 15 the analogue of (2.71) on a fixed time
interval [0, T] instead of [0, 00). This implies in particular ||ull, 7] < w if we choose
T > 0 sufficiently small. As the above fixed-point argument also holds on a fixed time
interval [0, T], we infer that u is unique on the interval [0,T]. A contradiction argument
then yields global uniqueness.

Finally, the trace estimate, Lemma 2.15, allows to approximate uw by smooth and
<> Which by (2.71) and (2.74) controls
Therefore, we necessarily have [|u(t)];,;; = 0 as t = co. O

compactly supported functions in the norm |||-||

also HH“init'

Proof of Corollary 3.3. As already noted, parts (b) and (c) follow by combining esti-
mates (2.85a) and (2.85b) of Lemma 2.11 with the a-priori estimate

‘uw)

(= (I
init

of Theorem 3.2.
For proving the bound on Ry, observe that by a standard embedding

2

ey T 2N 32 7 ®
lall2y = [fu=S |tz [IRNE pdez [ supa Ry
0 =1 1.2N+5 0 0 T
(3.6a)
and
, (271) r 2NA1
all2y =" [ fu Y e at 2 / Ry — us a2 5 dt
0 J=1 1,2N+1+46
o0
z /supx*25|RN7uQN+1|2dt. (3.6b)
0 x>0

Take n € C* ([0, 00)) with 79,1) = 1 and 7)[2,0c) = 0. Then almost everywhere in {¢ > 0}
we have

sup |[Ry| < sup [nRy|+sup|(1 —n)Ry|
x>0 x>0 x>0

S sup|n (Ry — uan+1)| + sup |(1 = n)Rn|+ [uan+1]
x>0

Sssupz ™’ n(Ry — U2N+1)| + SU]M1 Y11= n)Ru| + [uzn+1] (3.7)

x>0

Combining (3.6) and (3.7) with (2.85b) of Lemma 2.11, we have proved part (a). O

The goal of the remaining sections (cf. §3.2-§3.4) is to prove Proposition 3.1.
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3.2. Observations on the structure of the nonlinearity

In D-notation we derive from (1.27) and the identity 05 = = *D(D—1)...(D—s+1)
that N'(u) is a linear combination (with constant coefficients) of terms of the form”

2% (140,) 7% x ﬂ(D —o) | (2* +2%) x (“ﬁ (D - a)) (z® +2?)

o=0 o=0
(3.8)
n sj—1
x X (H(D-@)W,
J=1 \s=0
where s{, So, $1, - - -, Sn, n meet (1.27b), i.e.,

so+sot+sit 48, =3, so<1, ne{2---,6}, s :=#{s;:j>1ands; >1},

and u "2 (322 + 2z)v. These nonlinear terms need to be estimated in the norm ||| ;..

(cf. (2.73)), that is, terms f of the above form (3.8) need to be estimated in

m la]+m+7 5 2
(D DD BT nf- 3 ddj} ’
(abm)eTy 1,5 7=0 " i=t k+4(N—0)—3,a+m+7
* LaJ+m+r 1 dzij } 2
+ / T 2’ dt.
(a,t,m) EJN sT=07 3:1 k+A(N—0)—1,a+m+r—1

Notice that the notation f = IL_H has been introduced in (2.26). Since we need to subtract

the power series expansion of f to arbitrary orders in the norm ||-|[,,, it appears more

3—s'

favorable to expand (1 + v,)~ in a power series in v, so that A(u) can be written

as a convergent series of terms of the form

s/ S0 — s;i—1
cx™ x f[(D —o) | (2*+2?) x <‘i_[1(D - 0)) (2 + 2?) x >n< (i_[ (D — 0)) Vs
o= o= J=1 \ o=
’ 0 i (3.9a)
where ¢ = ¢(s, S0, 81, - - -, Sn) 18 & real constant and sp, o, $1, - - - , Sp, 1 fulfill
sot+so+sit-+sp=3, s<1, and neN with n>2. (3.9b)

7 Note that here and in what follows, derivatives only act on the factors separated by X.
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3.2.1. The structure of the sup-parts
What follows is tailored to the first line of (2.73). Without loss of generality assume
$1>...2> 8, (so that in particular s; = 0 for j > 4). Then we notice that the factors

z! ﬁ(D —o) | (2*+2%) and 27! (91_—[ (D — 0’)) (a2 + 2?)

o=0 o=0

can be combined with

(h(D—a))vw and (ﬁ(D—O‘))’UI,

o=0 o=0

respectively, using u (1.18) (322 4 2z)v. To this end, observe

z! H(D—cr) (23 + 2?) x (ﬁ(DO’)) Uy

o=0 o=0

(3.10)

) (),

o=0

(120 -0 ) (T (2-) )
3x+2
of it is bounded. Next we observe that the following operator identity holds true:

is a smooth function and any number of D-derivatives

where

622 + 2z
322 4+ 2z

(D — o) (32% +22) "' = (322 + 2z) ! (D —0

= (322 +22)7! (D—a—l— 3z )

Combining this with (1.18) and (3.10) and iterating the procedure, we note that

s1—1 S1
(322 + 27) ( H (D — o*)) v, = 21 (32? + 22) <H(D - a)) v

o=0 o=0

st 3x
=x! D—o-— .
. (H < 7 3x+2)>u

(3.11)

o=1

Now notice that

2
3x 3x 3x
- D+1)— 12
w12 g Pt <333+2) ’ (3.12)
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so that (3.9)—(3.12) and an analogous reasoning for the second pair of factors
r1 (Hso_l(D - a)) (2% 4+ 2?) and (Hff:_ol(D - a)) v, yield that the nonlinearity A (u)

o=0
can be written as a convergent series

()2~ x (H(D - J)> u x (H(D - 0)) u X ;<3 (H (D — a)> vy, (3.13a)
o=1 o=1 J= o=0

where ¢(z) = ¢(x, $1,...,5,) is a smooth real-valued function in z € (0,00) such that
|ch| is bounded for every j € Ng, and sq, ..., s,,n fulfill

s1+...+5,<5 and neN with n>2. (3.13b)

Here we have renumbered the two factors with u appearing, as in view of (3.11) and
(3.12) we need to allow for cases in which no derivatives are acting on them. Note that
in view of the operations in (3.10) and (3.11) not necessarily s; > so > ... > s, but we
still need to have

59<2, s3<1, and s;=0 if j>4. (3.13¢)

Further note that |D7 (277c(z))| in (3.13) is bounded, where we have introduced the
notation

7:=max{0,2 — s1} + max {0,1 — s2}. (3.14)
The fact that 27 can be factored out from c¢(z) has two reasons:

(a) If sy 4...+8, = 0in (3.9), then the term in (3.9a) is only non-vanishing if (sf, so) =
(2,1). In this case, we have

(M=) o+ (=) g
37 +2 S 3z +2

in (3.10) and we obtain an additional factor z in ¢(z).

3z
3x+2

(b) Commuting as done in (3.12) leads to another factor z in ¢(z) as well.

One may easily verify that the combination of (a) and (b) leads to the definition of 7
as in (3.14). Since from (1.19b) and sufficient regularity of v at x = 0 we have that the
nonlinear term in (3.13) behaves as ¢(z)O () as x N\, 0 where v := Z?zl sj — 2, this
shows that indeed the boundary condition (1.22) is satisfied individually for each term
in (3.13a).
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3.2.2. A general argument for estimating products involving Taylor polynomials

In the norm |||/\/(u)|||3hS (cf. (2.73)) we are dealing with the subtraction of the Taylor
polynomial of a product to a certain order that we will denote by J in this section.
Suppose that f,g: [0,00) — R are smooth and consider the term fg — Z;}:O(fg)jxj,
where

1 L1 d flemg 1 AT gy
(f9); = ﬁ@(fg)\wzo = Z:oﬁ A7 (G=j) dw7 = X:ij/gj_j/.
Jj'= Jj'=

Observe

J

J J J
fo=Y (fg)a’ = f=> fpad | g+ D fira'g = (f9);2
5'=0 5'=0 =0

Jj=0

J J J—j'
= =Dt g+ > frad [g= D g’ |, (3.15)
Jj’'=0 Jj’'=0

3""=0

where (f - Z;},:O szxj,) g =0 (z/*1) and fiad gg - Zj,,_:j(/) gjuxj”?‘ =0 (z7") as
x N\ 0. This simple mechanism will be used in what follows to reduce the subtraction of
the Taylor polynomial to the subtraction of the Taylor polynomial from the individual
factors.

3.2.8. The structure of the sup-parts (continued)
We continue with §3.2.1 and concentrate on the structure of the terms in the first line
of the squared norm \H/\/’(u)”ﬁ (cf. (2.73)). We first consider the expression

. L]+t dgfj _
sup |0; f — —= ) ,
tzlo) of ; det

k4+4(N—0)—3,a+m+7

where o € {6,1+6},0<l+m < N—1—|a],0 <7 <1, and f has to be replaced by
(3.13a). Distributing ¢ time derivatives onto the factors in (3.13a), we need to estimate
a term of the form

fi=cl@)a™ x (ﬁ(D - a)) O u (ﬁ(D - a)> 8% x >n< (Sﬁl(D - 0)) 8liu,
021 ! A (3.16)
in
o] +rA+7
sup | f — Z fia? , (3.17)
j=1

t>0
k4+4(N—£)—3,a+m+7
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with ¢ + ...+ ¢, = £, and where sy,...,s, and n meet (3.13b) and (3.13¢c). Applying
the product decomposition of §3.2.2 (cf. (3.15)), we note that we can factor out the finite

terms
Lor] +ri+7t4 2
c— Z c;x’ and max |cj|2 ,
— ~ J=T,...,la]+m+7+4
I= k+4(N—£)—3, o) +mt+7td
where
[wll, = jDnax ||D7wH,Y and  [lwl|,, := lesu;; |z Tw(x)] . (3.18)

Hence, in this case we are left with estimating a term of the form (3.16) with c(z) = z*
and ¢ =7,..., |a] +m+7 (where 7 is defined as in (3.14)) in (3.17), that is, we need to
estimate terms of the form

= <ﬁ(D - 0)) Oy x (ﬁ(p - a)> 0% x

o=1 o=1

I

(1:[ (D — g)> 8lv,  (3.19a)

o=0

in
L 2
la|+m+7+4—
sup | f > : (3.19b)
B 5=l k+4(N—8)—3,a+m+i+d—t

where 51 <4, 59 <2,53<1,s; =0for j >4, and
s1+ 48, <5, meN with n>2 and c¢=7,...,|a]+m+7+4, (3.19¢)

where 7 is defined in (3.14). In order to obtain a factorization of the norm in terms
Z; d“(ve
of [||ul| 0y vy — 5 0 %xj and 2| by

SjsH

<1 We will derive control of factors

dtf

llull,.;- Note that for £; = 0, s; = 0, and p = 0 we have that H@fj Vg

o 1v2]l 5o f0,00)
controls the Lipschitz constant of v. Smallness of the Lipschitz constant is crucial for
invertibility of the von Mises transform (1.11). Lipschitz control will be the objective
of §3.3. As a result, we can essentially reduce the situation to the bilinear case of two

factors of derivatives of u.

3.2.4. The structure of the L?-parts
We turn our attention to the second line of (2.73), i.e.,

L] +m+r 1 dff

(oo}
/ i L 7 dt, (3.20)
0 J= 0 k+4(N—£0)—1,a+m+r—1
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Whereae{ L5064 +(51+(5}0<€—|—m<N L J,andOSrSm.Here,
f needs to be replaced by the nonlinearity N (u), so that the terms (3.9a) obtain an
additional factor (z + 1)~!. In comparison to the reasoning in §3.2.1, we may already

distribute the D-derivatives of the norm in space in (3.20) at this stage. Then we apply

(1.18)
= (

the transformation u 322 + 2z)v to a factor Dv, on which the maximal number of

D-derivatives acts and otherwise take v, itself. By a reasoning analogous to the one in
§3.2.1 leading to (3.13), we conclude that the nonlinearity can be written as a convergent
series of terms of the form

o(z)a% x D™ (H (D — 0)) wx X D" (H (D — a)> Vs (3.21a)
o=1 Jj=2 o=0

where ¢ = ¢ (x, 81,...,8n,71,...,7y) is smooth in x € [0, c0), |ch’ is bounded on [0, c0),
and

s1t.. 48, <4, ri+...4r, <k+4(N—-£¢)—1, and neN with n>2. (3.21b)

By the above choice of u, we additionally have

k+4(N—0)—1
2

sj—i—rjgmax{?)—t—{ J,k—|—4(N—€)—1} for j7>2. (3.21¢)
As done in the context of (3.13) (cf. items (a) and (b) there), we infer that
‘Dj (x_T/c(x))‘ is bounded, where

n
7' :=max {0,1 — s;} + max { 0,1 — max{0,s; — 1} — Z Sj¢- (3.22)
=2

Thus it can be verified that each term in (3.21a) satisfies the boundary condition (1.22)
individually.

Now factoring out ¢ as done in §3.2.3 and distributing time derivatives onto the
individual factors in (3.21a), we are left with estimating a term of the form

S1 n s;—1
f:=D" (H(D — a)> Af'u x X D' ( [[- a)> 0, (3.23a)
=2

o=1 = o=0

in

le] +m+r+1 L

/ — fia? dt, (3.23b)
0

I= 0 a+m-+r+1l—

where (3.21b), (3.21c), {1 + ...+ ¢, = ¢, and
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v="7 o lal+m+r+1 (3.23¢)
with 7/ as in (3.22), hold true.
3.8. Lipschitz control and supremum bounds

The following two estimates are essential in order to factorize the nonlinearity.

Lemma 3.4. Suppose N > 1, k > 3, and 0 < § < 1. Then for { € {0,...,N — 1},
HE{O,...,k+4(N*Z)*1}, anduE{O,...,Z(Nfg—l)} we have the estimate

df(v,);

dt?

Sk lullse  (3.24)

M‘
f\x R

max { sup ||0fv, —
>0

, mmax sup
J=0,1 >0

s

for every locally integrable u : (0,00)* — R, where v (1 (322 + 2x) "' and [l ,, was
defined in (3.18).

Proof. Throughout the proof, all constants in the estimates may depend on k, N, and 6.
We first observe that for a smooth cut off 7 : [0,00) — R with 70,1) = 1 and 7j2,0c) = 0
we have by a standard embedding

7
= dt »
Kol 7 -
d*(va); ; d*(va) /
< v, — — T 4| — 2 oty
~ (|1 tYx ZO dt‘ dtz t ZO
7= Ky Ky
Kool 7
7 d*(v d*(v 7
N M i e o
— At dt e
J k+1,u+68 k+1,u—140
ptl 7 1)
7 d*v; ; d*v;
< 0fv — — LI + 0fv =Y —La , 3.25
N -y o 3.5
= K+2,u+146 = K+2,u+8

where we have used (v;); = (j + 1)vj41 and

<] ()

dtf
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2 _
Hooqe
7 df(vy); ;) da
—ou—25 | ol _ e)i g 24
< [T ) S
1 Jj=0
2
2 - 2
p—1 7
; df(vy) dz
2-2u+25 | ol x)j g
—l—/x Oita Z de? T
1 Jj=0
2
u 2 1 2
d“(va); ] d(vz)
l )J . 4 )] ,.j
S |0 =) — e + (O =) —
J=0 k+1,u+6 J=0 k+1,u—1406
(3.26)
We note that v (2 (322 + 22)~lu, so that we have due to (3.25)
Kooql w2 7
; d*(vs); dw
i 2)j < |at, _ i g
0, Vg Z i x S |Ow Z i x
J=0 Ky J=0 K+2,u+24+90
ptl 7
_ s
l, J ..
+ [Ofw Z 7 (3.27)
7=0 K42, u+148
where w := (3z + 2)"'u = zv (in particular v; = w;4+1). Applying the decomposition
principle in §3.2.2 to the product w = (3x + 2)~1u, we have
ut2 7 nt2 e 17
- ws . ; du;
Ofw — Z ?u;:z:j < Z lu — Z dt; @’ . (3.28)
=0 2 pd2ts 070 =1 k42,046
Similarly, we obtain
pt+l 7 pt+l e 17
; d*w; ; du;
Ofw — Z dTu‘;Jx] < Z Olu — Z dt; x! . (3.29)
=0 2 putits 070 =1 k42,046
Estimates (3.28) and (3.29) in (3.27) yield
I pt-2 o 7
; d(vg); ; dfu;
vy — — 2 < Obu — 2 oI . 3.30
o= M| <5 loru- 3o 530
J= Kyl o= J= K+2,0+0

Notice that the right-hand side of (3.30) also bounds max;—o,... , ot

M’ by (3.26).

Hence, it remains to prove that the right-hand side of (3.30) can be controlled by the

norm |||ul|,,;- This is an immediate consequence of

sol*
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2
(2.71) m la|+m+r

2.71 dfu. .
2
Iz = 3 Yosw|dfu— Y (3.31)

_nt> »_
(a,6,m)€Ln,5 r=0 J=1 k+4(N—£)+1,a+m+r

and the restrictions on x and p. O
In a similar way, we can also obtain sup-control on u instead of v:

Lemma 3.5. Suppose N > 1, k > 3, and 0 < § < 3. Then for 0 € {0,...,N}, k €
{0,...,k—|—4(]\7—l7)}, anduE{l,...,Q(N—g)} we have the estimate

oy M g L s (332)
max < sup U — =T , max sup|——x ~k,NS (| U :
>0 || = det 3=0,.p ¢>0 | dt? sol
Kot
for every locally integrable u : (0,00)% — R.
Proof. As in the proof of Lemma 3.4 we can show
r gl Z
7 dfu; d‘u
max ¢ ||0fu — Z —L g , 1
gl dt?
7= Ky
Kol p=1l .7
; du,; 7 du,;
<5 |0fu — Y + |0fu — 2 o7
N
! ; dtf ¢ Z:l dtf
= k+1,u46 = Kt+1,u—1+5

The terms on the right-hand side of this estimate can be bounded by ||u|.,; due to the

sol

restrictions on k and p (cf. (2.71)). O
3.4. Proof of the main nonlinear estimate
We treat lines 1 and 2 of the squared norm \Hf|||fhs (cf. (2.73)) separately:

8.4.1. sup-control
We continue with the term (3.19) and apply the decomposition principle of §3.2.2
(cf. (3.15)) and estimate (3.24) of Lemma 3.4 with x = 0 to the product

>n< (h(Do)) 35”@@

J=3 \ 6=0

of (3.19a). Observe that j > 3 and therefore s; < 1 which implies that in the norm
(3.19b) at most k + 4 (N — ¢) — 2 D-derivatives act on 0fv, so that in particular £ <
k+4 (N — K) — 1 is satisfied in Lemma 3.4.
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This implies that there exists a constant K > 0 only depending on N, k, and § such
that for f asin (3.19a) we have the bound

L) +mt7td—
max sup | f — g fia?
t=T,...,la]+m+7 >0 —1 ~
J= k+4(N—0)—3,a+m+it+d—1

< (Klull o)

sol
la|+m+7+4—
X max sup |g — Z g’ . (3.33)

=T, o)+ 4744 t>0 —
I= k+4(N—£)—3,a-+mtitd—t

where

g = (ﬁ(p - o—)> 8l x (ﬁ(p - a)> 0%u (3.34)

o=1 o=1

and all other quantities are as in (3.19) (in particular, we have s; < 4 and so < 2).
Next we apply the decomposition principle of §3.2.2 and estimate (3.32) of Lemma 3.5
with @ = 2 to the second factor in (3.34). Note that

(a) because of s < 2 at most k+ 4 (N — Z) — 1 D-derivatives act on 8fzu,
(b) we have fo < N — 1, i.e., pu € {0,1,2} is always allowed.

Items (a) and (b) imply that Lemma 3.5 can be applied, so that we arrive at

la|+m+7+4— 2

max sup |g — E g;v’
(=T, la]+m+7 >0 —
I= k+4(N—8) =3, mtitd—t

< (K lulyo)®
2
la]+m+7+4—2 7
de ,
x | K max 8 u— Z Y5 i
i=T+s241,..., [ Frtitd t>0 — dtt
I= k+4(N—2)+1,a-+m+itd—e

(3.35)

upon enlarging K = K (k, N,5) > 0. Now recalling that (o, f,7m) € Zy_1 (cf. (2.70)),
(3.14)
T4+8+1 > 2 and

, (271) / el gmtr dfu;
iz, 2 Y Sy S ,
(o, m)eLn s T= o t=20 j=1

k+4(N—0)+1,a+m+r
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we notice that the last factor

la] +m+74+4—

max sup |0 u — g
t=74s2+41,..., a| +m+7+4 t>0

12
d I:Ltj
dté

xJ

J=1 k+4(N—0)+1,a+m+7it+d—

in (3.35) can be bounded by |||uH|§01 as well, so that (3.35) upgrades to

lo) +rmtitd—t 2
j 4
max sup |g — xd < (K|lulls)” - (3.36
1=T,o Lo +mA+T >0 g Z 93 ( ||| Hl 1) ( )

=1 k+4(N—8)—3,a+m+7+d—

The combination of (3.33) and (3.36) yields

o) +rt7Ftd—t
. 2
max  sup|f — Z fia? < (K|lluflson)™ s
L=T,..., o]+ AT t>0 1 ~
= k+4(N—£)—3,a+m+it+d—t

(3.37)

where f is as in (3.19a). It is crucial to note that K is independent of n, so that the
series expansion of §3.2 is indeed convergent. Thus we obtain

m ~ Lo +m+7 dgf' ' 2
SRS Sl TR S
(clan) €Ty 5 (= 7=0 J=1 k+4(N—£)—3,a+m+7 (3-38)

2 ~112 ~12
S (Wl + 1112, ) e = @l

where f = N(u) — N (@), ||ully; <k n,s 1, and [[|@]||,,, <k~ 1, in the particular case
4 = 0. In order to establish (3.38) for the case in which @ # 0, we may follow the reasoning
of §3.2 up to the multilinear expression (3.19a). For an n-linear form M observe

Muy ..o u) = M (@y...,0) = M (u—=a,u,...,u)+ ...+ M(q,...,0u—1a),

where each of the n factors on the right-hand side can be treated in the same way
as before, leading to a single [|u — |2, instead of [Jul|2, or ||a]|%, in (3.37) and K

ogn

needs to be replaced by K nw = Ke . Since the latter is bounded in n, we arrive at
estimate (3.38) for @ # 0 as well.

3.4.2. L?-control

We continue at the end of §3.2.4 and first apply the decomposition principle of §3.2.2
to w in (3.23), noting that D™ ([T, (D — 0)) 8;*u = O (z***1) as @ \, 0. Applying the
L?-bound in time on the factors containing u (taking s +1+7r < k+4(N — ) + 3
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into account and employing estimate (2.85b) of Lemma 2.11 for the coefficients) and the
sup-bound in time on those containing v, we can estimate as follows

la] +m+7“ 1 2

oo
max - fia? dt
=7, al+mtr+1 0
0 J= a+m+r+l—
la]+m+r+1—

Kl|u max su — Z xd
( ||| |Hsol) T'+51+1,...,LaJ+m+T+1 tzlg g — g] I
J= la]+m+r+1—

(3.39)

where g := X7_, D" (HZ];_()I (D — 0)) 0 vy and K = K(k, N,5) > 0. For the last factor
of (3.39) we may use the decomposition principle of §3.2.2 as well as estimate (3.24) of
Lemma 3.4 and obtain

la]+m+r+1—

max su — Z xd < (K||u 2(n—1)
R W T S < (Kl

la]+m—+r+1—
(3.40)

upon enlarging K = K(k, N, ). Note that indeed applicability of Lemma 3.4 is guar-
anteed, because |a] +m+r+1—1t <2(N —£¢—1) (cf. (2.70) and (3.22)) and due to
(3.21¢), k in Lemma 3.4 fulfills the bound

k+4(N—0)—1
2

ngmw{3+{ yk+MN@1}§k+MN@L

where we need to assume k > 3. Gathering (3.39) and (3.40), we have

] +m+r+1 L

ma o dt < (K||u . 3.41
- >0 (Kllullo. (341
0

a+m—+r+1—¢
Since the constant K in estimate (3.41) is independent of n, the series expansion of §3.2

is convergent and we have

0o . |_aj+m+r71dff' 42
SR B ST S a

(a,t,m)eTN,s g =0 Jj=0 k+4(2N—£)—1,a+m-+r—1 (342)

2 ~12
S (Il + N2, ) I = @i,
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where f = N(u) = N (@), ||ullly <k 1, and [lalls,
% = 0. Passing from this particular situation to the case of general @ follows the lines of

<k,N,s5 1, in the particular case
the respective reasoning in §3.4.1, so that we do not need to discuss this once more.

3.4.8. Conclusion
The combination of (3.38) and (3.42) together with the definition of the norm |||,
in (2.73) proves estimate (3.1) of Proposition 3.1 and concludes the proof.
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