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Consider the thin-film equation ht + (hhyyy)y = 0 with a 
zero contact angle at the free boundary, that is, at the triple 
junction where liquid, gas, and solid meet. Previous results 
on stability and well-posedness of this equation have focused 
on perturbations of equilibrium-stationary or self-similar 
profiles, the latter eventually wetting the whole surface. These 
solutions have their counterparts for the second-order porous-
medium equation ht − (hm)yy = 0, where m > 1 is a 
free parameter. Both porous-medium and thin-film equation 
degenerate as h ↘ 0, but the porous-medium equation 
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additionally fulfills a comparison principle while the thin-film 
equation does not.
In this note, we consider traveling waves h = V

6 x3 + νx2 for 
x ≥ 0, where x = y − V t and V, ν ≥ 0 are free parameters. 
These traveling waves are receding and therefore describe de-
wetting, a phenomenon genuinely linked to the fourth-order 
nature of the thin-film equation and not encountered in the 
porous-medium case as it violates the comparison principle. 
The linear stability analysis leads to a linear fourth-order 
degenerate-parabolic operator for which we prove maximal-
regularity estimates to arbitrary orders of the expansion 
in x in a right-neighborhood of the contact line x = 0. 
This leads to a well-posedness and stability result for the 
corresponding nonlinear equation. As the linearized evolution 
has different scaling as x ↘ 0 and x → ∞, the analysis is 
more intricate than in related previous works. We anticipate 
that our approach is a natural step towards investigating other 
situations in which the comparison principle is violated, such 
as droplet rupture.

© 2019 Elsevier Inc. All rights reserved.
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1. Introduction and statement of results

1.1. The thin-film equation formulated as a classical free boundary problem

Consider the free boundary problem for the thin-film equation
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ht + (hhyyy)y = 0 for t > 0 and y > Y0(t), (1.1a)

h = hy = 0 for t > 0 and y = Y0(t), (1.1b)

hyyy = dY0

dt
(t) for t > 0 and y = Y0(t). (1.1c)

The dependent variable h = h(t, y) models the height of a two-dimensional thin viscous 
film on a one-dimensional flat substrate as a function of the independent variables time t
and base point y on the substrate (cf. [6,13,35]). In the particular case (1.1) one may view 
the problem as the lubrication approximation of Darcy’s flow in the Hele–Shaw cell: We 
refer to rigorous results in [20,29,30]. Here we assume a droplet with support (Y0(t), ∞), 
where Y0(t) denotes the free boundary. The boundary conditions (1.1b) determine the 
position of the free boundary Y0(t) (also known as contact line or triple junction, since 
liquid, gas, and solid border here) and the slope of the film at this position. We assume 
that the slope vanishes (zero contact angle), which is commonly referred to as com-
plete (perfect) wetting regime. Finally, the third condition (1.1c) determines how the free 
boundary evolves. Since (1.1) is in divergence form, one can read of the transport veloc-
ity hyyy (in lubrication theory, this is in fact the vertically-averaged horizontal velocity), 
which by compatibility has to be the same as the velocity of the free boundary dY0

dt (t). 
As a consequence, the mass of the droplet is conserved.

1.2. Special solutions to the thin-film and porous-medium equation

1.2.1. Stationary and source-type self-similar solutions to the thin-film equation
The simplest generic solutions to (1.1) are equilibrium-stationary solutions. Here one 

may assume a time-independent profile h(t, y) = H(y) fulfilling d3H
dy3 = 0 subject to (1.1b)

(the condition (1.1c) is trivially fulfilled). This leads to the solution H(y) = C(y − Y0)2

for y ≥ 0, where Y0 fixes the position of the contact line and C > 0 is an arbitrary 
constant. By shift and scaling one may without loss of generality assume

H(y) = y2 for y ≥ 0. (1.2)

This is indeed the profile around which the perturbative earlier results in [7,14,19] have 
been obtained: There unique solutions exist if the initial data is close to H given through 
(1.2) in sufficiently strong norms. While the analysis in [7,19] is limited to 1 +1-dimensions 
and a Besov-type norm is employed, the assumptions in [14] are weaker and only say 

that ∂y

√
h|t=0 has to be uniformly close to ∂y

√
H(y) (1.2)= 1 for y ≥ Y0 and the result 

also applies in higher dimensions.
In the case of compactly supported droplets, generic solutions have source-type self-

similar shape, i.e., they are of the form

h(t, y) = (t + 1)− 1
5 H(x) with x = (t + 1)− 1

5 y, (1.3)
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where the scaled variable x can be read off from (1.1a) under the assumption of con-
servation of mass. These solutions converge to Mδ0 distributionally as t ↘ −1, where 
M > 0 denotes the mass of the droplet. Inserting (1.3) into (1.1a), we arrive at a fourth-
order linear ordinary differential equation (ODE) with constant coefficients, giving the 
solution

H(x) = 1
120(x2 − X2)2 for |x| ≤ X, where X :=

(
225M

2

) 1
5

, (1.4)

also known as Smyth–Hill solution (cf. [38], by scaling it is possible to assume X = 1). 
A linear stability analysis of (1.4), also discussing higher asymptotics, is contained in 
[4,33] while convergence of weak solutions of (1.1a) to (1.4) is proved for instance in [8,
9,11,32] mainly using entropy-dissipation arguments.1 In [21] existence and uniqueness 
of solutions to (1.1) for small perturbations of (1.4) have been proved including refined 
asymptotic results.

1.2.2. Special solutions to the porous-medium equation
The common feature of (1.2) and (1.3) and the representative analyses presented there 

is that they have their counterpart in analogous special solutions and analyses for the 
second-order porous-medium equation

∂th − ∂2
y (hm) = 0 in {h > 0}, where m > 1. (1.5)

Equations (1.1a) and (1.5) both are degenerate-parabolic, but the second-order porous-
medium equation (1.5) additionally fulfills a comparison principle while the thin-film 
equation (1.1a) does not. Equilibrium-stationary solutions for (1.5) are given by profiles 
of the form H(y) = C(y − Y0) 1

m for y ≥ Y0. Again, by scaling without loss of generality 
C = 1 and Y0 = 0, so that

H(y) = y
1
m for y ≥ 0. (1.6)

Traveling waves to (1.5) can be written as h(t, y) = H(x) where x := y − V t and V ∈ R

is the velocity of the wave. They can be computed as H(x) = (−V (m − 1)/m)
1

m−1 x
1

m−1

where we have assumed Y0|t=0 = 0 and necessarily V < 0 holds true. By scaling without 
loss of generality

H(x) = x
1

m−1 for x ≥ 0, (1.7)

which is a traveling-wave front. Finally, source-type self-similar solutions have the shape

1 In [11] it is stated that “strong” solutions to (1.1a) are considered, although only two spatial derivatives 
are controlled and uniqueness is not known.



M.V. Gnann et al. / Advances in Mathematics 347 (2019) 1173–1243 1177
h(t, y) = (t + 1)− 1
m+1 H(x) with x = (t + 1)− 1

m+1 y, (1.8a)

where

H(x) =
(

(m − 1)
(
X2 − x2)

2m(m + 1)

) 1
m−1

for |x| ≤ X,

X =
(

2m(m + 1)
m − 1

) 1
m+1

⎛⎝ Γ
(

3m−2
2m−2

)
√

πΓ
(

m
m−1

)
⎞⎠

m−1
m+1

M
m−1
m+1 ,

(1.8b)

and M > 0 denotes the mass (by scaling without loss of generality X = 1 can be 
assumed). The solutions in (1.8) are the famous Barenblatt–Pattle profiles (cf. [1,36]). 
Note that a well-posedness theory of perturbations of (1.7) or (1.8) has been developed in 
[25] or [31], respectively, also covering higher dimensions, while a linear stability analysis 
(including higher asymptotics) is presented in [37,39]. Convergence of general solutions of 
(1.1a) to (1.8) using entropic arguments was studied in [10]. In fact, the entropy studied 
in [11] is a special case of the entropy considered in [10]. The spatial part of the linear 
operator in [14] is simply the square of a special case of the corresponding linear operator 
considered in [25], while it was observed in [4,21,33] that the spatial part of the linear 
operator is given by P(P +2), where P is the spatial part of a linearized porous-medium 
operator. Then the governing idea of the previously cited thin-film papers is to transfer 
as much knowledge as possible from the porous-medium case to the thin-film case. On 
the other hand, there are known features of (1.1a) such as de-wetting phenomena or 
rupture of droplets which violate the comparison principle and therefore require different 
techniques compared to those applied to (1.5).

1.2.3. Traveling-wave solutions to the thin-film equation
In the present note our goal is to slightly change this perspective and to concentrate 

on qualitative behavior that has no counterpart in the second-order case (1.5). To this 
end, it is convenient to use a traveling-wave ansatz, i.e., we assume that h(t, y) = H(x), 
where x := y − V t (the contact point is fixed to y = 0 at time t = 0) and V ∈ R denotes 
the velocity of the wave. Using this in (1.1a), we obtain2

−V
dH

dx
+ d

dx
H

d3H

dx3 = 0 for x > 0,

which we can integrate once using conditions (1.1b) and (1.1c), so that

d3H

dx3 = V for x > 0 subject to H = dH

dx
= 0 at x = 0.

2 Throughout the paper, we drop unnecessary parentheses so that differential operators act on everything 
on their right-hand side, whereas derivatives denoted by indices only act on the particular function.
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After three integrations we arrive at H(x) = V
6 x3 + νx2 for x ≥ 0, where ν ≥ 0 is a free 

integration parameter. As we require a non-negative and moving profile, we necessarily 
have V > 0, that is, the traveling wave is receding and the thin fluid film de-wets 
the surface. From now on, we assume the generic situation ν > 0. Using the scaling 
transformations

h = 36ν3

V 2 h̆ and H = 36ν3

V 2 H̆ with H̆ = x̆3 + x̆2, (1.9a)

t = 36ν

V 2 t̆, (1.9b)

y = 6ν

V
y̆ and Y0 = 6ν

V
Y̆0, (1.9c)

x = 6ν

V
x̆, (1.9d)

we see that for the rescaled quantities h̆, H̆, t̆, Y̆ , Y̆0, and x̆ the dependence on V and ν
disappears. Hence, we can assume without loss of generality V = 6 and ν = 1, so that

H(x) =
{

x3 + x2 for x ≥ 0,

0 for x < 0.
(1.10)

The profile (1.10) is one of the simplest examples of a special solution to (1.1) violating 
the comparison principle: compare to the stationary solution (1.2) at time t = 0 and 
for an arbitrary time t > 0. It also has the remarkable feature that the scaling of H is 
different in the limiting cases x ↘ 0 and x → ∞. This sets (1.10) apart from all special 
solutions presented above: The equilibrium-stationary solution (1.2) has distinct scaling 
and can be expressed as a power of the corresponding equilibrium-stationary solution 
in the porous-medium case (1.6). Obviously, a solution with distinct scaling in x cannot 
be compactly supported, but nevertheless the Smyth–Hill profile (1.4) is simply a power 
of the Barenblatt–Pattle solution (1.8), having the same scaling at both boundaries 
x = ±X. The traveling wave (1.10) cannot be expressed as a power of a known special 
solution to (1.5).

A natural question is to ask whether the traveling wave (1.10) is stable with respect 
to small perturbations which will be the subject that we are pursuing in what follows. 
We believe that this is also relevant for another striking phenomenon, that is, thin-film 
rupture (cf. [5,12] for examples in the case of thin films under the action of van der Waals 
forces). A situation in which this can happen may be modelled by two traveling waves of 
the form (1.10) with contact lines at y = 0 as t = 0, but moving away from one another 
as time passes. Small perturbations of these traveling waves should allow for a positive 
profile h|t=0, but one should expect a topological change of the support as time evolves.
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1.3. Perturbations of traveling waves and linearization

For studying perturbations of (1.1) around the traveling-wave profile H given in (1.10), 
the von Mises transform

h(t, Y (t, x)) = x3 + x2 for t, x > 0 (1.11)

is convenient. Similar transformations have been used in [31] in the context of the 
porous-medium equation, and in [14,16,21–23] in the thin-film case. This transformation 
automatically fixes the free boundary to the point x = 0 in the new coordinates. Fur-
thermore, the traveling wave is given by the (simpler) linear function YTW(t, x) = x +6t. 
The point Y0 = Y|x=0 determines the position of the contact line, so that dY0

dt = ∂tY|x=0
is its velocity. We briefly outline how from (1.11) a structurally simpler equation can be 
derived:

First, we differentiate (1.11) with respect to time t, which yields

ht + hyYt = 0 for t, x > 0

and upgrades to

hyYt = (hhyyy)y for t, x > 0 (1.12)

by making use of the evolution equation (1.1a). Derivatives transform according to ∂y =
Y −1

x ∂x, so that employing (1.11) once more in (1.12), we arrive at the nonlinear equation

(3x2 + 2x)∂tY = ∂x(x3 + x2)
(
Y −1

x ∂x

)2
Y −1

x (3x2 + 2x) for t, x > 0. (1.13)

Note that problem (1.13) for Y subject to initial conditions Y|t=0 = Y (0) is formally well-
posed, that is, no further boundary conditions are necessary. The boundary conditions 
(1.1b) and (1.1c) are automatically fulfilled through the von Mises transform (1.11).

For deriving a linear problem associated to (1.13), we set

Y =: x + 6t + v, (1.14)

where v denotes the perturbation of the traveling wave. Note that v does not fulfill 
any boundary condition as the velocity of the wave might be perturbed as well. The 
linearization of the left-hand side of (1.13) reads

6(3x2 + 2x) + (3x2 + 2x)∂tv (1.15)

and the right-hand side is given by

6(3x2 + 2x) − ∂x(x3 + x2)
(
vx∂2

x + ∂xvx∂x + ∂2
xvx

)
(3x2 + 2x). (1.16)
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Apparently the first summands in expressions (1.15) and (1.16) cancel. Furthermore, we 
can use the operator identity

vx∂2
x + ∂xvx∂x + ∂2

xvx = ∂3
xv − v∂3

x,

and the fact that ∂3
x(3x3 + 2x) ≡ 0. Thus we arrive at the linearized problem for v:

(3x2 + 2x)∂tv + ∂x(x3 + x2)∂3
xv(3x2 + 2x) = f for t, x > 0, (1.17)

where f denotes a general right-hand side. It is apparent that by setting

u := (3x2 + 2x)v (1.18)

and using the fact that u|x=0 = 0 if v is bounded at x = 0, we can study instead of (1.17)

∂tu + Au = f for t, x > 0, (1.19a)

u = 0 for t > 0, x = 0, (1.19b)

where we may introduce the linear operator

A := ∂x(x3 + x2)∂3
x = x−1p(D) + x−2q(D), (1.20)

with D := x∂x the scaling-invariant (logarithmic3) derivative and where p(ζ) and q(ζ)
are fourth-order polynomials. As p(D) = x∂xx3∂3

x vanishes on 
{

x0, x0 ln x, x1, x2} and 
q(D) = x2∂xx2∂3

x vanishes on 
{

x0, x1, x1 ln x, x2}, we infer that

p(ζ) = ζ2(ζ − 1)(ζ − 2) and q(ζ) = ζ(ζ − 1)2(ζ − 2). (1.21)

Notice that differentiating (1.19b) with respect to t, we get ∂tu|x=0 = 0 and that for 
sufficiently smooth u with u|x=0 = 0 we also have Au|x=0 = 0. This makes the condition

f = 0 for t > 0, x = 0 (1.22)

for the right-hand side f necessary.
In the first part of this paper (cf. §2), we will concentrate on the study of the linear 

problem (1.19) for given right-hand sides f : (0, ∞)2 → R fulfilling (1.22) and ini-
tial data u|t=0 = u(0) : (0, ∞) → R meeting (1.19b). More precisely, we are going to 
prove existence and uniqueness of solutions u for every f and u(0) in suitable function 
spaces. Moreover, u fulfills maximal-regularity estimates in terms of f and the initial 
data u(0).

3 Note that D = ∂s if we set s := ln x.
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Note that in the afore-mentioned previous approaches in weighted Hilbert–Sobolev 
spaces (cf. [7,19]) and (weighted) Lp-spaces (cf. [14]) the linearization around the equi-
librium stationary profile (1.2) (having distinct scaling in x) leads to a scaling invariant 
spatial part of the linear operator. The fact that in (1.10) the term x2 is dominant as 
x ↘ 0 and x3 is dominant as x → ∞ is reflected by the feature that the corresponding 
linear operators ∂xx3∂3

x = x−1p(D) and ∂xx2∂3
x = x−2q(D) (cf. (1.20) and (1.21)) domi-

nate in the respective limits. For the contribution x−2q(D), originating from the addend 
x2 in the traveling wave (1.10), we find the special structure

x−2q(D) = x2∂4
x + 2x∂3

x = (x∂2
x)2,

where x∂2
x can be interpreted as a linearized porous-medium operator. This is not sur-

prising, as the addend x2 corresponds exactly to the equilibrium profile (1.2) for which 
this structure is known from [7,14,19]. However, the contribution x−1p(D), even after 
multiplication with an arbitrary power of x, cannot be written as the square of a de-
generate second-order operator of the form x−α∂xxα+β∂x with real constants α and β, 
so that the strong analogy to the porous-medium equation (1.5) is lost. The core of our 
linear analysis lies in balancing contributions coming from these two operators.

1.4. Comparison to works on the thin-film equation with general mobility

We remark that a more general version of the thin-film equation (1.1a) exists that 
reads

∂th + ∂y

(
hn∂3

yh
)

= 0 in {h > 0}, (1.23)

where n ∈ (0, 3) is the exponent of the now nonlinear mobility hn. The restrictions on 
n come from the fact that for n ≤ 0 solutions to (1.23) can be non-positive and the 
speed of propagation is infinite, while for n = 3, coming from a no-slip condition at 
the liquid-solid interface, a singularity of h at the free boundary occurs which cannot 
move unless the dissipation is allowed to be infinite (no-slip paradox, cf. [15,24,34]). 
Of particular interest is the case n = 2 (quadratic mobility), which can be derived by 
means of formal asymptotic expansions from the Navier–Stokes system with Navier-slip 
at the substrate and film heights h that are small compared to the slip length (cf. [6,
13,35]). A stability analysis for perturbations of traveling waves has been carried out in 
[16,22,23], while the linear stationary profile with partial-wetting boundary conditions 
(nonzero equilibrium contact angle) was considered in [26] and for mobility exponents 
n ∈

(
0, 14

5
)
\
{

2, 5
2 , 8

3 , 11
4
}

in [27–30]. The regularity of the source-type self-similar solution 
was discussed in [2,3,17] covering all possible mobility exponents and zero as well as 
nonzero dynamic contact angles. While the analysis in these situations is more delicate 
than in the case of linear mobility in [7,14,18,19,21] due to singular terms appearing for 
the solution at the contact line, the traveling wave for quadratic mobility is H(x) = x

3
2 , 
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where the velocity has been normalized to V = −3
8 . Although comparison with (1.2)

demonstrates that the comparison principle for H(x) = x
3
2 is violated as well, this 

traveling wave still has distinct scaling in x and is wetting the whole surface (as do the 
source-type self-similar solutions discussed in [2,3,17]). This leads to a linear operator 
having the same scaling as x ↘ 0 and x → ∞ and thus the coercivity and elliptic 
regularity estimates are simpler compared to the present work.

Finally, we anticipate that the techniques developed in this paper are not only ap-
plicable to the situation at hand, but that a similar reasoning may be applied to the 
thin-film equation

∂th + ∂y

((
h3 + λh2) ∂3

yh
)

= 0 in {h > 0}

with partial-wetting boundary conditions (nonzero equilibrium contact angle), where 
λ > 0 is the slip length. The latter equation can be derived from the Navier–Stokes 
system with Navier slip at the liquid-solid interface (cf. [6,13,35]). In view of [26], where 
a quadratic mobility and partial-wetting boundary conditions have been employed, we 
expect, however, logarithmic corrections to occur, which are not present in the setting 
considered here.

1.5. The nonlinear equation

Let us now formulate the nonlinear problem associated to (1.19). We start by writing 
the nonlinear equation (1.13) in terms of v = Y − x − 6t (cf. (1.14)):

(3x2 + 2x)∂tv + 6(3x2 + 2x) = ∂x(x3 + x2)
(
(1 + vx)−1∂x

)2 (1 + vx)−1(3x2 + 2x) (1.24)

for t, x > 0. Using u = (3x2 + 2x)v (cf. (1.18)) and equations (1.19a) and (1.20), we 
separate into linear and nonlinear parts:

∂tu + Au = N (u) for t, x > 0, (1.25a)

u = 0 for t > 0, x = 0, (1.25b)

where the nonlinearity N (u) is given by4

N (u) := ∂x(x3 + x2)
((

(1 + vx)−1∂x

)2 (1 + vx)−1(3x2 + 2x) − 6 + ∂3
x

(
3x2 + 2x

)
v
)

.

(1.26)

From (1.26) we infer that the nonlinearity N (u) is a linear combination (with constant 
coefficients) of terms of the form5

4 Again note that derivatives ∂x act on everything on their right-hand sides.
5 Here, the derivatives ∂x only act on the factors separated by ×.
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(1 + vx)−3−s′ × ∂
s′

0+1
x

(
x3 + x2)× ∂s0

x

(
x3 + x2)×

n×
j=1

∂sj+1
x v, (1.27a)

with

s′
0 + s0 + s1 + . . . + sn = 3, s0 ≤ 1, n ∈ {2, . . . , 6},

s′ := #{sj : j ≥ 1 and sj ≥ 1}, (1.27b)

where #M denotes the cardinality of a finite set M and where u and v are related 
through (1.18). Indeed, in (1.26) three derivatives ∂x need to be distributed on the 
individual factors, leading to s′

0 + s0 + s1 + . . . + sn = 3, at most one can act on the first 
factor x3 + x2, so that s0 ≤ 1, and at least one acts on the other factor x3 + x2 to give 
3x2 +2x, leading to the expression ∂s′

0+1
x

(
x3 + x2). Since N (u) has no contribution that 

is constant or linear in v, we have n ≥ 2. The constant s′ simply counts the number of 
times a derivative ∂x acts on a factor (1 + vx)−j , where j ≥ 3, since only then a new 
factor vxx is generated and the exponent −j decreases by 1. Because we have 3 + s′ ≤ 6, 
we obtain the upper bound n ≤ 6 after subtracting the contributions that are constant 
and linear in v.

The nonlinear problem (1.25) and in particular estimates on the nonlinearity (1.26)
will be the subject of §3.

1.6. Outline and statement of results

The paper is structured as follows:
The linear theory is contained in §2. In §2.1 we first discuss the coercivity properties 

of the linear operator A. This requires joint coercivity of its summands in suitably chosen 
weighted inner products

(u, v)α :=
∞̂

0

x−2αuv
dx

x
and (u, v)k,α :=

k∑
j=0

(
Dju, Djv

)
α

, (1.28a)

with corresponding norms

|u|α :=
√

(u, u)α and |u|k,α :=
√

(u, u)k,α, (1.28b)

where k ∈ N0 and α ∈ R. Note that increasing the number k in (1.28) does not lead to 
more regularity of u at x = 0 since every additional derivative ∂x is multiplied with 
a factor x. However, |u|1,α < ∞ implies u = o (xα) as x ↘ 0, that is, the larger 
α, the stronger the decay of u as x ↘ 0. Loosely speaking, the constant k deter-
mines the regularity in the interior, while α measures the regularity at the boundary 
x = 0.
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In fact, we will not show coercivity estimates directly for A but for differential oper-
ators Ã and Ǎ fulfilling the commutation relations

(D − 1)A = Ã(D − 1) and (D − 2)Ã = Ǎ(D − 2). (1.29)

Indeed, for right-hand sides f that are smooth in x for positive times, the solution u to 
(1.19) turns out to be a smooth function in x for positive times, that is,

u(t, x) = u1(t)x + u2(t)x2 + u3(t)x3 + . . . as x ↘ 0. (1.30)

The formal expansion (1.30) suggests |u|α < ∞ for α < 1 which automatically restricts 
the set of admissible exponents α in order to have coercivity of A, the coercivity range
of A, to be empty. Applying the operators (D − 1) and (D − 2)(D − 1) to (1.19a), 
respectively, we obtain

∂tũ + Ãũ = f̃ for t, x > 0, (1.31a)

∂tǔ + Ǎǔ = f̌ for t, x > 0, (1.31b)

where we have set

w̃ := (D − 1)w, w̌ := (D − 2)w̃ = (D − 2)(D − 1)w (1.32)

for a locally integrable function w : (0, ∞) → R. Thus, in view of (1.30) we have

ũ(t, x) = u2(t)x2 + 2u3(t)x3 + 3u4(t)x4 + . . . as x ↘ 0, (1.33a)

ǔ(t, x) = 2u3(t)x3 + 6u4(t)x4 + 12u5(t)x5 + . . . as x ↘ 0, (1.33b)

that is, norms |ũ|α̃ with α̃ < 2 and |ǔ|α̌ with α̌ < 3 are finite, so that not surprisingly 
coercivity estimates for larger weights for the operators Ã and Ǎ hold true (cf. Lemma 2.2
and Lemma 2.3).

By accessible arguments, which mainly use the additive structure of A given by (1.20), 
coercivity of Ã or Ǎ implies parabolic maximal regularity of (1.31), respectively. This is 
discussed in §2.2 (cf. Proposition 2.4). In §2.3 we additionally prove that corresponding 
estimates for ũ and ǔ imply estimates for u or u − u1x or u − u1x − u2x2, respectively. 
This is a consequence of Hardy’s inequality (cf. Proposition 2.5). The resulting estimates 
control the expansion of the solution u to (1.19) in the sense of

u(t, x) = u1(t)x + u2(t)x2 + o(x2) as x ↘ 0,

where u1 ∈ BC0([0, ∞)), and u2 ∈ L2((0, ∞)). Due to (1.18) the corresponding parabolic 
estimates only imply control of the norm supt,x>0 |v(t, x)|. However, such an estimate 
appears not to be sufficient in order to treat the corresponding nonlinear problem for v as 
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the validity of transformations (1.11) and (1.14) can only be ensured for functions v with 
small Lipschitz norm. This can be also seen by taking the structure of the nonlinearity 
as in (1.27a) into account since factors (1 +vx)−1 cannot be controlled otherwise. Hence, 
we require in particular to control the expansion (1.30) with u2 ∈ BC0([0, ∞)) which 
corresponds to u3 ∈ L2((0, ∞)). While one may expect to achieve this by applying the 
operator D − 3 to (1.31b), corresponding manipulations as in (1.29) and (1.32) do not
yield a coercive operator. Observe that unlike u1x and u2x2, the monomial u3x3 is not 
contained in the kernel of A (cf. (1.20) and (1.21)) and has to be controlled using a 
different reasoning. Notice that applying the operator Ã to (1.31a), we get

∂t

(
Ãũ
)

+ Ã
(
Ãũ
)

=
(
Ãf̃
)

for t, x > 0,

that is, the tuple 
(
Ãũ, Ãf̃

)
fulfills the same equation as 

(
ũ, f̃
)

and since ũx=0 = 0, also 
Ãũ|x=0 = 0 in view of (1.20) and (1.29). Therefore, corresponding estimates for 

(
Ãũ, Ãf̃

)
hold true. However, this again requires to pass from norms in Ãũ to estimates in u, i.e., 
we require knowledge about the elliptic regularity of Ã. Note that because of (1.20) and 
(1.28b) the operator Ã scales like x−2 when x ↘ 0, so that by this method indeed stronger 
control of the solution u to (1.19) at x = 0 can be expected. We conclude this part by dis-
cussing the resulting maximal-regularity estimates of (1.19) that appear to be sufficient 
for the treatment of the full problem for v in §2.4 (cf. Proposition 2.10). Applying elliptic 
regularity here also requires arguments relying on the polynomial equation originating 
from inserting a power series of u and f in form of (1.30) into the linear equation (1.19a). 
In §2.5–§2.7 we finally demonstrate how the presented arguments can be made rigorous 
using the resolvent equation (cf. Proposition 2.13) and a time-discretization argument 
(cf. Proposition 2.16 and Proposition 2.17). We remark that §2.6–§2.7 do not contain 
new methods and are included in the paper for the sake of completeness. Furthermore, 
we also remark that a semi-group approach in §2.7 is equally-well possible.

In §3 we present the nonlinear estimates connected to (1.25). In § 3.1 we give an 
overview of the main results, in particular the main nonlinear estimates leading to a 
well-posedness result for (1.25). This relies on structural observations on the nonlinearity 
(cf. §3.2) and control of v in C0-based norms (cf. §3.3, Lemma 3.4 and Lemma 3.5). These 
arguments are put together in §3.4, thus concluding the paper and leading to our main 
result, Theorem 3.2, of which we state a simplified version already at this stage:

Theorem 1.1. For any 0 < δ < 1
2 there exists ε > 0 such that for all locally integrable 

initial data u(0) : (0, ∞) → R with

∣∣∣∣∣∣∣∣∣u(0)
∣∣∣∣∣∣∣∣∣2

init
:=
∣∣∣u(0)

∣∣∣2
8,δ

+
∣∣∣u(0) − u

(0)
1 x
∣∣∣2
8,1+δ

+
∣∣∣u(0) − u

(0)
1 x − u

(0)
2 x2

∣∣∣2
8,2+δ

≤ ε2, (1.34)

the nonlinear problem (1.25) with initial condition u|t=0 = u(0) has exactly one locally 
integrable solution in a suitably chosen norm (cf. (2.71) with N = 1 and k = 3). This 
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solution fulfills the a-priori estimate supt≥0 |||u(t)|||init �δ

∣∣∣∣∣∣u(0)
∣∣∣∣∣∣

init and meets the ex-
pansion

u(t, x) = u1(t)x + u2(t)x2 + R(t, x)x3 as x ↘ 0.

This also implies

(a) u1 ∈ BC1 ([0, ∞)) with supt≥0

∣∣∣d�u1
dt�

∣∣∣ �δ

∣∣∣∣∣∣u(0)
∣∣∣∣∣∣

init for � = 0, 1,
(b) u2 ∈ BC0 ([0, ∞)) with supt≥0 |u2| �δ

∣∣∣∣∣∣u(0)
∣∣∣∣∣∣

init,
(c) R = R(t, x) ∈ L2 ((0, ∞); BC0([0, ∞))

)
with 

´∞
0 supx≥0 |R(t, x)|2 dt �δ

∣∣∣∣∣∣u(0)
∣∣∣∣∣∣2

init.

Furthermore, we have |||u(t)|||init → 0 as t → ∞, that is, the traveling wave (1.10) is 
asymptotically stable.

Note that the norm (1.34) is quasi-minimal in the sense that taking weights up to 
2 + δ just gives control of the expansion of u up to u2 in BC0 in (1.30) which is the 
critical scaling such that Lipschitz control of v (cf. (1.14) and (1.18)) can be obtained.

Higher-regularity results and estimates on the coefficients uj will be presented later 
on as well (cf. Theorem 3.2 and Corollary 3.3). We also note that by parabolic regularity 
theory, the function u is smooth in the interior {(t, x) : t > 0 and x > 0}. Furthermore, 
smallness of supt≥0 |||u(t)|||init implies by virtue of (1.11), (1.14), and (1.18) that such 
defined h solves (1.1) and is smooth in {h > 0}. Additionally, we obtain from (1.11), 
(1.14), and (1.18) that almost everywhere in time t > 0

x + 1
2

u1 + u2x + Rx2

1 + 3
2x

= y − 6t as x ↘ 0

⇒ x =
y − 6t − 1

2u1

1 + 1
2u2 − 3

4u1

(
1 −

1
2 R̄ − 3

4u2 + 9
8u1(

1 + 1
2u2 − 3

4u1
)2 (y − 6t − 1

2u1

))
as y ↘ 6t + 1

2u1,

where R̄ = R̄
(
t, y − 6t − 1

2u1
)

and R̄ = R̄ (t, ȳ) ∈ L2 ((0, ∞); BC0([0, ∞))
)

fulfills an 
a-priori estimate in terms of 

∣∣∣∣∣∣u(0)
∣∣∣∣∣∣

init. Inserting this into (1.11), we infer that h meets 
the expansion

h =
(

y − 6t − 1
2u1

1 + 1
2u2 − 3

4u1

)2

+ 1 − R̄ + 2u2 − 4u1

1 + 1
2u2 − 3

4u1

(
y − 6t − 1

2u1

1 + 1
2u2 − 3

4u1

)3

as y ↘ 6t + 1
2u1

almost everywhere in t > 0.

Remark 1.2. Scaling back V and ν according to (1.9), we see that because of (1.14) and 
(1.18) we have

v̆ = V
v and ŭ = V 2

3 u, where u :=
(

3V
x2 + 2νx

)
v. (1.35)
6ν 36ν 6
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As Theorem 1.1 is formulated for the rescaled quantities ŭ and x̆, the condition (1.34)
on the initial data reads in the original (unrescaled) variables

(
V

6ν

)4 ∣∣∣u(0)
∣∣∣2
8,δ

+
(

V

6ν

)2 ∣∣∣u(0) − u
(0)
1 x
∣∣∣2
8,1+δ

+
∣∣∣u(0) − u

(0)
1 x − u

(0)
2 x2

∣∣∣2
8,2+δ

≤ ν2
(

V

6ν

)2δ

ε2. (1.36)

(a) The limit V ↘ 0 corresponds to the equilibrium-stationary solution (1.2), which 
was treated already in [7,14,19]. From (1.36) we see that the initial data has to be 
of order O

(
V 2δ
)

as V ↘ 0, where δ > 0 can be chosen arbitrarily small. Note, 
however, that ε is a function of δ as well and that ε ↘ 0 as δ ↘ 0, because coercivity 
of the linear operator ceases to hold for δ = 0 (cf. (2.11)). An in V (quasi-)uni-
form result would therefore require to explicitly characterize the dependence of ε

on δ.
(b) The limit ν ↘ 0 corresponds to a non-generic situation in which instead of (1.10)

the traveling wave

H̆ =
{

x̆3 for x̆ ≥ 0,

0 for x̆ < 0
(1.37)

is considered. Using instead of (1.11) the transform

h̆
(

t̆, Y̆
(
t̆, x̆
))

= x̆3 for t̆, x̆ > 0

and defining v̆ as in (1.14), we need to set ŭ := 3x̆2v̆ instead of using the definition 
(1.18). This gives corresponding linear and nonlinear equations (1.19a) and (1.25a), 
where the operator Ă in (1.20) reduces to Ă = x̆−1p (x̆∂x̆) and the nonlinearity 
(1.26) attains the simpler form

N̆ (ŭ) := ∂x̆x̆3
((

(1 + v̆x̆)−1
∂x̆

)2
(1 + v̆x̆)−1 3x̆2 − 6 + ∂3

x̆3x̆2v̆

)
.

Because of ŭ = 3x̆2v̆, the boundary conditions (1.19b) and (1.25b) need to be re-
placed by

ŭ = ∂x̆ŭ = 0 for t̆ > 0, x̆ = 0.

It is an open problem whether this problem (including the additional boundary con-
dition) is well-posed. However, we notice that the right-hand side of (1.36) vanishes 
as ν ↘ 0. This is not surprising, as because of ŭ = 3x2v̆ boundedness of ‖ŭ‖init
only implies control of ‖v̆‖L∞ but not ‖v̆x̆‖L∞ . While Theorem 3.2 would allow for 
x̆ x̆
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larger weights that remove this issue, we would still need 
∣∣u(0)

∣∣
8,δ

= O
(
ν3−δ

)
, ∣∣∣u(0) − u

(0)
1 x
∣∣∣
8,1+δ

= O
(
ν2−δ

)
, and 

∣∣∣u(0) − u
(0)
1 x − u

(0)
2 x2

∣∣∣
8,2+δ

= O
(
ν1−δ

)
as 

ν ↘ 0, making the choice of the norm in (1.34) or (2.74) unnatural for this sit-
uation. In fact our analysis relies in part on a gain of regularity due to the operator 
x̆−2q (x̆∂x̆), which is precisely the addend in Ă (cf. (1.20)) that is not present any-
more for ν = 0.

We believe that the questions raised in (a) and (b) are interesting directions to pursue 
in future research. In particular, we expect that the methods developed in this work can 
be adapted to address these scaling limits by employing a suitable interpolation norm 
built from the norms used here. This is in fact also a motivation why in the present 
work we do not rely on control coming from the operator x−2q(D) only and treating 
x−1p(D) as a perturbation, which would be more in line with the approaches in [7,14,
19].

1.7. Notation

For f, g ≥ 0 and a finite set A, we write f �A g or equivalently g �A f , whenever 
a constant C = C(A), only depending on A, exists such that f ≤ Cg. In this case, 
we say that f can be estimated (or bounded) by g. If f �A g and g �A f , we write 
f ∼A g. For a finite set A and a real variable x, we say that a property P (x) is true for 
x 
A 1 (or x �A 1) if where exists a constant C = C(A) > 0 such that P (x) is true for 
x ≥ C (or x ≤ C−1). In this case we say that P (x) is true for sufficiently large (small) x. 
Furthermore, if the constant C is universal or its dependence is specified in the context, 
we simply write f � g etc. For any function w ∈ CN ([0, ∞)), we write

w(x) = w0 + w1x + w2x2 + . . . + wN xN + o
(
xN
)

as x ↘ 0 ⇔ wj = 1
j!

djw

dxj
(0),

where j = 0, . . . , N . As noted in the context of (1.27), we write E1 × . . . × EM for a 
product, where the Ej are expressions of the form Ej =

∏m
�=1 Dsj,�wj,� with sufficiently 

regular wj,� = wj,�(x) and where differential operators D act on everything to their 
right-hand side within Ej .

2. Linear theory

2.1. Coercivity

We begin by introducing some terminology and making preparatory observations in 
§2.1. Coercivity estimates to be used at later stages are the subject of §2.1.2.



M.V. Gnann et al. / Advances in Mathematics 347 (2019) 1173–1243 1189
2.1.1. Definition of norms and preliminary remarks
In this section, we repeat some of the notions introduced in [16, §4 and §5]. First, we 

introduce a scale of inner products and norms given by

|u|2k,α := (u, u)k,α, where (u, v)k,α :=
k∑

j=0

∞̂

0

x−2α(Dju)(Djv)dx

x

(1.28a)=
k∑

j=0

(
Dju, Djv

)
α

, (2.1)

where u, v : (0, ∞) → R are locally integrable such that the expressions in (2.1) are finite. 
We remark that using the transformation s := ln x, we have

(u, v)k,α =
k∑

j=0

ˆ

R

e−2αs(∂j
su)(∂j

sv) ds ∼ (ŭ, v̆)W k,2(R) , (2.2)

where ŭ := e−αsu, v̆ := e−αsv and W k,2(R) is the standard unweighted Hilbert–Sobolev 
space on R.

We are interested in the coercivity of the operator A, that is, we would like to know 
if

〈u, Au〉1 � 〈u, u〉2 for all u ∈ C∞
0 ((0, ∞)), (2.3)

where 〈·, ·〉j are scalar products to be specified in what follows. Therefore, we may use 
the structure of A given by its definition in (1.20) as a sum of two operators x−1p(D)
and x−2q(D) (again, note that these operators have a distinct scaling in x, ∼ x−1 or 
∼ x−2, respectively). For u ∈ C∞

0 ((0, ∞)) we have

(u, Au)α = (u, p(D)u)α+ 1
2

+ (u, q(D)u)α+1 . (2.4)

Equation (2.4) shows that the study of coercivity of the linear operator A can be reduced 
to the study of coercivity of an operator P (D), where P (ζ) is a fourth-order polynomial

P (ζ) =
4∏

j=1
(ζ − γj) with γ1 ≤ γ2 ≤ γ3 ≤ γ4. (2.5)

Observe that by employing ŭ := e−αsu and the Fourier transform F ŭ of ŭ, we obtain by 
Plancherel’s theorem

(u, P (D)u)α =
ˆ

e−2αsuP (∂s)u ds =
ˆ

ŭP (∂s+α)ŭ ds =
ˆ

�P (iξ+α) |F ŭ|2 dξ. (2.6)

R R R



1190 M.V. Gnann et al. / Advances in Mathematics 347 (2019) 1173–1243
In the last equality we have used that the integral (u, P (D)u)α is real. Now the operator 
P (D) is coercive in the sense of

(u, P (D)u)α �α |u|22,α for all u ∈ C∞
0 ((0, ∞)) (2.7)

if and only if we can bound the fourth-order polynomial �P (iξ + α) by a positive con-
stant from below. Note that by an approximation argument using (2.2) and replacing 
the left-hand side of (2.7) by ((D + γ3 − 2α)(D + γ4 − 2α)u, (D − γ1)(D − γ2)u)α, co-
ercivity in the sense of (2.7) holds true for a larger class of functions, i.e., u is locally 
integrable with |u|2,α < ∞ (cf. [16, Lem. 5.2]). We will use this approximation argument 
later on without further mentioning it.

The range of α for which (2.7) is satisfied will be called the coercivity range of P (D). 
In [16, Prop. 5.3] by explicit computation a criterion for coercivity was derived:

Lemma 2.1. The differential operator P (D) given in (2.5) is coercive with respect to (·, ·)α

in the sense of (2.7) if the weight α fulfills

α ∈ (−∞, γ1) ∪ (γ2, γ3) ∪ (γ4, ∞), (2.8a)

α ∈
(

m(γ) − σ(γ)√
3

, m(γ) + σ(γ)√
3

)
, (2.8b)

where

m(γ) := 1
4

4∑
j=1

γj and σ(γ) =

√√√√1
4

4∑
j=1

(γj − m(γ))2

are mean and square root of the variance of the zeros γj, respectively.

We conclude from (1.21) and (2.8) that the operator p(D) is coercive for all α1 satis-
fying

α1 ∈
(

−1
4

√
11
3 + 3

4 , +3
4 + 1

4

√
11
3

)
∩ (0, 1) =

(
3
4 − 1

4

√
11
3 , 1

)
. (2.9)

The criterion (2.8) on the other hand does not yield coercivity for q(D). However, we 
obtain that q(D) is a non-negative operator with respect to (·, ·)α2

provided that we 
choose α2 := 1. We can even quantify non-negativity in this case:

(u, q(D)u)1
(2.6)=
ˆ

R

q(iξ + 1) |F ŭ|2 dξ =
ˆ

R

(ξ2 + ξ4) |F ŭ|2 dξ =
ˆ

R

(
(∂sŭ)2 + (∂2

s ŭ)2) ds

= |(D − 1)u|21 +
∣∣(D − 1)2u

∣∣2 . (2.10)
1
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Due to (2.4) and (2.10) we are forced to take α = 0, so that α1 = 1
2 (one may verify by 

using (2.9) that indeed α1 = 1
2 is admissible) and (2.4) yields

(u, Au)0 = (u, p(D)u) 1
2

+ (u, q(D)u)1

(2.3)∼ |u|21
2

+ |Du|21
2

+
∣∣D2u

∣∣2
1
2︸ ︷︷ ︸

=|u|2
2, 1

2

+
(

|(D − 1)u|21 +
∣∣(D − 1)2u

∣∣2
1

)
. (2.11)

The constant in estimate (2.11) is universal. Note that estimate (2.11) is inconvenient 
for all subsequent arguments. To see this, observe

|(D − 1)u|21 =
∞̂

0

x−2((D − 1)u)2 dx

x
=

∞̂

0

x2 (∂x(x−1u)
)2 dx

x
.

While it is true that ∂x(x−1u) (1.30)= ∂x

(
x−1u − u1

)
= u2x + u3x2 + · · · as x ↘ 0 and 

the integrals 
´ 1

0
(
x−1u − u1

)2 dx
x and 

´∞
1
(
x−1u

)2 dx
x are finite, the estimates

∞̂

0

x2 (∂x(x−1u − u1)
)2 dx

x
�

∞̂

0

(
x−1u − u1

)2 dx

x
= |u − u1x|21 , (2.12a)

∞̂

0

x2 (∂x(x−1u − u1)
)2 dx

x
�

∞̂

0

(
x−1u

)2 dx

x
= |u|21 (2.12b)

correspond to the critical-case Hardy inequalities and are known to fail: A detailed study 
of the resolvent equation (cf. [16, §6]) shows that u = u(x) can be assumed to be smooth 
on [0, ∞) and rapidly decaying as x → ∞ and therefore a logarithmic divergence of the 
right-hand side in (2.12a) occurs at x = ∞ and of the right-hand side in (2.12b) at x = 0. 
This is a quite general feature making weight exponents α /∈ Z for the norms |·|k,α and 
inner products (·, ·)k,α more convenient. Since taking the time trace later on will shift 
the weight α by −1

2 , we assume α /∈ 1
2Z in what follows.

We further note that unlike in [7,19] it is not convenient to study derivatives ∂k
xu with 

k ≥ 1. In order to recognize this, observe that if u solves (1.19a), then ∂k
xu solves

∂t(∂k
xu) + Ak(∂k

xu) = ∂k
xf for t, x > 0, (2.13)

where the operator Ak is defined by the identity ∂k
xA = Ak∂k

x . Using (1.20) and (1.21)
we have

A = x−1p(D) + x−2q(D)

= x−1D2(D − 1)(D − 2) + x−1Dx−1D(D − 1)(D − 2)

= ∂xD(D − 1)(D − 2) + ∂2
x(D − 1)(D − 2).
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Hence, an easy induction shows that we have

Ak = ∂x(D + k)(D − (1 − k))(D − (2 − k)) + ∂2
x(D − (1 − k))(D − (2 − k)). (2.14)

From (2.14) we infer that

Ak = x−1pk(D) + x−2qk(D), (2.15)

where

pk(D) = D(D + k)(D − (1 − k))(D − (2 − k)),

qk(D) = D(D − 1)(D − (1 − k))(D − (2 − k)).
(2.16)

The equality (2.4) can be generalized to

(v, Akv)α = (v, pk(D)v)α+ 1
2

+ (v, qk(D)v)α+1 , (2.17)

where v = ∂k
xu. Now we can study the coercivity of pk(D) and qk(D) separately using the 

coercivity result (2.8) and obtain that pk(D) (qk(D)) is coercive with respect to (·, ·)α1

((·, ·)α2) if

α1 = 0 for k = 1 (only non-negative), (2.18a)

α1 ∈

⎛⎝3(1 − k) −
√

k2 − 2k + 11
3

4 ,
3(1 − k) +

√
k2 − 2k + 11

3

4

⎞⎠
∩ (1 − k, 2 − k) for k ≥ 2,

(2.18b)

α2 ∈
(

0,
1√
6

)
for k = 1, (2.18c)

α2 = 0 for k = 2 (only non-negative), (2.18d)

α2 ∈
(

2 − k

2 −
√

k2 − 2k + 3
2
√

3
,

2 − k

2 +
√

k2 − 2k + 3
2
√

3

)
∩ (2 − k, 0) for k ≥ 2.

(2.18e)

In view of (2.17), (2.18) leads to restrictions on α (that is, coercivity constraints on Ak), 
so that a non-negative operator Ak is obtained only for k = 2 and coercivity does not 
hold for any k ≥ 0.

2.1.2. Coercivity estimates for commutated linear operators
In the previous section we have recognized that coercivity of the operator A in our scale 

of weighted inner products and norms (1.28) requires joint coercivity (non-negativity) of 



M.V. Gnann et al. / Advances in Mathematics 347 (2019) 1173–1243 1193
the operators p(D) and q(D) with respective weights. Thus the coercivity range shrinks 
to a single value for which the operator q(D) is only non-negative. This is due to the 
double “middle” root of q(D) (cf. (1.21) and (2.8)). Here we show how we can shift 
this root so that the intersection of the coercivity ranges of the appropriately shifted 
operators is indeed a non-empty interval. In fact, having the possibility to slightly shift 
the weight is convenient for applying Hardy’s inequality (see below).

As outlined in §1.6, we can obtain better control on u and allow for a larger range of 
weights if we apply (D − 1) to equation (1.19a):

∂tũ + Ãũ = f̃ for t, x > 0,

where ũ = (D − 1)u and f̃ = (D − 1)f have been defined in (1.32). Note that this 
operation in particular preserves the boundary conditions (1.19b) and (1.22). In view of 
(1.20) and (1.21), the commutation of (D − 1) with the operator A yields

x−1(D − 2)p(D) + x−2(D − 3)q(D) (1.20)= (D − 1)A (1.29)= Ã(D − 1) (2.19a)

with

Ã = x−1p̃(D) + x−2q̃(D) and

⎧⎨⎩p̃(ζ) (1.21)= ζ2(ζ − 2)2,

q̃(ζ) (1.21)= ζ(ζ − 1)(ζ − 2)(ζ − 3).
(2.19b)

We obtain the following coercivity result:

Lemma 2.2. The operator Ã (cf. (2.19b)) fulfills coercivity in the sense of(
Ãũ, ũ

)
α̃
�α̃ |ũ|22,α̃+ 1

2
+ |ũ|22,α̃+1 for all ũ ∈ C∞

0 ((0, ∞)) (2.20)

if

α̃ ∈ (0, 1) . (2.21)

Proof. Using the criterion (2.8) of Lemma 2.1, we can explicitly calculate that p̃(D) and 
q̃(D) are coercive in the sense of (2.7) with respect to (·, ·)α1 or (·, ·)α2 , respectively, if

α1 ∈
(

1 − 1√
3

, 1 + 1√
3

)
and α2 ∈ (1, 2) . (2.22)

Since by testing we have(
Ãũ, ũ

)
α̃

= (p̃(D)ũ, ũ)α̃+ 1
2

+ (q̃(D)ũ, ũ)α̃+1 ,

we obtain α̃ + 1/2 = α1 and α̃ + 1 = α2 and due to (2.22) estimate (2.20) under the 
constraint (2.21) follows. �
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Due to (2.20) and since we can choose α̃ > 0, we expect control of the solution u to 
(1.19) in form of u(t, x) = u1(t)x + o(x) as x ↘ 0. It appears to be convenient to take in 
what follows α̃ = δ, where 0 < δ < 1

2 , as then α̃ is subcritical with respect to u1x and 
α̃ + 1 is supercritical with respect to u1x.

For obtaining control up to u2x2, we may consider the function ǔ := (D − 1)(D − 2)u
(cf. (1.32)). Indeed, applying (D − 1)(D − 2) cancels the expansion of u (cf. (1.33b)) so 
that we have ǔ = O(x3) as x ↘ 0 and in particular the boundary conditions (1.19b) and 
(1.22) are preserved. Hence, we can expect higher-regularity estimates for ǔ that include 
weights larger than 2. Using (1.29) and (2.19b), we can compute

Ǎ = x−1p̌(D) + x−2q̌(D) with

⎧⎨⎩p̌(ζ) (1.21)= ζ2(ζ − 2)(ζ − 3),

q̌(ζ) (1.21)= ζ(ζ − 1)(ζ − 3)(ζ − 4).
(2.23)

By the same reasoning a coercivity result analogous to Lemma 2.2 holds:

Lemma 2.3. The operator Ǎ (cf. (2.23)) fulfills coercivity in the sense of(
Ǎǔ, ǔ

)
α̌
� |ǔ|22,α̌+ 1

2
+ |ǔ|22,α̌+1 for all ǔ ∈ C∞

0 ((0, ∞)) (2.24)

if

α̌ ∈
(

1 −
√

5
6 ,

3
2

)
. (2.25)

In particular α̌ = 1 + δ for 0 < δ < 1
2 is an admissible weight exponent, so that α̌ is 

supercritical with respect to the addend u1x and α̌ + 1 is supercritical with respect to 
the addend u2x2 in the respective cases.

2.2. Parabolic maximal regularity I: heuristics

In this section we make use of the coercivity estimates (2.20) and (2.24) of Lem-
mata 2.2 and 2.3, respectively, in order to obtain maximal regularity for the operators 
Ã and Ǎ (cf. (2.19b) and (2.23)), respectively. A rigorous justification of the subsequent 
arguments is not difficult and can be carried out by a time-discretization argument con-
tained in §2.6–§2.7. However, since the arguments are relatively technical and hide the 
simplicity of the reasoning, we stick to the time-continuous formulation for the time 
being and concentrate on deriving estimates assuming existence of sufficiently regular 
solutions from the outset.

Throughout the paper, we use the notation

w := w (2.26)

x + 1
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for a function w : (0, ∞) → R. Note that for w : [0, ∞) → R smooth, we have by power 
series expansion for all N ∈ N

w =
∞∑

j=0
(−1)jxj

(
N∑

k=0

wkxk + O
(
xN+1)) =

N∑
s=0

wsxs + O
(
xN+1) ,

where for s ≥ 0

ws =
s∑

k=0

(−1)s−kwk. (2.27)

From (2.27) we see that indeed

ws + xws = ws. (2.28)

We begin by testing equation (1.31a) with ũ in the inner product (·, ·)α̃ and obtain

(∂tũ, ũ)α̃ +
(
Ãũ, ũ

)
α̃

=
(
f̃ , ũ
)

α̃
. (2.29)

Observe that (∂tũ, ũ)α̃ = 1
2

d
dt |ũ|2α̃ and that by Young’s inequality,6

(
f̃ , ũ
)

α̃
=
(

x̃f , ũ
)

α̃
+
(

f̃ , ũ
)

α̃
≤ 1

2c

(∣∣∣x̃f
∣∣∣2
α̃− 1

2

+
∣∣∣f̃ ∣∣∣2

α̃−1

)
+ c

2

(
|ũ|2α̃+ 1

2
+ |ũ|2α̃+1

)
for any c > 0. Assuming α̃ as in (2.21) and employing coercivity in form of (2.20), after 
adjusting c, the tested equation (2.29) upgrades to

d
dt

|ũ|2α̃ + |ũ|22,α̃+ 1
2

+ |ũ|22,α̃+1 �α̃

(∣∣∣x̃f
∣∣∣2
α̃− 1

2

+
∣∣∣f̃ ∣∣∣2

α̃−1

)
. (2.30)

This is a weak estimate since only two spatial derivatives D are controlled although 
the operator Ã is of order four. It can be upgraded to a higher-regularity estimate by 
applying Dk with k ≥ 2 to (1.31a), that is,

∂tD
kũ + DkÃũ = Dkf̃ for t, x > 0.

Testing this equation with Dkũ in the inner product (·, ·)α̃, we arrive after some elemen-
tary manipulations (using (2.19b)) at(

∂tD
kũ, Dkũ

)
α̃

+
(
p̃(D)(D − 1)kũ, Dkũ

)
α̃+ 1

2
+
(
q̃(D)(D − 2)kũ, Dkũ

)
α̃+1

=
(
Dkf̃ , Dkũ

)
α̃

.
(2.31)

6 Note that the operations (̃. . .) and (. . .) do not commute. We first apply (. . .) and afterwards (̃. . .).
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Apparently 
(
∂tD

kũ, Dkũ
)

α̃
= 1

2
d
dt

∣∣Dkũ
∣∣2
α̃

for the first term in (2.31). Furthermore, since 
p̃(D) and q̃(D) are fourth-order operators, integration by parts and a standard interpo-
lation estimate show that(

p̃(D)(D − 1)kũ, Dkũ
)

α̃+ 1
2

≥ 1
2 |ũ|2k+2,α̃+ 1

2
− C̃ |ũ|2α̃+ 1

2
,(

q̃(D)(D − 1)kũ, Dkũ
)

α̃+1 ≥ 1
2 |ũ|2k+2,α̃+1 − C̃ |ũ|2α̃+1 ,

where C̃ > 0 is chosen sufficiently large. Finally, skew-symmetry of D with respect to 
(·, ·)0 in conjunction with x−α̃D = (D + α̃) x−α̃ yields

(
Dkf̃ , Dkũ

)
α̃

=
(

Dk−2f̃ , (D − 2α̃)2
Dkũ

)
α̃

�α̃ c−1
(∣∣∣x̃f

∣∣∣2
k−2,α̃− 1

2

+
∣∣∣f̃ ∣∣∣2

k−2,α̃−1

)
+ c
(

|ũ|2k+2,α̃+ 1
2

+ |ũ|2k+2,α̃+1

)
for any c > 0, so that by enlarging C̃, equation (2.31) turns into the estimate

d
dt

∣∣Dkũ
∣∣2
α̃

+
∣∣Dk+2ũ

∣∣2
α̃+ 1

2
− C̃ |ũ|2α̃+ 1

2
+
∣∣Dk+2ũ

∣∣2
α̃+1 − C̃ |ũ|2α̃+1

�k,α̃

∣∣∣x̃f
∣∣∣2
k−2,α̃− 1

2

+
∣∣∣f̃ ∣∣∣2

k−2,α̃−1
.

(2.32)

The combination of (2.30) with (2.32) yields

d
dt

(
|ũ|2α̃ + C̃

∣∣Dkũ
∣∣2
α̃

)
+ |ũ|2k+2,α̃+ 1

2
+ |ũ|2k+2,α̃+1 �k,α̃

∣∣∣x̃f
∣∣∣2
k−2,α̃− 1

2

+
∣∣∣f̃ ∣∣∣2

k−2,α̃−1
. (2.33)

In order to obtain control on ∂tu as well, observe that with help of (2.26) we have

∂tx̃u
(1.19a)= x̃f − x̃Au. (2.34)

In conjunction with the commutator Dx−1 = x−1(D−1) and A 
(1.20)= x−1p(D) +x−2q(D), 

where both p(D) and q(D) have the linear factor D − 1 (cf. (1.21)), we arrive at

|∂tx̃u|k−2,α̃− 1
2
�k

∣∣∣x̃f
∣∣∣
k−2,α̃− 1

2

+ |ũ|k+2,α̃+ 1
2

. (2.35)

Indeed, from (2.34) the first term on the right-hand side of (2.35) is trivial and we only 
need to treat the term∣∣∣x̃Au

∣∣∣
k−2,α̃− 1

2

(1.20)
≤
∣∣(D − 1)(x + 1)−1p(D)u

∣∣
k−2,α̃− 1

2

+
∣∣(D − 1)x−1(x + 1)−1q(D)u

∣∣
k−2,α̃− 1

2
.
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Now observe that

(D − 1)(x + 1)−1p(D)u = (D − 1)(x + 1)−1D2(D − 2)ũ.

Using

(a) the operator identity D(x + 1)−γ = −γx(x + 1)−γ−1 + (x + 1)−γD for γ ∈ R,
(b) the bound (x + 1)−γ ≤ min{1, x−γ} for any γ ≥ 0,

we infer

∣∣(D − 1)(x + 1)−1p(D)u
∣∣
k−2,α̃− 1

2
�k |ũ|k+2,α̃+ 1

2
.

We skip the details for the term 
∣∣(D − 1)x−1(x + 1)−1q(D)u

∣∣
k−2,α̃− 1

2
as there are no 

material differences to the one just treated.
With an analogous reasoning also

|∂tũ|k−2,α̃−1 �k,α̃

∣∣∣f̃ ∣∣∣
k−2,α̃−1

+ |ũ|k+2,α̃+1 . (2.36)

Using (2.35) and (2.36) in (2.32) leads to an upgraded version of estimate (2.33) that 
reads

d
dt

(
|ũ|2α̃ + C̃

∣∣Dkũ
∣∣2
α̃

)
+ |∂tx̃u|2k−2,α̃− 1

2
+ |∂tũ|2k−2,α̃−1 + |ũ|2k+2,α̃+ 1

2
+ |ũ|2k+2,α̃+1

�k,α̃

∣∣∣x̃f
∣∣∣2
k−2,α̃− 1

2

+
∣∣∣f̃ ∣∣∣2

k−2,α̃−1
. (2.37)

In integrated form we obtain

sup
t≥0

|ũ|2k,α̃ +
∞̂

0

(
|∂tx̃u|2k−2,α̃− 1

2
+ |∂tũ|2k−2,α̃−1 + |ũ|2k+2,α̃+ 1

2
+ |ũ|2k+2,α̃+1

)
dt

�k,α̃

∣∣ũ|t=0
∣∣2
k,α̃

+
∞̂

0

(∣∣∣x̃f
∣∣∣2
k−2,α̃− 1

2

+
∣∣∣f̃ ∣∣∣2

k−2,α̃−1

)
dt.

(2.38)

Indeed, on the left-hand side, four spatial derivatives and one time derivative more on 
ũ (with appropriate weights) are controlled than for f̃ on the right-hand side, which is 
the maximal regularity gain possible.

Since equation (1.31b) is structurally the same as (1.31a) and the above reasoning 
only required coercivity of Ã in form of (2.20) and some extra effort to derive (2.35) and 
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(2.36) which can be easily adapted, under the coercivity assumption (2.25) for α̌ we also 
have

sup
t≥0

|ǔ|2k,α̌ +
∞̂

0

(∣∣∂tx̂u
∣∣2
k−2,α̌− 1

2
+
∣∣∂tû

∣∣2
k−2,α̌−1 + |ǔ|2k+2,α̌+ 1

2
+ |ǔ|2k+2,α̌+1

)
dt

�k,α̌

∣∣ǔ|t=0
∣∣2
k,α̌

+
∞̂

0

(∣∣∣x̂f
∣∣∣2
k−2,α̌− 1

2

+
∣∣∣f̂ ∣∣∣2

k−2,α̌−1

)
dt.

(2.39)

We additionally notice that by applying � time derivatives and by applying the operator 
Ã or Ǎ m-times to (1.31a) or (1.31b), respectively, we obtain

∂t

(
∂�

t Ãmũ
)

+ Ã
(
∂�

t Ãmũ
)

=
(
∂�

t Ãmf̃
)

for t, x > 0, (2.40a)

∂t

(
∂�

t Ǎmǔ
)

+ Ǎ
(

∂�
t Ǎmǔ

)
=
(

∂�
t Ǎmf̌

)
for t, x > 0. (2.40b)

This implies that the tuples 
(
∂�

t Ãmũ, ∂�
t Ãmf̃

)
or 
(

∂�
t Ǎmǔ, ∂�

t Ǎmf̌
)

fulfill exactly the 

same equations as 
(
ũ, f̃
)

or 
(

ǔ, f̌
)

, respectively. Furthermore, if u : [0, ∞) → R is smooth 

with ux=0 = 0, then ũx=0 = ∂xũ|x=0 = 0 and thus p̃(D)ũ (2.19b)= O
(
x3) as x ↘ 0 and 

q̃(D)ũ (2.19b)= O
(
x4) as x ↘ 0, so that Ãũ = O

(
x2) as x ↘ 0. In particular, the boundary 

condition (1.19b) remains valid for u replaced by ũ and by the same argumentation also 
(1.22) remains satisfied for f replaced by f̃ . An analogous reasoning also applies for the 

tuple 
(

Ǎǔ, Ǎf̌
)

and inductively we infer that 
(
∂�

t Ãmũ, ∂�
t Ãmf̃

)
and 

(
∂�

t Ǎmǔ, ∂�
t Ǎmf̌

)
meet the same boundary conditions as (u, f). Therefore, maximal-regularity estimates 
in the form of

sup
t≥0

∣∣∂�
t Ãmũ

∣∣2
k,α̃

+
∞̂

0

(∣∣∂�+1
t Ãmx̃u

∣∣2
k−2,α̃− 1

2
+
∣∣∂�+1

t Ãmũ
∣∣2
k−2,α̃−1

)
dt

+
∞̂

0

(∣∣∂�
t Ãmũ

∣∣2
k+2,α̃+ 1

2
+
∣∣∂�

t Ãmũ
∣∣2
k+2,α̃+1

)
dt

�k,α̃

∣∣∣(∂�
t Ãmũ

)
|t=0

∣∣∣2
k,α̃

+
∞̂

0

(∣∣∣∂�
t Ãmx̃f

∣∣∣2
k−2,α̃− 1

2

+
∣∣∣∂�

t Ãmf̃
∣∣∣2
k−2,α̃−1

)
dt

(2.41a)

and
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sup
t≥0

∣∣∣∂�
t Ǎmǔ

∣∣∣2
k,α̌

+
∞̂

0

(∣∣∣∂�+1
t Ǎmx̂u

∣∣∣2
k−2,α̌− 1

2

+
∣∣∣∂�+1

t Ǎmû
∣∣∣2
k−2,α̌−1

)
dt

+
∞̂

0

(∣∣∣∂�
t Ǎmǔ

∣∣∣2
k+2,α̌+ 1

2

+
∣∣∣∂�

t Ǎmǔ
∣∣∣2
k+2,α̌+1

)
dt

�k,α̌

∣∣∣∣(∂�
t Ǎmǔ

)
|t=0

∣∣∣∣2
k,α̌

+
∞̂

0

(∣∣∣∂�
t Ǎmx̂f

∣∣∣2
k−2,α̌− 1

2

+
∣∣∣∂�

t Ǎmf̂
∣∣∣2
k−2,α̌−1

)
dt

(2.41b)

for all k ≥ 2, � ≥ 0, and m ≥ 0 need to be satisfied. We additionally observe that 
inductively from (2.40) it follows

∂�
t Ãmũ = (−1)�Ãm+�ũ +

�−1∑
�′=0

(−1)�−1−�′
∂�′

t Ãm+�−1−�′
f̃ ,

∂�
t Ǎmǔ = (−1)�Ǎm+�ǔ +

�−1∑
�′=0

(−1)�−1−�′
∂�′

t Ǎm+�−1−�′
f̌ ,

so that for higher-regularity estimates by taking the boundary value at time t = 0 the 
following time-trace identities

(
∂�

t Ãmũ
)

|t=0 = (−1)�Ãm+�ũ(0) +
�−1∑
�′=0

(−1)�′
(

∂�−1−�′

t Ãm+�′
f̃
)

|t=0
, (2.42a)

(
∂�

t Ǎmǔ
)

|t=0
= (−1)�Ǎm+�û(0) +

�−1∑
�′=0

(−1)�′
(

∂�−1−�′

t Ǎm+�′
f̌
)

|t=0
(2.42b)

are fulfilled almost everywhere. A rigorous statement reads as follows:

Proposition 2.4. For locally integrable functions f : (0, ∞)2 → R and u(0) : (0, ∞) → R

such that the right-hand sides of (2.41) are finite for all k ≥ 2, � ≥ 0, and m ≥ 0, 
problem (1.19) subject to u|t=0 = u(0) has exactly one locally integrable solution u :
(0, ∞)2 → R with finite left-hand sides of (2.41) for all k ≥ 2, � ≥ 0, and m ≥ 0. 
Furthermore, the maximal-regularity estimates (2.41) are satisfied for k ≥ 2, � ≥ 0, 
and m ≥ 0, where α̃ fulfills (2.21), α̌ meets (2.25), and the compatibility conditions 
(2.42) are satisfied almost everywhere. Here, all estimates only depend on k, �, m, and 
α̃ or α̌, respectively. Furthermore, uniqueness holds under the weaker assumption that 
u : (0, ∞)2 → R is locally integrable with

∞̂

0

(
|ũ|24,α̃+ 1

2
+ |ũ|24,α̃+1

)
dt < ∞ or

∞̂

0

(
|ǔ|24,α̌+ 1

2
+ |ǔ|24,α̌+1

)
dt < ∞.

We will rigorously prove Proposition 2.4 in §2.6 and §2.7.
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2.3. Elliptic maximal regularity

In this section, we discuss a main ingredient in how the maximal-regularity estimates 
of Proposition 2.4 yield higher-regularity estimates for the solution u to (1.19) at the 
boundary x = 0. This is formulated in the following statement:

Proposition 2.5. For γ ∈ (−2, ∞) \ Z and k, m ∈ N0 we have

m∑
r=0

∣∣∣∣∣∣w −
�γ�+m+r∑

j=1
wjxj

∣∣∣∣∣∣
k+4m+1,γ+m+r

∼
∣∣Ãmw̃

∣∣
k,γ

+
m∑

r=1

∣∣w�γ�+m+r

∣∣ , (2.43a)

m∑
r=0

∣∣∣∣∣∣w −
�γ�+m+r∑

j=1
wjxj

∣∣∣∣∣∣
k+4m+2,γ+m+r

∼
∣∣∣Ǎmw̌

∣∣∣
k,γ

+
m∑

r=1

∣∣w�γ�+m+r

∣∣ , (2.43b)

where w : [0, ∞) → R is smooth with w = 0 at x = 0 and the constants in (2.43) only 
depend on k, m, and γ.

Indeed, the terms appearing in Proposition 2.4 are exactly of the form 
∣∣Ãmw̃

∣∣
k,γ

or 
∣∣∣Ǎmw̌

∣∣∣
k,γ

. The remaining coefficients on the right-hand sides of (2.43) will make 

additional considerations necessary, which will be addressed in §2.4.
First, observe that by the commutation relations (1.29) and by (1.32) we have

Ãmũ = (D − 1)Amu = Ãmu and Ǎmǔ = (D − 2)(D − 1)Amu =
̂

Amu, (2.44)

and analogous expressions for Ãkf̃ and Ǎkf̌ . Furthermore, we observe that the operator 
A factorizes (by commuting D-derivatives with x, cf. (1.20) and (1.21)):

A = x−2xD2(D − 1)(D − 2) + x−2D(D − 1)2(D − 2)

= x−2(D − 1)2(D − 2) (x(D − 2) + D) . (2.45)

The last factor in (2.45) vanishes on the function (x +1)2, so that (2.45) can be rewritten 
as

A = x−2(D − 1)2(D − 2)B, where B := x(D − 2) + D = (x + 1)3D(x + 1)−2. (2.46)

Note that on smooth functions f : (0, ∞) → R such that |f |γ < ∞ for some γ > 0, we 
can invert B and have

B−1f(x) = (x + 1)2
xˆ

0

(x′ + 1)−3
f (x′) dx′

x′ . (2.47)

In view of (2.44) and (2.46), we need to study the elliptic regularity of
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(a) a polynomial operator P (D) =
∏N

j=1(D − γj) with N ∈ N and γj ∈ R for all 
j = 1, . . . , N ,

(b) the operator B (2.46)= (x + 1)3D(x + 1)−2.

In fact, the elliptic regularity of a polynomial operator P (D) follows by a straightforward 
application of Hardy’s inequality (cf. [16, Lem. 7.2, Lem. 7.4] and [19, Lem. A.1] for 
similar statements):

Lemma 2.6. Suppose that w ∈ C∞([0, ∞)), k ∈ N0, P (D) =
∏N

j=1(D − γj), γj , � ∈ R, 
|w|N+k,� < ∞, and

Dk′
w(x) = o(x�) as x ↘ 0 for k′ = 0, · · · , N + k − 1.

Then

|w|k+N,� ∼γj ,� |P (D)w|k,� . (2.48)

The elliptic regularity of the operator B requires special consideration:

Lemma 2.7. The operator B−1 defined in (2.47) satisfies for any k ∈ N0 and γ > 0∣∣B−1f
∣∣
k+1,γ

+
∣∣B−1f

∣∣
k+1,γ−1 �k,γ |f |k,γ , (2.49)

where f : (0, ∞) → R is locally integrable and the constant in (2.49) is independent of w.

Proof. We may assume without loss of generality |f |k,γ < ∞ and start by proving (2.49)
for k = 0. We set g := B−1f and notice that

|f |2γ = |Bg|2γ
(2.46)= (x(D − 2)g + Dg, x(D − 2)g + Dg)γ

= |(D − 2)g|2γ−1 + |Dg|2γ + 2 ((D − 2)g, Dg)γ− 1
2

= |(D − 2)g|2γ−1 + |Dg|2γ + 2 ((D − 1)g − g, (D − 1)g + g)γ− 1
2

= |(D − 2)g|2γ−1 + 2 |(D − 1)g|2γ− 1
2

+ |Dg|2γ − 2 |g|2γ− 1
2

.

(2.50)

Now observe that by Hardy’s inequality (see for instance [19, Lem. A.1]) we have because 

of g(x) = B−1f(x) (2.47)= o (xγ) as x ↘ 0

|Dg|2γ =
∞̂

0

x2−2γ

(
dg

dx

)2 dx

x
≥ (γ − 1)2 |g|2γ , (2.51a)

|(D − 1)g|2γ− 1
2

=
∞̂

x5−2γ

(
d

dx
x−1g

)2 dx

x
≥
(

γ − 5
2

)2

|g|2γ− 1
2

, (2.51b)

0
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|(D − 2)g|2γ−1 =
∞̂

0

x8−2γ

(
d

dx
x−2g

)2 dx

x
≥ (γ − 4)2 |g|2γ−1 . (2.51c)

Using (2.51b), we recognize that the last term −2 |g|2γ− 1
2

in the last line of (2.50) can be 

absorbed by the second term 2 |(D − 1)g|2γ− 1
2

of that line for γ ∈
(
0, 3

2
)

∪
( 7

2 , ∞
)
. For 

γ ∈
[ 3

2 , 7
2
]
, we may estimate by using Young’s inequality

2 |g|2γ− 1
2

≤ c |g|2γ−1 + c−1 |g|2γ (2.52)

for some c > 0. Absorbing the right-hand side of (2.52) with the first and third term of 
the last line of (2.50) using (2.51a) and (2.51c), we only need to fulfill the constraints

(γ − 1)2 > c and (γ − 4)2 > c−1,

which can be fulfilled if L(γ) := (γ−1)2(γ−4)2 > 1. Note that this holds true since L has 
its maximum at γ = 5

2 and takes on its minima at γ ∈
{3

2 , 7
2
}

, where L(γ) = (5/4)2 > 1.
Because of g = B−1f we have proved (2.49) for k = 0. The general case follows by an 

induction argument:
Indeed, we may assume that (2.49) holds for some k ∈ N0. Since we know from (2.49)

applied to BDB−1f that∣∣DB−1f
∣∣
k+1,γ

+
∣∣DB−1f

∣∣
k+1,γ−1 �k,γ

∣∣BDB−1f
∣∣
k,γ

, (2.53)

we need to understand the commutation properties between B and the scaling-invariant 
derivative D. Observe that due to (2.46) the operator identity

BD = (x(D − 2) + D) D = (D − 1)x(D − 2) + D2 = DB − x(D − 2)

holds true. Thus we may conclude∣∣BDB−1f
∣∣
k,γ

�k,γ |Df |k,γ +
∣∣(D − 2)B−1f

∣∣
k,γ−1 � |f |k+1,γ +

∣∣B−1f
∣∣
k+1,γ−1

�k,γ |f |k+1,γ ,
(2.54)

where the last estimate follows by the induction assumption. The combination of (2.53)
and (2.54) with the induction assumption finishes the proof. �

Now, we demonstrate how estimates (2.48) and (2.49) of Lemmata 2.6 and 2.7 can be 
used to prove Proposition 2.5: Suppose that w, k, m, and γ are chosen as stated there. 
First observe that

∣∣Ãmw̃
∣∣
k,γ

(1.29),(1.32)= |(D − 1)Amw|k,γ

(2.48)∼k,γ

{
|Amw − (Amw)1 x|k+1,γ for γ > 1,

|Amw|k+1,γ for γ < 1,

(2.55)



M.V. Gnann et al. / Advances in Mathematics 347 (2019) 1173–1243 1203
and∣∣∣Ǎmw̌
∣∣∣
k,γ

(1.29),(1.32)= |(D − 1)(D − 2)Amw|k,γ

(2.48)∼k,γ

⎧⎪⎪⎨⎪⎪⎩
∣∣Amw − (Amw)1 x − (Amw)2 x2

∣∣
k+2,γ

for γ > 2.

|Amw − (Amw)1 x|k+2,γ for 2 > γ > 1.

|Amw|k+2,γ for γ < 1.

(2.56)

By an induction argument, we may without loss of generality study the following case:

Lemma 2.8. For k ∈ N0 and γ ∈ (−2, ∞) \ Z we have∣∣∣∣∣∣w −
�γ�+1∑

j=1
wjxj

∣∣∣∣∣∣
k+4,γ+1

+

∣∣∣∣∣∣w −
�γ�+2∑

j=1
wjxj

∣∣∣∣∣∣
k+4,γ+2

∼k,γ

∣∣∣∣∣∣Aw −
�γ�∑
j=1

(Aw)jxj

∣∣∣∣∣∣
k,γ

+
∣∣w�γ�+2

∣∣ , (2.57)

where w : [0, ∞) → R is a smooth function with w = 0 at x = 0.

Proof of Proposition 2.5. Indeed, by noticing that

Axj (1.20)= p(j)xj−1 + q(j)xj−2, that is, (Aw)j = p(j + 1)wj+1 + q(j + 2)wj+2,

replacing w with Aw in (2.57), and using the original estimate (2.57) twice afterwards, 
we get∣∣∣∣∣∣w −

�γ�+2∑
j=1

wjxj

∣∣∣∣∣∣
k+8,γ+2

+

∣∣∣∣∣∣w −
�γ�+3∑

j=1
wjxj

∣∣∣∣∣∣
k+8,γ+3

+

∣∣∣∣∣∣w −
�γ�+4∑

j=1
wjxj

∣∣∣∣∣∣
k+8,γ+4

∼k,γ

∣∣∣∣∣∣A2w −
�γ�∑
j=1

(A2w)jxj

∣∣∣∣∣∣
k,γ

+
∣∣w�γ�+3

∣∣+ ∣∣w�γ�+4
∣∣ .

Iterating this procedure yields

m∑
r=0

∣∣∣∣∣∣w −
�γ�+m+r∑

j=1
wjxj

∣∣∣∣∣∣
k+4m,γ+m+r

∼k,m,γ

∣∣∣∣∣∣Amw −
�γ�∑
j=1

(Amw)jxj

∣∣∣∣∣∣ +
m∑

r=1

∣∣w�γ�+m+r

∣∣ . (2.58)

k,γ
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Now combining (2.55) or (2.56), respectively, with (2.58), we arrive at estimates (2.43). �
Proof of Lemma 2.8. Observe∣∣∣∣∣∣Aw −

�γ�∑
j=1

(Aw)jxj

∣∣∣∣∣∣
k,γ

(2.46)=

∣∣∣∣∣∣x−2(D − 1)2(D − 2)

⎛⎝Bw −
�γ�+2∑

j=3
(Bw)jxj

⎞⎠∣∣∣∣∣∣
k,γ

∼k

∣∣∣∣∣∣(D − 1)2(D − 2)

⎛⎝Bw −
�γ�+2∑

j=1
(Bw)jxj

⎞⎠∣∣∣∣∣∣
k,γ+2

(2.48)∼γ

∣∣∣∣∣∣Bw −
�γ�+2∑

j=1
(Bw)jxj

∣∣∣∣∣∣
k+3,γ+2

, (2.59)

where we have used Lemma 2.6. Now we may use

Bxj (2.45),(2.46)= (j − 2)xj+1 + jxj , that is, (Bw)j = (j − 3)wj−1 + jwj for j ∈ N,

(2.60)

where by assumption w0 = 0. This leads to the identity

Bw −
�γ�+2∑

j=1
(Bw)jxj = B

⎛⎝w −
�γ�+2∑

j=1
wjxj

⎞⎠+ �γ� w�γ�+2x�γ�+3, (2.61)

which can be rephrased as

w −
�γ�+2∑

j=1
wjxj = B−1

⎛⎝Bw −
�γ�+2∑

j=1
(Bw)jxj

⎞⎠− �γ� w�γ�+2B−1x�γ�+3. (2.62)

We note that the term B−1x�γ�+3 cannot be estimated using Lemma 2.7 as inserting any 
power of x into the right-hand side of (2.49) produces infinity. However, in this case we 
may use the explicit representation of B−1 given by (2.47), so that we can infer

B−1x�γ�+3 = (x + 1)2
xˆ

0

(x′ + 1)−3 (x′)�γ�+3 dx′

x′ (2.63)

and thus

∣∣∣B−1x�γ�+3
∣∣∣2
γ+2

=
∞̂

x−4−2γ(x + 1)4

⎛⎝ xˆ
(x′ + 1)−3 (x′)�γ�+3 dx′

x′

⎞⎠2
dx

x

0 0
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=
1ˆ

0

O
(

x2−2γ+2�γ�
) dx

x
+

∞̂

1

O
(

x−2γ+2�γ�
) dx

x

∼γ 1. (2.64)

Furthermore,

DB−1x�γ�+3 (2.63)= (x + 1)−1 (2xB−1 + 1
)

x�γ�+3, (2.65)

and since 
∥∥Djx(x + 1)−1

∥∥
BC0([0,∞)) �j 1 and

∣∣∣(x + 1)−1x�γ�+3
∣∣∣2
γ+2

=
∞̂

0

x2−2γ+2�γ�(x + 1)−2 dx

x

∼
1ˆ

0

x2−2γ+2�γ� dx

x
+

∞̂

1

x−2γ+2�γ� dx

x

∼γ 1,

an induction argument using (2.64) and (2.65) shows∣∣∣B−1x�γ�+3
∣∣∣
k+4,γ+2

∼k,γ 1. (2.66)

The combination of (2.59), (2.62), and (2.66) implies with help of Lemma 2.7∣∣∣∣∣∣w −
�γ�+2∑

j=1
wjxj

∣∣∣∣∣∣
k+4,γ+2

(2.62)
�γ

∣∣∣∣∣∣B−1

⎛⎝Bw −
�γ�+2∑

j=1
(Bw)jxj

⎞⎠∣∣∣∣∣∣
k+4,γ+2

+
∣∣w�γ�+2

∣∣ ∣∣∣B−1x�γ�+3
∣∣∣
k+4,γ+2

(2.49),(2.66)
�k,γ

∣∣∣∣∣∣Bw −
�γ�+2∑

j=1
(Bw)jxj

∣∣∣∣∣∣
k+3,γ+2

+
∣∣w�γ�+2

∣∣
(2.59)
�γ

∣∣∣∣∣∣Aw −
�γ�∑
j=1

(Aw)jxj

∣∣∣∣∣∣
k,γ

+
∣∣w�γ�+2

∣∣ .
Next, we repeat the same steps for the norm 

∣∣∣w −
∑�γ�+1

j=1 wjxj
∣∣∣
k+4,γ+1

. Using (2.60)
and (2.61), we have



1206 M.V. Gnann et al. / Advances in Mathematics 347 (2019) 1173–1243
w −
�γ�+1∑

j=1
wjxj = B−1

⎛⎝Bw −
�γ�+2∑

j=1
(Bw)jxj

⎞⎠+ (�γ� + 2) w�γ�+2B−1x�γ�+2. (2.67)

Employing (2.66) with γ replaced by γ − 1, we have∣∣∣B−1x�γ�+2
∣∣∣
k+4,γ+1

∼k,γ 1. (2.68)

Hence, with help of Lemma 2.7∣∣∣∣∣∣w −
�γ�+1∑

j=1
wjxj

∣∣∣∣∣∣
k+4,γ+1

(2.67)
�γ

∣∣∣∣∣∣B−1

⎛⎝Bw −
�γ�+2∑

j=1
(Bw)jxj

⎞⎠∣∣∣∣∣∣
k+4,γ+1

+
∣∣w�γ�+2

∣∣ ∣∣∣B−1x�γ�+2
∣∣∣
k+4,γ+1

(2.49),(2.68)
�k,γ

∣∣∣∣∣∣Bw −
�γ�+2∑

j=1
(Bw)jxj

∣∣∣∣∣∣
k+3,γ+2

+
∣∣w�γ�+2

∣∣
(2.59)
�γ

∣∣∣∣∣∣Aw −
�γ�∑
j=1

(Aw)jxj

∣∣∣∣∣∣
k,γ

+
∣∣w�γ�+2

∣∣ ,
thus finishing the proof of one direction of estimate (2.57).

For proving the other direction of estimate (2.57), we first observe that (2.46) and 
(2.60) imply

Bw −
�γ�+2∑

j=1
(Bw)jxj = x(D − 2)w + Dw −

�γ�+2∑
j=2

((j − 3)wj−1 + jwj) xj

= x(D − 2)

⎛⎝w −
�γ�+1∑

j=1
wjxj

⎞⎠+ D

⎛⎝w −
�γ�+2∑

j=1
wjxj

⎞⎠ ,

so that (2.59) yields∣∣∣∣∣∣Aw −
�γ�∑
j=1

(Aw)jxj

∣∣∣∣∣∣
k,γ

�γ

∣∣∣∣∣∣Bw −
�γ�+2∑

j=1
(Bw)jxj

∣∣∣∣∣∣
k+3,γ+2

�k

∣∣∣∣∣∣w −
�γ�+1∑

j=1
wjxj

∣∣∣∣∣∣
k+4,γ+1

+

∣∣∣∣∣∣w −
�γ�+2∑

j=1
wjxj

∣∣∣∣∣∣
k+4,γ+2

.
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Hence, it remains to bound 
∣∣w�γ�+2

∣∣: Observe that by quite elementary arguments we 
have

∣∣w�γ�+2
∣∣2 �

2ˆ

1

⎛⎝w(x) −
�γ�+1∑

j=1
wjxj

⎞⎠2

dx +
2ˆ

1

⎛⎝w(x) −
�γ�+2∑

j=1
wjxj

⎞⎠2

dx

�γ

∞̂

0

x−2γ−2

⎛⎝w(x) −
�γ�+1∑

j=1
wjxj

⎞⎠2
dx

x

+
∞̂

0

x−2γ−4

⎛⎝w(x) −
�γ�+2∑

j=1
wjxj

⎞⎠2
dx

x

=

∣∣∣∣∣∣w −
�γ�+1∑

j=1
wjxj

∣∣∣∣∣∣
2

γ+1

+

∣∣∣∣∣∣w −
�γ�+2∑

j=1
wjxj

∣∣∣∣∣∣
2

γ+2

,

thus completing the proof of Lemma 2.8. �
2.4. Parabolic maximal regularity II

2.4.1. Definition of norms
Our aim is to show maximal-regularity estimates for the solution u to arbitrary or-

ders of the expansion given in (1.30). This can be achieved by combining the parabolic 
estimates (2.41) in conjunction with (2.42) (cf. Proposition 2.4) and (2.43) (cf. Proposi-
tion 2.5), where k is replaced by k + 4(N − m − �) in (2.41a) and k + 4(N − m − �) − 1
in (2.41b). The resulting parabolic estimate reads

|||u|||sol �k,N,δ

∣∣∣∣∣∣∣∣∣u(0)
∣∣∣∣∣∣∣∣∣

init
+ |||f |||rhs + R (2.69)

with norms |||·|||sol, |||·|||init, and |||·|||rhs for the solution u, the initial data u(0) and the 
right-hand side f , respectively, and a remainder term R due to the summed absolute 
values of the coefficients on the right-hand sides of (2.43). Therefore, we introduce the 
index sets

IN,δ := {(α, �, m) : α ∈ {δ, 1 + δ} and �, m ∈ N0 with 0 ≤ � + m ≤ N − �α�} (2.70a)

and

JN,δ := IN,δ ∪
{

(α, �, m) :
(

α + 1
2 , �, m

)
∈ IN,δ

}
. (2.70b)

Then we can define our norms in compact form:
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The norm for the solution u is defined through

|||u|||2sol :=
∑

(α,�,m)∈IN,δ

m∑
r=0

sup
t≥0

∣∣∣∣∣∣∂�
t u −

�α�+m+r∑
j=1

d�uj

dt�
xj

∣∣∣∣∣∣
2

k+4(N−�)+1,α+m+r

+
∑

(α,�,m)∈JN,δ

m∑
r=0

∞̂

0

∣∣∣∣∣∣∂�+1
t u −

�α�+m+r−1∑
j=1

d�+1uj

dt�+1 xj

∣∣∣∣∣∣
2

k+4(N−�)−1,α+m+r−1

dt

+
∑

(α,�,m)∈JN,δ

m∑
r=0

∞̂

0

∣∣∣∣∣∣∂�
t u −

�α�+m+r+1∑
j=1

d�uj

dt�
xj

∣∣∣∣∣∣
2

k+4(N−�)+3,α+m+r+1

dt.

(2.71)

Here, N ∈ N0 and the choice of k ≥ 3 will be addressed later. For the right-hand side f
we are first led to choose instead of |||·|||rhs the squared norm

|||f |||2rhs,∗ :=
∑

(α,�,m)∈IN,δ

�−1∑
�′=0

sup
t≥0

m+�′∑
r=0

∣∣∣∣∣∂�−1−�′

t f|t=0

−
�α�+m+�′+r∑

j=1

(
d�−1−�′

fj

dt�−1−�′

)
|t=0

xj

∣∣∣∣∣
2

k+4(N+�′−�)+1,α+m+�′+r

+
∑

(α,�,m)∈JN,δ

∞̂

0

m∑
r=0

∣∣∣∣∣∣∂�
t f −

�α�+m+r−1∑
j=1

d�f
j

dt�
xj

∣∣∣∣∣∣
2

k+4(N−�)−1,α+m+r−1

dt.

(2.72)

Notice that the first two lines in (2.72) originate from inserting the time-trace identities 
(2.42) into (2.41). The expression in (2.72) can be simplified by setting �̃ = � − 1 − �′, 
m̃ = m + �′ = m + � − 1 − �̃, so that

∑
(α,�,m)∈IN,δ

�−1∑
�′=0

m+�′∑
r=0

∣∣∣∣∣∣∂�−1−�′

t f|t=0

−
�α�+m+�′+r∑

j=1

(
d�−1−�′

fj

dt�−1−�′

)
|t=0

xj

∣∣∣∣∣∣
2

k+4(N+�′−�)+1,α+m+�′+r

∼N

∑
(
α,�̃,m̃

)
∈IN−1,δ

m̃∑
r̃=0

∣∣∣∣∣∣∂ �̃
t f|t=0 −

�α�+m̃+r̃∑
j=1

(
d�̃fj

dt�̃

)
|t=0

xj

∣∣∣∣∣∣
2

k+4
(
N−�̃

)
−3,α+m̃+r̃

.
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Hence, we may choose instead of (2.72) the slightly stronger norm

|||f |||2rhs :=
∑

(
α,�̃,m̃

)
∈IN−1,δ

m̃∑
r̃=0

sup
t≥0

∣∣∣∣∣∣∂ �̃
t f −

�α�+m̃+r̃∑
j=1

d�̃fj

dt�̃
xj

∣∣∣∣∣∣
2

k+4
(
N−�̃

)
−3,α+m̃+r̃

+
∑

(α,�,m)∈JN,δ

m∑
r=0

∞̂

0

∣∣∣∣∣∣∂�
t f −

�α�+m+r−1∑
j=1

d�f
j

dt�
xj

∣∣∣∣∣∣
2

k+4(N−�)−1,α+m+r−1

dt.

(2.73)

Because we have used the time-trace identities (2.42), the initial data norm reads

∣∣∣∣∣∣∣∣∣u(0)
∣∣∣∣∣∣∣∣∣2

init
:=

∑
(α,·,m)∈IN,δ

m∑
r=0

∣∣∣∣∣∣u(0) −
�α�+m+r∑

j=1
u

(0)
j xj

∣∣∣∣∣∣
2

k+4N+1,α+m+r

. (2.74)

As for m ≥ 1 in (2.43) remnant coefficient terms appear, our considerations up to now 
lead to a remainder of the form

R2 =
∑

(α,�,m)∈IN,δ

m∑
r=1

sup
t≥0

∣∣∣∣∣d�u�α�+m+r

dt�

∣∣∣∣∣
2

+
∑

(α,�,m)∈JN,δ

m∑
r=1

∞̂

0

∣∣∣∣∣d�+1u�α�+m+r−1

dt�+1

∣∣∣∣∣
2

dt

+
∑

(α,�,m)∈JN,δ

m∑
r=1

∞̂

0

∣∣∣∣∣d�u�α�+m+r+1

dt�

∣∣∣∣∣
2

dt.

In view of the definitions of IN,δ and JN,δ in (2.70), we can deduce the bound

R2 �N

2N∑
j=1

⌊
2N−j

2

⌋∑
�=0

sup
t≥0

∣∣∣∣d�uj

dt�

∣∣∣∣2 +
2N−1∑
j=1

⌊
2N−1−j

2

⌋∑
�=0

∞̂

0

∣∣∣∣∣d�+1uj

dt�+1

∣∣∣∣∣
2

dt

+
2N+1∑
j=1

⌊
2N+1−j

2

⌋∑
�=0

∞̂

0

∣∣∣∣d�uj

dt�

∣∣∣∣2 dt

(2.26),(2.27)
�N

2N∑
j=1

⌊
2N−j

2

⌋∑
�=0

sup
t≥0

∣∣∣∣d�uj

dt�

∣∣∣∣2 +
2N−1∑
j=1

⌊
2N−1−j

2

⌋∑
�=0

∞̂∣∣∣∣d�+1uj

dt�+1

∣∣∣∣2 dt
0
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+
2N+1∑
j=1

⌊
2N+1−j

2

⌋∑
�=0

∞̂

0

∣∣∣∣d�uj

dt�

∣∣∣∣2 dt

�
2N∑
j=1

⌊
2N−j

2

⌋∑
�=0

sup
t≥0

∣∣∣∣d�uj

dt�

∣∣∣∣2 +
2N+1∑
j=1

⌊
2N+1−j

2

⌋∑
�=0

∞̂

0

∣∣∣∣d�uj

dt�

∣∣∣∣2 dt. (2.75)

The fact that coefficients of the solution u appear on the right-hand side of (2.69) is in-
convenient. Furthermore, highest-order terms like supt≥0 |u2N |2, appearing in the second 
but last sum in (2.75), cannot be controlled with a trace estimate using the L2-parts in 
the last term only. In what follows, we first demonstrate how these remnant terms can 
be estimated and thus simplified using the fact that expansions of u and f have to meet 
equation (1.19a), leading to an infinite-dimensional system of ODEs.

2.4.2. The polynomial equation
We start by noting that

Axj (1.20)= p(j)xj−1 + q(j)xj−2 ⇒ (Au)j = p(j + 1)uj+1 + q(j + 2)uj+2

and therefore, if u, f ∈ C∞([0, ∞)) meet equation (1.19a), then the polynomial equation

duj

dt
+ p(j + 1)uj+1 + q(j + 2)uj+2 = fj for t > 0 and j ∈ N (2.76)

is satisfied. Notice that (2.76) is an infinite-dimensional first-order ODE for (u1,u2,u3, . . .)
with right-hand side (f1, f2, f3, . . .) and initial data 

(
u

(0)
1 , u

(0)
2 , u

(0)
3 , . . .

)
. We can prove:

Lemma 2.9. If u, f ∈ C∞([0, ∞)) meet equation (1.19a), then we have

M∑
j=1

⌊
M−j

2

⌋∑
�=0

∣∣∣∣d�uj

dt�

∣∣∣∣ �M

M−2∑
j=1

⌊
M−2−j

2

⌋∑
�=0

∣∣∣∣d�fj

dt�

∣∣∣∣+
⌊

M−1
2

⌋∑
�=0

∣∣∣∣d�u1

dt�

∣∣∣∣+
⌊

M−2
2

⌋∑
�=0

∣∣∣∣d�u2

dt�

∣∣∣∣ (2.77)

for any M ∈ N with M ≥ 1, where the constant in (2.77) only depends on M .

Proof. The proof is a simple induction argument employing (2.76). For M = 1 and 
M = 2 there is nothing to show.

Now suppose that (2.77) holds up to some fixed M ≥ 2. Differentiating (2.76) in time, 
we have ∣∣∣∣d�uj+2

�

∣∣∣∣ �j

∣∣∣∣d�fj

�

∣∣∣∣+ ∣∣∣∣d�uj+1
�

∣∣∣∣+ ∣∣∣∣d�+1uj

�+1

∣∣∣∣ for j ∈ N. (2.78)
dt dt dt dt
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Now consider the term on the left-hand side of (2.77) with M replaced by M + 1 and 
observe

M+1∑
j=1

⌊
M+1−j

2

⌋∑
�=0

∣∣∣∣d�uj

dt�

∣∣∣∣ =

⌊
M
2
⌋∑

�=0

∣∣∣∣d�u1

dt�

∣∣∣∣+
⌊

M−1
2

⌋∑
�=0

∣∣∣∣d�u2

dt�

∣∣∣∣+ M+1∑
j=3

⌊
M+1−j

2

⌋∑
�=0

∣∣∣∣d�uj

dt�

∣∣∣∣ .
Since the first two sums on the right-hand side appear in (2.77) with M replaced by 
M + 1, it remains to estimate the last term. Using (2.78), we get

M+1∑
j=3

⌊
M+1−j

2

⌋∑
�=0

∣∣∣∣d�uj

dt�

∣∣∣∣ �M

M−1∑
j=1

⌊
M−1−j

2

⌋∑
�=0

∣∣∣∣d�fj

dt�

∣∣∣∣+ M∑
j=2

⌊
M−j

2

⌋∑
�=0

∣∣∣∣d�uj

dt�

∣∣∣∣+ M−1∑
j=1

⌊
M+1−j

2

⌋∑
�=1

∣∣∣∣d�uj

dt�

∣∣∣∣ .
(2.79)

The first term on the right-hand side of this estimate is bounded by the first term on the 
right-hand side of (2.77) with M replaced by M + 1, while the second is controlled by 
the left-hand side of the original estimate (2.77), that is, it is treated by the induction 
assumption. The addends with j ∈ {1, 2} in the last term of (2.79) appear on the 
right-hand side of (2.77) with M replaced by M + 1 as well, so that it remains to bound 

the sum 
∑M−1

j=3
∑⌊

M+1−j
2

⌋
�=1

∣∣∣d�uj

dt�

∣∣∣. Applying (2.78), we have:

M−1∑
j=3

⌊
M+1−j

2

⌋∑
�=1

∣∣∣∣d�uj

dt�

∣∣∣∣ �M

M−3∑
j=1

⌊
M−1−j

2

⌋∑
�=0

∣∣∣∣d�fj

dt�

∣∣∣∣+ M−2∑
j=2

⌊
M−j

2

⌋∑
�=0

∣∣∣∣d�uj

dt�

∣∣∣∣+ M−3∑
j=1

⌊
M+1−j

2

⌋∑
�=0

∣∣∣∣d�uj

dt�

∣∣∣∣ ,
where the first two terms on the left-hand side are treated as before. The last term is the 
same as in (2.79) except that j ≤ M − 3 instead of j ≤ M − 1. Iterating this procedure 
reduces this last term to j ∈ {1, 2} only, which appear on the right-hand side of (2.77)
with M replaced by M + 1. This concludes the induction step. �

Lemma 2.9 implies the bound

R2
(2.75)
�N

2N−2∑
j=1

⌊
2N−2−j

2

⌋∑
�=0

sup
t≥0

∣∣∣∣d�fj

dt�

∣∣∣∣2 +
2N−1∑
j=1

⌊
2N−1−j

2

⌋∑
�=0

∞̂

0

∣∣∣∣d�fj

dt�

∣∣∣∣2 dt

+
N−1∑
�=0

sup
t≥0

∣∣∣∣d�u1

dt�

∣∣∣∣2 +
N∑

�=0

∞̂

0

∣∣∣∣d�u1

dt�

∣∣∣∣2 dt +
N−1∑
�=0

sup
t≥0

∣∣∣∣d�u2

dt�

∣∣∣∣2 +
N−1∑
�=0

∞̂

0

∣∣∣∣d�u2

dt�

∣∣∣∣2 dt.

(2.80)

For treating the terms in the first line of (2.80), observe that by the first line of (2.73)
we have
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|||f |||2rhs �N

∑
(
α,�̃,m̃

)
∈IN−1,δ

m̃∑
r̃=0

sup
t≥0

∣∣∣∣∣d�̃f�α�+m̃+r̃

dt�̃

∣∣∣∣∣
2

�N

2N−2∑
j=1

⌊
2N−2−j

2

⌋∑
�=0

sup
t≥0

∣∣∣∣d�fj

dt�

∣∣∣∣2 ,

while the second line of (2.73) yields

|||f |||2rhs �N

∑
(α,�,m)∈JN,δ

m∑
r=0

∞̂

0

∣∣∣∣∣d
�f�α�+m+r−1

dt�

∣∣∣∣∣
2

dt �N

2N−1∑
j=1

⌊
2N−1−j

2

⌋∑
�=0

∞̂

0

∣∣∣∣∣d
�f

j

dt�

∣∣∣∣∣
2

dt

(2.26),(2.27)
�N

2N−1∑
j=1

⌊
2N−1−j

2

⌋∑
�=0

∞̂

0

∣∣∣∣d�fj

dt�

∣∣∣∣2 dt.

Together with (2.80) this implies

R2 �N |||f |||2rhs

+
N−1∑
�=0

sup
t≥0

∣∣∣∣d�u1

dt�

∣∣∣∣2 +
N∑

�=0

∞̂

0

∣∣∣∣d�u1

dt�

∣∣∣∣2 dt +
N−1∑
�=0

sup
t≥0

∣∣∣∣d�u2

dt�

∣∣∣∣2 +
N−1∑
�=0

∞̂

0

∣∣∣∣d�u2

dt�

∣∣∣∣2 dt.

(2.81)

For treating the remaining terms in d�u1
dt� and d�u2

dt� observe that using Lemma 2.6 in 
Proposition 2.4 with m = 0, Proposition 2.5 is not applied a single time and we ob-
tain (2.69) with R ≡ 0 if we take m = 0 in all the sums 

∑
(α,�,m)∈IN,δ

(. . .) and ∑
(α,�,m)∈JN,δ

(. . .), and m̃ = 0 in all the sums 
∑(

α,�̃,m̃
)
∈IN−1,δ

(. . .) in the definition 
of the norms (2.71), (2.73), and (2.74). On the other hand, the resulting norm replacing 
|||u|||sol controls the remnant terms in the second line of (2.81), because

∣∣∣∣d�u1

dt�

∣∣∣∣2 �
2ˆ

1
2

(
∂�

t u − d�u1

dt�
x

)2

dx +
2ˆ

1
2

(
∂�

t u
)2 dx �

∣∣∣∣∂�
t u − d�u1

dt�
x

∣∣∣∣2
1+δ

+
∣∣∂�

t u
∣∣2
δ

(2.82)

and

∣∣∣∣d�u2

dt�

∣∣∣∣2 �
2ˆ

1
2

(
∂�

t u − d�u1

dt�
x − d�u2

dt�
x2
)2

dx +
2ˆ

1
2

(
∂�

t u − d�u1

dt�
x

)2

dx

�
∣∣∣∣∂�

t u − d�u1

dt�
x − d�u2

dt�
x2
∣∣∣∣2
2+δ

+
∣∣∣∣∂�

t u − d�u1

dt�
x

∣∣∣∣2
1+δ

. (2.83)

Thus we have concluded all arguments leading to

|||u|||sol �k,N,δ

∣∣∣∣∣∣∣∣∣u(0)
∣∣∣∣∣∣∣∣∣ + |||f |||rhs (2.84)
init
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instead of (2.69) upon increasing the constant in the estimate. This is the desired 
maximal-regularity estimate with arbitrary regularity of the solution close to the free 
boundary {x = 0}. We summarize our findings in the following statement:

Proposition 2.10. Take N ∈ N0, k ≥ 2, and 0 < δ < 1
2 , and suppose that f : (0, ∞)2 → R

and u(0) : (0, ∞) → R are locally integrable with |||f |||rhs < ∞ and 
∣∣∣∣∣∣u(0)

∣∣∣∣∣∣
init < ∞. 

Then problem (1.19) has exactly one locally integrable solution u : (0, ∞)2 → R with 
|||u|||sol < ∞. This solution fulfills the maximal-regularity estimate (2.84).

A rigorous justification of Proposition 2.10 only requires to make the heuristic argu-
ments in §2.2 mathematically precise. The respective reasoning will be detailed in §2.6
and §2.7.

2.5. Properties of the norms

The following estimates for the coefficients follow by an elementary reasoning as in 
(2.82) or (2.83) (see also [16, Lem. 4.3] or [22, Lem. 3.3]):

Lemma 2.11. Suppose that k, N ∈ N0 and 0 < δ < 1
2 . Further suppose that u : (0, ∞)2 →

R, f : (0, ∞)2 → R, and u(0) : (0, ∞) → R are locally integrable with finite norms |||u|||sol, 
|||f |||rhs, and 

∣∣∣∣∣∣u(0)
∣∣∣∣∣∣

init. Then the following estimates with constants independent of u, 
f , and u(0) hold true:

sup
t≥0

∣∣∣∣d�uj

dt�

∣∣∣∣ �k,N,δ |||u|||sol for j = 1, . . . , 2(N − �), � = 0, . . . , N, (2.85a)

∞̂

0

∣∣∣∣d�uj

dt�

∣∣∣∣2 dt �k,N,δ |||u|||2sol for j = 1, . . . , 2(N − �) + 1, � = 0, . . . , N, (2.85b)

∣∣∣u(0)
j

∣∣∣ �k,N,δ

∣∣∣∣∣∣∣∣∣u(0)
∣∣∣∣∣∣∣∣∣

init
for j = 1, . . . , 2N, (2.85c)

sup
t≥0

∣∣∣∣∣d�̃fj

dt�̃

∣∣∣∣∣ �k,N,δ |||f |||rhs for j = 1, . . . , 2
(
N − 1 − �̃

)
, �̃ = 0, . . . , N − 1,

(2.85d)
∞̂

0

∣∣∣∣d�fj

dt�

∣∣∣∣2 dt �k,N,δ |||f |||2rhs for j = 1, . . . , 2 (N − �) − 1, � = 0, . . . , N. (2.85e)

Lemma 2.11 will be useful for the treatment of the nonlinear problem (1.25) in §3. 
Furthermore, it enables us to properly define suitable function spaces for our solution u, 
the initial data u(0), and the right-hand side f :
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Definition 2.12. For k ≥ 0, N ≥ 1, and 0 < δ < 1
2 we define the spaces U = U(k, N, δ), 

U0 = U0(k, N, δ), and F = F (k, N, δ) as the closure of all smooth u : [0, ∞)2 → R, 
u(0) : [0, ∞) → R, or f : [0, ∞)2 → R with |||u|||sol < ∞, 

∣∣∣∣∣∣u(0)
∣∣∣∣∣∣

init < ∞, or |||f |||rhs < ∞, 
respectively.

Note that in view of Lemma 2.11 the coefficients of the expansion of u ∈ U , u(0) ∈ U0, 
or f ∈ F at x = 0 is still defined, so that the representation of the norms in (2.71), 
(2.73), and (2.74) remain valid. Also note that a theorem in the sense of “H = W ” 
holds, that is, we obtain the same space if we define our function spaces in the sense of 
Definition 2.12 or as the space of all locally integrable u : (0, ∞)2 → R for which (1.30)
holds true locally almost everywhere to order O(x2N+1) and the norm |||u|||sol is finite. 
This is also the case for the spaces U0 and F . We refer to [16, Lem. B.3, Lem. B.4] for 
details in an analogous situation.

2.6. The resolvent equation

In this section, we start with lifting the arguments of §2.2–§2.4 to mathematical rigor. 
At the core of our reasoning is a solid understanding of the resolvent problem to (1.19a). 
Suppose we are given initial data u|t=0 = u(0) satisfying the boundary condition (1.19b). 
Using the method of lines, at time δt > 0 sufficiently small we obtain an approximate 
solution u(δt) to (1.19) by solving the ordinary differential equation (ODE)

u(δt) − u(0)

δt
+ Au(δt) = f (δt) for x > 0, (2.86)

where the right-hand side is averaged over the interval (0, δt), i.e., f (δt) := 1
δt

´ δt

0 f(t) dt. 
Setting g := f (δt) + 1

δtu(0) and writing u := u(δt) and λ := 1
δt , we arrive at the resolvent 

equation

λu + Au = g for x > 0, (2.87)

where A 
(1.20)= ∂x

(
x3 + x2) ∂3

x = x−1p(D) + x−2q(D) with D = x∂x, and p(ζ) and q(ζ)
are as in (1.21). Additionally observe that g|x=0 = 0 by compatibility with (1.19b). We 
note that, since (2.87) is not time-dependent anymore, we cannot find a rescaling as 
in the time-dependent setting (1.19) to eliminate the small constant δt, or the large 
constant λ in (2.87), respectively.

Our aim is to construct solutions to the ODE (2.87), having suitable asymptotic 
properties as x ↘ 0 and x ↗ ∞. The basic idea is to construct two-parameter solution 
families in a right-neighborhood of x = 0 and for x 
 1 and to match these solution 
families using the coercivity of A in form of (2.11):
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Proposition 2.13. Suppose λ > 0 and g ∈ C∞ ([0, ∞)) with g|x=0 = 0 satisfies

lim sup
x→∞

∣∣∣∣eν4 4√λx djg

dxj
(x)
∣∣∣∣ < ∞ for all j ∈ N0 and ν ∈

[
0,

1√
2

)
. (2.88)

Then the resolvent equation (2.87) has exactly one locally integrable solution u : (0, ∞) →
R with |u|2, 1

2
< ∞, |(D − 1)u|1 < ∞, 

∣∣(D − 1)2u
∣∣
1 < ∞, and u|x=0 = 0. This solution 

obeys u ∈ C∞ ([0, ∞)) and satisfies (2.88).

Here, we give a summary of the arguments based on a similar reasoning contained in 
[16, §6].

Proof of Proposition 2.13. Step 1: A solution family close to the contact line. As x ↘ 0
and for λ > 0 fixed, the term ∼ x−2 on the left-hand side of (2.87) is dominant. First, 
we may reformulate (2.87) in form of a fixed-point problem

u = T [u] := S(g − λu) + a1x + a2x2 for x �λ 1, (2.89)

where a1, a2 ∈ R are free parameters and S is the inverse of A such that dj

dxj Sg = 0 for 
j = 0, 1, 2. Note that an explicit representation of S in terms of (singular) integrals is 
straight-forward by using the factorization of A as in (2.46):

A = x−2(D − 1)2(D − 2)B, where B := x(D − 2) + D = (x + 1)3D(x + 1)−2.

Further note that from (2.15) and (2.16), i.e., dk

dxk A = Ak
dk

dxk , where

Ak = x−1pk(D) + x−2qk(D)

with

pk(D) = D(D + k)(D − (1 − k))(D − (2 − k)),

qk(D) = D(D − 1)(D − (1 − k))(D − (2 − k)),

we can derive

Ak = x−2(D − 1)(D + k − 1)(D + k − 2)Bk

with Bk := x(D + k − 2) + D = (x + 1)3−kD(x + 1)k−2,
(2.90)

which generalizes (2.46). Since D − γ = x1+γ d
dxx−γ and due to uniqueness of S if 

dSg (0) = d2Sg
2 (0) = 0, we have after four integrations from x = 0
dx dx
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dk (Sg)
dxk

(x)

= (x + 1)2−k

xˆ

0

x1ˆ

0

x2ˆ

0

x3ˆ

0

(x1 + 1)k−3x2−k
1 x−1

2 xk
3x4

(
dkg

dxk

)
(x4)dx4

x4

dx3

x3

dx2

x2

dx1

x1

= x2(x + 1)2−k

˘

[0,1]4

(r1x + 1)k−3r2
1rk

2 rk+1
3 r4

(
dkg

dxk

)
(r1r2r3r4x)dr4

r4

dr3

r3

dr2

r2

dr1

r1
.

(2.91)

Note that S is defined through (2.91) with k = 0, so that by uniqueness of S under 
the constraint dj

dxj Sg|x=0 = 0 for j = 0, 1, 2, the general formula (2.91) is valid for 
all k ∈ N0. Then, one may verify that a fixed-point argument can be carried out in a 
right-neighborhood of the origin x = 0 using ‖·‖∞-based norms:

Take ‖g‖ := maxk=1,...,K max0≤x≤ε

∣∣∣ dkg
dxk (x)

∣∣∣ with K ∈ N arbitrary. From (2.91) for 
0 ≤ x ≤ ε ≤ 1 and k ≥ 1 it follows:∣∣∣∣dkSg

dxk
(x)
∣∣∣∣ ≤ x2 max

{
(x + 1)2−k, (x + 1)−1}˘

[0,1]4

r2
1rk

2 rk+1
3 r4

dr4

r4

dr3

r3

dr2

r2

dr1

r1

× sup
0≤x≤ε

∣∣∣∣dkg

dxk
(x)
∣∣∣∣

≤ x2

k(k + 1) sup
0≤x≤ε

∣∣∣∣dkg

dxk
(x)
∣∣∣∣ ,

whence

‖Sg‖ ≤ ε2

2 ‖g‖ . (2.92)

We apply estimate (2.92) to (2.89) for fixed a1, a2 ∈ R and note that

• T maps the space {u : u(0) = 0 and ‖u‖ < ∞} into itself,
• for u(1) and u(2) with 

∥∥u(1)
∥∥ < ∞ and 

∥∥u(2)
∥∥ < ∞ we have

∥∥∥T [u(1)
]

− T
[
u(2)
]∥∥∥ ≤ λε2

2

∥∥∥u(1) − u(2)
∥∥∥ ,

that is, T is a self map for ε <
√

2
λ =

√
2δt.

Thus, the contraction-mapping theorem yields for every fixed (a1, a2) ∈ R2 a unique 
fixed-point u in {u : ‖u‖ < ∞} provided ‖g‖ < ∞. Due to the choice of the norm ‖·‖
and the fact that K can be chosen arbitrarily large, we have u ∈ C∞ ([0, 1]) and inverting 
S, we see that u is a solution to the resolvent problem (2.87).
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Denote by u(1) and u(2) the solutions u to (2.89) with g ≡ 0 and (a1, a2) = (1, 0)
or (a1, a2) = (0, 1), respectively. We also write u =: T�g for the solution u to (2.89)
with (a1, a2) = (0, 0). These solutions can be extended to the whole interval (0, ∞) by 
standard theory.

Step 2: A solution family as x → ∞. The above reasoning shows that we have a 
two-parameter family of solutions that are well-behaved as x ↘ 0. For constructing 
solutions with analogous features as x → ∞, note that now the terms ∼ x−1 and ∼ x−2

are small compared to the addend λu in (2.87), so that we need to adapt our arguments.
First take r := 4 4

√
x with r ≥ 0, so that equation (2.87) changes to(

λ + d4

dr4

)
u + r−1Q

(
r−1,

d
dr

)
u = g for r > 0, (2.93)

where Q 
(
r−1, d

dr

)
is a fourth-order linear operator in ∂r with coefficients that are 

bounded for r ≥ 1. The operator λ + d4

dr4 is simple and a fundamental solution G, 
fulfilling (

λ + d4

dr4

)
G = δ0 with lim

r→±∞
G(r) = 0, (2.94)

can be found using the fundamental system of λ +∂4
r , i.e., by looking for the fourth roots 

of −λ. Note that with r̆ := 4
√

λr and Ğ := λG, the dependence on λ in (2.94) disappears 
and we are in the same situation as in [16, Eq. (6.25)], that is, we have

G(r) =

⎧⎨⎩
1

λ
√

2 sin
(

4√λr√
2

)
e

4√
λr√
2 − 1

λ
√

2 cos
(

4√λr√
2

)
e

4√
λr√
2 for r < 0,

− 1
λ

√
2 sin

(
4√

λr√
2

)
e−

4√
λr√
2 − 1

λ
√

2 cos
(

4√
λr√
2

)
e−

4√
λr√
2 for r < 0.

(2.95)

Cutting off with ηR, where ηR(r) := η(r/R) and η ∈ C∞(R) fulfills η|
(
−∞, 1

2
] ≡ 0 and 

η|[1,∞) ≡ 1, we can then express u as a fixed point

u = G ∗
(

ηRg − r−1Q

(
r,

d
dr

)
u

)
for r ≥ 2, (2.96)

which is the same problem as the one treated in [16, §6.3] giving a solution T
g := u ∈
C∞ ((R, ∞)), where R 
 1, with decay (2.88) (coming from the decay of g, cf. (2.95), 
and the transformation r = 4 4

√
x) provided g ∈ C∞ ((R, ∞)) fulfills (2.88) as well (cf. [16, 

Def. 6.2, Lem. 6.6] for details). Note, however, that this only gave us a particular solution 
to (2.87). The more subtle part is to find two linearly independent solutions to the 
homogeneous version of (2.87). Here, the problem is that setting g ≡ 0 in (2.96), our 
fixed-point iteration will merely select the trivial solution u ≡ 0. This requires a more 
involved change of variables, also taking terms ∼ r−1 into account. This is done by 
substituting u =: rβreμrũ and g =: rβreμr g̃ in (2.93), where μ = −1±i

2 and β ∈ R is 
chosen suitably such that



1218 M.V. Gnann et al. / Advances in Mathematics 347 (2019) 1173–1243
((
μ + d

dr

)4

+ 1
)

ũ + r−2Q̃

(
r−1,

d
dr

)
ũ = g̃ for r > 0,

where Q̃
(
r−1, d

dr

)
is a fourth-order linear operator in d

dr with coefficients that are 
bounded for r ≥ 1. A solution can be found by a contraction principle through inverting 
the linear operator 

(
μ + d

dr

)4 + 1. We refer to [16, §6.3] for details in an analogous case. 
Take real and imaginary parts and denote these smooth and in the sense of (2.88) de-
caying real-valued solutions by u(3) and u(4). Again, we can extend u(3) and u(4) to the 
whole interval (0, ∞) by standard theory.

Step 3: Global solutions to the resolvent problem. In summary, we have obtained a 
two-dimensional solution manifold with suitable regularity properties as x ↘ 0 and a 
two-dimensional solution manifold with suitable decay properties as x → ∞. Our aim is 
to construct a solution to (2.87) with suitable (decay/regularity) properties as x ↘ 0 and 
x ↗ ∞. This can be achieved by employing a uniqueness result for the resolvent equation 
(2.87). The latter can be obtained using the (partial) coercivity of the operator A given 
through (2.11): Test the homogeneous equation (2.87) with u in the inner product (·, ·)0
assuming that |u|2, 1

2
, |(D − 1)u|1, and 

∣∣(D − 1)2u
∣∣
1 are finite. This gives

0 = (λu + Au, u)0 ≥ λ |u|20 + c
(

|u|22, 1
2

+ |(D − 1)u|21 +
∣∣(D − 1)2u

∣∣2
1

)
for some c > 0. Then we obtain in particular |u|2, 1

2
= 0 and therefore u ≡ 0.

Let us first demonstrate that the above sketched uniqueness result for (2.87) in partic-
ular implies that the functions u(1), u(2), u(3), u(4) are linearly independent and thus form 
a fundamental system of solutions to (2.87): Suppose that there are a1, a2, a3, a4 ∈ R

with

a1u(1) + . . . + a4u(4) = 0 for all x > 0.

Hence, in particular u := a1u(1) + a2u(2) = −a3u(3) − a4u(4) is a solution to the homo-
geneous resolvent equation (2.87) that (including derivatives) decays super-algebraically 
as x → ∞ in the sense of (2.88), and is smooth in x = 0 with u|x=0 = 0. This implies 
in particular that the norms |u|2, 1

2
, |(D − 1)u|1, and 

∣∣(D − 1)2u
∣∣
1 are finite, and so by 

uniqueness necessarily u ≡ 0. Then linear independence of (u(1), u(2)) and (u(3), u(4)), 
respectively, also implies a1 = . . . = a4 = 0.

Now take a smooth g with g|x=0 = 0 and sufficient decay as x → ∞. We know that 
T
g − T�g is a solution to the homogeneous resolvent equation (2.87) and therefore can 
be written as a linear combination of u(1), . . . , u(4), i.e.,

T
g − T�g = a1u(1) + a2u(2) − a3u(3) − a4u(4) for some a1, . . . , a4 ∈ R.

Define u := T�g + a1u(1) + a2u(2) = T
g + a3u(3) + a4u(4). From the first equality we 
learn that u is smooth in x = 0 with u|x=0 = 0 and from the second equality we know 
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that u decays in the sense of (2.88). This implies finiteness of |u|2, 1
2
, |(D − 1)u|1, and ∣∣(D − 1)2u

∣∣
1.

Hence, we have proved existence and uniqueness of solutions to (2.87) for g smooth 
with g|x=0 = 0 and super-algebraic decay as x → ∞ in the sense of (2.88) under the 
assumption |u|2, 1

2
< ∞, |(D − 1)u|1 < ∞, and 

∣∣(D − 1)2u
∣∣
1 < ∞. This solution fulfills 

u ∈ C∞ ([0, ∞)), u|x=0 = 0, and meets the decay estimates (2.88). �
2.7. Rigorous treatment of the linear equation

2.7.1. Statement of results
The goal of this section is to prove Propositions 2.4, from which Proposition 2.10

follows immediately, since all arguments in §2.3 and §2.4 have been rigorous. To this end, 
consider again the time-discrete problem (2.86) for which we can prove the analogue of 
the differential estimate (2.33):

Lemma 2.14. Suppose that k ≥ 2, δt > 0, and f, u(0) ∈ C∞ ([0, ∞)), with f|x=0 = 0 and 

u
(0)
|x=0 = 0, satisfy the decay properties (2.88). Then the solution u ∈ C∞ ([0, ∞)), with 

u|x=0 meeting (2.88), satisfies

1
δt

(∣∣∣Dkũ(δt)
∣∣∣2
α̃

+ C̃
∣∣∣ũ(δt)

∣∣∣2
α̃

−
∣∣∣Dkũ(0)

∣∣∣2
α̃

− C̃
∣∣∣ũ(0)

∣∣∣2
α̃

)
+
∣∣∣ũ(δt)

∣∣∣2
k+2,α̃+ 1

2

+
∣∣∣ũ(δt)

∣∣∣2
k+2,α̃+1

�k,α̃

∣∣∣∣˜xf (δt)
∣∣∣∣2
k−2,α̃− 1

2

+
∣∣∣∣f̃ (δt)

∣∣∣∣2
k−2,α̃−1

(2.97a)

1
δt

(∣∣∣∣Dkû(δt)
∣∣∣∣2
α̌

+ Č

∣∣∣∣û(δt)
∣∣∣∣2
α̌

−
∣∣∣∣Dkû(0)

∣∣∣∣2
α̌

− Č

∣∣∣∣û(0)
∣∣∣∣2
α̌

)
+
∣∣∣∣û(δt)

∣∣∣∣2
k+2,α̌+ 1

2

+
∣∣∣∣û(δt)

∣∣∣∣2
k+2,α̌+1

�k,α̌

∣∣∣∣
̂

xf (δt)
∣∣∣∣2
k−2,α̌− 1

2

+
∣∣∣∣f̂ (δt)

∣∣∣∣2
k−2,α̌−1

(2.97b)

where α̃ and α̌ are in the coercivity ranges of Ã and Ǎ, respectively (cf. Lemma 2.2 and 
Lemma 2.3), and C̃ = C̃ (k, α̃) > 0 and Č = Č (k, α̌) > 0 (j = 1, 2) only depend on k
and α̃ or α̌, respectively.

The following interpolation estimate is valid, which is crucial for being able to give 
the initial value at {t = 0} (the trace in time) a precise notion:

Lemma 2.15. For T ∈ (0, ∞] and any locally integrable w, w(i), w(ii) : (0, T ) ×(0, ∞) → R

with w = w(i) + w(ii) we have
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sup
t≥0

|w|2k,γ �k,γ

∣∣w|t=0
∣∣2
k,γ

+
T̂

0

(∣∣∣∂tw
(i)
∣∣∣2
k−2,γ− 1

2

+
∣∣∣∂tw

(ii)
∣∣∣2
k−2,γ−1

)
dt

+
T̂

0

(
|w|2k+2,γ+ 1

2
+ |w|2k+2,γ+1

)
dt, (2.98)

where γ ∈ R and k ≥ 2.

Lemma 2.14 can be used to construct solutions to the linear problem (1.19) and to 
rigorously derive the parabolic maximal-regularity estimates (2.38) and (2.39):

Proposition 2.16. Suppose k ≥ 2 and α̃ and α̌ are in the coercivity ranges of the opera-
tors Ã and Ǎ (α̃ ∈ (0, 1) and α̌ ∈

(
1 −
√

5
6 , 3

2

)
are sufficient, cf. (2.21) and (2.25) of 

Lemma 2.2 and Lemma 2.3). Assume T ∈ (0, ∞] and suppose that u(0) : (0, ∞) → R

and f : (0, T ) × (0, ∞) → R are locally integrable with∣∣∣ũ(0)
∣∣∣
k,α̃

< ∞,
∣∣∣ũ(0)

∣∣∣
k,α̌

< ∞

as well as

T̂

0

(∣∣∣x̃f
∣∣∣2
k−2,α̃− 1

2

+
∣∣∣f̃ ∣∣∣2

k−2,α̃−1

)
dt < ∞,

T̂

0

(∣∣∣x̂f
∣∣∣2
k−2,α̌− 1

2

+
∣∣∣f̂ ∣∣∣2

k−2,α̌−1

)
dt < ∞.

Then there exists a locally integrable solution u : (0, T ) × (0, ∞) → R to (1.19) fulfilling 
the parabolic maximal-regularity estimates

sup
t∈[0,T )

|ũ|2k,α̃ +
T̂

0

(
|∂tx̃u|2k−2,α̃− 1

2
+ |∂tũ|2k−2,α̃−1 + |ũ|2k+2,α̃+ 1

2
+ |ũ|2k+2,α̃+1

)
dt

�k,α̃

∣∣ũ|t=0
∣∣2
k,α̃

+
T̂

0

(∣∣∣x̃f
∣∣∣2
k−2,α̃− 1

2

+
∣∣∣f̃ ∣∣∣2

k−2,α̃−1

)
dt

(2.99a)

and

sup
t∈[0,T )

|ǔ|2k,α̌ +
T̂

0

(∣∣∂tx̂u
∣∣2
k−2,α̌− 1

2
+
∣∣∂tû

∣∣2
k−2,α̌−1 + |ǔ|2k+2,α̌+ 1

2
+ |ǔ|2k+2,α̌+1

)
dt

�k,α̌

∣∣ǔ|t=0
∣∣2
k,α̌

+
T̂

0

(∣∣∣x̂f
∣∣∣2
k−2,α̌− 1

2

+
∣∣∣f̂ ∣∣∣2

k−2,α̌−1

)
dt.

(2.99b)
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A uniqueness result holds under weaker conditions

Proposition 2.17. For T ∈ (0, ∞] suppose that u : (0, T ) ×(0, ∞) → R is locally integrable 
and solves (1.19) distributionally on the time interval (0, T ) with homogeneous initial 
data u(0) ≡ 0 and right-hand side f ≡ 0 such that one of the following conditions holds 
true

(a) We have 
´ T

0

(
|ũ|24,α̃+ 1

2
+ |ũ|24,α̃+1

)
< ∞, where α̃ is in the coercivity range of Ã

(α̃ ∈ (0, 1) is sufficient, cf. (2.21) of Lemma 2.2).
(b) We have 

´ T

0

(
|ǔ|24,α̌+ 1

2
+ |ǔ|24,α̌+1

)
< ∞, where α̌ is in the coercivity range of Ǎ

(α̌ ∈
(

1 −
√

5
6 , 3

2

)
is sufficient, cf. (2.25) of Lemma 2.3).

Then u ≡ 0. In particular the solution u constructed in Proposition 2.16 is unique.

As a corollary of Propositions 2.16 and 2.17 we can infer that Proposition 2.4 and 
Propostion 2.10 have to hold true as well.

2.7.2. Proofs

Proof of Lemma 2.14. Since the proof in essence only uses coercivity of Ã or Ǎ and the 
fact that the operators are of order four, we restrict ourselves to proving estimate (2.97a).

We first apply D − 1 to equation (2.86) and get (cf. (1.32))

1
δt

(
ũ(δt) − ũ(0)

)
+ Ãũ(δt) = f̃ (δt) (2.100)

Next, we test (2.100) with ũ(δt) in the inner product (·, ·)α̃, so that

1
δt

(∣∣∣ũ(δt)
∣∣∣2
α̃

−
(

ũ(0), ũ(δt)
)

α̃

)
+
(

Ãũ(δt), ũ(δt)
)

α̃
=
(

f̃ (δt), ũ(δt)
)

α̃
. (2.101)

Using the elementary estimate

(
ũ(0), ũ(δt)

)
α̃

≤ 1
2

∣∣∣ũ(0)
∣∣∣2
α̃

+ 1
2

∣∣∣ũ(δt)
∣∣∣2
α̃

,

coercivity of Ã (cf. Lemma 2.2) and Young’s inequality for the right-hand side as for the 
arguments leading from (2.29) to (2.30), we obtain

1
δt

(∣∣∣ũ(δt)
∣∣∣2
α̃

−
∣∣∣ũ(0)

∣∣∣2
α̃

)
+
(∣∣∣ũ(δt)

∣∣∣2
2,α̃+ 1

2

+
∣∣∣ũ(δt)

∣∣∣2
2,α̃+1

)
�α̃

(∣∣∣∣˜xf (δt)
∣∣∣∣2
α̃− 1

2

+
∣∣∣∣f̃ (δt)

∣∣∣∣2
α̃−1

)
.

(2.102)
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Estimate (2.102) is the discrete analogue of the differential estimate (2.30). For upgrading 

it to a strong estimate, apply Dk to (2.100) and test the resulting equation with Dkũ(δt)

in the inner product (·, ·)α̃. This gives

1
δt

(∣∣∣Dkũ(δt)
∣∣∣2
α̃

−
(

Dkũ(0), Dkũ(δt)
)

α̃

)
+
(

Dkũ(δt), DkÃũ(δt)
)

α̃
=
(

Dkf̃ (δt), Dkũ(δt)
)

α̃
.

(2.103)

Again we have (
Dkũ(δt), Dkũ(0)

)
α̃

≤ 1
2

∣∣∣Dkũ(δt)
∣∣∣2
α̃

+ 1
2

∣∣∣Dkũ(0)
∣∣∣2
α̃

and we may treat the other terms in (2.103) as done in the context of going from (2.31)
to (2.32), so that

1
δt

(∣∣∣Dkũ(δt)
∣∣∣2
α̃

−
∣∣∣Dkũ(0)

∣∣∣2
α̃

)
+
∣∣∣ũ(δt)

∣∣∣2
k+2,α̃+ 1

2

− C̃
∣∣∣ũ(δt)

∣∣∣2
α̃+ 1

2

+
∣∣∣ũ(δt)

∣∣∣2
k+2,α̃+1

− C̃
∣∣∣ũ(δt)

∣∣∣2
α̃+1

�k,α̃

∣∣∣∣˜xf (δt)
∣∣∣∣2
k−2,α̃− 1

2

+
∣∣∣∣f̃ (δt)

∣∣∣∣2
k−2,α̃−1

.

(2.104)

Adding a multiple of (2.102) to (2.104), we arrive at (2.97a). �
Proof of Lemma 2.15. By approximation, we may assume without loss of generality that 
w is smooth and continuous up to the boundary. Then we can compute, using a standard 
interpolation estimate (cf. [16, Lem. B.1]),

d
dt

|w̃|2k,γ = 2
(

∂tw
(i), w

)
k,γ

+ 2
(

∂tw
(ii), w

)
k,γ

�k,γ

∣∣∣∂tw
(i)
∣∣∣2
k−2,γ− 1

2

+ |w|2k+2,γ+ 1
2

+
∣∣∣∂tw

(ii)
∣∣∣2
k−2,γ−1

+ |w|2k+2,γ+1 .

Integrating this inequality, we immediately obtain (2.98). �
Proof of Proposition 2.16. The arguments for proving (2.99b) are analogous to those for 
proving (2.99a), so we concentrate on proving the latter. For simplicity we may further 
assume T < ∞. Take J ∈ N, δt := T

J , and take piece-wise time averages of the right-hand 

side f according to f (jδt) := 1
δt

´ jδt

(j−1)δt
f (t′) dt′ where j ∈ N. Note that by approximation 

(cf. Definition 2.12) we can assume f to be smooth and rapidly decaying in the sense of 
(2.88). We discretize the linear problem (1.19) as in (2.86), i.e.,

u(jδt) − u((j−1)δt)
+ Au(jδt) = f (jδt) for j ≥ 1. (2.105)
δt
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Proposition 2.13 yields a smooth solution u(jδt) : [0, ∞) → R with decay as in (2.88). 
In particular, estimates (2.97) of Lemma 2.14 are satisfied, so we may start out with 
(2.97a) at time step jδt, i.e.,

∣∣∣Dkũ(jδt)
∣∣∣2
α̃

+ C̃
∣∣∣ũ(jδt)

∣∣∣2
α̃

−
∣∣∣∣Dk ˜u((j−1)δt)

∣∣∣∣2
α̃

− C̃

∣∣∣∣ ˜u((j−1)δt)
∣∣∣∣2
α̃

+ δt

(∣∣∣ũ(jδt)
∣∣∣2
k+2,α̃+ 1

2

+
∣∣∣ũ(jδt)

∣∣∣2
k+2,α̃+1

)

�k,α̃ δt

(∣∣∣∣˜xf (jδt)
∣∣∣∣2
k−2,α̃− 1

2

+
∣∣∣∣˜f (jδt)

∣∣∣∣2
k−2,α̃−1

)
.

Summation over j = 1, . . . , J ′, where J ′ ∈ {1, . . . , J}, gives

∣∣∣∣Dkũ(J ′δt)
∣∣∣∣2
α̃

+ C̃

∣∣∣∣ũ(J ′δt)
∣∣∣∣2
α̃

+
J ′∑

j=1
δt

(∣∣∣ũ(jδt)
∣∣∣2
k+2,α̃+ 1

2

+
∣∣∣ũ(jδt)

∣∣∣2
k+2,α̃+1

)

�k,α̃

∣∣∣Dkũ(0)
∣∣∣2
α̃

+ C̃
∣∣∣ũ(0)

∣∣∣2
α̃

+
J ′∑

j=1
δt

(∣∣∣∣˜xf (jδt)
∣∣∣∣2
k−2,α̃− 1

2

+
∣∣∣∣˜f (jδt)

∣∣∣∣2
k−2,α̃−1

)
. (2.106)

By interpolation and noting that the second line of (2.106) is increasing in J ′, we have

max
j=1,...,J

∣∣∣ũ(jδt)
∣∣∣2
k,α̃

+
J∑

j=1
δt

(∣∣∣ũ(jδt)
∣∣∣2
k+2,α̃+ 1

2

+
∣∣∣ũ(jδt)

∣∣∣2
k+2,α̃+1

)

�k,α̃

∣∣∣ũ(0)
∣∣∣2
k,α̃

+
J∑

j=1
δt

(∣∣∣∣f̃ (jδt,1)
∣∣∣∣2
k−2,α̃− 1

2

+
∣∣∣∣f̃ (jδt,2)

∣∣∣∣2
k−2,α̃−1

)
. (2.107)

Now, we define a piece-wise in time constant right-hand side φJ and interpolate linearly 
in time for our approximate solution ψJ , that is,

φJ(t, x) :=
J∑

j=1
f (jδt)(x)1[(j−1)δt,jδt)(t) =

J∑
j=1

1
δt

jδtˆ

(j−1)δt

f (t′, x) dt′1[(j−1)δt,jδt)(t),

(2.108a)

ψJ(t, x) :=
J∑

j=1

(
t − (j − 1)δt

δt
u(jδt)(x) + jδt − t

δt
u((j−1)δt)

)
1[(j−1)δt,jδt)(t). (2.108b)

Then we note that

sup |ψJ |2k,α̃ ≤ 2 max
j=1,...,J

∣∣∣ũ(jδt)
∣∣∣2
k,α̃

(2.109a)

t∈[0,T )
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and

T̂

0

(∣∣∣ψ̃J

∣∣∣2
k+2,α̃+ 1

2

+
∣∣∣ψ̃J

∣∣∣2
k+2,α̃+1

)
dt ≤ 2

J∑
j=1

δt

(∣∣∣ũ(jδt)
∣∣∣2
k+2,α̃+ 1

2

+
∣∣∣ũ(jδt)

∣∣∣2
k+2,α̃+1

)
(2.109b)

as well as

T̂

0

(∣∣∣φ̃J

∣∣∣2
k−2,α̃− 1

2

+
∣∣∣φ̃J

∣∣∣2
k−2,α̃−1

)
dt =

J∑
j=1

δt

(∣∣∣∣˜xf (jδt)
∣∣∣∣2
k−2,α̃− 1

2

+
∣∣∣∣˜f (jδt)

∣∣∣∣2
k−2,α̃−1

)
.

(2.109c)

Utilizing (2.109) in (2.107), we get

sup
t∈[0,T )

∣∣∣ψ̃J

∣∣∣2
k,α̃

+
T̂

0

(∣∣∣ψ̃J

∣∣∣2
k+2,α̃+ 1

2

+
∣∣∣ψ̃J

∣∣∣2
k+2,α̃+1

)
dt

�k,α̃

∣∣∣ũ(0)
∣∣∣2
k,α̃

+
T̂

0

(∣∣∣x̃φ
J

∣∣∣2
k−2,α̃− 1

2

+
∣∣∣φ̃

J

∣∣∣2
k−2,α̃−1

)
dt. (2.110)

For getting control of the time derivative ∂tψJ (defined almost everywhere in [0, T ) by 
virtue of (2.108b)), observe that for j ∈ {1, . . . , J} and t ∈ ((j − 1)δt, jδt) we have

∂tψJ = u(jδt) − u((j−1)δt)

δt

(2.105)= −Au(jδt) + f (jδt),

so that with (2.108) we obtain

∂tψJ + AψJ = φJ + A
(

ψJ − u(jδt)
)

where j ∈ {1, . . . , J}, t ∈ ((j − 1)δt, jδt) .

(2.111)

In exactly the same manner as in the time-continuous case (cf. (2.35), (2.36)), we obtain 

control on 
∣∣∣∂tx̃ψ

J

∣∣∣
k−2,α̃− 1

2

and 
∣∣∣∂tψ̃J

∣∣∣
k−2,α̃−1

, that is, (2.110) upgrades to

sup
t∈[0,T )

∣∣∣ψ̃J

∣∣∣2
k,α̃

+
T̂

0

(∣∣∣∂tx̃ψ
J

∣∣∣2
k−2,α̃− 1

2

+
∣∣∣∂tψ̃J

∣∣∣2
k−2,α̃−1

)
dt

+
T̂ (∣∣∣ψ̃J

∣∣∣2
k+2,α̃+ 1

2

+
∣∣∣ψ̃J

∣∣∣2
k+2,α̃+1

)
dt
0
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�k,α̃

∣∣∣ũ(0)
∣∣∣2
k,α̃

+
T̂

0

(∣∣∣x̃φ
J

∣∣∣2
k−2,α̃− 1

2

+
∣∣∣φ̃

J

∣∣∣2
k−2,α̃−1

)
dt.

Furthermore, observe that by Jensen’s and Hölder’s inequality

T̂

0

(∣∣∣x̃φ
J

∣∣∣2
k−2,α̃− 1

2

+
∣∣∣φ̃

J

∣∣∣2
k−2,α̃−1

)
dt

(2.108a)=
J∑

j=1

jδtˆ

(j−1)δt

1
(δt)2

⎛⎜⎜⎝
∣∣∣∣∣∣∣

jδtˆ

(j−1)δt

x̃f (t′) dt′

∣∣∣∣∣∣∣
2

k−2,α̃− 1
2

+

∣∣∣∣∣∣∣
jδtˆ

(j−1)δt

f̃ (t′) dt′

∣∣∣∣∣∣∣
2

k−2,α̃−1

⎞⎟⎟⎠dt

≤
J∑

j=1

⎛⎜⎝ 1
δt

⎛⎜⎝ jδtˆ

(j−1)δt

∣∣∣x̃f (t)
∣∣∣
k−2,α̃− 1

2

dt

⎞⎟⎠
2

+ 1
δt

⎛⎜⎝ jδtˆ

(j−1)δt

∣∣∣f̃ (t)
∣∣∣
k−2,α̃−1

dt

⎞⎟⎠
2⎞⎟⎠

≤
J∑

j=1

⎛⎜⎝ jδtˆ

(j−1)δt

∣∣∣x̃f (t)
∣∣∣2
k−2,α̃− 1

2

dt +
jδtˆ

(j−1)δt

∣∣∣f̃ (t)
∣∣∣2
k−2,α̃−1

dt

⎞⎟⎠
=

T̂

0

(∣∣∣x̃f (t)
∣∣∣2
k−2,α̃− 1

2

+
∣∣∣f̃ (t)

∣∣∣2
k−2,α̃−1

)
dt

and therefore

sup
t∈[0,T )

∣∣∣ψ̃J

∣∣∣2
k,α̃

+
T̂

0

(∣∣∣∂tx̃ψ
J

∣∣∣2
k−2,α̃− 1

2

+
∣∣∣∂tψ̃J

∣∣∣2
k−2,α̃−1

)
dt

+
T̂

0

(∣∣∣ψ̃J

∣∣∣2
k+2,α̃+ 1

2

+
∣∣∣ψ̃J

∣∣∣2
k+2,α̃+1

)
dt

�k,α̃

∣∣∣ũ(0)
∣∣∣2
k,α̃

+
T̂

0

(∣∣∣x̃f (t)
∣∣∣2
k−2,α̃− 1

2

+
∣∣∣f̃ (t)

∣∣∣2
k−2,α̃− 1

2

)
dt. (2.112)

Note that the root of the first two lines of (2.112) defines a norm for ψJ up to adding 
ax, where a is constant in time, which is fixed by the initial datum u(0). Taking the 
limit J → ∞ we infer that a subsequence of ψJ weak-∗-converges to a locally integrable 
function u : (0, T ) × (0, ∞) → R. By weak lower semi-continuity, estimate (2.112) turns 
into (2.99a) in the limit J → ∞. Because of Lemma 2.15, necessarily u|t=0 = u(0)

holds true. Furthermore, due to (2.111), equation (1.19a), i.e., ∂tu + Au = f , is satisfied 
distributionally. �



1226 M.V. Gnann et al. / Advances in Mathematics 347 (2019) 1173–1243
Proof of Proposition 2.17. We concentrate on proving Proposition 2.17 under the as-
sumption (a). We take a test function η : R → [0, 1] with η|[−1,1] = 1 and supp η ⊂ [−2, 2], 
and define ηn := η(s/n), where s := ln x and n ∈ N. Next, we apply ηn(D − 1) to equa-
tion (1.19a) and test the resulting equation with ηnũ in the inner product (·, ·)α̃ to the 
result

(ηn∂tũ, ηnũ)α̃ +
(
ηnÃũ, ηnũ

)
α̃

= 0. (2.113)

Now employing coercivity of Ã (cf. Lemma 2.2) is not directly possible, since we need 
to commute ηn with the operator Ã. Note that every term in the commutator 

[
ηn, Ã

]
must contain at least one derivative D = ∂s acting on ηn, giving a factor n−1. Hence, 
we can conclude that there exists a constant c̃ = c̃ (α̃) such that

(
ηnÃũ, ηnũ

)
α̃

≥ c̃
(

|ηnũ|22,α̃+ 1
2

+ |ηnũ|22,α̃+1

)
− Rn, (2.114)

where Rn = Rn(t) is a uniformly integrable remainder (one may recognize that through 
integration by parts it is up to a multiplicative constant dominated by |ũ|22,α̃+ 1

2
+|ũ|22,α̃+1) 

with Rn(t) → 0 as n → ∞ almost everywhere in t ∈ (0, T ). By arguments analogous to 
those in the context of (2.35) and (2.36), we have

T̂

0

(
|∂tx̃u|2k−2,α̃− 1

2
+ |∂tũ|2α̃−1

)
dt �

∞̂

0

(
|ũ|24,α̃+ 1

2
+ |ũ|24,α̃+ 1

2

)
dt < ∞,

that is, we have ũ ∈ W 1,2 ((0, T ); L2
loc((0, ∞))

)
. In particular, u|t=0 is well-defined and 

we arrive at

(ηn∂tũ, ηn∂tũ)α̃ = 1
2

d
dt

|ηnũ|2α̃ . (2.115)

Utilizing (2.114) and (2.115) in (2.113) gives after integration in time

sup
t∈(0,T )

|ηnũ|2α̃ + c̃

T̂

0

(
|ηnũ|22,α̃− 1

2
+ |ηnũ|22,α̃−1

)
dt ≤

T̂

0

Rn dt. (2.116)

Taking n → ∞ in (2.116), we note that by dominated convergence the right-hand side 
vanishes and therefore supt∈(0,T ) |ũ|α̃ = 0, i.e., (D −1)u = ũ = 0. Hence, u ∈ ker{D −1}, 
which implies u(t, x) = u1(t)x. Using this in (1.19a) gives

0 = ∂tu1x + Au1x
(1.20)= du1

dt
x for (t, x) ∈ (0, T ) × (0, ∞)

whence
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du1

dt
= 0 for t ∈ (0, T ),

which together with the initial condition u1|t=0 = 0 amounts to u1 ≡ 0. �
3. Nonlinear theory

3.1. Main results

Our aim is to prove that the nonlinearity N (u) (defined in (1.26) and with a structure 
detailed in (1.27)) fulfills the following nonlinear estimate:

Proposition 3.1. Suppose N ≥ 1, k ≥ 3, and 0 < δ �k,N 1. Then for |||·|||sol and |||·|||rhs
defined as in (2.71) and (2.73), we have

|||N (u) − N (ũ)|||rhs �k,N,δ (|||u|||sol + |||ũ|||sol) |||u − ũ|||sol (3.1)

for all smooth u, ̃u ∈ U with |||u|||sol �k,N,δ 1, |||ũ|||sol �k,N,δ 1.

The combination of Proposition 2.10 and Proposition 3.1, and a standard fixed-point 
argument yield existence, uniqueness, and stability for the nonlinear problem (1.25), i.e.,

∂tu + Au = N (u) for t, x > 0,

u = 0 for t > 0, x = 0,

subject to the initial condition u|t=0 = u(0), where A and N (u) are given through (1.20), 
(1.26), and (1.27). The main theorem reads as follows:

Theorem 3.2. Suppose that N ≥ 1, k ≥ 3, and 0 < δ < 1
2 . Then there exists ε > 0

such that for initial data u(0) ∈ U0 with 
∣∣∣∣∣∣u(0)

∣∣∣∣∣∣
init ≤ ε, the nonlinear problem (1.25)

with initial condition u|t=0 = u(0) has exactly one locally integrable solution u ∈ U . This 
solution fulfills the a-priori estimate |||u|||sol �k,N,δ

∣∣∣∣∣∣u(0)
∣∣∣∣∣∣

init. Furthermore, we have 
|||u(t)|||init → 0 as t → ∞, that is, the traveling wave (1.10) is asymptotically stable.

Note that by estimates (2.85a) and (2.85b) of Lemma 2.11 also regularity in time and 
a-priori estimates for the coefficients uj (j = 1, . . . , 2N + 2) follow, that is, we have:

Corollary 3.3. In the situation of Theorem 3.2 it holds

u(t, x) = u1(t)x + u2(t)x2 + . . . + u2N (t)x2N + RN (t, x)x2N+1 as x ↘ 0, (3.2)

where the remainder RN (t, x) and the coefficients uj fulfill
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(a) RN ∈ L2 ((0, ∞); BC0 ([0, ∞))
)

with

∞̂

0

sup
x≥0

|RN (t, x)|2 dt �k,N,δ

∣∣∣∣∣∣∣∣∣u(0)
∣∣∣∣∣∣∣∣∣2

init
,

(b) d�uj

dt� ∈ BC� ([0, ∞)) for j = 1, . . . , 2(N − �) and � = 0, . . . , N such that

sup
t≥0

∣∣∣∣d�uj

dt�

∣∣∣∣ �k,N,δ

∣∣∣∣∣∣∣∣∣u(0)
∣∣∣∣∣∣∣∣∣

init
,

(c) d�uj

dt� ∈ L2 ([0, ∞)) for j = 1, . . . , 2(N − �) + 1 and � = 0, . . . , N such that

∞̂

0

∣∣∣∣d�uj

dt�

∣∣∣∣2 dt �k,N,δ

∣∣∣∣∣∣∣∣∣u(0)
∣∣∣∣∣∣∣∣∣2

init
.

Proof of Theorem 3.2. Denote by S : U0 × F → U the linear solution operator con-
structed in Proposition 2.10. Then the nonlinear problem (1.25) turns into the fixed-point 
equation

u = T [u] := S
(

u(0), N (u)
)

, (3.3)

where u(0) ∈ U0 with 
∣∣∣∣∣∣u(0)

∣∣∣∣∣∣
init ≤ ε and ε > 0 will be determined in what follows. 

For 0 < ω �k,N,δ 1 and u, u(1), u(2) ∈ U with u(1)
|t=0 = u(0), u(2)

|t=0 = u(0), |||u|||sol ≤ ω, ∣∣∣∣∣∣u(1)
∣∣∣∣∣∣

sol ≤ ω, and 
∣∣∣∣∣∣u(2)

∣∣∣∣∣∣
sol ≤ ω, we have by Proposition 2.10 and Proposition 3.1

|||T [u]|||sol

(2.84),(3.3)
�k,N,δ

∣∣∣∣∣∣∣∣∣u(0)
∣∣∣∣∣∣∣∣∣

init
+ |||N (u)|||rhs

(3.1)
�k,N,δ ε + ω2 (3.4)

and ∣∣∣∣∣∣∣∣∣T [u(1)
]

− T
[
u(2)
]∣∣∣∣∣∣∣∣∣

sol

(3.3)=
∣∣∣∣∣∣∣∣∣S (0, N

(
u(1)
)

− N
(

u(2)
))∣∣∣∣∣∣∣∣∣

sol

(2.84)
�k,N,δ

∣∣∣∣∣∣∣∣∣N (u(1)
)

− N
(

u(2)
)∣∣∣∣∣∣∣∣∣

rhs

(3.1)
�k,N,δ ω

∣∣∣∣∣∣∣∣∣u(1) − u(2)
∣∣∣∣∣∣∣∣∣

sol
. (3.5)

Under the assumptions 0 < ε �k,N,δ ω �k,N,δ 1, estimates (3.4) and (3.5) imply 
existence of a unique fixed-point to (3.3) in {u : |||u|||sol ≤ ω}.

Note that this does not imply the uniqueness assertion of Theorem 3.2 up to now 
as uniqueness of u only holds in the closed ball {u : |||u|||sol ≤ ω}. Therefore observe 
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that by approximation with smooth functions (cf. Definition 2.12) we need to have 
|||u|||sol,[0,T ] →

∣∣∣∣∣∣u(0)
∣∣∣∣∣∣

init, where |||u|||sol,[0,T ] is the analogue of (2.71) on a fixed time 
interval [0, T ] instead of [0, ∞). This implies in particular |||u|||sol,[0,T ] ≤ ω if we choose 
T > 0 sufficiently small. As the above fixed-point argument also holds on a fixed time 
interval [0, T ], we infer that u is unique on the interval [0, T ]. A contradiction argument 
then yields global uniqueness.

Finally, the trace estimate, Lemma 2.15, allows to approximate u by smooth and 
compactly supported functions in the norm |||·|||sol, which by (2.71) and (2.74) controls 
also |||·|||init. Therefore, we necessarily have |||u(t)|||init → 0 as t → ∞. �
Proof of Corollary 3.3. As already noted, parts (b) and (c) follow by combining esti-
mates (2.85a) and (2.85b) of Lemma 2.11 with the a-priori estimate

|||u|||sol �k,N,δ

∣∣∣∣∣∣∣∣∣u(0)
∣∣∣∣∣∣∣∣∣

init

of Theorem 3.2.
For proving the bound on RN , observe that by a standard embedding

|||u|||2sol

(2.71)
≥

∞̂

0

∣∣∣∣∣∣u −
2N∑
j=1

ujxj

∣∣∣∣∣∣
2

1,2N+δ

dt
(3.2)

�k,N,δ

∞̂

0

|RN |21,−1+δ dt �
∞̂

0

sup
x≥0

x2−2δ |RN |2 dt

(3.6a)

and

|||u|||2sol

(2.71)
≥

∞̂

0

∣∣∣∣∣∣u −
2N+1∑
j=1

ujxj

∣∣∣∣∣∣
2

1,2N+1+δ

dt
(3.2)

�k,N,δ

∞̂

0

|RN − u2N+1|21,δ dt

�
∞̂

0

sup
x≥0

x−2δ |RN − u2N+1|2 dt. (3.6b)

Take η ∈ C∞ ([0, ∞)) with η|[0,1] ≡ 1 and η|[2,∞) ≡ 0. Then almost everywhere in {t > 0}
we have

sup
x≥0

|RN | ≤ sup
x≥0

|ηRN | + sup
x≥0

|(1 − η)RN |

� sup
x≥0

|η (RN − u2N+1)| + sup
x≥0

|(1 − η)RN | + |u2N+1|

�δ sup
x≥0

x−δ |η (RN − u2N+1)| + sup
x≥0

x1−δ |(1 − η)RN | + |u2N+1| (3.7)

Combining (3.6) and (3.7) with (2.85b) of Lemma 2.11, we have proved part (a). �
The goal of the remaining sections (cf. §3.2–§3.4) is to prove Proposition 3.1.
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3.2. Observations on the structure of the nonlinearity

In D-notation we derive from (1.27) and the identity ∂s
x = x−sD(D−1) . . . (D−s +1)

that N (u) is a linear combination (with constant coefficients) of terms of the form7

x−4 × (1 + vx)−3−s′ ×

⎛⎝ s′
0∏

σ=0
(D − σ)

⎞⎠(x3 + x2)×
(

s0−1∏
σ=0

(D − σ)
)(

x3 + x2)

×
n×

j=1

(
sj−1∏
σ=0

(D − σ)
)

vx,

(3.8)

where s′
0, s0, s1, . . . , sn, n meet (1.27b), i.e.,

s′
0 + s0 + s1 + · · · + sn = 3, s0 ≤ 1, n ∈ {2, · · · , 6}, s′ := #{sj : j ≥ 1 and sj ≥ 1},

and u 
(1.18)= (3x2 + 2x)v. These nonlinear terms need to be estimated in the norm |||·|||rhs

(cf. (2.73)), that is, terms f of the above form (3.8) need to be estimated in

|||f |||2rhs :=
∑

(
α,�̃,m̃

)
∈IN−1,δ

m̃∑
r̃=0

sup
t≥0

∣∣∣∣∣∣∂ �̃
t f −

�α�+m̃+r̃∑
j=1

d�̃fj

dt�̃
xj

∣∣∣∣∣∣
2

k+4
(
N−�̃

)
−3,α+m̃+r̃

+
∑

(α,�,m)∈JN,δ

m∑
r=0

∞̂

0

∣∣∣∣∣∣∂�
t f −

�α�+m+r−1∑
j=1

d�f
j

dt�
xj

∣∣∣∣∣∣
2

k+4(N−�)−1,α+m+r−1

dt.

Notice that the notation f = f
x+1 has been introduced in (2.26). Since we need to subtract 

the power series expansion of f to arbitrary orders in the norm |||·|||rhs, it appears more 
favorable to expand (1 + vx)−3−s′ in a power series in vx, so that N (u) can be written 
as a convergent series of terms of the form

c x−4 ×

⎛⎝ s′
0∏

σ=0
(D − σ)

⎞⎠(x3 + x2)×
(

s0−1∏
σ=0

(D − σ)
)(

x3 + x2)×
n×

j=1

(
sj−1∏
σ=0

(D − σ)
)

vx,

(3.9a)

where c = c(s′
0, s0, s1, . . . , sn) is a real constant and s′

0, s0, s1, . . . , sn, n fulfill

s′
0 + s0 + s1 + · · · + sn = 3, s0 ≤ 1, and n ∈ N with n ≥ 2. (3.9b)

7 Note that here and in what follows, derivatives only act on the factors separated by ×.
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3.2.1. The structure of the sup-parts
What follows is tailored to the first line of (2.73). Without loss of generality assume 

s1 ≥ . . . ≥ sn (so that in particular sj = 0 for j ≥ 4). Then we notice that the factors

x−1

⎛⎝ s′
0∏

σ=0
(D − σ)

⎞⎠(x3 + x2) and x−1

(
s0−1∏
σ=0

(D − σ)
)(

x3 + x2)
can be combined with(

s1−1∏
σ=0

(D − σ)
)

vx and
(

s2−1∏
σ=0

(D − σ)
)

vx,

respectively, using u 
(1.18)= (3x2 + 2x)v. To this end, observe

x−1

⎛⎝ s′
0∏

σ=0
(D − σ)

⎞⎠ (x3 + x2) ×
(

s1−1∏
σ=0

(D − σ)
)

vx

=

(∏s′
0

σ=0(3 − σ)
)

x +
(∏s′

0
σ=0(2 − σ)

)
3x + 2 (3x2 + 2x)

(
s1−1∏
σ=0

(D − σ)
)

vx,

(3.10)

where 

(∏s′
0

σ=0(3−σ)
)

x+
(∏s′

0
σ=0(2−σ)

)
3x+2 is a smooth function and any number of D-derivatives 

of it is bounded. Next we observe that the following operator identity holds true:

(D − σ) (3x2 + 2x)−1 = (3x2 + 2x)−1
(

D − σ − 6x2 + 2x

3x2 + 2x

)
= (3x2 + 2x)−1

(
D − σ − 1 − 3x

3x + 2

)
Combining this with (1.18) and (3.10) and iterating the procedure, we note that

(3x2 + 2x)
(

s1−1∏
σ=0

(D − σ)
)

vx = x−1(3x2 + 2x)
(

s1∏
σ=0

(D − σ)
)

v

= x−1

(
s1+1∏
σ=1

(
D − σ − 3x

3x + 2

))
u.

(3.11)

Now notice that

D
3x = 3x (D + 1) −

(
3x

)2

, (3.12)
3x + 2 3x + 2 3x + 2
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so that (3.9)–(3.12) and an analogous reasoning for the second pair of factors 
x−1

(∏s0−1
σ=0 (D − σ)

) (
x3 + x2) and 

(∏s2−1
σ=0 (D − σ)

)
vx yield that the nonlinearity N (u)

can be written as a convergent series

c(x) x−4 ×
(

s1∏
σ=1

(D − σ)
)

u ×
(

s2∏
σ=1

(D − σ)
)

u ×
n×

j=3

(
sj−1∏
σ=0

(D − σ)
)

vx, (3.13a)

where c(x) = c(x, s1, . . . , sn) is a smooth real-valued function in x ∈ (0, ∞) such that ∣∣Djc
∣∣ is bounded for every j ∈ N0, and s1, . . . , sn, n fulfill

s1 + . . . + sn ≤ 5 and n ∈ N with n ≥ 2. (3.13b)

Here we have renumbered the two factors with u appearing, as in view of (3.11) and 
(3.12) we need to allow for cases in which no derivatives are acting on them. Note that 
in view of the operations in (3.10) and (3.11) not necessarily s1 ≥ s2 ≥ . . . ≥ sn but we 
still need to have

s1 ≤ 4, s2 ≤ 2, s3 ≤ 1, and sj = 0 if j ≥ 4. (3.13c)

Further note that 
∣∣Dj (x−τ c(x))

∣∣ in (3.13) is bounded, where we have introduced the 
notation

τ := max {0, 2 − s1} + max {0, 1 − s2} . (3.14)

The fact that xτ can be factored out from c(x) has two reasons:

(a) If s1 + . . .+sn = 0 in (3.9), then the term in (3.9a) is only non-vanishing if (s′
0, s0) =

(2, 1). In this case, we have

(∏s′
0

σ=0(3 − σ)
)

x +
(∏s′

0
σ=0(2 − σ)

)
3x + 2 = 6x

3x + 2

in (3.10) and we obtain an additional factor x in c(x).
(b) Commuting 3x

3x+2 as done in (3.12) leads to another factor x in c(x) as well.

One may easily verify that the combination of (a) and (b) leads to the definition of τ
as in (3.14). Since from (1.19b) and sufficient regularity of u at x = 0 we have that the 
nonlinear term in (3.13) behaves as c(x)O (xν) as x ↘ 0 where ν :=

∑n
j=1 sj − 2, this 

shows that indeed the boundary condition (1.22) is satisfied individually for each term 
in (3.13a).
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3.2.2. A general argument for estimating products involving Taylor polynomials
In the norm |||N (u)|||2rhs (cf. (2.73)) we are dealing with the subtraction of the Taylor 

polynomial of a product to a certain order that we will denote by J in this section. 
Suppose that f, g : [0, ∞) → R are smooth and consider the term fg −

∑J
j=0(fg)jxj , 

where

(fg)j = 1
j!

dj

dxj
(fg)|x=0 =

j∑
j′=0

1
j′!

dj′
f|x=0

dxj′
1

(j − j′)!
dj−j′

g|x=0

dxj−j′ =
j∑

j′=0
fj′gj−j′ .

Observe

fg −
J∑

j=0
(fg)jxj =

⎛⎝f −
J∑

j′=0
fj′xj′

⎞⎠ g +

⎛⎝ J∑
j′=0

fj′xj′
g −

J∑
j=0

(fg)jxj

⎞⎠
=

⎛⎝f −
J∑

j′=0
fj′xj′

⎞⎠ g +
J∑

j′=0
fj′xj′

⎛⎝g −
J−j′∑
j′′=0

gj′′xj′′

⎞⎠ , (3.15)

where 
(

f −
∑J

j′=0 fj′xj′
)

g = O
(
xJ+1) and fj′xj′

(
g −
∑J−j′

j′′=0 gj′′xj′′
)

= O
(
xJ+1) as 

x ↘ 0. This simple mechanism will be used in what follows to reduce the subtraction of 
the Taylor polynomial to the subtraction of the Taylor polynomial from the individual 
factors.

3.2.3. The structure of the sup-parts (continued)
We continue with §3.2.1 and concentrate on the structure of the terms in the first line 

of the squared norm |||N (u)|||21 (cf. (2.73)). We first consider the expression

sup
t≥0

∣∣∣∣∣∣∂ �̃
t f −

�α�+m̃+r̃∑
j=1

d�̃fj

dt�̃
xj

∣∣∣∣∣∣
2

k+4
(
N−�̃

)
−3,α+m̃+r̃

,

where α ∈ {δ, 1 + δ}, 0 ≤ �̃ + m̃ ≤ N − 1 − �α�, 0 ≤ r̃ ≤ m̃, and f has to be replaced by 
(3.13a). Distributing �̃ time derivatives onto the factors in (3.13a), we need to estimate 
a term of the form

f := c(x) x−4 ×
(

s1∏
σ=1

(D − σ)
)

∂ �̃1
t u ×

(
s2∏

σ=1
(D − σ)

)
∂ �̃2

t u ×
n×

j=3

(
sj−1∏
σ=0

(D − σ)
)

∂
�̃j

t vx

(3.16)

in

sup
t≥0

∣∣∣∣∣∣f −
�α�+m̃+r̃∑

j=1
fjxj

∣∣∣∣∣∣
2

( )̃ , (3.17)

k+4 N−� −3,α+m̃+r̃
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with �̃1 + . . . + �̃n = �̃, and where s1, . . . , sn and n meet (3.13b) and (3.13c). Applying 
the product decomposition of §3.2.2 (cf. (3.15)), we note that we can factor out the finite 
terms ∥∥∥∥∥∥c −

�α�+m̃+r̃+4∑
j=0

cjxj

∥∥∥∥∥∥
2

k+4
(
N−�̃

)
−3,�α�+m̃+r̃+4

and max
j=τ,...,�α�+m̃+r̃+4

|cj |2 ,

where

‖w‖κ,γ := max
j=0,...,κ

∥∥Djw
∥∥

γ
and ‖w‖γ := sup

x∈(0,∞)

∣∣x−γw(x)
∣∣ . (3.18)

Hence, in this case we are left with estimating a term of the form (3.16) with c(x) = xι

and ι = τ, . . . , �α� + m̃ + r̃ (where τ is defined as in (3.14)) in (3.17), that is, we need to 
estimate terms of the form

f :=
(

s1∏
σ=1

(D − σ)
)

∂ �̃1
t u ×

(
s2∏

σ=1
(D − σ)

)
∂ �̃2

t u ×
n×

j=3

(
sj−1∏
σ=0

(D − σ)
)

∂
�̃j

t vx (3.19a)

in

sup
t≥0

∣∣∣∣∣∣f −
�α�+m̃+r̃+4−ι∑

j=1
fjxj

∣∣∣∣∣∣
2

k+4
(
N−�̃

)
−3,α+m̃+r̃+4−ι

, (3.19b)

where s1 ≤ 4, s2 ≤ 2, s3 ≤ 1, sj = 0 for j ≥ 4, and

s1 + · · · + sn ≤ 5, n ∈ N with n ≥ 2, and ι = τ, . . . , �α� + m̃ + r̃ + 4, (3.19c)

where τ is defined in (3.14). In order to obtain a factorization of the norm in terms 

of |||u|||sol, we will derive control of factors 
∥∥∥∥∂ �̃j

t vx −
∑μ

j=0
d�̃(vx)j

dt�̃
xj

∥∥∥∥
sj ,μ

and 

∣∣∣∣d�̃(vx)j

dt�̃

∣∣∣∣ by 

|||u|||sol. Note that for �̃j = 0, sj = 0, and μ = 0 we have that 
∥∥∥∂ �̃j

t vx

∥∥∥
sj ,0

= ‖vx‖BC0([0,∞))

controls the Lipschitz constant of v. Smallness of the Lipschitz constant is crucial for 
invertibility of the von Mises transform (1.11). Lipschitz control will be the objective 
of §3.3. As a result, we can essentially reduce the situation to the bilinear case of two 
factors of derivatives of u.

3.2.4. The structure of the L2-parts
We turn our attention to the second line of (2.73), i.e.,

∞̂∣∣∣∣∣∣∂�
t f −

�α�+m+r−1∑
j=0

d�f
j

dt�
xj

∣∣∣∣∣∣
2

dt, (3.20)

0 k+4(N−�)−1,α+m+r−1
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where α ∈
{

− 1
2 + δ, δ, 1

2 + δ, 1 + δ
}

, 0 ≤ � + m ≤ N −
⌊1

2 + α
⌋
, and 0 ≤ r ≤ m. Here, 

f needs to be replaced by the nonlinearity N (u), so that the terms (3.9a) obtain an 
additional factor (x + 1)−1. In comparison to the reasoning in §3.2.1, we may already 
distribute the D-derivatives of the norm in space in (3.20) at this stage. Then we apply 

the transformation u 
(1.18)= (3x2 + 2x)v to a factor Dvx on which the maximal number of 

D-derivatives acts and otherwise take vx itself. By a reasoning analogous to the one in 
§3.2.1 leading to (3.13), we conclude that the nonlinearity can be written as a convergent 
series of terms of the form

c(x)x−2 × Dr1

(
s1∏

σ=1
(D − σ)

)
u ×

n×
j=2

Drj

(
sj−1∏
σ=0

(D − σ)
)

vx, (3.21a)

where c = c (x, s1, . . . , sn, r1, . . . , rn) is smooth in x ∈ [0, ∞), 
∣∣Djc

∣∣ is bounded on [0, ∞), 
and

s1 +. . .+sn ≤ 4, r1 +. . .+rn ≤ k+4(N −�)−1, and n ∈ N with n ≥ 2. (3.21b)

By the above choice of u, we additionally have

sj + rj ≤ max
{

3 +
⌊

k + 4(N − �) − 1
2

⌋
, k + 4(N − �) − 1

}
for j ≥ 2. (3.21c)

As done in the context of (3.13) (cf. items (a) and (b) there), we infer that ∣∣∣Dj
(

x−τ ′
c(x)

)∣∣∣ is bounded, where

τ ′ := max {0, 1 − s1} + max

⎧⎨⎩0, 1 − max{0, s1 − 1} −
n∑

j=2
sj

⎫⎬⎭ . (3.22)

Thus it can be verified that each term in (3.21a) satisfies the boundary condition (1.22)
individually.

Now factoring out c as done in §3.2.3 and distributing time derivatives onto the 
individual factors in (3.21a), we are left with estimating a term of the form

f := Dr1

(
s1∏

σ=1
(D − σ)

)
∂�1

t u ×
n×

j=2
Drj

(
sj−1∏
σ=0

(D − σ)
)

∂
�j

t vx (3.23a)

in

∞̂

0

∣∣∣∣∣∣f −
�α�+m+r+1−ι∑

j=0
fjxj

∣∣∣∣∣∣
2

α+m+r+1−ι

dt, (3.23b)

where (3.21b), (3.21c), �1 + . . . + �n = �, and
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ι = τ ′, . . . , �α� + m + r + 1 (3.23c)

with τ ′ as in (3.22), hold true.

3.3. Lipschitz control and supremum bounds

The following two estimates are essential in order to factorize the nonlinearity.

Lemma 3.4. Suppose N ≥ 1, k ≥ 3, and 0 < δ < 1. Then for �̃ ∈ {0, . . . , N − 1}, 
κ ∈

{
0, . . . , k + 4

(
N − �̃

)
− 1
}

, and μ ∈
{

0, . . . , 2
(
N − �̃ − 1

)}
we have the estimate

max

⎧⎨⎩sup
t≥0

∥∥∥∥∥∥∂ �̃
t vx −

μ∑
j=0

d�̃(vx)j

dt�̃
xj

∥∥∥∥∥∥
κ,μ

, max
j=0,...,μ

sup
t≥0

∣∣∣∣∣d�̃(vx)j

dt�̃

∣∣∣∣∣
⎫⎬⎭ �k,N,δ |||u|||sol (3.24)

for every locally integrable u : (0, ∞)2 → R, where v
(1.18)= (3x2 + 2x)−1u and ‖·‖k,μ was 

defined in (3.18).

Proof. Throughout the proof, all constants in the estimates may depend on k, N , and δ. 
We first observe that for a smooth cut off η : [0, ∞) → R with η|[0,1] = 1 and η|[2,∞) = 0
we have by a standard embedding

∥∥∥∥∥∥∂ �̃
t vx −

μ∑
j=0

d�̃(vx)j

dt�̃
xj

∥∥∥∥∥∥
κ,μ

�

∥∥∥∥∥∥η
⎛⎝∂ �̃

t vx −
μ∑

j=0

d�̃(vx)j

dt�̃
xj

⎞⎠∥∥∥∥∥∥
κ,μ

+

∣∣∣∣∣d�̃(vx)μ

dt�̃

∣∣∣∣∣+
∥∥∥∥∥∥(1 − η)

⎛⎝∂ �̃
t vx −

μ−1∑
j=0

d�̃(vx)j

dt�̃
xj

⎞⎠∥∥∥∥∥∥
κ,μ

�

∣∣∣∣∣∣∂ �̃
t vx −

μ∑
j=0

d�̃(vx)j

dt�̃
xj

∣∣∣∣∣∣
κ+1,μ+δ

+

∣∣∣∣∣d�̃(vx)μ

dt�̃

∣∣∣∣∣+
∣∣∣∣∣∣∂ �̃

t vx −
μ−1∑
j=0

d�̃(vx)j

dt�̃
xj

∣∣∣∣∣∣
κ+1,μ−1+δ

�

∣∣∣∣∣∣∂ �̃
t v −

μ+1∑
j=0

d�̃vj

dt�̃
xj

∣∣∣∣∣∣
κ+2,μ+1+δ

+

∣∣∣∣∣∣∂ �̃
t v −

μ∑
j=0

d�̃vj

dt�̃
xj

∣∣∣∣∣∣
κ+2,μ+δ

, (3.25)

where we have used (vx)j = (j + 1)vj+1 and

∣∣∣∣∣d�̃(vx)μ

dt�̃

∣∣∣∣∣
2

�
2ˆ

1

(
d�̃(vx)μ

dt�̃

)2
dx

x

2
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�
2ˆ

1
2

x−2μ−2δ

⎛⎝∂ �̃
t vx −

μ∑
j=0

d�̃(vx)j

dt�̃
xj

⎞⎠2
dx

x

+
2ˆ

1
2

x2−2μ+2δ

⎛⎝∂ �̃
t vx −

μ−1∑
j=0

d�̃(vx)j

dt�̃
xj

⎞⎠2
dx

x

�

∣∣∣∣∣∣∂ �̃
t vx −

μ∑
j=0

d�̃(vx)j

dt�̃
xj

∣∣∣∣∣∣
2

κ+1,μ+δ

+

∣∣∣∣∣∣∂ �̃
t vx −

μ−1∑
j=0

d�̃(vx)j

dt�̃
xj

∣∣∣∣∣∣
2

κ+1,μ−1+δ

.

(3.26)

We note that v (1.18)= (3x2 + 2x)−1u, so that we have due to (3.25)∥∥∥∥∥∥∂ �̃
t vx −

μ∑
j=0

d�̃(vx)j

dt�̃
xj

∥∥∥∥∥∥
κ,μ

�

∣∣∣∣∣∣∂ �̃
t w −

μ+2∑
j=0

d�̃wj

dt�̃
xj

∣∣∣∣∣∣
κ+2,μ+2+δ

+

∣∣∣∣∣∣∂ �̃
t w −

μ+1∑
j=0

d�̃wj

dt�̃
xj

∣∣∣∣∣∣
κ+2,μ+1+δ

(3.27)

where w := (3x + 2)−1u = xv (in particular vj = wj+1). Applying the decomposition 
principle in §3.2.2 to the product w = (3x + 2)−1u, we have∣∣∣∣∣∣∂ �̃

t w −
μ+2∑
j=0

d�̃wj

dt�̃
xj

∣∣∣∣∣∣
κ+2,μ+2+δ

�
μ+2∑
�=0

∣∣∣∣∣∣∂ �̃
t u −

�∑
j=1

d�̃uj

dt�̃
xj

∣∣∣∣∣∣
κ+2,�+δ

. (3.28)

Similarly, we obtain∣∣∣∣∣∣∂ �̃
t w −

μ+1∑
j=0

d�̃wj

dt�̃
xj

∣∣∣∣∣∣
κ+2,μ+1+δ

�
μ+1∑
�=0

∣∣∣∣∣∣∂ �̃
t u −

�∑
j=1

d�̃uj

dt�̃
xj

∣∣∣∣∣∣
κ+2,�+δ

. (3.29)

Estimates (3.28) and (3.29) in (3.27) yield∥∥∥∥∥∥∂ �̃
t vx −

μ∑
j=0

d�̃(vx)j

dt�̃
xj

∥∥∥∥∥∥
κ,μ

�
μ+2∑
�=0

∣∣∣∣∣∣∂ �̃
t u −

�∑
j=1

d�̃uj

dt�̃
xj

∣∣∣∣∣∣
κ+2,�+δ

. (3.30)

Notice that the right-hand side of (3.30) also bounds maxj=0,...,μ

∣∣∣∣d�̃(vx)j

dt�̃

∣∣∣∣ by (3.26). 

Hence, it remains to prove that the right-hand side of (3.30) can be controlled by the 
norm |||u|||sol. This is an immediate consequence of
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|||u|||2sol

(2.71)
≥

∑
(α,�,m)∈IN,δ

m∑
r=0

sup
t≥0

∣∣∣∣∣∣∂�
t u −

�α�+m+r∑
j=1

d�uj

dt�
xj

∣∣∣∣∣∣
2

k+4(N−�)+1,α+m+r

(3.31)

and the restrictions on κ and μ. �
In a similar way, we can also obtain sup-control on u instead of v:

Lemma 3.5. Suppose N ≥ 1, k ≥ 3, and 0 < δ < 1
2 . Then for �̃ ∈ {0, . . . , N}, κ ∈{

0, . . . , k + 4
(
N − �̃

)}
, and μ ∈

{
1, . . . , 2

(
N − �̃

)}
we have the estimate

max

⎧⎨⎩sup
t≥0

∥∥∥∥∥∥∂ �̃
t u −

μ∑
j=0

d�̃uj

dt�̃
xj

∥∥∥∥∥∥
κ,μ

, max
j=0,...,μ

sup
t≥0

∣∣∣∣∣d�̃uj

dt�̃

∣∣∣∣∣
⎫⎬⎭ �k,N,δ |||u|||sol (3.32)

for every locally integrable u : (0, ∞)2 → R.

Proof. As in the proof of Lemma 3.4 we can show

max

⎧⎨⎩
∥∥∥∥∥∥∂ �̃

t u −
μ∑

j=1

d�̃uj

dt�̃
xj

∥∥∥∥∥∥
κ,μ

,

∣∣∣∣∣d�̃uμ

dt�̃

∣∣∣∣∣
⎫⎬⎭

�δ

∣∣∣∣∣∣∂ �̃
t u −

μ∑
j=1

d�̃uj

dt�̃
xj

∣∣∣∣∣∣
κ+1,μ+δ

+

∣∣∣∣∣∣∂ �̃
t u −

μ−1∑
j=1

d�̃uj

dt�̃
xj

∣∣∣∣∣∣
κ+1,μ−1+δ

.

The terms on the right-hand side of this estimate can be bounded by |||u|||sol due to the 
restrictions on κ and μ (cf. (2.71)). �
3.4. Proof of the main nonlinear estimate

We treat lines 1 and 2 of the squared norm |||f |||2rhs (cf. (2.73)) separately:

3.4.1. sup-control
We continue with the term (3.19) and apply the decomposition principle of §3.2.2

(cf. (3.15)) and estimate (3.24) of Lemma 3.4 with μ = 0 to the product

n×
j=3

(
sj−1∏
σ=0

(D − σ)
)

∂
�̃j

t vx

of (3.19a). Observe that j ≥ 3 and therefore sj ≤ 1 which implies that in the norm 
(3.19b) at most k + 4 

(
N − �̃

)
− 2 D-derivatives act on ∂ �̃

t vx so that in particular κ ≤
k + 4 

(
N − �̃

)
− 1 is satisfied in Lemma 3.4.
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This implies that there exists a constant K > 0 only depending on N , k, and δ such 
that for f as in (3.19a) we have the bound

max
ι=τ,...,�α�+m̃+r̃

sup
t≥0

∣∣∣∣∣∣f −
�α�+m̃+r̃+4−ι∑

j=1
fjxj

∣∣∣∣∣∣
2

k+4
(
N−�̃

)
−3,α+m̃+r̃+4−ι

≤ (K|||u|||sol)
2(n−2)

× max
ι=τ,...,�α�+m̃+r̃+4

sup
t≥0

∣∣∣∣∣∣g −
�α�+m̃+r̃+4−ι∑

j=1
gjxj

∣∣∣∣∣∣
2

k+4
(
N−�̃

)
−3,α+m̃+r̃+4−ι

, (3.33)

where

g :=
(

s1∏
σ=1

(D − σ)
)

∂ �̃1
t u ×

(
s2∏

σ=1
(D − σ)

)
∂ �̃2

t u (3.34)

and all other quantities are as in (3.19) (in particular, we have s1 ≤ 4 and s2 ≤ 2).
Next we apply the decomposition principle of §3.2.2 and estimate (3.32) of Lemma 3.5

with μ = 2 to the second factor in (3.34). Note that

(a) because of s2 ≤ 2 at most k + 4 
(
N − �̃

)
− 1 D-derivatives act on ∂ �̃2

t u,
(b) we have �̃2 ≤ N − 1, i.e., μ ∈ {0, 1, 2} is always allowed.

Items (a) and (b) imply that Lemma 3.5 can be applied, so that we arrive at

max
ι=τ,...,�α�+m̃+r̃

sup
t≥0

∣∣∣∣∣∣g −
�α�+m̃+r̃+4−ι∑

j=1
gjxj

∣∣∣∣∣∣
2

k+4
(
N−�̃

)
−3,α+m̃+r̃+4−ι

≤ (K|||u|||sol)
2

×

⎛⎜⎝K max
ι=τ+s2+1,...,�α�+m̃+r̃+4

sup
t≥0

∣∣∣∣∣∣∂ �̃1
t u −

�α�+m̃+r̃+4−ι∑
j=1

d�̃1uj

dt�̃1
xj

∣∣∣∣∣∣
k+4

(
N−�̃

)
+1,α+m̃+r̃+4−ι

⎞⎟⎠
2

(3.35)

upon enlarging K = K(k, N, δ) > 0. Now recalling that 
(
α, �̃, m̃

)
∈ IN−1 (cf. (2.70)), 

τ + s2 + 1 
(3.14)

≥ 2, and

|||u|||2sol

(2.71)
≥

∑
(α,�,m)∈IN,δ

m∑
r=0

sup
t≥0

∣∣∣∣∣∣∂�
t u −

�α�+m+r∑
j=1

d�uj

dt�
xj

∣∣∣∣∣∣
2

,

k+4(N−�)+1,α+m+r
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we notice that the last factor

max
ι=τ+s2+1,...,�α�+m̃+r̃+4

sup
t≥0

∣∣∣∣∣∣∂ �̃1
t u −

�α�+m̃+r̃+4−ι∑
j=1

d�̃1uj

dt�̃1
xj

∣∣∣∣∣∣
2

k+4
(
N−�̃

)
+1,α+m̃+r̃+4−ι

in (3.35) can be bounded by |||u|||2sol as well, so that (3.35) upgrades to

max
ι=τ,...,�α�+m̃+r̃

sup
t≥0

∣∣∣∣∣∣g −
�α�+m̃+r̃+4−ι∑

j=1
gjxj

∣∣∣∣∣∣
2

k+4
(
N−�̃

)
−3,α+m̃+r̃+4−ι

≤ (K|||u|||sol)
4

. (3.36)

The combination of (3.33) and (3.36) yields

max
ι=τ,...,�α�+m̃+r̃

sup
t≥0

∣∣∣∣∣∣f −
�α�+m̃+r̃+4−ι∑

j=1
fjxj

∣∣∣∣∣∣
2

k+4
(
N−�̃

)
−3,α+m̃+r̃+4−ι

≤ (K|||u|||sol)
2n

,

(3.37)

where f is as in (3.19a). It is crucial to note that K is independent of n, so that the 
series expansion of §3.2 is indeed convergent. Thus we obtain

∑
(
α,�̃,m̃

)
∈IN−1,δ

sup
t≥0

m̃∑
r̃=0

∣∣∣∣∣∣∂ �̃
t f −

�α�+m̃+r̃∑
j=1

d�̃fj

dt�̃
xj

∣∣∣∣∣∣
2

k+4
(
N−�̃

)
−3,α+m̃+r̃

�k,N,δ

(
|||u|||2sol + ‖ũ‖2

sol

)
|||u − ũ|||2sol,

(3.38)

where f = N (u) − N (ũ), |||u|||sol �k,N,δ 1, and |||ũ|||sol �k,N,δ 1, in the particular case 
ũ ≡ 0. In order to establish (3.38) for the case in which ũ �= 0, we may follow the reasoning 
of §3.2 up to the multilinear expression (3.19a). For an n-linear form M observe

M(u, . . . , u) − M (ũ, . . . , ũ) = M (u − ũ, u, . . . , u) + . . . + M (ũ, . . . , ũ, u − ũ) ,

where each of the n factors on the right-hand side can be treated in the same way 
as before, leading to a single |||u − ũ|||2sol instead of |||u|||2sol or |||ũ|||2sol in (3.37) and K

needs to be replaced by Kn
1
n = Ke

log n
n . Since the latter is bounded in n, we arrive at 

estimate (3.38) for ũ �= 0 as well.

3.4.2. L2-control
We continue at the end of §3.2.4 and first apply the decomposition principle of §3.2.2

to u in (3.23), noting that Dr1 (
∏s1

σ=1(D − σ)) ∂�1
t u = O

(
xs1+1) as x ↘ 0. Applying the 

L2-bound in time on the factors containing u (taking s1 + 1 + r1 ≤ k + 4(N − �) + 3
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into account and employing estimate (2.85b) of Lemma 2.11 for the coefficients) and the 
sup-bound in time on those containing v, we can estimate as follows

max
ι=τ ′,...,�α�+m+r+1

∞̂

0

∣∣∣∣∣∣f −
�α�+m+r−1∑

j=0
fjxj

∣∣∣∣∣∣
2

α+m+r+1−ι

dt

≤ (K|||u|||sol)
2 × max

ι=τ ′+s1+1,...,�α�+m+r+1
sup
t≥0

∥∥∥∥∥∥g −
�α�+m+r+1−ι∑

j=0
gjxj

∥∥∥∥∥∥
2

�α�+m+r+1−ι

,

(3.39)

where g :=×n
j=2 Drj

(∏sj−1
σ=0 (D − σ)

)
∂

�j

t vx and K = K(k, N, δ) > 0. For the last factor 
of (3.39) we may use the decomposition principle of §3.2.2 as well as estimate (3.24) of 
Lemma 3.4 and obtain

max
ι=τ ′+s1+1,...,�α�+m+r+1

sup
t≥0

∥∥∥∥∥∥g −
�α�+m+r+1−ι∑

j=0
gjxj

∥∥∥∥∥∥
2

�α�+m+r+1−ι

≤ (K|||u|||sol)
2(n−1)

(3.40)

upon enlarging K = K(k, N, δ). Note that indeed applicability of Lemma 3.4 is guar-
anteed, because �α� + m + r + 1 − ι ≤ 2(N − � − 1) (cf. (2.70) and (3.22)) and due to 
(3.21c), κ in Lemma 3.4 fulfills the bound

κ ≤ max
{

3 +
⌊

k + 4(N − �) − 1
2

⌋
, k + 4(N − �) − 1

}
≤ k + 4(N − �) − 1,

where we need to assume k ≥ 3. Gathering (3.39) and (3.40), we have

max
ι=τ ′,...,�α�+m+r+1

∞̂

0

∣∣∣∣∣∣f −
�α�+m+r+1−ι∑

j=0
fjxj

∣∣∣∣∣∣
2

α+m+r+1−ι

dt ≤ (K|||u|||sol)
2n. (3.41)

Since the constant K in estimate (3.41) is independent of n, the series expansion of §3.2
is convergent and we have

∑
(α,�,m)∈JN,δ

∞̂

0

m∑
r=0

∣∣∣∣∣∣∂�
t f −

�α�+m+r−1∑
j=0

d�f
j

dt�
xj

∣∣∣∣∣∣
2

k+4(2N−�)−1,α+m+r−1

dt

�k,N,δ

(
|||u|||2 + ‖ũ‖2

)
|||u − ũ|||2 ,

(3.42)
sol sol sol
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where f = N (u) − N (ũ), |||u|||sol �k,N,δ 1, and |||ũ|||sol �k,N,δ 1, in the particular case 
ũ ≡ 0. Passing from this particular situation to the case of general ũ follows the lines of 
the respective reasoning in §3.4.1, so that we do not need to discuss this once more.

3.4.3. Conclusion
The combination of (3.38) and (3.42) together with the definition of the norm |||·|||rhs

in (2.73) proves estimate (3.1) of Proposition 3.1 and concludes the proof.
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