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Abstract

We consider the parabolic-elliptic Patlak-Keller-Segel (PKS) model of chemo-
tactic aggregation in two space dimensions which describes the aggregation of
bacteria under chemotaxis. When the mass is equal to 87 and the second moment
is finite (the doubly critical case), we give a precise description of the dynamic as
time goes to infinity and extract the limiting profile and speed. The proof shows
that this dynamic is stable under perturbations. © 2018 Wiley Periodicals, Inc.

1 Introdution

We consider the two-dimensional Patlak-Keller-Segel system,

dru(x,t) — Au(x,t) = =V - (u(x,t)Vce(x,t)),
(1. —Ac(x,t) = u(x,t),
u(x,t =0) =ug >0,

where x € R? and t > 0. This system is generally considered the fundamental
mathematical model for the study of aggregation by chemotaxis of certain microor-
ganisms [14,15,17,29]. From now on we will refer to (1.1) as Patlak-Keller-Segel
(PKS). The first equation describes the motion of the microorganism (u represents
the density of cells) as a random walk with drift up the gradient of the chemoattrac-
tant c. The second equation describes the production and (instantaneous) diffusion
of the chemoattractant. PKS and related variants have received considerable math-
ematical attention over the years, for example, see the review [15] or some of the
following representative works [1-3,5,7,8, 11, 13,16,27,33, 35]. The equation
is L9/2 critical in dimension d . hence it is mass or L1 critical in dimension 2,
namely: if u(z, x) is a solution to (1.1), then for all a € (0, 00), so is

1 r x
ua(t,x):a—zu a—z,g .
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Moreover, if M = 8, then the second moment is also conserved. This justifies
the terminology doubly critical if M = 8x and yields very interesting dynamical
properties. It has been known for some time that (1.1) possesses a critical mass:
if ||ugll1 < 8, then classical solutions exist for all time (see, e.g., [1-3, 5, 35]),
and if ||ug|ly > 8, then all classical solutions with finite second moment blow
up in finite time [5, 16,27] and are known to concentrate at least 877 mass into
a single point at blowup [35] (see also [13,33]). Another important property of
(1.1) that plays a decisive role in our work is the existence (and uniqueness) of
self-similar spreading solutions for all mass M € (0, 8). These are known to be
global attractors for the dynamics if the total mass is less than 87 [5] and for the
purposes of our analysis. The mass is conserved in (1.1):

d
(1.2) o /]RZ u(x,t)dx = 0.
Hence, we set
My = / up(x)dx.
RZ

Notice that the center of mass is also conserved

d
—/ xju(x,t)dx =0 fori € {1,2}.
dt Jr2
Since the solution of the Poisson equation —Ac¢ = u is given by
1
c=¢y, =——1og| | *xu,
2w

the system becomes
u; =V.-(Vu—-uVg,),

(1.3) $u =—5log|-|*u  in[0,T]xR2
u(0) = ug > 0.

In addition, we have that the flow dissipates the free energy

d d 1
(1.4) E]:(u) = E(/Rzulogudx—E/Rzugbudx) <0,

where F is the sum of the entropy and the potential energy. The problem is locally
well-posed in the finite Borel measures space [6], but the question of global exis-
tence requires more conditions. Indeed, we can formally compute a virial identity
for a solution of (1.3):

d
E/Rz u(x,t)|x|? dx
1 2x - (y — x)

= —/ 2x -Vudx + — Ss—u(x,Du(y,t)dy dx =
R2 27 Jrexr2  [X — )
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1 —v)-(y —
=4My + —/ (x =) (y2 x)u(x, Hu(y,t)dy dx
2w JrR2xg2  [x — |

M2
= 4My— 2.
2w
So that all solutions with finite second moment and mass bigger than 87 cannot
be global in time, we also have an estimation on the maximal existence time 7pax
if the second moment of the initial data u¢ is finite,
2
ax E X7 s o
M 0 (MO —8m ) R2

Thus, this virial computation is a heuristic explanation of the following trichotomy:

Tin || 210 (x)dx.

o If fRZ ug(x)dx < 8m, then the solutions are global in time. In addition,
it has been proved that the solutions are spreading [5], and the density
converges to a self-similar profile in rescaled variables.

o If fRZ ug(x)dx > 8, then solutions blow up in finite time [5, 16].

o If [pouo(x)dx = 87 and [ |x|2ug(x)dx < oo, solutions are global
in time but concentrate at the origin in infinite time [3]. In contrast, if
[r2 uo(x)dx = 8 and [g> |x|?ug(x)dx = oo what could happen is not
clear except if the solution initially is sufficiently close to a rescaling Q,
of the stationary solution Q [2].

Indeed, the stationary solution of (1.3) is

8
(1 + x>

its mass is 8, its second moment is infinite, and Q is the unique minimizer up to
symmetries of the free energy F (u) with [po u(x,1)dx = 8.

When My < 8, the solutions are spreading and they converge to a self-similar
profile in rescaled variables with a rate % in [4, 8, 9], whereas if My > 8m the
solutions blow up in finite time. A result in [13] describes the dynamic of the
blowup by using matching asymptotics, where the authors conjectured that the
dynamic should be stable. Recently in [31], the authors proved the stability of the
blowup and also provided a description of the dynamic, but for radial solutions.

More precisely, in [31] they proved the following:

O(x) =

e Universality of the blowup profile: for all z € [0, T),

1 b
M(X,Z) = W(Q + 8)([, m)

with ||g|| 2 — O0ast — T, where
Hg

Mty = VT — e~ V5000,

e Stability of the dynamic under small perturbation in H é (R?) N LY(R?).
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Their proof is based on the modulation theory, which is a strong method for crit-
ical problems. For example, it allows people to prove the stability and to describe
the dynamic of the flow for the nonlinear Schrodinger equation when the mass is
critical [23,24], for the Schrodinger map when the energy is critical [25], and also
for the 1-corotational harmonic heat flow map when the energy is critical [30].

In this paper we are interested in the critical mass case, namely Mo = 8m. The
problem when My = 8 is also energy critical

Fup) = Fu),

and note that we have in this case one more conservation law

(1.5) i/ u(x,t)|x|?>dx = 0.
dt Jr2

On one hand, if My = 8, fR2 uo(x)|x|? dx = +oo and the initial data ug is
sufficiently close to a rescaling Q, of O, then the solution converges to J, when
t — 400 [2]. On the other hand, if My = 87 and fR2 uo(x)|x|?> dx < 400, the
solution exists globally and concentrates in infinite time [3]. The proof is based
on a contradiction argument and a virial identity. When the domain is bounded
in [17], the authors proved that radial solutions u collapse in O at the rate

u(0,1) = 832V (1 4 0(17/? 10g(41)))

as t — +o00o. The authors in [17] used the partial mass equation to remove the
nonlocal difficulty and an argument of subsolutions and supersolutions to bound
the solution from above and below.

When the domain is unbounded the infinite speed of propagation of the heat
semigroup will send some mass to infinity almost instantly, the concentration will
occur only when all the mass 8 is present again in the center of mass. While
all the mass concentrates at the origin when ¢ — 400, the second moment is
ejected to infinity in space. Recently Senba [34] proved the existence of a family of
radial solutions that blow up in infinite time with the speed u(¢,0) ~ log(t + 1)2.
We want to emphasize that the speed found by Senba is different from the one
predicted by the physicists in [10, sec. 3.3.3]. His proof is based on a technique
of matching asymptotics developed by Herrero and Velazquez for the supercritical
mass My > 8m in [13]. The goal of the paper is to find a speed similar to the one
found by the physicists and describe the dynamic in R? associated to that speed
when the mass is critical My = 8m and to prove the stability of that dynamic
under perturbations of the initial data.
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THEOREM 1.1. Forall Ag > 0, there exists jug > 0 such that for all po < jug and
uo initial data of the form

(1.6) up = i(Q(\/);—O)e_x; +§°(\/%))

~ 2 5
where / M e% dy <Aoo
r2 0

and

/ uo(x)dx = 8m, / uo(x)x;dx =0 foralli € {1,2},

(1.7) R R2

I:=/ uo(x)|x|? dx,
RZ

the corresponding solution u blows up in infinite time and satisfies:

e Universality and stability of the profile: There exists C > 0 and A €
CY(Ry) such that for t large enough, we have

1 X _x2 X
(1.8) ”(X’Z):W(Q(Tt))e ” +8(I’Tt)))’
with 5
(5] Gpperici
e g T = g
where A(t) = 1

/log(2¢+1)+O0(log(log(2))
REMARK 1.2. The proof requires a spectral gap bound (see Corollary 3.5 ), which
follows from the study of the spectrum of a linearized operator [9]. As of now
the proof of Corollary 3.5 in the nonradial case requires some eigenvalue bounds
that were only done numerically in [9]. We hope to address this issue rigorously
elsewhere.

REMARK 1.3. Notice that if we select any rescaling of u initially like (1¢)4(x) =
a%uo(ﬁ) for some a > 0, then the solution

Uall, X) = At /a?)2a? (Q(ak(t/az))e " S(Cl_z’ ak(t/az)))

induced by (ug), still behaves asymptotically as in Theorem 1.1.

In the radial case, we can remove the smallness assumption on the initial data,
using the maximum principle on the partial mass equation, namely:

COROLLARY 1.4. Let ug be a radial initial data satisfying (1.7) and

2 2
(1.9) / ol” 2 1) < 400,
r2 0O
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Then there exist C1 > 0, Co > 0, A1(¢), and A»(t) such that the partial mass my,
of the corresponding solution u (see (8.1)) satisfies for t large enough and r = |x|

22 _ar? A2
_C1 e~ CiA] < 87— my(r.1)
A2+ r2 (A% + r2)t|logt| ~
(1.10) o
- CoAde™ 2r C2A3
A3+ r2 (A2 + r2)tllogt|’
with Ai (1) = L and I; > 0 fori € {1,2}.

\/log(2t+ 1)+ O(log(log(?))

The proof of the corollary is given in Section 8.

1.1 Strategy of the Proof

Let’s explain the main ideas of the proof that we think could be applicable to
many other critical problems. The main idea of the proof is to pass by the subcrit-
ical case to reach the critical one. Indeed, the blowup profile of the solution u of
(1.3) is the unique stationary solution Q = m, but we cannot use the lin-
earization around that stationary solution because we need the second moment of u
to be finite and the mass to be 8. Since @ has an infinite second moment and 87
mass, it seems natural to multiply Q by a cutoff function y. However, yQ doesn’t
satisfy a good equation and has an uncontrollable error. The idea is to notice that
the stationary solution of the subcritical case after rescaling converges uniformly
to Q. Indeed, if we rescale (1.3) with the self-similar variables when the mass M
is subcritical, there exists for that M a unique stationary solution 7, that depends
on M and decays exponentially at infinity. Actually, after another rescaling we
prove that n, converges uniformly to Q when M — 8.

Actually, we prove that 1, after a certain rescaling behaves as Q multiplied by a
cutoff function, but the advantage is that n is a stationary solution of some related
equation (2.2). The main difficulty now is that everything depends on the mass,
i.e., the linearized operator and its spectrum, the energy, and the norms that we are
controlling. And since the mass is not fixed, we need that all the inequalities be
uniform with respect to the mass. It appears that the energy that we are controlling
is coercive but not uniformly with respect to the mass. To overcome this difficulty,
we found another bound on the energy coming from a property of the nonlinear
term (see Proposition 6.1). Classically, to describe the dynamic of the blowup we
need to rescale the solution, and the best rescaling is the blowup speed A. Hence,
we renormalize the previous equation with the following change of variables:

1 ds 1 X
mU(S,Y)» TR and y = 0
where A is an unknown to be determined later. Then we obtain

u(t,x) =

A
(1.11) vs—TsAv =V.(Vv—-vVe¢,) where Ayv =V (yv).
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Actually, we don’t rescale (1.3) by A directly, but we arrive at (1.11) in two steps.
In the first step we rescale by the forward self-similar variables to make the sta-
tionary solution of the subcritical case appear. In the second step we rescale by a
certain parameter p that will be defined later such that the combination of these
two rescalings leads to (1.11).

We first start in the second section to set the equations and the bootstrap argu-
ment. In the third section we prove the spectral gap estimate. In the fourth section
we construct an approximate solution, and in the fifth section we do the deriva-
tion of the blowup speed A. In the sixth section we derive a uniform bound on the
potential, and in the seventh section we prove the rigorous control of the error ¢.

REMARK 1.5. The idea of solving the critical problem by passing to the limit in
the subcritical problem was first used by Matano and Merle in [20-22], where they
construct Type II blowup solutions in the energy supercritical heat equation by
passing to the limit in Type I blowup solutions of the energy subcritical heat equa-
tion. The same idea has also been used by Merle, Raphael, and Szeftel in [26],
where the authors constructed scattering bubbles with subcritical mass arbitrarily
close to the minimal mass blowup solution. Our result is true for a nonradial so-
lution under a spectral gap assumption, but in the radial case the spectral gap has
been proved in [9]. Moreover, the speed of concentration that we derive rigor-
ously from the conservation of the second moment is the one found formally by
the physicist [10, sec. 3.3.3].

REMARK 1.6. In this paper we are describing the dynamic of the minimal mass
blowup solutions (M = 8x) in the whole plane R2. Actually, the question of
describing the dynamic of minimal mass blowup solutions for partial differential
equations has become better understood over the past ten years. Especially on
the gKDV equation, Martel, Merle, and Raphael in [19] proved the existence and
uniqueness of a minimal mass blowup solution and gave a sharp description of
the corresponding blowup. Other works in this direction have been done for NLS;
for example, Raphael and Szeftel in [32] proved the existence and uniqueness of a
minimal mass blowup solution for an inhomogeneous version of NLS.

REMARK 1.7. The energy estimates that we are using to close the bootstrap argu-
ment is based on spectral gaps in time-weighted norms. Actually, this has already
been used by Hadzic and Raphael in [12].

1.2 Notation and Conventions
We will use the following conventions:

e C denotes a constant that may change from one line to the next and is
uniform with respect to u.

e For functions f and g, we denote f = O(g) if there exists C uniform
with respect to u such that f < Cg.

e For quantities A and B, we denote A < B if there exists C uniform with
respect to  such that A < CB.
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e (r) denotes /1 + r2,

e For radial functions such as Q, ¢, we keep the same notation for Q(x)
and Q(r) where r = |x| and write A¢p = 0,,¢ + ;a,qs.

2 Bootstrap Argument

2.1 The Subcritical Problem

We expect u to behave like O at the blowup time. Linearizing ¥ around Q
(i.e., u = Q + ¢) is not helpful, since the second moment of Q is infinite, and
we are looking for solutions with finite second moment. Another alternative would
be to multiply the ground state Q by a cutoff function y to have a finite second
moment. However, the error of our solution Q y becomes too large and we cannot
close our estimates. Nevertheless, if we consider the stationary solution of the
subcritical mass problem ns, and we rescale it by a certain parameter w, then
the noo rescaled by p will converge to Q. This sequence Q,, has much better
properties as we will see later. To make n, appear, we rescale (1.3) by the self-
similar variables, using z = % and T = log R(¢) with R(t) = /1 + 2¢ such

that u(x,1) = ﬁozw(%, log R):

drw — Aw — Aw = =V - (wVy),

e ~Ay = w,

where Aw = V - (zw) and

/RZ w(z,1)dz = /Rzu(x,t)dx =87 = /]Rz o (x)dx.

It is well-known that (2.1) has stationary solution n, of mass M for all M < 8.
Actually 1 is the solution of the following equation:

Anoeo + V- (2o — MooV, ) =0,

2.2
(2.2) ¢nm:—%log|-|*nwinR2.

The equation can also be written as
ePnoo—(1217/2)
oo x> ePnoo—(212/2) 7"
The linearized operator around 7 is also well-known:
L =Aw+ V- (zw —wVn,, —NooVuw)

_v. (nwv(% - ¢w))

=V (oo V(IM*w)),

(2.3) —A¢p,, =Noo = My,

MPw = i—d)w.

Noo
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Notice that 7o, can be parametrized by its mass or by its maximum at z = 0. To
emphasize the dependence of n, in M, we will denote 114, as n% Throughout the
paper M will denote the mass of n,. We will parametrize 1, by its maximum and
set no0(0) = %; then if p goes to 0, the mass M = M (u) will go to 8. Hence,
if we rescale no, correctly with u, the maximum of the rescaled no, becomes 8,
which is the maximum of Q. This rescaled no, converges uniformly to Q as u
goes to 0. The following proposition summarizes the previous statements:

= _8 - z. M
PROPOSITION 2.1. Let u = "7 (0) and y = I then pung, (J/iy) — Q)
uniformly as i — 0. Moreover,

Q(y)e‘“'ziz < un(Jmy) < Q(y) forally € R%

This is a direct consequence of Proposition 4.1. Since un% (/i) converges

to Q, it seems natural to rescale (2.1) by using y = % ds ﬁ with w(z,7) =

S odr
12 i .
Mv( N s) where u will be fixed later:
0 bov— Ao — (1 + 5 A0 =~V - (940)
—A¢py = v.

To resume the situation we have three sets of variables (x,?), (z, 1), and (y,s),
which are linked in the following way:

P SN SR
TR YT R JRRG)

ds 1 ds 1
7(t) = log(R(1)), g7 ﬁ» FTh W’

where R(t) = /1 + 2t. We fix s(0) = e to avoid a problem if one divides by s or
if one takes the log of 5. Now we set

0. () = unM ()

hence Q, solves
(2.5) AQu—V- (QMV¢QM) =—uV-(yOu).

Letv = Q, +¢; we will prove later that M(u) = [p2 Qu dy = 87 +2ulog(u)+
O(), which implies that the mass of ¢ will be of order p log(u) since the mass of
v is 8. We need ¢ to be at least of order u to close our estimates; hence we add a
correction to Q. We set Q w = OQu + T, (y) where T, is a correction to insure

that 0, is of mass 87. It will be constructed in Section 4.

2.2 Modulation

In this subsection, we explain how we fix the parameter . We consider initial
data of the form

vo = Quo + €0,
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with 87 mass, a finite second moment / such that f]R{Z gody = 0, and o > 0
is sufficiently small. We will show the existence and uniqueness of the following
decomposition of our solution:

(2.6) v(.5) = Oy +e

where the mass of ¢ is 0. Set

2
2.7) L2Q R?) = {f € L?(R?) such that / f— dx < oo}
H R2 Ou
and

(2.8) Ly, o(R?) = { f € Lp, (R?) such that / f(x)dx=0}.
J73) n R2

In the following lemma we fix j such that (g, | - |?);2 = 0.

LEMMA 2.2 (Modulation). For all A > 0, there exists i > 0 such that for all

Ux € (0,0), v e LZQM such that

(2.9) lo=Ouallzz, = 8(ua) = VAps.

there exist a unique i > 0 and a unique € such that

v(y) = 0u(y) +e(y),

and
(e.] )2 =0.
In addition,
lellz, S B,
M
and

3/2
i — el S 13 [og ()| V2.

PROOF OF LEMMA 2.2. The proof is based on a careful use of the Intermediate
Value Theorem. Given v satisfying (2.9), consider the C! function

F(w) == 0ul Py
From (5.16) we deduce
5 2 c 2
8MF|M=M* = ((auQu)Iu;u*» |- 17) = _M_ + O(llog u«|”) # 0,
*
and from (5.17)
0 F| < —
1222 ~ /1'2‘
It follows for | — pu*| < ’“‘7*

1
F() = F(a) + 9 F (e (1 — i) + O(F)(u —
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and since

~ ~ 1
F(ux) < flv— QM*HLZQM ([Rz 1y1?0u, dy) < Vi log x|,

we deduce that there exists C* such that

* 3 1
px = px £ C*pillog psl?
satisfy
F(u-) <0 and0 F(u4) > 0.
Hence, by the Intermediate Value Theorem there exists i € ((—, i+ ) such that

F(n) =0,
which concludes the proof. The proof of (5.16) and (5.17) is given in Section 5. [J

2.3 Setting Up the Bootstrap Argument

Let ug be as in Theorem 1.1 and let u be the global free energy solution con-
structed in [3]. Consequently, thanks to Lemma 2.2 the solution admits a unique
decomposition on some small time interval [0, T*),

(2.10) u(x,t) =

1 ~ X X
R2(t)u(t) (QM(R(t)m) - E(R(z)\/m’t))’
where
(), 1) = (), |-1*) =0,
and from standard argument (see [18]) u(¢) satisfies u € C1([0, T*)). In the rest

of this paper, we will abuse notation and consider p also as a function of 5. Using
the initial smallness assumption on ¢ and (g, we prove the following proposition:

PROPOSITION 2.3. Let ug be as in Theorem 1.1 and let u be the global free energy
solution constructed in [3]. Assume there exists S* such that for all s € [e, S™),
there exist 1 > 0 and = u(s), a C' function from [e, S*) to R4, u(e) = po,
and

1 Aq
2.11) nis) ——| < .
2s s|log s|
Let us define v(s,y) = uR?u(t,x) = Qu()’) + &(s,y) where y = Rf/ﬁ and
% = # If we assume that for all s € [e, S*)
(2.12) lell7, < Ap,
Qu

then the regime is trapped; in particular when ST* < 5 < 8* we obtain the same
inequalities (2.11) and (2.12) with Ay and A replaced by % and %.

Hence, if one can increase by continuity the size of the interval [e, S*), it will
induce that we can also increase the size of [0, 7).
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3 The Linearized Operator and Its Spectral Gap

In this section, we describe the properties of the linearized operator E,)i obtained
from the linearization around Q.

3.1 Setting Up the Equations
If we plug v(y,s) = Qu(y) + &(y, s) into (2.4) we get

dye + 350, = —V - (eVehe) + (u + g—;)w L AB,) +AD,

3.1)
T A6 V(0,94 V- (V5 )~ V- (D,Ve5,).
Hence,
(3.2) dse = L)e + g—;As +0Ou(s) + N(e) + E,
where
L2e=V-(QuV(M}e)) = Ae+ uAe =V - (eV¢g, + 0uVe):

VQQMM = Vég,, — 1y, which we will

the previous equality comes from the fact that
prove in Proposition 3.1. In addition,
€

MIJ;E = Q—M _¢8-

Note that M /th corresponds to the linearization arround Q, of the free energy
1
F(u) = / ulogu dx — —/ ugp, dx.
R2 2 Jr2
The error term £ comes from the fact that Q w 18 not an exact solution of (2.4). It
is given by
~ ~ ~ ~ l’L ~ ~
(3.3) E = AQM+MAQ;L—V'(QMV¢Q"M)+ﬁAQu—asQu-
We split it into two parts:

E=E+F
with

~ ~ ~ M ~ ~
E=AQu+puAQu—V-(0.V¢5 ) and F = ﬁAQﬂ — 350,
The nonlinear term N (¢) is given by
(3.4) N(e) = =V - (eV¢y).

The linear term ®,, measures the error due to the fact that we are linearizing
around Q and not around Q. Itis given by

Oue) = V-[(Qu— Q) Ve + Vo5 o 1.
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3.2 The Linearized Operator [,ﬁ

We have the following relations between Eﬁ and L%:

o -1 (1)

We now prove fundamental algebraic relations on Q,,, M7, and ﬁ,{z.

PROPOSITION 3.1. Let Q, be the solution of (2.5). Then ¢g,, solves

vl

1 b2
o Algebraic identities for M{L:

2
M@0 = -5 M@0 = i

M
ML(AQy) = 2= 2 = ulyl,

, 1
M (M)MaMnoo(«/ﬁy) = auQu - EAQ[L’
1 M
M;yb(auQu - EAQM) = _(2 - E)
o Algebraic identities for Eﬁ:
£/J;,(8MQM) = —A(Qp). ﬁﬁ(aiQu) = —ud; Ous
'CZL(AQM) = —2uAQy,

1
E;)i (auQu - ZAQM) = 0.

PROOF.
e Derivation of (3.5).
Let us recall the properties of n (z) for M < 8x:

Pt —(217/2)

—~Apu =nl =M — :
nao Jro Pt =72

with M = [p>nM¥ dz < 87 and

¢, (0)
e oo

M _
noo(o) - M/‘ . e¢n%_(|z|2/2)dz
R

or

b (0) = 1og(n§g(0) / 28¢ngg—<|z|z/z> dz) ~ log(M).
R
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Hence if we set q?n M=a+¢,um where

_ 2
a =log(M) — log(/ Pnts~ /z)dz),
RZ

then we get

~ & _ 2
~Adyay = (@) = Pl T,

with ‘;n M 0)=a+9, M 0) = log(n% (0)). Now we see that if we choose
h= ey Y = v and

$0,,(») = G,m (/iLy) —log(n2(0)),
then ¢, solves (3.5) with ¢, (0) = 0 and ¢,Qu. 0)=0.

Differentiation of (3.5) with respect to y.
Moreover, we have by differentiating (3.6) in y

ly|?
log(Q ) = log(8) + ¢g, — L
0; Qu
Q’u, :‘paiQM—M)’i»
then
MP(0: Q) = —1yi.
Hence,

L3, Q) =~ Q.

Differentiation of (3.5) with respect to u.
We see easily by differentiating (3.6) in u that

auQu — ¢ _ |J’|2
QM aMQM 2 ’
which means
y PP

It follows that

Eﬁ(au Ou) ==V-(y0Qu).

Actually, we differentiated Q,, with respect to p without justifying that
0 is smooth with respect to ;. However, this will be done later in Sec-
tion 4 (see (4.21)).



MINIMAL MASS BLOWUP 1971

¢ Differentiation of (3.5) with respect to A.
In addition, if we set Q% (y) = A2Q,(Ay) where A > 0, then

M(w)
27

b0, (Ay) =
Using (3.6), we also get

log() + g3 ().

log(0%) = 10g(8) + dg + (2~ = ) log(3) — 2P
Bl = o8 o 5 | log() — uA*=—-.
If we differentiate the previous equation in A and set A = 1, we deduce

AQU« _ _ y _ _%_ 2
0, ¢rg, = M (AQu) =2 5 wlyl”

It follows that

3.8)

£3(AQy) = ~21AQy.
The relation M’(M)uaMnoAg(ﬂy) =0,0u— ﬁAQM is a consequence

of an easy computation. From this relation and £lyL (0,9u) = —A(Qp),
L(AQ,) = —2uAQ , we deduce that £7,(3, 0, — ﬁAQM) = 0. One
can also recover this from the fact that

1
LEMMA 3.2. The operator QMM,)i : L2QM — LZQM, given by
0 M =1 — Q.
is linear continuous, self-adjoint, and Fredholm. Moreover,
2 * 112
[, Qulatiul < K pul2, .
with K* uniform with respect to 1,
V(u,v) € LZQM X LZQM (Myu,v) = (u, M)v).

.. Yy .72 2 . .. . .
In addition, gMMM : LQu,O — LQu is positive definite and defines an inner
product on LQM,O'

PROOF. We use the following inequality from [31]:

lull oo <1 +H— < lull 2.
A= T S og(r) | Leera1y) Lo
Hence,
MPul2dy < |[ul? +H¢’— /(l—i—lo( )0, d
[, ouMinlay s iy + |l o (1D Q. dy

2
< i,
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The self-adjointness follows from the fact that

for all (u,v) € LZQM X LZQM (Pu,v)p2 = (U, Pv) 2.

It is easy to see that the operator is in the form I — Q¢ with Q¢ () a compact
operator, which implies that it is Fredholm. To prove that (j\/lfiv, v) > 0 for
any v € LZQWO, we recall that the free energy JF(v) achieves its minimum at
v = Q according to the logarithmic Hardy-Littlewood-Sobolev inequality and
observe that

. 1
(3.9 (Mv,v) = Sh_r)r%) 8—2.7-"(Q,L +6v) >0

for any smooth function v compactly supported and satisfying f]R{Z vdy = 0.
Hence, by density (3.9) holds for any v in L2QM 0(IRz). U

3.3 The Spectrum of E,’;

Let’s define the domain of ﬁ,)fb,

D(L)) = {f € Ly, suchthat £, (f) € Ly } C LY .

PROPOSITION 3.3. Eﬁ is a self-adjoint operator and has discrete spectrum on
Do(ﬁﬁ) - LZQM,O for the inner product (-, - )M,yu where

Do(L3) = {f € LZQM’0 such that L7, (f) € L2QM,O}'
Moreover, in D(ﬁﬁ)’

(3.10) ker(L)) = span(auQM - iAQu),
(3.11) L£3,(0; Qp) = —p0i Qu,
(3.12) LL(AQL) = —2uAQ,.

Furthermore, Proposition 3.3 was proved in [9] (using the z-coordinate). Cam-
pos and Dolbeault obtained the following spectral gap inequality [9]:

THEOREM 3.4. Forall w € erzo"é (R?), if

(3.13) (w, MZoyn),, = Cr(M)(w, 1) = 0,
then
(3.14) (M2fw,w) < —(L*w, M*w).

There exists K, > 2 such that if in addition

(w, M (91n2)) > = (w. MZ(32020)) > = (w. MZARY),, =0,
then
(3.15) Kry(M*Pw, w) < —(L2w, M*w).
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In the radial case, (3.15) follows from the study of the spectrum of £% performed
in [9]. Moroever, the numerics performed in [9] (see figure 1 in [9]) show that it
is also true in the nonradial case. We hope to address this elsewhere. We rewrite
Theorem 3.4 in the y-coordinate with y = 2=

=
COROLLARY 3.5. Forall w € LzQu(RZ), if

(3.16) (w, M, (8MQM — iAQu)) = Co(pn)(w, 1) =0,
then
(3.17) pMYw, w) < —(Lyw, MY w).
There exists K» > 2 such that if in addition
(W, M2, (01 Q)12 = (. M3(3200))12 = (0. MEAQ,) 12 =0,
then
(3.18) Kop (M w, w) < —(Lw, M7 w).

REMARK 3.6. Notice here that the conditions (w, 1);2 = (w, |- |?);2 = 0 corre-
spond in the inner product (-,-) M, where Llyb is self-adjoint to the orthogonality

on AQ, andon 9,0, — ﬁAQu the kernel of E,J;. Indeed,

(w, M3AQ,) = ( M)(w, D —uw.|-[) =0

7
2
and
1
(W,MﬁauQu) = _E(w’ | - |2) = 0.

In addition, we get for free from the conservation of the center of mass that
(w, yi)r2 = 0, which corresponds to the orthogonality on d; O, in the inner prod-
uct (-, ')Mﬁ' Indeed,

(w, M,0; Q) = —p /Rz wy; dy = 0.

4 Construction of the Approximate Profile

4.1 Properties of 0,

In this section, we construct an adequate approximate profile Q w that has finite
_8
ngs(0)
the following proposition, we prove that the rescaled n% by u converges uniformly

second moment and 87 mass. Recall that  and M are related by u = In

to Q the unique stationary solution of (1.1).
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PROPOSITION 4.1. Let ngg be the solution of (2.2), then ,unol‘g(\/ﬁy) —
O (y) uniformly as u — 0. Moreover,

ly|? wlyl?
4.1) b0 — NT <¢0,(y)— 5

<¢o(y) <¢g,(y) <0 forally #0,

y-Voo,) —rlyl> <y Véo(y)
<y-Vég,(y) <0 forally #0,

4.2)

43) (e < unM (Vi) = 0u(y) < O(y) forall y € R2.

PROOF. We set r = |y| and recall that ¢¢ is characterized by

4.4) — ¢y — %¢’Q =8¢%2 = 0 with ¢(0) = 0 and ¢, (0) = 0.

The unique solution of (4.4) is given by ¢o (y) = —21og(1 + |y|?). From Propo-
sition 3.1, we also have
MVZ
—A¢g, = 8ePue™ 2 = Q.
We will prove that

2 2
ur ur

After taking the exponential, we get that

_ulyl2
Qe 2 < Quy) < Q).
Indeed,
App + 8e?2 =0,
4.5) bo 2
Ao, +8ePoue™"2 =0,

with ¢ (0) = ¢p,(0) =0 = qb/Q 0) = ¢/Qu (0). Since ¢g,(0) = 0 = ¢p(0),
from

o) {%(r) — =8 [y b i etoOdzar

90,(r) = =8 [ # [y ve?@dzdr,
we deduce easily that ¢ (y) < 0, ¢>’Q (y) <0, and that ¢, () <O, ¢’QM (y) <O.
It follows that ¢, and ¢¢ are radially symmetric and decreasing. Set ¥, (y) =

_ ulyl?
¢Q,u 2
-

2 2
PROOF OF g — 55— < ¢pp, — 55—~ < ¢po < ¢p9, < O FOR  IN A NEIGHBOR-
HOOD OF 0.
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We first expand ¢/Q/u’ ¢22M, $0. b0, and V¥, around 0:
po(r) = —2r2 4+t + 0(r4)

95, () = 8, (0) +r¢5) (0) + r S50 + 0().

¢/Qu(r>=r¢’éﬂ(0>+ ¢<3)<0)+ ¢(“’(0)+0(r4),

$0,(r) = Z ¢‘")<0)+o<r4>,
and
4 o
Yu(r) =Y =00 + o).
n=0

Then, to compare the three functions we just need to find the values of the consec-
utive derivatives of ¢g,, at 0. To do so, we plug the expansions of qﬁéu, ¢/Qu’ and
¢ g, around zero in
-2
_ ) _ b0, —5s .
¢Qu r¢Qu = 8eP2u 2,
we get
d)éu 0) = —4, ¢(3) (0) =0, and ¢(4) (0) = 6(4 + ).

The conclusion follows by substituting the values of the derivatives of ¢, in the
expansion of ¢, and IﬁM around 0.

PROOF OF g — 55— < 99, — “— < ¢o < ¢g, <OFORr IN A NEIGHBOR-
HOOD OF 0.

We first expand ¢, . ¢ . 0. $0,,, and ¥, around 0:
po(r) ==2r* +r* +o(r*),
86, (1) = 05,0 + 165 (0) + f«zs(“’ 0) + 0(3).
by, (1) = r¢’éM (0) + ¢<3) (0) + ¢(“’ 0) + 0(r),
$0,(r) = Z ¢‘"> (0) + o(r¥),
and

4 n
Y = 3y 0 + o).
n=0
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Then, to compare the three functions we just need to find the values of the consec-
utive derivatives of ¢ o, at 0. To do so, we plug the expansions of d)éu, ¢/Q,u’ and

$g,, around zero in
p 1= gebennly
_¢QM — ;¢QU« = %€ .
We get
d)éu 0) = —4, (3) (0) =0, and ¢(4) (0) = 6(4 + u).

The conclusion follows by substituting the values of the derivatives of ¢¢ , in the
expansion of ¢, and 1//M around 0.

2
PROOF OF ¢pg — - < ¢pg,, — 55— < po < ¢0,, < O FOR r IN A NEIGHBOR-
HOOD OF 0.

We first expand ¢, . ¢ . 0. ¢g,,. and ¥, around 0:
po(r) = —2r2 +r* 4+ 0(r*),
2
;
90, (1) = 83, 0) +rég) (0) + =y (0) + O(?),

¢/Qu(r>=r¢’éﬂ(0>+ ¢<3)<0)+ ¢(“’(0)+0(r4),
0, (r) = Z ¢‘")<0)+o<r4>,
and
4 o
V() =3 =0 (0) + o).
n=0

Then, to compare the three functions we just need to find the values of the consec-
utive derivatives of ¢g,, at 0. To do so, we plug the expansions of d)éu, ¢IQM’ and
$9,, around zero in

—pl — =, = 86¢QM—M§
Ou  ,70u ’
We get
3 4
90,00 =—4. ¢G5, (0)=0. and g (0) = 6(4+ w).

The conclusion follows by substituting the values of the derivatives of ¢¢,, in the
expansion of ¢, and ¥, around 0.

PROOFOFd)Q—’“ <¢Qu_M_ < ¢g < ¢g, <OFORALLr > 0.

Let’s argue by contradiction. Suppose there exists rog > 0 such that ¢g(ro) =
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$0,(ro) and g, (r) > ¢o(r) > ¥, (r) forall 0 < r < ro. We use that ¢o and
¢0,, are solutions of

(r¢’Q)’ + 8re%2 =0,

“.7) -
(rgp,) +8refen™"5 =0,

which can be solved, using the conditions at O:

bo(r) = =87 1 Ji retoOdr ar
b0, (1) = =8 Ji 1 [} vt dr,

g

4.8) {
It follows that
T r’
do(r)—¢o, (r) = —8/ —,/ f[e¢Q(r) — e'/’ﬂ(’)]dr dr’,
o Jo
and since e?2 — eV > 0 for r € (0, rg), we get

ro r’
$o(ro) — g, (ro) =0= —8/ —,/ t[e?2® — Vg dr' <0,
o Jo

which is a contradiction. Now suppose there exists ro such that ¢ (ro) = ¥, (ro)
and ¢g, (r) > ¢po(r) > ¥, (r) forall 0 < r < ro. Since

r r’
$0,(r) = —8/0 7/0 eV ®dvdy’

and ¥, = ¢, — ,u;, it follows that

rq r r2
Yu(r) = —8/ —// eV Oldrdr’ — p—.
o Jo 2

Then, using that ¢g (1) < ¢g,, (1), we get

roq1 pr 2 72
Vu(ro) < —8/ —// r[e‘pQ(r)_“T]dr dr' —pu-2 .
o "Jo 2

Yy (ro)

Notice that for 11 = 0 we have o (ro) = ¢o(ro). If we prove that 0 MZM (ro) <0,
we deduce that ¥, (rg) < Vo(ro) = ¢ (ro), which is the desired contradiction.
Since

7 Ml MRET PO
3raulﬂu(’”0)=g/0 v [e?e DT |dT —rg

’
< 0,0,Y :i 0r3e¢er—r
rou¥ ), —o 0 Jo 0>
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then it suffices to prove that d,d MJM“:O < 0. Indeed, one can easily calculate

~ 2 1 5
arBMWMM:O(”O) = %(—1 + I+ rg +10g(1 + "O)) —To
<0 forall ro > 0,

which concludes the proof.
The proof of (4.2) is similar to (4.1) and is left to the reader. Note that (4.2)
implies (4.1). O

For the rest of our estimations we will need the following proposition. Recall
that 77 was also used in [31].

PROPOSITION 4.2. Let Ty be the solution of LTy = V - (QVMTy) = AQ; then
we have

1 2
o1,(y) = O(* log{r) <) + [6(1ogr>2 - 0(( L )]ﬂ{rzl},

logr
¢§rl(r)=0(r310g(r))ﬂ{r51}+0( f )]l{rzl}-

PROOF. First we notice that V - (QVMTy) = V- (yQ), with T1(0) = 0 and
VT1(0) = 0, which implies M7} = % And since T is radial and —A¢7, =
Ty, we deduce that ¢, is a solution of

" 1 / r2
L¢T1 = _¢T1 - ;¢T1 - Q¢T1 = Q?v
with ¢7,(0) = 0, ¢}1 (0) = 0. To estimate ¢, we need to invert the operator L.
Indeed, the Green’s function of L is explicit and the set of radial solutions to the
homogeneous problem
Lf =0
is spanned by
2 r2log(r) — 2 —log(r)
fo=lmrs fi= S
+r 1+r

with Wronskian

’

1
W = f{fo - flfo/ = ;
Hence a solution of

Lf =g with f(0) = f'(0) =0

is given by

“9) £07) = —folr) /0 gfitde+ fi(r) /0 ¢forde.
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It follows that

So(r)
2

o) =-227 ["onwetar+ 2 [ oocan

Hence,

log r)?
¢, (y) = O *log(r) 1<y + [6(logr)2 + 0(( fz) )]ﬂ{rzu-
Now to estimate ¢, we use that

Jo(r)
2

o0 =27 [Copac+ 2 [* pworar

with
4r210gr +ré+4r2 -1
8r

fitr) = 0 wd fyr) =50

We finally deduce that

logr
o7, (r) = O log(r)gr<1y + O(T)ﬂ{rzl}’
which concludes the proof. g
4.2 Expansion of O,

In the previous propositions we just had bounds on Q. Now the following
proposition will allow us to do an expansion of Q, with respect to u where Q
appears explicitly.

PROPOSITION 4.3. There exists 0 := o (u, r) such that

(4.10) ¢0, = ¢o + o, +o0
where o satisfies
(4.11) o (w, )| < min(u?r?|log(r)], u(log(r))?).
Moreover,
“.12) ¥, = o +ndr, + 0,0,
with
1

(.13) 19,01 < min(/ﬁrllog<r>|, " Ogm').

’

In addition, we obtain the following expansion of Q :

2
(4.14) Ou = Qeud’T]—“T-i-U(M,r)‘
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PROOF. We write (4.1) in a more precise way. We introduce ¥; := 1 (r) and
o := o(r, u) such that

b0, = bo + pvi(r) + o(u.r).
Hence, from (3.5) we have

Mrz

—A¢pg — uAY — Ao = Qel“/fl— 7 to(u.r)

ByO<puy)+o(u,y) < M%, we get that

r2 7'2 r2
ePHOTI gy — pg +o(uy) + O(min((uzr“), (”7)))

Hence,

2

—M[(A - O — Q’—} —(A+ Q) =

2
},2
O(min((uzr“), (M;))) Q = g(p.r).

If we select 1 such that (A + Q) — Q§ = 0, then Y1 = ¢, and we get that

—(A+ Q)o = Lo = g(u.r).
From (4.9), we obtain that

@15 o) = —folr) fo efitde+ A(r) /0 ¢fordr.

Hence,
o(p,r) < min(u?r?|log(r)], u(log r)?).
To conclude, (4.13) follows easily by differentiating (4.15) with respecttor.  [J

4.3 Bounds on 8; Ou

We derive in the following proposition bounds on 9,0, and ¢y, o, -

PROPOSITION 4.4. Let Q,, be the solution of (2.5). Then

(4.16) $3,0, = ¢r, + 0,0

where

(4.17) 18,0| < min(ur?[log(r)|, [log(r)|?).
Moreover,

(4.18) 5,0, = b1, T 0rduo,

with

1
10,00 < min(,ur|log(r)|, | og(r)|).
r
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In addition,

2
(4.19) 0uOu = (¢T1 + dy0 — %) Ou-

PROOF. By taking the derivative in u of (4.15), we get

r 2
o = —fo(r)[ (¢T1 + 0,0 — %)(Qu - Q) firdr
(4.20) 0

r r2
+ fl(r)[o (¢T1 + 9,0 — 7)(Qu — Q) fordr.

Since | fo| < 1,|f1] < [log(r})|, and |Q,, — Q| < min(ur?,1)Q, it follows that

-
00| < min(ur?, |log{r)|)[log(r)| + |10g(r)|/0 |00 | min(ut®, )T dx.

Hence, by using the Gronwall inequality, we deduce

@.21) |0,0| < min(ur?, |log(r))|log(r)|.

Note that to prove the smoothness in w rigorously one should do the previous
calculation on the finite difference Z#=2(40) 41 then pass to the limit & — o in

(4.21). We will not detail this here. To prove the bound on 9, 9,0, we differentiate
(4.20) with respect to r,

r 2
0087 =150 [ (1, + 04 = ) @~ Q) fiedn
4.22) 0

r I"2
+ f{(r)/O (¢T1 + 0,0 — 7)(QM —0)fordr.

If we use as before that | fo| < 1, fy(r) = %, | /1] < Nog(r)l, |f{] < r30,
|0 — 0| < min(;uz, 1)0, and |0,0]| < min(urz, [log(r)|)[log(r)|, we deduce

losr) -

10,00 < min(,ur|10g(”>|’
r

By taking an extra derivative with respect to i, we can obtain bounds on BIZL Ou
and ¢3ﬁ Ou
PROPOSITION 4.5. The following bounds hold:
(4.23) 692 0, | < r*llog(r)|

and

2 2
(4.24) 20, = [q&ai _ (qsaMQM - %) }QM.
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PROOF. We differentiate (4.16) with respect to u,
2

By differentiating (4.20) in y and using 9, Q. = (¢, 0, — %)Q u we get
r I’2 2
Bio = —fo(r)/0 |:8io(QM -0)+ QM(E)MO — 7) i|f11 dt
r 7‘2 2
+ fl(r)/o |:8/30(QM - 0)+ Qu(auo — 7) }fom.
Finally, using that | fo| < 1, | f1] < [log(r)|, |Qx — Q| < min(1, ur?)Q, |Qul <

Q, and |0,0| < min(ur?|log(r)|, [log(r)|?), we deduce that

02%.0] < r[log(r)| + [log(r)]| /()r}aia}min(urz, DtQdr.

Hence, (4.23) follows from Gronwall inequality. To justify the extra derivative

that we took on 9,0 with respect to ;. one can do the same calculation above on the
finite difference M@;G(Mo) and then pass to the limit 4 — g . To conclude,
(4.24) follows from differentiating (4.19) with respect to . U
PROPOSITION 4.6. We have the following bounds:

(4.26) 6930, < rHlog(r)],

2\ 2
(4.27) 030, = |:(¢3I3QM + (¢auQM - %) + 2¢3,39M)
2

r

: (¢auQu - 7) + ¢82LQM] Ou-

PROOF. We differentiate (4.25) with respect to i. Hence,
¢3ﬁQu - 820’

By processing as in the proof of Proposition 4.5, one can easily deduce (4.26); the
details are left to the reader. To conclude, by differentiating

r2\’
0 Qn = |:¢3,42LQM + (¢auQu - 7) ]Qu
with respect to w, (4.27) follows. O

4.4 Expansions of the Mass M with Respect to p

In the following lemmas we estimate the mass and the second moment of Q,,
which are fundamental for either the application of the implicit function theorem
in Lemma 2.2 or the derivation of the law of ¢ in Lemma 5.1.
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LEMMA 4.7. We have the following expansions for the mass of Q

(428) MG = [ 0ydy = 87+ 2uulog(n) + 0.
(429) MG = [ 9,0 dy = 2100+ 0(1),
1
4.30 M'(w)y=[ 920,dy= 0(—).
4.30) = [ #0udy =05

2
PROOF. To prove (4.28) we decompose Q,, = Q + Q(e*?T1T9"~> _ 1) and
plugitinto M = [g> Q, dy. Hence,

Mo = [ Qv+ [ o@ton ¥ —nay

L 2
=87 + /ﬁ Q(W,le +o0o —M% + 0(u2r4))r dr
0

+o00
4 / (0 — Q)rdr,

1

3

. 1
Since |Q;, — Q| < Q forr > i We get that

“+o00 +o00
[, 1ew-orars [ “orarsp

Vi

-

Hence, by using |o| < u?r?|log(r)| for r < ﬁ and |¢7, | < |log(r)|? we deduce
that

431) M(u) = 87 — %/Oﬁ 0r3dr + O(p) = 87 + 2plog(p) + O(1).

To prove (4.29), we use that 9,0, = (¢y,0, — %)Q w- It follows by using
Propositions 4.3 and 4.4 that

L 2
N r

2
(4.32) . Q(l + uor, +0 — M% + 0(//,21’4))1’ dr

[e)e] 2
+/ (¢3MQM . %) Ourdr.

<
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Since |o| < min(u*r?[log(r)|, ullog(r)|?), l¢r,| < min(r*|log(r)], [log(r)[?),
and |¢g,0,,| < r2, it follows that

[e)e] r2 [ele] 3
/1 ¢3uQu_7 Q/ﬂdrf/l r-Qudr
N v/
© 2 r2
(4.33) < / " 20~ gy < 1,
VE
and
1 2 2
N r r
/0 $9,,0, — 5 Q'Wle +o—p—+ OW*r)|rdr
1
Vi
+/0 9, 0,10rdr < 1.
Hence,
Ji
/ _ _ W r-
(4.34) M (W) = fR 0uQudy = fo Q~-dr + 0(1)

= 2log(un) + O(1).
To prove (4.30) we use Proposition 4.5 to deduce that

2\ 2
4.35) M"(u) =/ 05,0y dy =f [¢33QM + (¢3MQM —%) }Qu dy.
R2 R2

From Proposition 4.6 we have for all » > 0:
2\ 2
4 r 4
r _1§¢3l21QM+(¢aMQM_?) Sro+ L

Hence,
o o0
(4.36) /0 r°Qudr—1<M"(n) < fo r>Qu(rydr + 1.
2
Since Q,, = QeM?T1TO~1'T we obtain that

00 o0 2
/ r°Qudr = / r3 QeleTi TS gy
0 0
_ 1 /Oo 5 1 ey (ﬁ)ﬂr(ﬁ)—% dt
wlo o (u+12)?

and since
1 z \_z2

o0 ¢ T + _I=
I Tt (G (G- 4o

is uniformly bounded with respect to u, we deduce that (4.30) holds, which con-
cludes the proof of Lemma 4.7. U
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4.5 Expansions of the Second Moment with Respect to p

LEMMA 4.8. We have the following expression on the second moment of Q,, and
the following bounds on the derivatives of the second moment of Q,, with respect

o J:

2M M
(4.37) / 0,y dy = 2MW (1 = ﬂ)
R2 u 8

There exists C > 0 such that

-C -1
(4.38) —5[ 9 2dy < —,

M - wQuy)yl=dy cu
(439 e A

—C 3 2 —1
(4.40) F = /];&2 0,9,y dy < C_M3

PROOF OF (4.37). We start by calculating the second moment of Q,,. We mul-
tiply (2.5) by |y|? and integrate:

/AQulylzdy—/ V- (0uVo,)lyI? dy
R2 R2

- _ . 2
——u [ V- GowlyPdy

Then by integration by parts and using that Vg, = ﬁ * O, we get

1 2y-(y —x)
4M + E/RZXRZ WQM(X)QM()’)‘JX dy

=2 [ QuulyPay.

1 x—y-—x
4o [ B 0,(000u ) dy

= 2#/ Qulyl*dy
R2
M2
M-S [ 0Py,
4 R2
which implies (4.37). U
We now have the following:

PROOF OF (4.38).
2

(4.41) /R2 3. 0uWyl*dy = /RZ (¢3MQ,L — %) Qu(»)lyl* dy.
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2
Since Q,, = Qe TO~1'T and $3,,0, = 1, + 9,0, it follows that
00 r2 -2
(4.42) f 0 Qu()Iy I dy = / (¢T1 + 00 — E)Qew’“ ToTHT i dr.
R2 0

By using that

|67, | < min(r*[log(r)|, [log(r)|?),

18,01 < min(uer?|log(r)|, [log(r)[?),

we deduce that for all » > 0
2

,
—r? < ¢, + 9,0 — ) < —r?

Hence,
o) r2 2
_/0 rSQeu¢T1+U—M7 dr S/RZ I QuWy|*dy
(o,] r2
< _/ r5 QeI+ gy
0

Notice that

T T ‘L'2
/oo rS Qe;u,brl +0—M§d’, — l /oo ‘ES 1 eM‘PTl(ﬁ)-HT(ﬁ)—TdT’
0 wlo  (n+12)?
T T y_12
and since fooo 7> Jr1r2)249M¢T1 TRtem—3 dt is uniformly bounded with re-
spect to u, we deduce (4.38). 0

PROOF OF (4.39). Notice first that

r2\?
alle“ - |:¢3;2LQM + (¢3MQM o 7) :|Q“
Hence, by using
|#7,| < min(r*|log(r)|, [log(r)|?), [dx0| < min(ur?|log{r)]. |log(r)|?)
and |¢3;2LQ;¢| < r2|log(r)|, we deduce, for all r > 0,

2
4_ 1< r? <4
rm=13¢pg, + ¢8MQM—7 Srt+ 1

(S) 2
[T -reeentar s [ g0,

o0 r2
S / (r7 +r¥) QeI T gy,
0
From (4.31) and (4.33) we get

o0 )
/ r3QeMTi TR dr = O(|logu).
0
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Notice also that
*© o0 T T 2
/ r7Qe,u¢T1 +0—M§ dr = iz/ T7;6M¢T1 (7)—1—0(7)—7 dr.
0 w= Jo (
and since

o0
71 ner (Jz)+o( )%
/0 T (M—i—rz)ze w w dt

is uniformly bounded with respect to i, we deduce (4.39). The last step is to prove
(4.40). O

PROOF OF (4.40). If we use that

2\ 2 2
3 r r
aMQlL = |:(¢3%LQM + (¢3uQu _7) +2¢3;2¢Qu) (¢auQu _7) +¢8;”LQM:| QM’
then by proceeding as in the proof of the previous inequalities, one can easily
deduce (4.40); the rest of the proof is left to the reader. Il
4.6 Correction of the Profile 0, and Estimation of the Error E

Now we are ready to decide what the good approximate profile will be. Indeed,
we choose the following profile:

(4.43) Ou=0u— 0,0
where

- Jr2Qu—87 ( % )
4.44 === =+ 0 ,
( ) a fRZ au Ou . [log |

which can be deduced easily from Lemma 4.7. This choice can be justified by two
reasons: The first one is that the mass of ¢ will be zero, and this implies that

(M8, 0pmnoo) = (e, 1) = 0.
The second reason is that if we plug Q w into
AQu+uh0u~V-(0uVd5, ) =—ALYBu0u) — AV - 30V, 0,)
(4.45) = LAQu — v - (04 QuVi,0,)
the identity —L,J; (0, Q) = AQy yields that the error
E =[EAQu— [V - (0.0uV¢2,0,)

is of order ;12 when it is projected onto Mﬁs. Indeed, since (e, |- |?) = (e,1) = 0,
it follows that

M
(M2(AQy). ) = (2 Nt |2,s) o,

which implies

(E,M/J;ﬁ)LZ = —ﬁz(v (O QMV¢3MQM)vM/J;8)L2~



1988 T. GHOUL AND N. MASMOUDI

This cancellation makes the projection of our error on ¢ with the inner product
(-,") M of order 2, which is fundamental for closing the energy estimate.

S Derivation of the Law of u(s(?))

Recall that 5
v(y,8) = Qu(y) + &(y).
The conservation of the second moment in the x-coordinate translates into
(5.1) / olyPdy = ——
' R2 BR(1)?
where I is the second moment of the initial data uo. We will abuse notation and
use (t) for w(s()).

LEMMA 5.1. Let v be the solution of (2.4) with 87 mass and ¢ satisfy (e, |-|?) ;2 =
0. Then,

1 M
(5.2) WRE —glog(,u) + O0(1)
and
2l
(53) i) = *

M2t + 1)log(2t + 1) + O(t loglog(2t + 1))
If we consider | as a function of s, we have
C/
slog(s)
PROOF. If we combine (4.28) and (4.37), then

2 5 _ 2M (—2plog(n) + O(n)
[, 0uiyiay = 2 (e 200

(5.5) = —M + O(1).
21

It follows from (5.1) that (e, | - |*) = 0 and (5.5) that

! A 2
yoriell RO

5.4

1
— <
w(s) 5| =

M ~
(5.6) =5 log(n) + O(1) — l/«/ 9, Qpuly)? dy.

T R2
From (4.38) we deduce that

1

(5.7 / 0. QuyI>dy = 0(—)-

R2 2
Hence, by using i = + 0(@) it follows that

1 ~ M
69 = [ Gu0IyPdy =~ logo + 0(1),
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and taking the log of (5.8), we get that

1 1
log(—) —log(2t + 1) = loglog(—) + 0(1).
M M
Consequently,
1
loglog(—) = loglog(2t + 1) + O(1),
I
which implies (5.3). To find @ (s) we use that
(5.9) ds 1 Mlog(2t + 1) + O(loglog(2z + 1))
’ dt  uR?2 2l ’
Hence, if we integrate we find
2(2t + 1)M log(2t + 1) + O(t loglog(2t + 1))

t) =

s() 2l

and (5.4) follows with C’ in (5.4) a uniform constant with respect to A1, and hence
if we choose A; sufficiently large, we get C’ < %. U

Now we need to find a bound on g for the energy estimates.

LEMMA 5.2.

2
(5.10) ;“=4ﬁ+0(“ )
|log u

PROOF. To prove (5.10), we differentiate R+u = Jr2 QVM(y)|y|2 dy with re-
spect to s. Hence,

d
(5.11) Ids( ) (/ 3,0,y dy.

To derive (5.10) we must estimate [, 0, QM(y) |y|? dy. Indeed, since 3, Qu (y) =
0,0 — 0, 00,9y — ﬁaiQu, we first have to compute d,,ft, and from Lemma
4.7 we obtain

1
(5.12) a~=1+0( )
uht | log 4]

It follows that

Ma Ou+09,0u
(5.13) 0, = mVQ-+0( .
Q= a | log
From Lemma 4.7 we compute
(5.14) =1+ ( )
e llog x|

which implies

02 d
515 3.0, = -t 0+ 0 20u+ uQu)_

[log |
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From Lemma 4.8 we deduce that

[ oGl ay
R2
Maz Ou+0,0u
g AR vl dy
R2 R2 |log p|
1
2 2
= aQ|ﬂcw+0( )
r2 *H pu|log |
C 1
(5.16) =——+0( )
% pllog
and similarly we obtain from Lemma 4.8,
- c 1
(5.17) /’Wgwmw=—+00———)
r2 M e 112[log |

where C > 0 is a constant depending on the constant C in (4.39) and (4.40).
Finally, since % = uR? and R'(¢t)R(t) = 1 it follows that

d 2
75 (LR(1)7) s R'(1)R s 2
_I(d W2R? ) B _I(MZRZ R ) - _I(/LZRZ " ﬁ)
~ 1
(5.18) = us/ 3.0, My)*dy = MSO(—),
R2 M

which concludes the proof. U

6 Bounds on the Potential V¢,
With the orthogonality conditions (g, 1) = (e, ]|?) = 0, (M,e, ) = ||8||i2 —
Ou
IV e ||1242 does not control ||g|| 13, uniformly in p. It turns out that we have a re-

markable nonlinear structure that yields a control of || Ve, || iz and hence ||¢| L3 -
“w
PROPOSITION 6.1.
©6.1) /|wm@=0m.
R2
PROOF. We take the L? inner product of (3.2) with | - |*:

d 2y _ 2 2 Hs 2

—(& - 19) = Lpe. [ 1) = (V- (eVe), | - [) + T=(Ae, |- [7)

ds 21

+(Ou@), [ P) + (F. - 17 + (E,] - ).

Since
(87 | : |2) = (87 1) = 07
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we have

(Lus, |- 17) = =200, VM}e, y) = 2(M},e. A D)
©2) =26 A0 = (2= 37 e ) — ey =0
and

(Ae,|- %) = =2 |- ) = 0.

In addition,
(6.3) —(V-(eVe), |- ?) = 2/ ey - Vg dy =[ |V |? dy.
R2 R2

The last equality comes from the fact that fRz edy =0, —A¢p, = ¢. Since F =
‘;—;AQM — MSBMQM, to estimate (F,| - |?) we first calculate (AQM,l -]?) and
(0,0, |- 1?). Indeed, from (5.6) we get

~ ~ 21
(6.4) (AQu.|-17) = =2(Qu. |- ) = ——5—,
124 I RZ/L
and by using (5.16) we deduce
~ 2\ Ms 2
(6.5) Ms(@uQus |- ) ——I(W—i‘ﬁ)-
Hence
21 Mulog
(F.|-?) = T + O(w).

Furthermore, since £ = IAQ,, — 12>V -(d, OuVdy,0,)andji = pn+ O(IIOgMI ),
it follows that

(E.|-1?) = =2[i(Qpu. |- I*) + 2 (Yoo, 0, - ¥+ 8. Qp)
= —2u(Qpu. |- 1% + 2ﬁ2(v¢8uQM ¥,0,0u) + O()
Mplogp
= =5 42 (Ya,0,, ¥, 9 Qu) + O(W).
From Proposition 4.4 we get that

22 (Vy, 0, ¥ 0, 0u) S p?log ul>.

(6.6)

Hence,

Mul Mul
(6.7) (F+E|-[})=-"E260 “ﬂ"g“

T

+0(w).

cancellation

To estimate (0, (¢), | - |*) we use that Qu — Qu = —10, Qu. Hence,

(6.8) Oue), |- [*) = =il Qpu- Ve - ¥) + (6. Vg5, 0, - V).
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It follows that

@)1 P < i I99eliz [ 104 0u PP ay )

1
Vénu0, PP \}
i, (o =) |

- 1
Thanks to |V, 0,, | S min(u|y[[log|y[|. "), 8,,0,, < 0,uly[2, and the boot-
strap assumption, we deduce

(6.9) 1©u(e). |- 1P| S VAu> log .

Hence, if we assume that p was chosen small enough, we deduce that

(6.10) / |Vee|* dy < Cp,
]R2

with C uniform in p, thus concluding the proof. 0

7 Energy Estimates
We want to prove the following energy bound:

PROPOSITION 7.1.
1 d 1 "
(7.1) 5%(/\/{218,8)+M(K2—§—8)(MZL8,8) <C@, Ap~,

with C(A,§) < 81(«/2(1 + 6) + 1), where § > 0 is a sufficiently small constant
and A is the bootstrap constant.
PROOF. We multiply (3.2) by Mlyus and integrate
1d
5%(/\4215, €)
2 Ms Ms au, Qw‘?
= — OulVM?Ye dy—i——(As,Mye)——(—,e
(7.2) /RZ VA 2u o2\ 0f
I
+ (E, M7,8) + (O, M e) + (N(e), My,e) + (F, Mje) .

II I v v

Now we estimate each term of (7.2).

7.1 Estimation of I (Linear Terms)
Estimation of (3, Q,e/ 0%, €)

We will use the notation
() =y1+1yP
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Notice first that by Proposition 4.3

9 2 2
. 1 = 1,0, = =+ min(0((08(r))*), O(urllog{r)).
"

This term will be very helpful since it has the good sign if we can control
[
R2 Ou

Indeed, we can prove that

1

2i ﬁ( Vel? )2
[ roson P gy < v Y2 ([ oulvmeray)

We first use that Qiu = Mﬁs + ¢¢, which implies

[ toatonP 5 av = [ nos(trpPertieas

(7.3) O

2
+ [ ogtly) e dy.

Then by Proposition B.2 and the bootstrap assumption

/Rz log((y)Pe¢pe dy < I1sllzeellellLz, lllog((y DIV Ol < Ap.

To bound the other term we use a bootstrap argument, Lemma 3.2, and Lemma
A2:

/ llog({y)) [PeM2e dy
Rz

1

< el ( [ Hoeton1*Qul el ay )

1
2
2 2
Slelug,, [ rPouiMze dv)

1

4 5 12 5 2
Slelug,, (2 [, QulvMiePdy + 2 [ 0ulatielay)

JA 3
< ([ ouvaterar) + avi

which yields

1

[ tostP oy = Ay + —(/ 0V dy)
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Hence, if we combine the previous inequality with g = —2u? + 0(“0’;—2'), we
get

s (0,06
(7.4) ——S(%,e) = ——/ |y|2— dy + 0(u3).

2 07

Estimation of (Ae, M,{e)

(Ae, MJe) = 2(M7e, &) + / y-VeMjedy
R2

(7.5) =2(Mﬁ8,8)+/ y - Ve—dy / y - Vege dy.
R2 Ou R2

We calculate each term separately:

1 y- V(az)
Ve——d
fRzy ‘0,7 2fRz 0y

g2 1 ,y-VQ
(7.6) =—| —d +—/e =B gy,
0. 2 e 02

In addition,

—/ y-V8¢8dy=2/ 8¢8+/ ey - Vo dy.
R2 R2 R2

Since for g £dy = 0, we have that

/ 8¢e:/ |v¢s|2dy7
R2 R2

by using —A¢, = ¢ and integration by parts we deduce that

1 5
_/ y - Vege dy =2f 8¢gdy+—/ |Vope|> dy = —/ |Vepe|? dy.
R2 R2 2 Jr 2 Jre

Hence,

\Y
(Ae, Mje) = 2(Me.€) — /— dy + = /ezy Q“d
2 Jr2 0z
5
3 [ Vo ay
Rz
&2 1 y-VQ 1
7.7 = —dy+- 2L =Ry fv 2 dy.
.1 0, s L ey [ Ve
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Since % =y-V¢o, — ulyl? and y - Voo, >y Vg > —4, we get that

|282

2 1 wo |y
Ae,/\/lyg:/ £ d +—/ Voe|* d ——/ d
( 21E) > O, y |Vpe|” dy 2 Jee 0, y

+l/ sy Vd’QMd .
Ou

282
/—dy+ /|V¢e|2dy—ﬁ/ e 4,
r2 O 2 2 Jr2 Q,u,
—z/ —dy
Rz

282
(7.8) >—[ —dy+ /|V¢8|2dy—ﬁ/ Il dy
r2 O 2 2 Jr2 QM

) we obtain that

By using ps = —2u% + 0(|10gu|

(Aswe)w/ —dy—%/ Voul? dy +—/

|22

(7.9) < (Myee)+ﬁ/ Ve|? d +“—2/ lyl“d
. —I'L ne 2 RZ & y 2 RZ QM y'

Since [p2 |Ve|? dy < Cp itholds
(7.10) B (Ao MPe) < w(M? )+u2/ % +Cu2
. —(As, e £,8) + — ,
o n8) = KM 2 e 0, P2
with § > 0 a sufficiently small constant independent of . The previous inequality
and (7.4) imply the following bound on I,

(A My £) — : ( MQW;,&)

0%
2 2.2
© lyl“e
< Yy T
—M(MM8’8)+ 2 /R2 Q/L dy
2 2.2 2
W / |y|7e Cu s
-= dy + + 0(u2
2 Je 0, YT (n?)
112
(7.11) < p(Mje,e) + 5

with § > 0 sufficiently small.

7.2 Estimation of the Error: 11
REMARK 7.2. First we notice that E = IAQ,, — i?V - (3, OuVéy,0,) and

M
(8Qu Mie) = MLAQ).0) = (2= 37 ) (1.0) = (- ey = .
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Thanks to this cancellation, we are able to close our energy estimates.
Hence, by using

. llog|y||
Voo, 0,1 < mm(u|y||log|y||, EEI) and 10,040 5 1P Qs

(these inequalities are from Proposition 4.4)
1

(E, Me) = = (V - (8,01 Vs,0,) M3e)

3 2|y 2 \3
Suz(/ 9u Q" V9,0, dy)z(/ QulWVlfu‘flza’y)2
R2 Ou R2

1
3 2
s wliognl? ([ ulvmeay)

(7.12) < “[2 QulVMel* dy + pllog ul.
R
7.3 Estimation of III (Linear Terms)
Since
Oue) ==V (0,0, Vde +eVey, 0,1,
and by
. |log|y||
95,0, % min( iyl foglyll FET ) ana 19,0, 5 PO

we have

(O (e). Mje)

ﬁ[/Rz 8,0, Vs - VM2e dy +/Rz V3,0, -V/\/lﬁedy}
1
2
< ,u(/ QM|VMﬁ8|2 dy)
RZ

|aMQM|2|v¢S|2d)5 ( |V¢3MQM|2|8|2d)%}
AL ) (e

1
2
(7.13) S ullVeelzz + llel .z, ](/ QMIVMﬁslzdy) :
u R2

Hence, by the bootstrap assumption ||8||L2Q < VApand [|[Vee| 2 = O( /1) we
M
get

I = (O, (). M2e) < 13 + VI / QuIVMel dy.
]RZ
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7.4 Estimation of the Nonlinear Term: IV

For the nonlinear term we will use a Sobolev inequality not on ¢ but on Mﬁe
because we control only the gradient of Mﬁe. To do so we use the identity ¢ =

QMMlyL(e + ¢ Ou
(NE), Me)

= —/ eVee - VM) e dy
R2
(7.14) = —/ QM2 eVge - VMY edy — / 0,¢9:Ve - VM e dy.
R? 0 1 R? 1t

To estimate [p> Q¢ Vs - VMIJig dy we use supy,cg2 Oy = 8 and Proposi-
tion B.2:

(7.15) / 0,PeVe - V./\/l}is dy <
]RZ

1
2
190l 1V@uVsliz [, Qulv e ay)
By the Morrey inequality, —A¢, = ¢, and interpolation we get

1 1
Igellzoe < llgellis + IVells < IVl (1 AGlLS + el )

1/2 1/2 1/2
(7.16) SIVON L (Iels +1gel):
M
To control ||¢¢||;2 we use Lemma C.1:
1/2 1/2
(7.17) lell, 5 < lell}y
Qu

Hence, by using the bootstrap assumption, we obtain ||¢|| L2 < JAu
“w

2
f 0,upeVeps - VMLedy < Vol 352 |1l 5 (/ QMIVMﬁelzdy)
R2 Oun R2

2
([, Qulvatief?a)

A
(7.18) < ‘/—_;ﬂ + 8/ QulVMel* dy.
]R2

B

<4

)

with § a sufficiently small constant. Since the size of [p> Q MMﬁquSe . VMIJig dy
is critical, we will take out the biggest component of ¢ that is in the direction of
AQ,,. To do so, we introduce the following decomposition of &:

e =0y AQ, + &,
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and we fix a;, such that

(7.19) /R2 dArQ,. QM./\/ll)igdy =0.

This specific choice of the orthogonality condition is crucial here. Indeed, this
choice will ensure that oy, has a weak dependence in A (the bootstrap constant)
and that the constant C in (A.1) is uniform with respect to u:

/ QulMel* dy < c/ QulVMIe|* dy.
B R2

First let us prove that
ol < Vi

Recall from (3.8) that

M
$r0, Ou = A0y — [(2 - E) —ul- |2] Ou-

On the one hand, using Proposition 3.1 and Lemma 4.7 we have

/]R2 ¢r0, QuM;edy
M
e[ 2) oo

M
(720) =ay /Rz [AQM — [(2 - %) — |- IZ]QM} (2 5 ulylz) dy.

Since (AQu, 1) = 0 and (AQu, |- ) = —2(Qp. | - 1?) = =22l 4 0(1), it
follows that

M2
(7.21) /RZ dr0, QMM;is dy = au((2 — E) M + 0(M|log,u|)).

On the other hand, using that [p>edy = [p> ely|>dy = (Me, AQu)2 = 0,
we get

M
o {2 o
M
L) o
— M 2
(1.2 — [ (2= 35) 1P| s

Hence, using that ¢ has average zero and the decay of O, we get that

(1.2 ol 5 [ Quldeldy 5 19l

Also, we prove in the following proposition that the difference between (./\/l,)ie, €)
and (M2, ) is of order pu?[log .
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PROPOSITION 7.3. If
(&, D2 = (& 12 =0, e=0a,AQ, +5,
and / $r0, QuM;Edy =0,
R2
then
_ I~ I~ 3
(L8, M e) = (L8, M7,8) + O(u”[log u]),
(M. g) = (M),2.8) + O(u>[log pl).

The proof is in the Appendix B. We plug the decomposition of ¢ = o), AQ,, + €
into

/RZ QuM3eVpe - VM edy.

It then follows that
/]R2 QuM;eVee - VM edy
=y /]RZ QuM(AQ )V e - VM) Edy
o [ QuMEVg: - VMLAQ) dy
+ /R2 QuM2 eV - VM Edy
+ o, /Rz QUM (AQ W)V s - VM (AQ)dy.
Hence, by using M}, (AQ,) =2 — % — 1|y|?, we deduce
/RZ QuM?eVee - VM edy

—a, /R QUM (A0, Ve - VMEEdy

1V

a2, [R 0 MLEVe -y dy + [R QU MJEVS, T MIEdy
V2 V3
ue? /R2 0, M(AQ) Ve -y dy .
1V4

We start by estimating the term [V;.
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Estimation of IV
Since M7, (AQy) =2 — 2L — 11]y|? and by (7.23) we obtain

Vi S ol [ 05 VAEy + laulu [ | Quly Vg VAGEdy
1
2
129 % ViVl ([, QulvMyER ay )

1
3 R 2
VO PVl [, Qulvatietay)
Notice that /Q,,|y|? is uniformly bounded and || V|2 < \//, which implies

1 1
IV, <6 VMYe?dy + —pu? + —pu*
1S /RZQ“l Mg Y+t sn

1
< VMR dy + - p?.
/Rz OulVM; el”dy e
If we use Proposition B.1 we obtain

1
(7.26) IV < 8/2 OulVMel? dy + gﬂz + u3log ).
R

Estimation of IV,
Now we estimate IV,. We remark that \/Q|y| is uniformly bounded, which
implies

1
2
V2 %l [ QM ay ) 1V DLl

1
2
a.27) S lel( [ 0uMER dr) 190ul
Notice that
L ouaerays [ oumePay -+l [ 0urMuaQuPdy
(7.28) < fRz QulMel>dy + Ca.
which implies
029 [ 0uMEPay s [ 0uMuePdy +u s A
R2 R2
Hence, if we combine all the previous inequalities, it follows that

(7.30) IV < 4242 |V 2 < p3 A2,
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Estimation of IV4
To estimate V4, we use M},(AQ ) = 2 — 2% — puly|?:

Vs < uai[/ 0.u1Vaslly| dy +u/ QM|V¢8||y|3dy}
5

(7.31) < nap Vel 21 Qulyllie + 1QulyPllz2] S 12,

Estimation of IV3
To control the term IV3 we first use the Gagliardo-Nirenberg inequality,

1/2 1/2
A llLs < 112 ! IIVfIIL/z :
with f = /0, M),&. Hence,

/R | QuMEVge - VM2 dy

1 1
2 2
< ([, ouvateras) ([ ournerivetar)

1
2
< (/}1«2 QulVME? dy) |V OuME| 4l Vel e

a3 < ( / QMIVMﬁglzdy)ZIIVqﬁeIImH\/QuMy 5
(V(VOMLE) )5

We also apply the Gagliardo-Nirenberg inequality to | V.| ;4 and use —A¢, = &,
Ly, — L%

[ ourtzavoevagear< ([ QulVMyelzdy) 1902l

(7.33) x| VOuM2Le| 5 |V(VOuME H”Z.

. PN . v 2
Now we estimate ||V(,/QMM2]L8)||%2. Since % < (W3 IP+ #)Qﬂ,
we deduce

R R vVO,|? .
IV(JOuMd) |22 < / 0uIVMEER dy + / NOul®) prap ay
R2 R2 Qu

(1.34) < [ oulvagERdy +12 [ 1yPOuIMEaR dy

|y|2 a2
o T O AT
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A~ 2 A~
Then to control u? [ [¥120u|M7,E? dy and [g- #Q”Mﬁdzdy, we
use Proposition A.1 and Lemma A.2. Hence,

/R 0uMEVge - VM2 dy

D=
Hlw

1
2
(7.35) < (/Rz Q,LlVMnglzdy) A2

1
4
<|([[, euvmerar) +
RZ

From (7.29) and Holder we get

PN

([, 0ulrtzaray) ]

(7.36) /R QUMLEVS - VMR 5
3A2
8 [, Qulv Ml dy + 1 4 wllog il
R

Finally,

1
1+ A2
(V©). M) S 5102+ [ QulTMGeP dy,

with § > 0 a sufficiently small constant.

7.5 Estimation of the Forcing Term: V
We notice first

F = S—Z[AQM - ﬁAau Qu] - Ms[au Ou— auﬁau Ou— ﬁaiQu]v

and since (0, O, Mﬁs) = (AQy, Mfis) = 0, it follows that

(F. M) = =i (A0 Oy M3e) + s L5, Qo Mie)

~ M ~
= _Mﬁ(y : vauQu’MﬁS) + Msﬂ(aiQu»Mﬁg)

= ag—;wu 010,V - (pM26)) + 11192 O Me)
(737) = 715 Ou Qv VM) + s O}, Qs M),
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Hence, if we use Proposition 4.4, |us| < 2u?, and i < u, it holds that

2001504 2

F,M%e) < 3(/ Myszd) (/ Md)

( 2E) S K RZQ,U«l nEl7dy I y
1

1
10, Qul?|yI? )2( 2 5\
+ 2(/ ceErl P d / VMYel?d
A L 0, y RzQ“l wEl"dy

1
(7.38) < (JZ + —)uz + 8/ QulVMel* dy.
8 R2
Finally, combining all the previous estimates, we obtain
(7.39) (M &) + u(Kz — 1 = 8)(Mje.e) < C(8, A)p”,
2ds M ®
withé < 1and C(4,6) < %(\/Z(l 4+ 8) + 1) < A for A sufficiently large, which
concludes the energy estimates. O

Now we prove Proposition 2.3,

PROOF OF PROPOSITION 2.3. As set before, £(s) = (Mﬁs, ¢), and now set

K =K;—1—4§>1.If we use that |u(s) — %| < sl%g/sl,then
1 K C@,A)
7.40 =& —E&(s) < )
(7.40) 5 (s) + T (s) < 152
Hence,
d C(8, A)sK—2
2 (Ke(sy < SO
ds 2

if we integrate, it follows that
sKes) < €@, s,

which concludes the proof, and we easily see that if we pick originally A suffi-
ciently large, the constant in the bootstrap gets smaller after each step. U

8 Proof of Corollary 1.4

PROOF OF COROLLARY 1.4. First, let us denote
r
8.1 my(r,s) = 271/ tu(z,t)dr,
0

where r = |x|. Hence, we obtain the following local equation on m,,:

0pmMy My 0pmy
dpmy = Oppiny — ; + ; >

,
my(t =0) =mg = / tug(r)dr,
0

my(r,t) — 8w asr — +oo.
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The proof of the corollary is just based on the fact that for radial data, we can use
the equation on the partial mass and the comparison principle for radial solutions
(see [28]): If, for all r > 0, m?(t = 0,r) < ml(t = 0,r), then for all # > 0 and
r>0,

m*(t,r) <m'(t,r).

Let us choose a radially symmetric initial data u(l) satisfying the condition of
Theorem 1.1, compactly supported and such that u(l)(O) > 0. Consequently, for
a > 0 large enough we can achieve that for all » > 0,

mo(r) < mg(r),
where

my(r) = 27[/0 t(ug)/a(r)d .

In addition, if we choose

K X _x2
G- Eo( )t
Ho v Mo
where K > 1 is a constant picked to insure that the mass of u% is 8. Moreover,

u% verifies the condition of Theorem 1.1, then, for a large enough one can deduce
easily that

mg(r) < mo(r),

where
mg(r) = 2 / r t(ug)a(v)dr.
Hence by applying the comparison princoiple it follows that
M2 (1) < my () < my (1),

where u? is the solution with initial data (u%)a and u! is the solution with initial
data (u(l)) 1/a- In other words, because we can use the comparison principle we can
bound the partial mass of any radial solution between two rescaled solutions for
which Theorem 1.1 applies. To prove (1.10), we use that u' and u? follow the
dynamic of the solutions of Theorem 1.1. Indeed, we can decompose u! and u? as
in (1.8), but to be more consistent we use the decomposition (2.6):

. 1 ~ X 1 by .
u'(x,r) = A_?Qﬂi ()t—,-’t) + Egi()\—i,t) fori € {1,2},

where Q w; 18 the approximate profile constructed in Section 4 and p; is a function
of ¢ fixed in Section 5. Actually, with this decomposition we have

/ eidy =0.
R2
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Consequently,

r

Ti [e.¢]
(8.2) / e (rr'dr' = —/ g (rr' dr'.
0 r

Ai
Moreover, we use that
Oui = Qui — Hidy; Qpuy s

where [i; = w; + O(u;/[log w;l).
From Propositions 4.3 and 4.4, we deduce that

o0 o0
8r—mg, =/r Qui(r/)r/dr’—m[r 0,Q, 1 dr’
Ap A

oo ) 2
:/ Qe;wbrl R T e
_ [e.e] r/2 ) AI‘/2
a Ml f (¢T1 + 8“‘10 N 7) Qeulqul +G_Ml Tr/ dr/7
i
and there exists 0 < ¢ < 1, uniform with respect to ;, such that

’,.2
lnidr, +o| < i

Hence, for all r > 0, we deduce that

|87 —mQ-Mi|
o0 72 o0 2
< / Qe MU= gyl 4y (1 + c)/ Qe W=y gy
5 5
< 1 + C /OO Qe—l\l;[(l_c)%r, dr/
1—c /\Lz
1 1— o0 r’2
+Mi(+lc)#/ Qe (=0 17 7
S8 2
< 8(11 +CC) [/ ﬁe—ui(l—c)T dr'
b

1

+ 20 e
2 N
A

pi(l—c) [ 1 _“i(l_c)r;zdr/].
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By integration by parts we obtain that

. _ o0 /
/Lt(lz ¢) l/e—ﬂi(l—C)%dr’z
s
2
2,—ui(1=c) 5 ,
)Li e 2 _ /oo _e—ui(l—c)%dr/
2r2 ror3 '

Consequently, we get for all r > 0 that

-2
A'Ze_ﬂi(l_c)ﬁi
—ms | <
(8.3) |87 mQu,-l < )
From Lemma 5.1 and Theorem 1.1 we get that

JTi

pilt) = tlog(2t + 1) + O(t loglog(2t + 1))
and
Ai(t) = R(t)pi(r) with R(t) = 21 + 1.
Hence,
)L-ze_(h%
|87 _méu,-| < P

Since, [g2 €dy = 0, we deduce that

00 00 1
[ e s ([ ouear) al,
s = i

A
x :
< rdr' | e
< ([, owrar) ey,
1

2 A2
S 5 lleillz < ’ :
A2 42 leilly, (A2 + r2)t|logt|

Consequently,

2

)L%e Gy r
8w —my2(r,t) = 8w —mg,, ~Ms S S+ mg, | —. 1

}’2 )Lz
A2e=C2'3 22
<2 + 2
~ r2 (A% + r2)t|logt|
and
2
AZe=Crz A3

8o —m 1 (r,t) =2 — — ,
w (1) r2 (A2 + r2)t[log?]
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with A; (¢) = Vi , where I; depends on a and the second
A/log(2¢+1)+O(log(log(2¢+1)))
moment of u. This concludes the proof. U

Appendix A Hardy Inequalities

PROPOSITION A.1. Let f € H'(Q,, dy) be such that (f, éAr0,Qu)r2 = 0; then
there exists C uniform with respect to | such that

yI? f 2
Al Tt VfI*dy.
D [P oudy <¢ [ 0uv Ry
PROOF. We first prove the inequality
a2 [ vrrouars [irPouar= [ gt o
R2 B 4Jr2 " (1L [yP)?
Indeed, let y be a positive constant that we will fix later,
2
vf [ 2 fy-Vf
Vf—-y——— dy = \% dy —2
L vr—ri2sl ouay= [ 9rPoua -2 [ 420, a
LSy
(A3) +y2/ =0, dy > 0.
r> (1+[y[?)2 ="
By integration by parts, we deduce
ZV . 2
oy [ L2V gy —y [ VO / P o ay
r2 1+ |y r2 141y r2 1+ |yl
LSy
(A4) —2J// 73 9ud
r2 (14 [y2)2 ="
Since

VOu-y= (- Voo +uy -Vér, +y-Vo —uly[*0u

yI?
:(_ . +My-V¢T1+y-VU—M|Y|2 Ou.

logr
o7, (r) = 0> IOgF)ﬂ{r<1}+0( )]l{r>1},

and

1
0,0 < min(u2r|log(r)|,p,| og(r)|)’
r
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it follows that

S0, -y / TG
< ==~ dy+2 d
V/Rz T+ 2 O e T2 ?

o /P2 [2<1—|y|2)
r2 L+ [y2L 1+ [y
-Vo
_M(|Y|2_y'V¢T1_yT)]Qudy

>0

(A.5) < 2y/B QulfI?dy.

Hence, if we combine all the previous inequalities we obtain

| f121y1?
VIPOudy+2y [ QulfPdy =y -y [ T 0,y
/Rz a B r2 (1+]y»)2 ="
if we select y = % then (A.2) follows. Now to show (A.1) we prove that if
(f.¢r0, Qu)r> =0, then
(A6) [odst=c [ ouvspa,
B R2

with C uniform with respect to ;. We first by contradiction prove (A.6) for fixed .
Assume that (A.6) is false, then there exists f, € H'(R?, Q,dy) such that

1
/ 0.V fulPdy < 1. /Q,,,|fn|2dy=1, and  (fy. a0, Op)iz = 0.
R2 n B

Hence, up to a subsequence f;, —> foo in leOC where f is a constant. In addition,

by (A.2) we deduce
| a1y ?
0y, dy < 1.
/Rz (1+y2)2 ="
Since ¢a,, (v) = O(1/(1 + |7]?)) we can pass to the limit in
(A7) (fn’¢AQ“ QM)L2 =0,

and deduce that
(foos ¢AQM QM)L2 =0.
Since (1,¢a0, Qu)r2 # 0, we get foo = 0. However,

/ foo?Qpudy = 1.
B

which contradicts foo = 0. To prove the uniformity of C in (A.6), we argue by
contradiction. Suppose that C is not uniform with respect to p, then there exist
Cp >0, ip > 0,and f, € H'(R?, Q,, dy) such that

Cpn — +00, Uy — 1™,
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with u* > 0.

1
[ 0|V ful2 dy = . /Qun|fn|2dy=1,
R2 Cy B
and  (fn,pr0,, Qu,)r2 =0.

Actually, u* = 0 is the most difficult case, since when © — 0, Q,, loses its

exponential decay at infinity. However, thanks to the fact that ppp = O(W)

has extra decay, one can still pass to the limit in (f», $A0,, Ou,)r2 = 0. Indeed,
for R > 0, we have

0= (9001, Qi = | Sibngu, Oundy + [, 11980, 0s

and
Jndn0,., Qu, dy —> / Jooap Q dy.
R Bpr

Moreover, thanks to (A.2) we get that

1
|fn|2|y|2 )2
£y Qundy S ( / n
/Rz\BR Jn®nQ,, Qundy s, U DRP 0,..d
2
* (/RZ\B 1$A0., |2|y|2Qundy)
R

1

1 | fnl?1y1? 2

(A8) < —(/ a6 ay) .
R2\ Jr2\B, (14 |y]?)? Qu

Since
1
(/ AP P 0 )2
R2\Bg (1 + [y[2)2 71

is uniformly bounded with respect to n, we deduce that

/ fn()ﬁAQMn QMn dy —>O,
R2\Bg

when R — 400 uniformly in n. For the other terms, one can pass to the limit
as it has been done before and reach the same contradiction, which concludes the
proof. U

LEMMA A.2. Let f € HY(R?, Q, dy) then there exists ¢’ > 0 uniform with
respect to |4 such that

! !
L 0ulyPlrtdy = 55 [ 0uvsRay+ S [ oulrPay.
1

where By is the unit ball in R2.
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PROOF. The proof is based on the following identity with y a positive constant
that will be fixed at the end of the proof:

/ IVf—yyfleudy=/ |Vf|2QMdy—2y[ £y 10 dy
R2 R2 R2

+y2f 21y 0 dy = o.
R2

By integrating by parts we get

2y [y Vioudy =y [ 17V (:00dy
=2y [ 1/PQudy+v [ 17Py-YOuady.

Hence,
/ |Vf|2QMdyz—y2/ |f|2|y|2Qudy—2J// /120, dy
R2 R2 R2
—V/ |f1?y-VQ,dy.
R2

From Proposition 4.4 there exists 0 < ¢ < 1 uniform with respect to i such that

y-Vo
y-Vér, + <clyl.
Since
4ly|? ( y-VO)
.V —v.V — 2 _ — 2_,.V — ,
y-VOu=y-Vog, — ulyl e p yl" =y - Vor, m
we get

/ V/POudy >
R2

1—|y?
2 14 |y)?

v ==am [ 1Py =2y [ PO dy.

If we choose y = % the conclusion follows. |

Appendix B Identities between ¢ and &
PROPOSITION B.1. If (&,1);2 = (&]-|*)2 = 0, ¢ = ayAQ, + & and
fRz Q,L/\/lﬁgdy = 0, then
— N I~ 3
(Le, My e) = (L8, M7,8) + O(w”|log ul),
(M. e) = (M,2.8) + O(u>[log ).
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PROOF. The proof is just a consequence of the identities M,{)L(AQ w) = 2-—
% — 1|y|? and £,Jfb(AQM) = —2uAQ,, and the orthogonality conditions on &.
Indeed, if we replace ¢ in (M), ) by a, AQ,, + &, it follows that

(M, 8) = (M8 &) + o (M) AQ . &)
= (Mg &) = (ME8) + ap(M)E AQ,)
~ A ~ M 5
= (M/Jig,g) +au/(8,2— g —/,L| -| )

The fact that [p> edy = [g2 AQ, dy = 0 implies
/ edy =0.
R2

(Me.8) = (M22,8) —auu@ |- 7).

Moreover, since [g> | y|?dy = 0, it follows

Hence,

[P dy = (Al ) = 2@y |11 = e llog ] + O
Then using that oy, < /i, we deduce
(Mg, &) = (M}E.8) + O(u|log ).
Now we prove the second identity and we replace ¢ in (Eﬁe, Mfle) by e+a, AQ,:
(L8, M7e) = (L8, M7e) + o (LY AQ . Mje)
= (£,8, MJe) = 2pa, (AQp, Mje)

27
= (LL8 M2E) + ap (L8 M2AQ,)

~ M ~
— (8. M) =2 (2 51—l P ) = (€ M)

= (L8 M2E) + ap(M2E LA AQ,)
= (LL8 M2E) — 210, (M2E, AQ )
= (L8, M) + ap(M2E, L2 AQ )

R . R M
= (Lﬁg,/\/lﬁs) —2#0{M(8,2— . —ul- |2)

As before we use that [p2 8dy = 0, [p2&ly|*dy = au%llogm + O(1), and
oy < /i, which imply
_ A ~ 3
(B.1) (L8, M e) = (L8, M},8) + O(1”[log ).
This concludes the proof. U
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The following estimations have been proved already in [31] for ¢ € L2 (R?),

but since 0, < Q we get that LZQM (R?) — L2Q (R?), and we deduce easﬂy from
their proposition the following:

PROPOSITION B.2. Let s € LZQM(]RZ), then
Vel < C||€||L2Q
yva
If, in addition, [g> &dy = 0, then
PellLoe < C||8||L2Q o IVeellp2 = Cliell 2
“w Ou

Appendix C Bounds on the Poisson Field
LEMMA C.1. Lete € LZQM (R?) such that

_ . _ 2 _
/Rz e(y)dy = fRz vie(y)dy = /Rz ly[“e(y)dy =0,

then
pellr2 < C||8||L2Q ,
"

with C uniform with respect to [L.

PROOF. For |x| < 1 we have

e ()] < [ log(lx — yDIleldy < llell .z,
R2 Ou
which implies
f e (¥ dx < llell7
Ix|<1 u

For |x| > 1 we have

¢8(>—1°g("")/ ()dy‘ ‘/ log( |')e(y)dy‘.

We separate the integral into two pieces. Indeed, we look first at {|y| < |x|}:

x_
| log(' Y ')s(y)dy
{Iyl<lxl} |x]
1 |x — y|?
——/ log e(y)dy
{lyl<lxl} IXI
ly|? 2x-y) ’
e(y)dy
‘/{y|<|x|} ( X2 |x|?

> 2x-y (Iylz‘”))
+ 0 & d ,
‘[{y|<IXI}(|x|2 |x]? |x|2—7" (v)dy

(C.1)
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with 7 small. Hence, by using [p> yie(y)dy = [g2 |y|?e(y)dy = 0 we deduce

lx — y] |y|2_’7 lellz2
(e < le(wldy 5 — 2.
{Iyl<lx]} |x| { x|

yI<lxly x>
Now we look at the other part of the integral,

x R
/ log(M)e(y)dy .
{yl=Ix} | x|

Since |x — y|?> < 2(]x|? + |y]?) and log(1 + ¢) < t'=" with n > 0 sufficiently
small, it follows

1 dvl = = 1 d

'/|y|>x|} ° ( x )Y =2 /{|y|z|x|} T )
! |y |2) ‘
5 2+ 20 |e(y)d
2‘/{y|>|x|} ( |x|2 e(y)dy

(C2) < PP
' 20y S

lxly X220

IA

Hence, we deduce
(€3) [P ax < gl .
|x]>1 Qu

which concludes the proof. g
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