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Abstract

We consider the parabolic-elliptic Patlak-Keller-Segel (PKS) model of chemo-
tactic aggregation in two space dimensions which describes the aggregation of
bacteria under chemotaxis. When the mass is equal to 8� and the second moment
is finite (the doubly critical case), we give a precise description of the dynamic as
time goes to infinity and extract the limiting profile and speed. The proof shows
that this dynamic is stable under perturbations. © 2018 Wiley Periodicals, Inc.

1 Introdution
We consider the two-dimensional Patlak-Keller-Segel system,8̂<̂

:
@tu.x; t/ ��u.x; t/ D �r � .u.x; t/rc.x; t//;

��c.x; t/ D u.x; t/;

u.x; t D 0/ D u0 � 0;

(1.1)

where x 2 R2 and t > 0. This system is generally considered the fundamental
mathematical model for the study of aggregation by chemotaxis of certain microor-
ganisms [14,15,17,29]. From now on we will refer to (1.1) as Patlak-Keller-Segel
(PKS). The first equation describes the motion of the microorganism (u represents
the density of cells) as a random walk with drift up the gradient of the chemoattrac-
tant c. The second equation describes the production and (instantaneous) diffusion
of the chemoattractant. PKS and related variants have received considerable math-
ematical attention over the years, for example, see the review [15] or some of the
following representative works [1–3, 5, 7, 8, 11, 13, 16, 27, 33, 35]. The equation
is Ld=2 critical in dimension d ; hence it is mass or L1 critical in dimension 2,
namely: if u.t; x/ is a solution to (1.1), then for all a 2 .0;1/, so is

ua.t; x/ D
1

a2
u

�
t

a2
;
x

a

�
:
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Moreover, if M D 8� , then the second moment is also conserved. This justifies
the terminology doubly critical if M D 8� and yields very interesting dynamical
properties. It has been known for some time that (1.1) possesses a critical mass:
if ku0k1 � 8� , then classical solutions exist for all time (see, e.g., [1–3, 5, 35]),
and if ku0k1 > 8� , then all classical solutions with finite second moment blow
up in finite time [5, 16, 27] and are known to concentrate at least 8� mass into
a single point at blowup [35] (see also [13, 33]). Another important property of
(1.1) that plays a decisive role in our work is the existence (and uniqueness) of
self-similar spreading solutions for all mass M 2 .0; 8�/. These are known to be
global attractors for the dynamics if the total mass is less than 8� [5] and for the
purposes of our analysis. The mass is conserved in (1.1):

(1.2)
d

dt

Z
R2
u.x; t/dx D 0:

Hence, we set

M0 D

Z
R2
u0.x/dx:

Notice that the center of mass is also conserved
d

dt

Z
R2
xiu.x; t/dx D 0 for i 2 f1; 2g:

Since the solution of the Poisson equation ��c D u is given by

c D �u D �
1

2�
log j � j ? u;

the system becomes8̂<̂
:
ut D r � .ru � ur�u/;

�u D �
1
2�

log j � j ? u in Œ0; T � �R2;

u.0/ D u0 � 0:

(1.3)

In addition, we have that the flow dissipates the free energy

d

dt
F.u/ D

d

dt

�Z
R2
u logudx �

1

2

Z
R2
u�u dx

�
� 0;(1.4)

where F is the sum of the entropy and the potential energy. The problem is locally
well-posed in the finite Borel measures space [6], but the question of global exis-
tence requires more conditions. Indeed, we can formally compute a virial identity
for a solution of (1.3):

d

dt

Z
R2
u.x; t/jxj2 dx

D �

Z
R2
2x � rudx C

1

2�

Z
R2�R2

2x � .y � x/

jx � yj2
u.x; t/u.y; t/dy dx D
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D 4M0 C
1

2�

Z
R2�R2

.x � y/ � .y � x/

jx � yj2
u.x; t/u.y; t/dy dx

D 4M0 �
M 2
0

2�
:

So that all solutions with finite second moment and mass bigger than 8� cannot
be global in time, we also have an estimation on the maximal existence time Tmax
if the second moment of the initial data u0 is finite,

Tmax �
2�

M0.M0 � 8�/

Z
R2
jxj2u0.x/dx:

Thus, this virial computation is a heuristic explanation of the following trichotomy:

� If
R

R2 u0.x/dx < 8� , then the solutions are global in time. In addition,
it has been proved that the solutions are spreading [5], and the density
converges to a self-similar profile in rescaled variables.
� If

R
R2 u0.x/dx > 8� , then solutions blow up in finite time [5, 16].

� If
R

R2 u0.x/dx D 8� and
R

R2 jxj
2u0.x/dx < 1, solutions are global

in time but concentrate at the origin in infinite time [3]. In contrast, ifR
R2 u0.x/dx D 8� and

R
R2 jxj

2u0.x/dx D 1 what could happen is not
clear except if the solution initially is sufficiently close to a rescaling Qa
of the stationary solution Q [2].

Indeed, the stationary solution of (1.3) is

Q.x/ D
8

.1C jxj2/2
;

its mass is 8� , its second moment is infinite, and Q is the unique minimizer up to
symmetries of the free energy F.u/ with

R
R2 u.x; t/dx D 8� .

When M0 < 8� , the solutions are spreading and they converge to a self-similar
profile in rescaled variables with a rate 1

t
in [4, 8, 9], whereas if M0 > 8� the

solutions blow up in finite time. A result in [13] describes the dynamic of the
blowup by using matching asymptotics, where the authors conjectured that the
dynamic should be stable. Recently in [31], the authors proved the stability of the
blowup and also provided a description of the dynamic, but for radial solutions.
More precisely, in [31] they proved the following:

� Universality of the blowup profile: for all t 2 Œ0; T /,

u.x; t/ D
1

�.t/2
.QC "/

�
t;

x

�.t/

�
with k"kH2

Q
! 0 as t ! T; where

�.t/ D
p
T � te�

p
jlog.T�t/j
2

CO.1/:

� Stability of the dynamic under small perturbation in H 2
Q.R

2/ \ L1.R2/.



1960 T. GHOUL AND N. MASMOUDI

Their proof is based on the modulation theory, which is a strong method for crit-
ical problems. For example, it allows people to prove the stability and to describe
the dynamic of the flow for the nonlinear Schrödinger equation when the mass is
critical [23, 24], for the Schrödinger map when the energy is critical [25], and also
for the 1-corotational harmonic heat flow map when the energy is critical [30].

In this paper we are interested in the critical mass case, namely M0 D 8� . The
problem when M0 D 8� is also energy critical

F.u�/ D F.u/;

and note that we have in this case one more conservation law

(1.5)
d

dt

Z
R2
u.x; t/jxj2 dx D 0:

On one hand, if M0 D 8� ,
R

R2 u0.x/jxj
2 dx D C1 and the initial data u0 is

sufficiently close to a rescaling Qa of Q, then the solution converges to Qa when
t ! C1 [2]. On the other hand, if M0 D 8� and

R
R2 u0.x/jxj

2 dx < C1, the
solution exists globally and concentrates in infinite time [3]. The proof is based
on a contradiction argument and a virial identity. When the domain is bounded
in [17], the authors proved that radial solutions u collapse in 0 at the rate

u.0; t/ D 8e
5
2
C2
p
2t
�
1CO

�
t�1=2 log.4t/

��
as t ! C1. The authors in [17] used the partial mass equation to remove the
nonlocal difficulty and an argument of subsolutions and supersolutions to bound
the solution from above and below.

When the domain is unbounded the infinite speed of propagation of the heat
semigroup will send some mass to infinity almost instantly, the concentration will
occur only when all the mass 8� is present again in the center of mass. While
all the mass concentrates at the origin when t ! C1, the second moment is
ejected to infinity in space. Recently Senba [34] proved the existence of a family of
radial solutions that blow up in infinite time with the speed u.t; 0/ � log.t C 1/2.
We want to emphasize that the speed found by Senba is different from the one
predicted by the physicists in [10, sec. 3.3.3]. His proof is based on a technique
of matching asymptotics developed by Herrero and Velazquez for the supercritical
mass M0 > 8� in [13]. The goal of the paper is to find a speed similar to the one
found by the physicists and describe the dynamic in R2 associated to that speed
when the mass is critical M0 D 8� and to prove the stability of that dynamic
under perturbations of the initial data.
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THEOREM 1.1. For all A0 > 0, there exists ��0 > 0 such that for all �0 < ��0 and
u0 initial data of the form

(1.6) u0 D
1

�0

�
Q

�
x
p
�0

�
e�

x2

2 C z"0

�
x
p
�0

��
where

Z
R2

jz"0.y/j
2

Q
e
jyj2

2 dy < A0�0

and

(1.7)

Z
R2
u0.x/dx D 8�;

Z
R2
u0.x/xidx D 0 for all i 2 f1; 2g;

I WD

Z
R2
u0.x/jxj

2 dx;

the corresponding solution u blows up in infinite time and satisfies:
� Universality and stability of the profile: There exists C > 0 and � 2
C 1.RC/ such that for t large enough, we have

u.x; t/ D
1

�.t/2

�
Q

�
x

�.t/

�
e�
jxj2

2t C z"

�
t;

x

�.t/

��
;(1.8)

with Z
R2

jz".t; y/j2

Q.y/
e

jyj2

2t log.2tC1/dy �
C

t log.t/

where �.t/ D
p
Ip

log.2tC1/CO.log.log.t//
.

REMARK 1.2. The proof requires a spectral gap bound (see Corollary 3.5 ), which
follows from the study of the spectrum of a linearized operator [9]. As of now
the proof of Corollary 3.5 in the nonradial case requires some eigenvalue bounds
that were only done numerically in [9]. We hope to address this issue rigorously
elsewhere.

REMARK 1.3. Notice that if we select any rescaling of u0 initially like .u0/a.x/ D
1
a2
u0.

x
a
/ for some a > 0, then the solution

ua.t; x/ D
1

�.t=a2/2a2

�
Q

�
x

a�.t=a2/

�
e�
jxj2

2t C z"

�
t

a2
;

x

a�.t=a2/

��
induced by .u0/a still behaves asymptotically as in Theorem 1.1.

In the radial case, we can remove the smallness assumption on the initial data,
using the maximum principle on the partial mass equation, namely:

COROLLARY 1.4. Let u0 be a radial initial data satisfying (1.7) andZ
R2

ju0j
2

Q
e
jyj2

2 dy < C1:(1.9)
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Then there exist C1 > 0, C2 > 0, �1.t/, and �2.t/ such that the partial mass mu
of the corresponding solution u (see (8.1)) satisfies for t large enough and r D jxj

(1.10)
�
C1�

2
1e
�
C1r

2

2t

�21 C r
2
�

C1�
2
1

.�21 C r
2/t j log t j

� 8� �mu.r; t/

�
C2�

2
2e
�
C2r

2

2t

�22 C r
2
C

C2�
2
2

.�22 C r
2/t jlog t j

;

with �i .t/ D
Iip

log.2tC1/CO.log.log.t//
and Ii > 0 for i 2 f1; 2g.

The proof of the corollary is given in Section 8.

1.1 Strategy of the Proof
Let’s explain the main ideas of the proof that we think could be applicable to

many other critical problems. The main idea of the proof is to pass by the subcrit-
ical case to reach the critical one. Indeed, the blowup profile of the solution u of
(1.3) is the unique stationary solution Q D 8

.1Cjxj2/2
, but we cannot use the lin-

earization around that stationary solution because we need the second moment of u
to be finite and the mass to be 8� . Since Q has an infinite second moment and 8�
mass, it seems natural to multiply Q by a cutoff function �. However, �Q doesn’t
satisfy a good equation and has an uncontrollable error. The idea is to notice that
the stationary solution of the subcritical case after rescaling converges uniformly
to Q. Indeed, if we rescale (1.3) with the self-similar variables when the mass M
is subcritical, there exists for that M a unique stationary solution n1 that depends
on M and decays exponentially at infinity. Actually, after another rescaling we
prove that n1 converges uniformly to Q when M ! 8� .

Actually, we prove that n1 after a certain rescaling behaves asQmultiplied by a
cutoff function, but the advantage is that n1 is a stationary solution of some related
equation (2.2). The main difficulty now is that everything depends on the mass,
i.e., the linearized operator and its spectrum, the energy, and the norms that we are
controlling. And since the mass is not fixed, we need that all the inequalities be
uniform with respect to the mass. It appears that the energy that we are controlling
is coercive but not uniformly with respect to the mass. To overcome this difficulty,
we found another bound on the energy coming from a property of the nonlinear
term (see Proposition 6.1). Classically, to describe the dynamic of the blowup we
need to rescale the solution, and the best rescaling is the blowup speed �. Hence,
we renormalize the previous equation with the following change of variables:

u.t; x/ D
1

�2.t/
v.s; y/;

ds

dt
D

1

�2.t/
; and y D

x

�.t/
;

where � is an unknown to be determined later. Then we obtain

vs �
�s

�
ƒv D r � .rv � vr�v/ where ƒyv D r � .yv/:(1.11)
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Actually, we don’t rescale (1.3) by � directly, but we arrive at (1.11) in two steps.
In the first step we rescale by the forward self-similar variables to make the sta-
tionary solution of the subcritical case appear. In the second step we rescale by a
certain parameter � that will be defined later such that the combination of these
two rescalings leads to (1.11).

We first start in the second section to set the equations and the bootstrap argu-
ment. In the third section we prove the spectral gap estimate. In the fourth section
we construct an approximate solution, and in the fifth section we do the deriva-
tion of the blowup speed �. In the sixth section we derive a uniform bound on the
potential, and in the seventh section we prove the rigorous control of the error ".

REMARK 1.5. The idea of solving the critical problem by passing to the limit in
the subcritical problem was first used by Matano and Merle in [20–22], where they
construct Type II blowup solutions in the energy supercritical heat equation by
passing to the limit in Type I blowup solutions of the energy subcritical heat equa-
tion. The same idea has also been used by Merle, Raphael, and Szeftel in [26],
where the authors constructed scattering bubbles with subcritical mass arbitrarily
close to the minimal mass blowup solution. Our result is true for a nonradial so-
lution under a spectral gap assumption, but in the radial case the spectral gap has
been proved in [9]. Moreover, the speed of concentration that we derive rigor-
ously from the conservation of the second moment is the one found formally by
the physicist [10, sec. 3.3.3].

REMARK 1.6. In this paper we are describing the dynamic of the minimal mass
blowup solutions (M D 8�) in the whole plane R2. Actually, the question of
describing the dynamic of minimal mass blowup solutions for partial differential
equations has become better understood over the past ten years. Especially on
the gKDV equation, Martel, Merle, and Raphael in [19] proved the existence and
uniqueness of a minimal mass blowup solution and gave a sharp description of
the corresponding blowup. Other works in this direction have been done for NLS;
for example, Raphael and Szeftel in [32] proved the existence and uniqueness of a
minimal mass blowup solution for an inhomogeneous version of NLS.

REMARK 1.7. The energy estimates that we are using to close the bootstrap argu-
ment is based on spectral gaps in time-weighted norms. Actually, this has already
been used by Hadzic and Raphael in [12].

1.2 Notation and Conventions
We will use the following conventions:
� C denotes a constant that may change from one line to the next and is

uniform with respect to �.
� For functions f and g, we denote f D O.g/ if there exists C uniform

with respect to � such that f � Cg.
� For quantities A and B , we denote A . B if there exists C uniform with

respect to � such that A � CB .
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� hri denotes
p
1C r2.

� For radial functions such as Q;�Q, we keep the same notation for Q.x/
and Q.r/ where r D jxj and write �� D @rr� C 1

r
@r�.

2 Bootstrap Argument
2.1 The Subcritical Problem

We expect u to behave like Q at the blowup time. Linearizing u around Q
(i.e., u D Q C ") is not helpful, since the second moment of Q is infinite, and
we are looking for solutions with finite second moment. Another alternative would
be to multiply the ground state Q by a cutoff function � to have a finite second
moment. However, the error of our solution Q� becomes too large and we cannot
close our estimates. Nevertheless, if we consider the stationary solution of the
subcritical mass problem n1 and we rescale it by a certain parameter �, then
the n1 rescaled by � will converge to Q. This sequence Q� has much better
properties as we will see later. To make n1 appear, we rescale (1.3) by the self-
similar variables, using ´ D x

R.t/
and � D logR.t/ with R.t/ D

p
1C 2t such

that u.x; t/ D 1
R.t/2

w. x
R
; logR/:

(2.1)

(
@�w ��w �ƒw D �r � .wr�w/;

���w D w;

where ƒw D r � .´w/ andZ
R2
w.´; �/d´ D

Z
R2
u.x; t/dx D 8� D

Z
R2
u0.x/dx:

It is well-known that (2.1) has stationary solution n1 of mass M for all M < 8� .
Actually n1 is the solution of the following equation:

(2.2)

(
�n1 Cr � .´n1 � n1r�n1/ D 0;

�n1 D �
1
2�

log j � j ? n1in R2:

The equation can also be written as

���n1 D n1 DMn1

e�n1�.j´j
2=2/R

R2 e
�n1�.j´j

2=2/d´
:(2.3)

The linearized operator around n1 is also well-known:

L´w D �w Cr � .´w � wr�n1 � n1r�w/

D r �

�
n1r

�
w

n1
� �w

��
D r � .n1r.M´w//;

M´w D
w

n1
� �w :
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Notice that n1 can be parametrized by its mass or by its maximum at ´ D 0. To
emphasize the dependence of n1 inM , we will denote n1 as nM1 . Throughout the
paperM will denote the mass of n1. We will parametrize n1 by its maximum and
set n1.0/ D 8

�
; then if � goes to 0, the mass M D M.�/ will go to 8� . Hence,

if we rescale n1 correctly with �, the maximum of the rescaled n1 becomes 8,
which is the maximum of Q. This rescaled n1 converges uniformly to Q as �
goes to 0. The following proposition summarizes the previous statements:

PROPOSITION 2.1. Let � D 8

nM1.0/
and y D ṕ

�
; then �nM1.

p
�y/ ! Q.y/

uniformly as �! 0. Moreover,

Q.y/e�
�jyj2

2 � �nM1.
p
�y/ � Q.y/ for all y 2 R2:

This is a direct consequence of Proposition 4.1. Since �nM1.
p
��/ converges

to Q, it seems natural to rescale (2.1) by using y D ṕ
�

, ds
d�
D

1
�

with w.´; �/ D
1
�
v. ṕ

�
; s/ where � will be fixed later:(

@sv ��v �
�
�C @s�

2�

�
ƒv D �r � .vr�v/;

���v D v:
(2.4)

To resume the situation we have three sets of variables .x; t/, .´; �/, and .y; s/,
which are linked in the following way:

´ D
x

R.t/
; y D

´
p
�
D

x
p
�R.t/

;

�.t/ D log.R.t//;
ds

d�
D
1

�
;

ds

dt
D

1

�R.t/2
;

where R.t/ D
p
1C 2t . We fix s.0/ D e to avoid a problem if one divides by s or

if one takes the log of s. Now we set

Q�.y/ D �n
M
1.
p
�y/I

hence Q� solves

�Q� � r � .Q�r�Q�/ D ��r � .yQ�/:(2.5)

Let v D Q�C"; we will prove later thatM.�/ D
R

R2Q� dy D 8�C2� log.�/C
O.�/, which implies that the mass of " will be of order � log.�/ since the mass of
v is 8� . We need " to be at least of order � to close our estimates; hence we add a
correction to Q�. We set zQ� D Q� C T�.y/ where T� is a correction to insure
that zQ� is of mass 8� . It will be constructed in Section 4.

2.2 Modulation
In this subsection, we explain how we fix the parameter �. We consider initial

data of the form
v0 D zQ�0 C "0;
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with 8� mass, a finite second moment I such that
R

R2 "0 dy D 0, and �0 > 0

is sufficiently small. We will show the existence and uniqueness of the following
decomposition of our solution:

v.y; s/ D zQ� C ";(2.6)

where the mass of " is 0. Set

L2Q�.R
2/ D

�
f 2 L2.R2/ such that

Z
R2

f 2

Q�
dx <1

�
(2.7)

and

L2Q�;0.R
2/ D

�
f 2 L2Q�.R

2/ such that
Z

R2
f .x/dx D 0

�
:(2.8)

In the following lemma we fix � such that ."; j � j2/L2 D 0.

LEMMA 2.2 (Modulation). For all A > 0, there exists x� > 0 such that for all
�� 2 .0; x�/, v 2 L2Q�� such that

kv � zQ��kL2Q��
� ı.��/ WD

p
A��;(2.9)

there exist a unique � > 0 and a unique " such that

v.y/ D zQ�.y/C ".y/;

and
."; j � j2/L2 D 0:

In addition,
k"kL2Q��

. ı.��/;

and
j� � ��j . �

3=2
� j log.��/j1=2:

PROOF OF LEMMA 2.2. The proof is based on a careful use of the Intermediate
Value Theorem. Given v satisfying (2.9), consider the C 1 function

F.�/ D .v � zQ�; j � j
2/L2 :

From (5.16) we deduce

@�Fj�D�� D ..@�
zQ�/j�D�� ; j � j

2/ D �
C

��
CO.jlog��j2/ ¤ 0;

and from (5.17)

j@��F j .
1

�2
:

It follows for j� � ��j � ��

2
,

F.�/ D F.��/C @�F.��/.� � ��/CO

�
1

�2�

�
.� � ��/

2;
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and since

F.��/ � kv � zQ��kL2Q��

�Z
R2
jyj2 zQ�� dy

� 1
2

.
p
��jlog��j

1
2 ;

we deduce that there exists C � such that

�˙ D �� ˙ C
��

3
2
� jlog��j

1
2

satisfy
F.��/ < 0 and0 F.�C/ > 0:

Hence, by the Intermediate Value Theorem there exists � 2 .��; �C/ such that

F.�/ D 0;

which concludes the proof. The proof of (5.16) and (5.17) is given in Section 5. �

2.3 Setting Up the Bootstrap Argument
Let u0 be as in Theorem 1.1 and let u be the global free energy solution con-

structed in [3]. Consequently, thanks to Lemma 2.2 the solution admits a unique
decomposition on some small time interval Œ0; T �/,

u.x; t/ D
1

R2.t/�.t/

�
zQ�

�
x

R.t/
p
�.t/

�
C "

�
x

R.t/
p
�.t/

; t

��
;(2.10)

where
.".t/; 1/ D .".t/; j � j2/ D 0;

and from standard argument (see [18]) �.t/ satisfies � 2 C 1.Œ0; T �//. In the rest
of this paper, we will abuse notation and consider � also as a function of s. Using
the initial smallness assumption on "0 and �0, we prove the following proposition:

PROPOSITION 2.3. Let u0 be as in Theorem 1.1 and let u be the global free energy
solution constructed in [3]. Assume there exists S� such that for all s 2 Œe; S�/,
there exist � > 0 and � WD �.s/, a C 1 function from Œe; S�/ to RC, �.e/ D �0,
and ˇ̌̌̌

�.s/ �
1

2s

ˇ̌̌̌
<

A1

sjlog sj
:(2.11)

Let us define v.s; y/ D �R2u.t; x/ D zQ�.y/ C ".s; y/ where y D x
R
p
�

and
ds
dt
D

1
�R2

. If we assume that for all s 2 Œe; S�/

(2.12) k"k2
L2Q�

� A�;

then the regime is trapped; in particular when S�

2
< s � S� we obtain the same

inequalities (2.11) and (2.12) with A1 and A replaced by A1
2

and A
2

.

Hence, if one can increase by continuity the size of the interval Œe; S�/, it will
induce that we can also increase the size of Œ0; T �/.
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3 The Linearized Operator and Its Spectral Gap
In this section, we describe the properties of the linearized operator Ly� obtained

from the linearization around Q�.

3.1 Setting Up the Equations
If we plug v.y; s/ D zQ�.y/C ".y; s/ into (2.4) we get

(3.1)
@s"C @s zQ� D �r � ."r�"/C

�
�C

�s

2�

�
.ƒ"Cƒ zQ�/C� zQ�

C�" � r � . zQ�r�"/ � r � ."r� zQ�
/ � r � . zQ�r� zQ�

/:

Hence,

@s" D Ly�"C
�s

2�
ƒ"C‚�."/CN."/C zE;(3.2)

where

Ly�" D r �
�
Q�r.My

�"/
�
D �"C �ƒ" � r � ."r�Q� CQ�r�"/I

the previous equality comes from the fact that rQ�
Q�
D r�Q� ��y, which we will

prove in Proposition 3.1. In addition,

My
�" D

"

Q�
� �":

Note that My
� corresponds to the linearization arround Q� of the free energy

F.u/ D
Z

R2
u logudx �

1

2

Z
R2
u�u dx:

The error term zE comes from the fact that zQ� is not an exact solution of (2.4). It
is given by

zE D � zQ� C �ƒ zQ� � r � . zQ�r� zQ�
/C

�s

2�
ƒ zQ� � @s zQ�:(3.3)

We split it into two parts:
zE D E C F

with

E D � zQ� C �ƒ zQ� � r �
�
zQ�r� zQ�

�
and F D

�s

2�
ƒ zQ� � @s zQ�:

The nonlinear term N."/ is given by

(3.4) N."/ D �r � ."r�"/:

The linear term ‚� measures the error due to the fact that we are linearizing
around zQ� and not around Q�. It is given by

‚�."/ D r � Œ. zQ� �Q�/r�" C "r� zQ��Q�
�:
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3.2 The Linearized Operator Ly�
We have the following relations between Ly� and L´:

Ly�.v.y// D �L´
�
1

�
v

�
´
p
�

��
:

We now prove fundamental algebraic relations on Q�, My
�, and Ly�.

PROPOSITION 3.1. Let Q� be the solution of (2.5). Then �Q� solves

���Q� D ��
00
Q�
�
1

r
�0Q� D Q� D 8e

�Q���
jyj2

2 I(3.5)

� Algebraic identities for My
�:

My
�.@�Q�/ D �

jyj2

2
; My

�.@iQ�/ D ��yi ;

My
�.ƒQ�/ D 2 �

M

2�
� �jyj2;

M 0.�/�@Mn1.
p
�y/ D @�Q� �

1

2�
ƒQ�;

My
�

�
@�Q� �

1

2�
ƒQ�

�
D �

�
2 �

M

2�

�
:

� Algebraic identities for Ly�:

Ly�.@�Q�/ D �ƒ.Q�/; Ly�.@iQ�/ D ��@iQ�;
Ly�.ƒQ�/ D �2�ƒQ�;

Ly�
�
@�Q� �

1

2�
ƒQ�

�
D 0:

PROOF.
� Derivation of (3.5).

Let us recall the properties of nM1.´/ for M < 8� :

���nM1 D n
M
1 DM

e
�
nM1
�.j´j2=2/R

R2 e
�
nM1
�.j´j2=2/

d´
;

with M D
R

R2 n
M
1 d´ < 8� and

nM1.0/ DM
e
�
nM1

.0/R
R2 e

�
nM1
�.j´j2=2/

d´

or

�nM1 .0/ D log
�
nM1.0/

Z
R2
e
�
nM1
�.j´j2=2/

d´

�
� log.M/:
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Hence if we set z�nM1 D ˛ C �nM1 where

˛ D log.M/ � log
�Z

R2
e
�
nM1
�.j´j2=2/

d´

�
;

then we get

��z�nM1 D n
M
1.´/ D e

z�
nM1
�.j´j2=2/

;

with z�nM1 .0/ D ˛C�nM1 .0/ D log.nM1.0//. Now we see that if we choose
� D 8

nM1.0/
, y D ṕ

�
, and

�Q�.y/ D
z�nM1 .

p
�y/ � log

�
nM1.0/

�
;

then �Q� solves (3.5) with �Q�.0/ D 0 and �0Q�.0/ D 0.

� Differentiation of (3.5) with respect to y.
Moreover, we have by differentiating (3.6) in y

(3.6)
log.Q�/ D log.8/C �Q� � �

jyj2

2
;

@iQ�

Q�
D �@iQ� � �yi ;

then
My

�.@iQ�/ D ��yi :

Hence,
Ly�.@iQ�/ D ��@iQ�:

� Differentiation of (3.5) with respect to �.
We see easily by differentiating (3.6) in � that

@�Q�

Q�
D �@�Q� �

jyj2

2
;(3.7)

which means

My
�.@�Q�/ D �

jyj2

2
:

It follows that

Ly�.@�Q�/ D �r � .yQ�/:

Actually, we differentiated Q� with respect to � without justifying that
Q� is smooth with respect to �. However, this will be done later in Sec-
tion 4 (see (4.21)).
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� Differentiation of (3.5) with respect to �.
In addition, if we set Q��.y/ D �

2Q�.�y/ where � > 0, then

�Q�.�y/ D �
M.�/

2�
log.�/C �Q��.y/:

Using (3.6), we also get

log.Q��/ D log.8/C �Q�� C
�
2 �

M

2�

�
log.�/ � ��2

jyj2

2
:

If we differentiate the previous equation in � and set � D 1, we deduce
ƒQ�

Q�
� �ƒQ� DMy

�.ƒQ�/ D 2 �
M

2�
� �jyj2:(3.8)

It follows that
Ly�.ƒQ�/ D �2�ƒQ�:

The relationM 0.�/�@MnM1.
p
�y/ D @�Q��

1
2�
ƒQ� is a consequence

of an easy computation. From this relation and Ly�.@�Q�/ D �ƒ.Q�/,
Ly�.ƒQ�/ D �2�ƒQ�, we deduce that Ly�.@�Q� � 1

2�
ƒQ�/ D 0. One

can also recover this from the fact that

L´.@MnM1/ D 0) Ly�
�
@�Q� �

1

2�
ƒQ�

�
D 0: �

LEMMA 3.2. The operator Q�My
� W L

2
Q�
�! L2Q� , given by

Q�My
�u D u �Q��u;

is linear continuous, self-adjoint, and Fredholm. Moreover,Z
R2
Q�jMy

�uj
2
� K�kuk2

L2Q�
;

with K� uniform with respect to �,

8.u; v/ 2 L2Q� � L
2
Q�

.My
�u; v/ D .u;My

�v/:

In addition, Q�My
� W L

2
Q�;0

�! L2Q� is positive definite and defines an inner
product on L2Q�;0.

PROOF. We use the following inequality from [31]:

k�ukL1.fr�1g/ C





 �u

1C jloghrij






L1.fr�1g/

. kukL2Q :

Hence,Z
R2
Q�jMy

�uj
2 dy . kuk2

L2Q�
C





 �u

1C jlogjyjj





2
L1

Z
R2
.1C jlog.jyj/j/Q� dy

. kuk2
L2Q�

:
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The self-adjointness follows from the fact that

for all .u; v/ 2 L2Q� � L
2
Q�

.�u; v/L2 D .u; �v/L2 :

It is easy to see that the operator is in the form I �Q��.�/ with Q��.�/ a compact
operator, which implies that it is Fredholm. To prove that .My

�v; v/ � 0 for
any v 2 L2Q�;0, we recall that the free energy F.v/ achieves its minimum at
v D Q� according to the logarithmic Hardy-Littlewood-Sobolev inequality and
observe that

.My
�v; v/ D lim

ı!0

1

ı2
F.Q� C ıv/ � 0(3.9)

for any smooth function v compactly supported and satisfying
R

R2 v dy D 0.
Hence, by density (3.9) holds for any v in L2Q�;0.R

2/. �

3.3 The Spectrum of Ly�
Let’s define the domain of Ly�,

D.Ly�/ D
˚
f 2 L2Q�such that Ly�.f / 2 L2Q�

	
� L2Q� :

PROPOSITION 3.3. Ly� is a self-adjoint operator and has discrete spectrum on
D0.Ly�/ � L2Q�;0 for the inner product . � ; � /My

�
, where

D0.Ly�/ D
˚
f 2 L2Q�;0 such that Ly�.f / 2 L2Q�;0

	
:

Moreover, in D.Ly�/,

ker.Ly�/ D span
�
@�Q� �

1

2�
ƒQ�

�
;(3.10)

Ly�.@iQ�/ D ��@iQ�;(3.11)

Ly�.ƒQ�/ D �2�ƒQ�:(3.12)

Furthermore, Proposition 3.3 was proved in [9] (using the ´-coordinate). Cam-
pos and Dolbeault obtained the following spectral gap inequality [9]:

THEOREM 3.4. For all w 2 L2
nM1
.R2/, if

(3.13)
�
w;M´@Mn

M
1

�
L2
D C1.M/.w; 1/ D 0;

then

(3.14) .M´w;w/ � �.L´w;M´w/:

There exists K2 > 2 such that if in addition�
w;M´

�
@1n

M
1

��
L2
D
�
w;M´

�
@2n

M
1

��
L2
D
�
w;M´ƒnM1

�
L2
D 0;

then

(3.15) K2.M´w;w/ � �.L´w;M´w/:
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In the radial case, (3.15) follows from the study of the spectrum of L´ performed
in [9]. Moroever, the numerics performed in [9] (see figure 1 in [9]) show that it
is also true in the nonradial case. We hope to address this elsewhere. We rewrite
Theorem 3.4 in the y-coordinate with y D ṕ

�
.

COROLLARY 3.5. For all w 2 L2Q�.R
2/, if

(3.16)
�
w;My

�

�
@�Q� �

1

2�
ƒQ�

��
D C2.�/.w; 1/ D 0;

then

(3.17) �.My
�w;w/ � �.Ly�w;My

�w/:

There exists K2 > 2 such that if in addition

.w;My
�.@1Q�//L2 D .w;My

�.@2Q�//L2 D .w;My
�ƒQ�/L2 D 0;

then

(3.18) K2�.My
�w;w/ � �.Ly�w;My

�w/:

REMARK 3.6. Notice here that the conditions .w; 1/L2 D .w; j � j
2/L2 D 0 corre-

spond in the inner product . � ; � /My
�

where Ly� is self-adjoint to the orthogonality
on ƒQ� and on @�Q� � 1

2�
ƒQ� the kernel of Ly�. Indeed,

.w;My
�ƒQ�/ D

�
2 �

M

2�

�
.w; 1/ � �.w; j � j2/ D 0

and

.w;My
�@�Q�/ D �

1

2
.w; j � j2/ D 0:

In addition, we get for free from the conservation of the center of mass that
.w; yi /L2 D 0, which corresponds to the orthogonality on @iQ� in the inner prod-
uct . � ; � /My

�
. Indeed,

.w;My
�@iQ�/ D ��

Z
R2
wyi dy D 0:

4 Construction of the Approximate Profile
4.1 Properties ofQ�

In this section, we construct an adequate approximate profile zQ� that has finite

second moment and 8� mass. Recall that � and M are related by � D 8

nM1.0/
. In

the following proposition, we prove that the rescaled nM1 by� converges uniformly

to Q the unique stationary solution of (1.1).
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PROPOSITION 4.1. Let nM1 be the solution of (2.2), then �nM1.
p
�y/ !

Q.y/ uniformly as �! 0. Moreover,

�Q � �
jyj2

2
< �Q�.y/ �

�jyj2

2
< �Q.y/ < �Q�.y/ < 0 for all y ¤ 0;

(4.1)

y � r�Q�.y/ � �jyj
2 < y � r�Q.y/

< y � r�Q�.y/ < 0 for all y ¤ 0;
(4.2)

Q.y/e�
�jyj2

2 < �nM1.
p
�y/ D Q�.y/ < Q.y/ for all y 2 R2:(4.3)

PROOF. We set r D jyj and recall that �Q is characterized by

(4.4) � �00Q �
1

r
�0Q D 8e

�Q D Q with �Q.0/ D 0 and �0Q.0/ D 0:

The unique solution of (4.4) is given by �Q.y/ D �2 log.1C jyj2/. From Propo-
sition 3.1, we also have

���Q� D 8e
�Q� e�

�r2

2 D Q�:

We will prove that

�Q �
�r2

2
< �Q� �

�r2

2
< �Q < �Q� < 0 8r ¤ 0:

After taking the exponential, we get that

Qe�
�jyj2

2 < Q�.y/ < Q.y/:

Indeed, (
��Q C 8e

�Q D 0;

��Q� C 8e
�Q� e�

�r2

2 D 0;
(4.5)

with �Q.0/ D �Q�.0/ D 0 D �0Q.0/ D �0Q�.0/. Since �Q�.0/ D 0 D �Q.0/,
from

(4.6)

(
�Q.r/ D �8

R r
0
1
r 0

R r 0
0 �e�Q.�/d� dr 0;

�Q�.r/ D �8
R r
0
1
r 0

R r 0
0 �e �.�/d� dr 0;

we deduce easily that �Q.y/ < 0, �0Q.y/ < 0, and that �Q�.y/ < 0, �0Q�.y/ < 0.
It follows that �Q� and �Q are radially symmetric and decreasing. Set  �.y/ D

�Q� �
�jyj2

2
.

PROOF OF �Q �
�r2

2
< �Q� �

�r2

2
< �Q < �Q� < 0 FOR r IN A NEIGHBOR-

HOOD OF 0.
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We first expand �00Q� , �0Q� , �Q, �Q� , and  � around 0:

�Q.r/ D �2r
2
C r4 C o.r4/;

�00Q�.r/ D �
00
Q�
.0/C r�

.3/
Q�
.0/C

r2

2
�
.4/
Q�
.0/CO.r3/;

�0Q�.r/ D r�
00
Q�
.0/C

r2

2
�
.3/
Q�
.0/C

r3

6
�
.4/
Q�
.0/CO.r4/;

�Q�.r/ D

4X
nD2

rn

nŠ
�
.n/
Q�
.0/C o.r4/;

and

 �.r/ D

4X
nD0

rn

nŠ
 .n/� .0/C o.r4/:

Then, to compare the three functions we just need to find the values of the consec-
utive derivatives of �Q� at 0. To do so, we plug the expansions of �00Q� , �0Q� , and
�Q� around zero in

��00Q� �
1

r
�0Q� D 8e

�Q���
r2

2 I

we get

�00Q�.0/ D �4; �
.3/
Q�
.0/ D 0; and �

.4/
Q�
.0/ D 6.4C �/:

The conclusion follows by substituting the values of the derivatives of �Q� in the
expansion of �Q� and  � around 0.

PROOF OF �Q �
�r2

2
< �Q� �

�r2

2
< �Q < �Q� < 0 FOR r IN A NEIGHBOR-

HOOD OF 0.

We first expand �00Q� , �0Q� , �Q, �Q� , and  � around 0:

�Q.r/ D �2r
2
C r4 C o.r4/;

�00Q�.r/ D �
00
Q�
.0/C r�

.3/
Q�
.0/C

r2

2
�
.4/
Q�
.0/CO.r3/;

�0Q�.r/ D r�
00
Q�
.0/C

r2

2
�
.3/
Q�
.0/C

r3

6
�
.4/
Q�
.0/CO.r4/;

�Q�.r/ D

4X
nD2

rn

nŠ
�
.n/
Q�
.0/C o.r4/;

and

 �.r/ D

4X
nD0

rn

nŠ
 .n/� .0/C o.r4/:
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Then, to compare the three functions we just need to find the values of the consec-
utive derivatives of �Q� at 0. To do so, we plug the expansions of �00Q� , �0Q� , and
�Q� around zero in

��00Q� �
1

r
�0Q� D 8e

�Q���
r2

2 :

We get

�00Q�.0/ D �4; �
.3/
Q�
.0/ D 0; and �

.4/
Q�
.0/ D 6.4C �/:

The conclusion follows by substituting the values of the derivatives of �Q� in the
expansion of �Q� and  � around 0.

PROOF OF �Q �
�r2

2
< �Q� �

�r2

2
< �Q < �Q� < 0 FOR r IN A NEIGHBOR-

HOOD OF 0.

We first expand �00Q� , �0Q� , �Q, �Q� , and  � around 0:

�Q.r/ D �2r
2
C r4 C o.r4/;

�00Q�.r/ D �
00
Q�
.0/C r�

.3/
Q�
.0/C

r2

2
�
.4/
Q�
.0/CO.r3/;

�0Q�.r/ D r�
00
Q�
.0/C

r2

2
�
.3/
Q�
.0/C

r3

6
�
.4/
Q�
.0/CO.r4/;

�Q�.r/ D

4X
nD2

rn

nŠ
�
.n/
Q�
.0/C o.r4/;

and

 �.r/ D

4X
nD0

rn

nŠ
 .n/� .0/C o.r4/:

Then, to compare the three functions we just need to find the values of the consec-
utive derivatives of �Q� at 0. To do so, we plug the expansions of �00Q� , �0Q� , and
�Q� around zero in

��00Q� �
1

r
�0Q� D 8e

�Q���
r2

2 :

We get

�00Q�.0/ D �4; �
.3/
Q�
.0/ D 0; and �

.4/
Q�
.0/ D 6.4C �/:

The conclusion follows by substituting the values of the derivatives of �Q� in the
expansion of �Q� and  � around 0.

PROOF OF �Q �
�r2

2
< �Q� �

�r2

2
< �Q < �Q� < 0 FOR ALL r > 0.

Let’s argue by contradiction. Suppose there exists r0 > 0 such that �Q.r0/ D



MINIMAL MASS BLOWUP 1977

�Q�.r0/ and �Q�.r/ > �Q.r/ >  �.r/ for all 0 < r < r0. We use that �Q and
�Q� are solutions of 8<:.r�

0
Q/
0 C 8re�Q D 0;

.r�0Q�/
0 C 8re�Q��

�r2

2 D 0;
(4.7)

which can be solved, using the conditions at 0:(
�Q.r/ D �8

R r
0
1
r 0

R r 0
0 �e�Q.�/d� dr 0

�Q�.r/ D �8
R r
0
1
r 0

R r 0
0 �e �.�/d� dr 0:

(4.8)

It follows that

�Q.r/ � �Q�.r/ D �8

Z r

0

1

r 0

Z r 0

0

�Œe�Q.�/ � e �.�/�d� dr 0;

and since e�Q � e � > 0 for r 2 .0; r0/, we get

�Q.r0/ � �Q�.r0/ D 0 D �8

Z r0

0

1

r 0

Z r 0

0

�Œe�Q.�/ � e �.�/�d� dr 0 < 0;

which is a contradiction. Now suppose there exists r0 such that �Q.r0/ D  �.r0/
and �Q�.r/ > �Q.r/ >  �.r/ for all 0 < r < r0. Since

�Q�.r/ D �8

Z r

0

1

r 0

Z r 0

0

�e �.�/d� dr 0

and  � D �Q� � �
r2

2
, it follows that

 �.r/ D �8

Z r

0

1

r 0

Z r 0

0

�Œe �.�/�d� dr 0 � �
r2

2
:

Then, using that �Q.r/ < �Q�.r/, we get

 �.r0/ < �8

Z r0

0

1

r 0

Z r 0

0

�
�
e�Q.�/��

�2

2

�
d� dr 0 � �

r20
2„ ƒ‚ …

z �.r0/

:

Notice that for � D 0 we have z 0.r0/ D �Q.r0/. If we prove that @� z �.r0/ < 0,
we deduce that  �.r0/ < z 0.r0/ D �Q.r0/, which is the desired contradiction.
Since

@r@� z �.r0/ D
4

r0

Z r0

0

�3
�
e�Q.�/��

�2

2

�
d� � r0

< @r@� z �j�D0 D
4

r0

Z r0

0

�3e�Q d� � r0;
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then it suffices to prove that @r@� z �j�D0 < 0: Indeed, one can easily calculate

@r@� z �j�D0.r0/ D
2

r0

�
�1C

1

1C r20
C log

�
1C r20

��
� r0

< 0 for all r0 > 0;

which concludes the proof.
The proof of (4.2) is similar to (4.1) and is left to the reader. Note that (4.2)

implies (4.1). �

For the rest of our estimations we will need the following proposition. Recall
that T1 was also used in [31].

PROPOSITION 4.2. Let T1 be the solution of LT1 D r � .QrMT1/ D ƒQ; then
we have

�T1.y/ D O.r
4 loghri/1fr�1g C

�
6.log r/2 CO

�
.log r/2

r2

��
1fr�1g;

�0T1.r/ D O.r
3 loghri/1fr�1g CO

�
log r
r

�
1fr�1g:

PROOF. First we notice that r � .QrMT1/ D r � .yQ/, with T1.0/ D 0 and
rT1.0/ D 0, which implies MT1 D

jyj2

2
. And since T1 is radial and ���T1 D

T1, we deduce that �T1 is a solution of

L�T1 D ��
00
T1
�
1

r
�0T1 �Q�T1 D Q

r2

2
;

with �T1.0/ D 0, �0T1.0/ D 0. To estimate �T1 we need to invert the operator L.
Indeed, the Green’s function of L is explicit and the set of radial solutions to the
homogeneous problem

Lf D 0

is spanned by

f0 D 1 �
2

1C r2
; f1 D

r2 log.r/ � 2 � log.r/
1C r2

;

with Wronskian

W D f 01f0 � f1f
0
0 D

1

r
:

Hence a solution of

Lf D g with f .0/ D f 0.0/ D 0

is given by

f .r/ D �f0.r/

Z r

0

gf1� d� C f1.r/

Z r

0

gf0� d�:(4.9)
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It follows that

�T1.r/ D �
f0.r/

2

Z r

0

Qf1.�/�
3 d� C

f1.r/

2

Z r

0

f0.�/Q�
3 d�:

Hence,

�T1.y/ D O.r
4 loghri/1fr�1g C

�
6.log r/2 CO

�
.log r/2

r2

��
1fr�1g:

Now to estimate �0T1 we use that

�0T1.r/ D �
f 00.r/

2

Z r

0

Qf1.�/�
3 d� C

f 01.r/

2

Z r

0

f0.�/Q�
3 d�;

with

f 01.r/ D
4r2 log r C r4 C 4r2 � 1

8r
Q and f 00.r/ D

1

2
rQ:

We finally deduce that

�0T1.r/ D O.r
3 loghri/1fr�1g CO

�
log r
r

�
1fr�1g;

which concludes the proof. �

4.2 Expansion ofQ�
In the previous propositions we just had bounds on Q�. Now the following

proposition will allow us to do an expansion of Q� with respect to � where Q
appears explicitly.

PROPOSITION 4.3. There exists � WD �.�; r/ such that

�Q� D �Q C ��T1 C �(4.10)

where � satisfies

j�.�; r/j . min.�2r2jloghrij; �.loghri/2/:(4.11)

Moreover,

�0Q� D �
0
Q C ��

0
T1
C @r�;(4.12)

with

j@r� j . min
�
�2r jloghrij; �

jloghrij
r

�
:(4.13)

In addition, we obtain the following expansion of Q�:

Q� D Qe
��T1�

�r2

2
C�.�;r/:(4.14)
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PROOF. We write (4.1) in a more precise way. We introduce  1 WD  1.r/ and
� WD �.r; �/ such that

�Q� D �Q C � 1.r/C �.�; r/:

Hence, from (3.5) we have

���Q � �� 1 ��� D Qe
� 1�

�r2

2
C�.�;r/:

By 0 � � 1 C �.�; y/ � � r
2

2
, we get that

e� 1C��
�r2

2 D 1C � 1 � �
r2

2
C �.�; y/CO

�
min

�
.�2r4/;

�
�
r2

2

���
:

Hence,

� �

�
.�CQ/ 1 �Q

r2

2

�
� .�CQ/� D

O

�
min

�
.�2r4/;

�
�
r2

2

���
Q WD g.�; r/:

If we select  1 such that .�CQ/ 1 �Q r2

2
D 0, then  1 D �T1 and we get that

�.�CQ/� D L� D g.�; r/:

From (4.9), we obtain that

�.�; r/ D �f0.r/

Z r

0

gf1� d� C f1.r/

Z r

0

gf0� d�:(4.15)

Hence,
�.�; r/ . min.�2r2jloghrij; �.log r/2/:

To conclude, (4.13) follows easily by differentiating (4.15) with respect to r . �

4.3 Bounds on @i�Q�
We derive in the following proposition bounds on @�Q� and �@�Q� .

PROPOSITION 4.4. Let Q� be the solution of (2.5). Then

�@�Q� D �T1 C @��(4.16)

where

j@�� j . min.�r2jloghrij; jloghrij2/:(4.17)

Moreover,

�0@�Q� D �
0
T1
C @r@��;(4.18)

with

j@r@�� j . min
�
�r jloghrij;

jloghrij
r

�
:
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In addition,

@�Q� D

�
�T1 C @�� �

r2

2

�
Q�:(4.19)

PROOF. By taking the derivative in � of (4.15), we get

(4.20)
@�� D �f0.r/

Z r

0

�
�T1 C @�� �

r2

2

�
.Q� �Q/f1� d�

C f1.r/

Z r

0

�
�T1 C @�� �

r2

2

�
.Q� �Q/f0� d�:

Since jf0j � 1, jf1j � jloghrij, and jQ� �Qj . min.�r2; 1/Q, it follows that

j@�� j . min.�r2; jloghrij/jloghrij C jloghrij
Z r

0

j@�� jmin.��2; 1/�Q d�:

Hence, by using the Gronwall inequality, we deduce

j@�� j . min.�r2; jloghrij/jloghrij:(4.21)

Note that to prove the smoothness in � rigorously one should do the previous
calculation on the finite difference �.�/��.�0/

���0
and then pass to the limit�! �0 in

(4.21). We will not detail this here. To prove the bound on @r@�� , we differentiate
(4.20) with respect to r ,

(4.22)
@r@�� D �f

0
0.r/

Z r

0

�
�T1 C @�� �

r2

2

�
.Q� �Q/f1� d�

C f 01.r/

Z r

0

�
�T1 C @�� �

r2

2

�
.Q� �Q/f0� d�:

If we use as before that jf0j � 1, f 00.r/ D
rQ
2

, jf1j . jloghrij, jf 01j . r3Q,
jQ� �Qj . min.�r2; 1/Q, and j@�� j . min.�r2; jloghrij/jloghrij, we deduce

j@r@�� j . min
�
�r jloghrij;

jloghrij
r

�
: �

By taking an extra derivative with respect to �, we can obtain bounds on @2�Q�
and �@2�Q� .

PROPOSITION 4.5. The following bounds hold:

j�@2�Q� j . r2jloghrij(4.23)

and

@2�Q� D

�
�@2�Q� C

�
�@�Q� �

r2

2

�2�
Q�:(4.24)
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PROOF. We differentiate (4.16) with respect to �,

�@2�Q� D @
2
��:(4.25)

By differentiating (4.20) in � and using @�Q� D .�@�Q� �
r2

2
/Q� we get

@2�� D �f0.r/

Z r

0

�
@2��.Q� �Q/CQ�

�
@�� �

r2

2

�2�
f1� d�

C f1.r/

Z r

0

�
@2��.Q� �Q/CQ�

�
@�� �

r2

2

�2�
f0� d�:

Finally, using that jf0j � 1, jf1j . jloghrij, jQ� �Qj . min.1; �r2/Q, jQ�j .
Q, and j@�� j . min.�r2jloghrij; jlog.r/j2/, we deduce thatˇ̌

@2��
ˇ̌

. r2jloghrij C jloghrij
Z r

0

ˇ̌
@2��

ˇ̌
min.��2; 1/�Q d�:

Hence, (4.23) follows from Gronwall inequality. To justify the extra derivative
that we took on @�� with respect to � one can do the same calculation above on the
finite difference @��.�/�@��.�0/

���0
and then pass to the limit �! �0 . To conclude,

(4.24) follows from differentiating (4.19) with respect to �. �

PROPOSITION 4.6. We have the following bounds:

j�@3�Q� j . r4jloghrij;(4.26)

@3�Q� D

��
�@2�Q� C

�
�@�Q� �

r2

2

�2
C 2�@2�Q�

�
(4.27)

�

�
�@�Q� �

r2

2

�
C �@3�Q�

�
Q�:

PROOF. We differentiate (4.25) with respect to �. Hence,

�@3�Q� D @
3
��:

By processing as in the proof of Proposition 4.5, one can easily deduce (4.26); the
details are left to the reader. To conclude, by differentiating

@2�Q� D

�
�@2�Q� C

�
�@�Q� �

r2

2

�2�
Q�

with respect to �, (4.27) follows. �

4.4 Expansions of the MassM with Respect to �
In the following lemmas we estimate the mass and the second moment of Q�,

which are fundamental for either the application of the implicit function theorem
in Lemma 2.2 or the derivation of the law of � in Lemma 5.1.
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LEMMA 4.7. We have the following expansions for the mass of Q�:

M.�/ D

Z
R2
Q� dy D 8� C 2� log.�/CO.�/;(4.28)

M 0.�/ D

Z
R2
@�Q� dy D 2 log.�/CO.1/;(4.29)

M 00.�/ D

Z
R2
@2�Q� dy D O

�
1

�

�
:(4.30)

PROOF. To prove (4.28) we decompose Q� D QCQ.e��T1C���
r2

2 � 1/ and
plug it into M D

R
R2Q� dy. Hence,

M.�/ D

Z
R2
Qdy C

Z
R2
Q.e�Q���

jyj2

2 � 1/dy

D 8� C

Z 1p
�

0

Q

�
��T1 C � � �

r2

2
CO.�2r4/

�
r dr

C

Z C1
1p
�

.Q� �Q/r dr;

Since jQ� �Qj . Q for r � 1p
�

we get that

Z C1
1p
�

jQ� �Qjr dr .
Z C1
1p
�

Qr dr . �:

Hence, by using j� j . �2r2jloghrij for r � 1p
�

and j�T1 j . jloghrij2 we deduce
that

M.�/ D 8� �
�

2

Z 1p
�

0

Qr3 dr CO.�/ D 8� C 2� log.�/CO.�/:(4.31)

To prove (4.29), we use that @�Q� D .�@�Q� �
r2

2
/Q�. It follows by using

Propositions 4.3 and 4.4 that

(4.32)

Z
R2
@�Q� dy D

Z 1p
�

0

�
�@�Q� �

r2

2

�
�Q

�
1C ��T1 C � � �

r2

2
CO.�2r4/

�
r dr

C

Z 1
1p
�

�
�@�Q� �

r2

2

�
Q�r dr:



1984 T. GHOUL AND N. MASMOUDI

Since j� j . min.�2r2jloghrij; �jloghrij2/, j�T1 j . min.r4jloghrij; jloghrij2/,
and j�@�Q� j . r2, it follows thatZ 1

1p
�

ˇ̌̌̌
�@�Q� �

r2

2

ˇ̌̌̌
Q�r dr .

Z 1
1p
�

r3Q�dr

.
Z 1
1p
�

r3Qe�.jloghrij2� r
2

2
/dr . 1;(4.33)

and Z 1p
�

0

ˇ̌̌̌
�@�Q� �

r2

2

ˇ̌̌̌
Q

ˇ̌̌̌
��T1 C � � �

r2

2
CO.�2r4/

ˇ̌̌̌
r dr

C

Z 1p
�

0

j�@�Q� jQr dr . 1:

Hence,

(4.34) M 0.�/ D

Z
R2
@�Q� dy D �

Z 1p
�

0

Q
r3

2
dr CO.1/

D 2 log.�/CO.1/:

To prove (4.30) we use Proposition 4.5 to deduce that

M 00.�/ D

Z
R2
@2�Q� dy D

Z
R2

�
�@2�Q� C

�
�@�Q� �

r2

2

�2�
Q� dy:(4.35)

From Proposition 4.6 we have for all r � 0:

r4 � 1 . �@2�Q� C

�
�@�Q� �

r2

2

�2
. r4 C 1:

Hence, Z 1
0

r5Q� dr � 1 . M 00.�/ .
Z 1
0

r5Q�.r/dr C 1:(4.36)

Since Q� D Qe��T1C���
r2

2 we obtain thatZ 1
0

r5Q� dr D

Z 1
0

r5Qe��T1C���
r2

2 dr

D
1

�

Z 1
0

�5
1

.�C �2/2
e
��T1 .

�p
�
/C�. �p

�
/� �

2

2 d�;

and since Z 1
0

�5
1

.�C �2/2
e
��T1

�
�p
�

�
C�
�
�p
�

�
� �

2

2 d�

is uniformly bounded with respect to �, we deduce that (4.30) holds, which con-
cludes the proof of Lemma 4.7. �
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4.5 Expansions of the Second Moment with Respect to �
LEMMA 4.8. We have the following expression on the second moment of Q� and
the following bounds on the derivatives of the second moment of Q� with respect
to �: Z

R2
Q�.y/jyj

2 dy D
2M.�/

�

�
1 �

M.�/

8�

�
:(4.37)

There exists C > 0 such that
�C

�
�

Z
R2
@�Q�.y/jyj

2 dy �
�1

C�
;(4.38)

1

C�2
�

Z
R2
@2�Q�.y/jyj

2 dy �
C

�2
;(4.39)

�C

�3
�

Z
R2
@3�Q�.y/jyj

2 dy �
�1

C�3
:(4.40)

PROOF OF (4.37). We start by calculating the second moment of Q�. We mul-
tiply (2.5) by jyj2 and integrate:Z

R2
�Q�jyj

2 dy �

Z
R2
r � .Q�r�Q�/jyj

2 dy

D ��

Z
R2
r � .yQ�/jyj

2 dy:

Then by integration by parts and using that r�Q� D
1
j�j
? Q�, we get

4M C
1

2�

Z
R2�R2

2y � .y � x/

jx � yj2
Q�.x/Q�.y/dx dy

D 2�

Z
R2
Q�.y/jyj

2 dy;

4M C
1

2�

Z
R2�R2

.x � y/ � .y � x/

jx � yj2
Q�.x/Q�.y/dx dy

D 2�

Z
R2
Q�.y/jyj

2 dy

4M �
M 2

2�
D 2�

Z
R2
Q�.y/jyj

2 dy;

which implies (4.37). �

We now have the following:

PROOF OF (4.38).Z
R2
@�Q�.y/jyj

2 dy D

Z
R2

�
�@�Q� �

r2

2

�
Q�.y/jyj

2 dy:(4.41)
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Since Q� D Qe��T1C���
r2

2 and �@�Q� D �T1 C @�� , it follows thatZ
R2
@�Q�.y/jyj

2 dy D

Z 1
0

�
�T1 C @�� �

r2

2

�
Qe��T1C���

r2

2 r3 dr:(4.42)

By using that

j�T1 j . min.r4jloghrij; jloghrij2/;

j@�� j . min
�
�r2jloghrij; jloghrij2

�
;

we deduce that for all r � 0

�r2 . �T1 C @�� �
r2

2
. �r2:

Hence,

�

Z 1
0

r5Qe��T1C���
r2

2 dr .
Z

R2
@�Q�.y/jyj

2 dy

. �
Z 1
0

r5Qe��T1C���
r2

2 dr:

Notice thatZ 1
0

r5Qe��T1C���
r2

2 dr D
1

�

Z 1
0

�5
1

.�C �2/2
e
��T1 .

�p
�
/C�. �p

�
/� �

2

2 d�;

and since
R1
0 �5 1

.�C�2/2
e
��T1 .

�p
�
/C�. �p

�
/� �

2

2 d� is uniformly bounded with re-
spect to �, we deduce (4.38). �

PROOF OF (4.39). Notice first that

@2�Q� D

�
�@2�Q� C

�
�@�Q� �

r2

2

�2�
Q�:

Hence, by using

j�T1 j . min.r4jloghrij; jloghrij2/; j@�� j . min.�r2jloghrij; jloghrij2/

and j�@2�Q� j . r2jloghrij, we deduce, for all r � 0,

r4 � 1 . �@2�Q� C

�
�@�Q� �

r2

2

�2
. r4 C 1:

Z 1
0

.r7 � r3/Qe��T1C���
r2

2 dr .
Z

R2
@�Q�.y/jyj

2 dy

.
Z 1
0

.r7 C r3/Qe��T1C���
r2

2 dr:

From (4.31) and (4.33) we getZ 1
0

r3Qe��T1C���
r2

2 dr D O.jlog�j/:
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Notice also thatZ 1
0

r7Qe��T1C���
r2

2 dr D
1

�2

Z 1
0

�7
1

.�C �2/2
e
��T1

�
�p
�

�
C�
�
�p
�

�
� �

2

2 d�;

and since Z 1
0

�7
1

.�C �2/2
e
��T1

�
�p
�

�
C�
�
�p
�

�
� �

2

2 d�

is uniformly bounded with respect to �, we deduce (4.39). The last step is to prove
(4.40). �

PROOF OF (4.40). If we use that

@3�Q� D

��
�@2�Q�C

�
�@�Q��

r2

2

�2
C2�@2�Q�

��
�@�Q��

r2

2

�
C�@3�Q�

�
Q�;

then by proceeding as in the proof of the previous inequalities, one can easily
deduce (4.40); the rest of the proof is left to the reader. �

4.6 Correction of the ProfileQ� and Estimation of the Error E
Now we are ready to decide what the good approximate profile will be. Indeed,

we choose the following profile:

(4.43) zQ� D Q� � z�@�Q�;

where

(4.44) z� D

R
R2Q� � 8�R

R2 @�Q�
D �CO

�
�

jlog�j

�
;

which can be deduced easily from Lemma 4.7. This choice can be justified by two
reasons: The first one is that the mass of " will be zero, and this implies that

.My
�"; @Mn1/ D ."; 1/ D 0:

The second reason is that if we plug zQ� into

� zQ� C �ƒ zQ� � r � . zQ�r� zQ�
/ D �z�Ly�.@�Q�/ � z�2r � .@�Q�r�@�Q�/

D z�ƒQ� � z�
2
r � .@�Q�r�@�Q�/;(4.45)

the identity �Ly�.@�Q�/ D ƒQ� yields that the error

E D z�ƒQ� � z�
2
r � .@�Q�r�@�Q�/

is of order �2 when it is projected onto My
�". Indeed, since ."; j � j2/ D ."; 1/ D 0,

it follows that

.My
�.ƒQ�/; "/ D

�
2 �

M

2�
� �j � j2; "

�
D 0;

which implies

.E;My
�"/L2 D �z�

2.r � .@�Q�r�@�Q�/;M
y
�"/L2 :
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This cancellation makes the projection of our error on " with the inner product
. � ; � /My

�
of order �2, which is fundamental for closing the energy estimate.

5 Derivation of the Law of �.s.t//
Recall that

v.y; s/ D zQ�.y/C ".y/:

The conservation of the second moment in the x-coordinate translates intoZ
R2
vjyj2 dy D

I

�R.t/2
;(5.1)

where I is the second moment of the initial data u0. We will abuse notation and
use �.t/ for �.s.t//.

LEMMA 5.1. Let v be the solution of (2.4) with 8� mass and " satisfy ."; j�j2/L2 D
0. Then,

(5.2)
I

�R.t/2
D �

M

2�
log.�/CO.1/

and

(5.3) �.t/ D
2�I

M.2t C 1/ log.2t C 1/CO.t log log.2t C 1//
:

If we consider � as a function of s, we have

(5.4)
ˇ̌̌̌
�.s/ �

1

2s

ˇ̌̌̌
�

C 0

s log.s/
:

PROOF. If we combine (4.28) and (4.37), thenZ
R2
Q�.y/jyj

2 dy D
2M

�

�
�2� log.�/CO.�/

8�

�
D �

M log.�/
2�

CO.1/:(5.5)

It follows from (5.1) that ."; j � j2/ D 0 and (5.5) that
I

R2�
D

Z
R2
zQ�.y/jyj

2 dy

D �
M

2�
log.�/CO.1/ � z�

Z
R2
@�Q�jyj

2 dy:(5.6)

From (4.38) we deduce thatZ
R2
@�Q�.y/jyj

2 dy D O

�
1

�

�
:(5.7)

Hence, by using z� D �CO
� �
jlog�j

�
it follows that

I

R2�
D

Z
R2
zQ�.y/jyj

2 dy D �
M

2�
log.�/CO.1/;(5.8)



MINIMAL MASS BLOWUP 1989

and taking the log of (5.8), we get that

log
�
1

�

�
� log.2t C 1/ D log log

�
1

�

�
CO.1/:

Consequently,

log log
�
1

�

�
D log log.2t C 1/CO.1/;

which implies (5.3). To find �.s/ we use that
ds

dt
D

1

�R2
D
M log.2t C 1/CO.log log.2t C 1//

2�I
:(5.9)

Hence, if we integrate we find

s.t/ D
2.2t C 1/M log.2t C 1/CO.t log log.2t C 1//

2�I
;

and (5.4) follows with C 0 in (5.4) a uniform constant with respect to A1, and hence
if we choose A1 sufficiently large, we get C 0 < A1

100
. �

Now we need to find a bound on �s for the energy estimates.

LEMMA 5.2.

�s D �2�
2
CO

�
�2

jlog�j

�
:(5.10)

PROOF. To prove (5.10), we differentiate I
R2�

D
R

R2
zQ�.y/jyj

2 dy with re-
spect to s. Hence,

I
d

ds

�
1

R2�

�
D �s

Z
R2
@� zQ�.y/jyj

2 dy:(5.11)

To derive (5.10) we must estimate
R

R2 @�
zQ�.y/jyj

2 dy. Indeed, since @� zQ�.y/ D
@�Q� � @� z�@�Q� � z�@

2
�Q�, we first have to compute @� z�, and from Lemma

4.7 we obtain

@� z� D 1CO

�
1

j log�j

�
:(5.12)

It follows that

@� zQ� D ��@
2
�Q� CO

�
�@2�Q� C @�Q�

j log�j

�
:(5.13)

From Lemma 4.7 we compute

@� z� D 1CO

�
1

jlog�j

�
;(5.14)

which implies

@� zQ� D ��@
2
�Q� CO

 
�@2�Q� C @�Q�

jlog�j

!
:(5.15)
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From Lemma 4.8 we deduce thatZ
R2
@� zQ�jyj

2 dy

D ��

Z
R2
@2�Q�jyj

2 dy CO

 Z
R2

�@2�Q� C @�Q�

jlog�j
jyj2 dy

!

D ��

Z
R2
@2�Q�jyj

2 dy CO

�
1

�jlog�j

�
D �

C

�
CO

�
1

�jlog�j

�
;(5.16)

and similarly we obtain from Lemma 4.8,Z
R2
@2�
zQ�jyj

2 dy D
C

�2
CO

�
1

�2jlog�j

�
;(5.17)

where C > 0 is a constant depending on the constant C in (4.39) and (4.40).
Finally, since dt

ds
D �R2 and R0.t/R.t/ D 1 it follows that

�I

� d
ds
.�R.t/2/

�2R4

�
D �I

�
�s

�2R2
C 2

R0.t/R

R2

�
D �I

�
�s

�2R2
C

2

R2

�
D �s

Z
R2
@� zQ�.y/jyj

2 dy D �sO

�
1

�

�
;(5.18)

which concludes the proof. �

6 Bounds on the Potential r�"

With the orthogonality conditions ."; 1/ D ."; j�j2/ D 0, .My
�"; "/ D k"k

2
L2Q�
�

kr�"k
2
L2

does not control k"kL2Q�
uniformly in �. It turns out that we have a re-

markable nonlinear structure that yields a control of kr�"k2L2 and hence k"kL2Q�
.

PROPOSITION 6.1. Z
R2
jr�"j

2 dy D O.�/:(6.1)

PROOF. We take the L2 inner product of (3.2) with j � j2:

d

ds
."; j � j2/ D .L�"; j � j2/ � .r � ."r�"/; j � j2/C

�s

2�
.ƒ"; j � j2/

C .‚�."/; j � j
2/C .F; j � j2/C .E; j � j2/:

Since
."; j � j2/ D ."; 1/ D 0;
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we have

.L�"; j � j2/ D �2. zQ�rMy
�"; y/ D 2.My

�";ƒ
zQ�/

D 2.";My
�ƒ
zQ�/ D

�
2 �

M

2�

�
."; 1/ � �."; jyj2/ D 0(6.2)

and
.ƒ"; j � j2/ D �2."; j � j2/ D 0:

In addition,

�.r � ."r�"/; j � j
2/ D 2

Z
R2
"y � r�" dy D

Z
R2
jr�"j

2 dy:(6.3)

The last equality comes from the fact that
R

R2 " dy D 0, ���" D ". Since F D
�s
2�
ƒ zQ� � �s@� zQ�, to estimate .F; j � j2/ we first calculate .ƒ zQ�; j � j2/ and

.@� zQ�; j � j
2/. Indeed, from (5.6) we get

.ƒ zQ�; j � j
2/ D �2. zQ�; j � j

2/ D �
2I

R2�
;(6.4)

and by using (5.16) we deduce

�s.@� zQ�; j � j
2/ D �I

�
�s

�2R2
C

2

R2

�
:(6.5)

Hence

.F; j � j2/ D
2I

R2
D �

M� log�
�

CO.�/:

Furthermore, sinceE D z�ƒQ�� z�2r �.@�Q�r�@�Q�/ and z� D �CO
� �
jlog�j

�
,

it follows that

.E; j � j2/ D �2z�.Q�; j � j
2/C 2z�2.r�@�Q� � y; @�Q�/

D �2�.Q�; j � j
2/C 2z�2.r�@�Q� � y; @�Q�/CO.�/

D
M� log�

�
C 2z�2.r�@�Q� � y; @�Q�/CO.�/:(6.6)

From Proposition 4.4 we get that

2z�2.r�@�Q� � y; @�Q�/ . �2jlog�j2:

Hence,

.F CE; j � j2/ D �
M� log�

�
C
M� log�

�„ ƒ‚ …
cancellation

CO.�/:(6.7)

To estimate .‚�."/; j � j2/ we use that zQ� �Q� D �z�@�Q�. Hence,

.‚�."/; j � j
2/ D �z�Œ.@�Q�;r�" � y/C .";r�@�Q� � y/�:(6.8)
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It follows that

j.‚�."/; j � j
2/j . �

�
kr�"kL2

�Z
R2
j@�Q�j

2
jyj2 dy

� 1
2

C k"kL2Q�

�Z
R2

jr�@�Q� j
2jyj2

Q�
dy

� 1
2
�
:

Thanks to jr�@�Q� j . min.�jyjjlogjyjj; jlogjyjj
jyj

/, @�Q� . Q�jyj
2, and the boot-

strap assumption, we deduce

j.‚�."/; j � j
2/j .

p
A�

3
2

p
jlog�j:(6.9)

Hence, if we assume that � was chosen small enough, we deduce thatZ
R2
jr�"j

2 dy � C�;(6.10)

with C uniform in �, thus concluding the proof. �

7 Energy Estimates
We want to prove the following energy bound:

PROPOSITION 7.1.
1

2

d

ds
.My

�"; "/C �

�
K2 �

1

2
� ı

�
.My

�"; "/ � C.ı; A/�
2;(7.1)

with C.A; ı/ . 1
ı
.
p
A.1 C ı/ C 1/, where ı > 0 is a sufficiently small constant

and A is the bootstrap constant.

PROOF. We multiply (3.2) by My
�" and integrate

(7.2)

1

2

d

ds
.My

�"; "/

D �

Z
R2
Q�

ˇ̌
rMy

�"
ˇ̌2
dy C

�s

2�
.ƒ";My

�"/ �
�s

2

�
@�Q�"

Q2�
; "

�
„ ƒ‚ …

I

C .E;My
�"/„ ƒ‚ …

II

C .‚�;My
�"/„ ƒ‚ …

III

C .N."/;My
�"/„ ƒ‚ …

IV

C .F;My
�"/„ ƒ‚ …

V

:

Now we estimate each term of (7.2).

7.1 Estimation of I (Linear Terms)
Estimation of .@�Q�"=Q2�; "/

We will use the notation

hyi D

q
1C jyj2:
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Notice first that by Proposition 4.3

@�Q�

Q�
D �@�Q� �

r2

2
D �

r2

2
Cmin.O..log.r//2/; O.�r2jloghrij//:

This term will be very helpful since it has the good sign if we can controlZ
R2
jlog.hyi/j2

"2

Q�
dy:

Indeed, we can prove thatZ
R2
jlog.hyi/j2

"2

Q�
dy . A

p
�C

p
A
p
�

�Z
R2
Q�jrMy

�"j
2 dy

� 1
2

:

We first use that "
Q�
DMy

�"C �", which implies

(7.3)

Z
R2
jlog.hyi/j2

"2

Q�
dy D

Z
R2
jlog.hyi/j2"My

�" dy

C

Z
R2
jlog.hyi/j2"�" dy:

Then by Proposition B.2 and the bootstrap assumptionZ
R2
jlog.hyi/j2"�" dy � k�"kL1k"kL2Q�

kjlog.hyi/j2
p
Q�kL2 . A�:

To bound the other term we use a bootstrap argument, Lemma 3.2, and Lemma
A.2: Z

R2
jlog.hyi/j2"My

�" dy

� k"kL2Q�

�Z
R2
jlog.hyi/j4Q�jMy

�"j
2 dy

� 1
2

. k"kL2Q�

�Z
R2
jyj2Q�jMy

�"j
2 dy

� 1
2

. k"kL2Q�

�
4

�2

Z
R2
Q�jrMy

�"j
2 dy C

12

�

Z
R2
Q�jMy

�"j
2 dy

� 1
2

.
p
A
p
�

�Z
R2
Q�jrMy

�"j
2 dy

� 1
2

C A
p
�;

which yieldsZ
R2
jlog.hyi/j2

"2

Q�
dy . A

p
�C

p
A
p
�

�Z
R2
Q�jrMy

�"j
2 dy

� 1
2

:
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Hence, if we combine the previous inequality with �s D �2�2 C O.
�2

jlog�j/, we
get

�
�s

2

�
@�Q�"

Q2�
; "

�
D �

�2

2

Z
R2
jyj2

"2

Q�
dy CO.�

5
2 /:(7.4)

Estimation of .ƒ";My
�"/

.ƒ";My
�"/ D 2.My

�"; "/C

Z
R2
y � r"My

�" dy

D 2.My
�"; "/C

Z
R2
y � r"

"

Q�
dy �

Z
R2
y � r"�" dy:(7.5)

We calculate each term separately:Z
R2
y � r"

"

Q�
dy D

1

2

Z
R2

y � r."2/

Q�
dy

D �

Z
R2

"2

Q�
dy C

1

2

Z
R2
"2
y � rQ�

Q2�
dy:(7.6)

In addition,

�

Z
R2
y � r"�" dy D 2

Z
R2
"�" C

Z
R2
"y � r�" dy:

Since for
R

R2 " dy D 0, we have thatZ
R2
"�" D

Z
R2
jr�"j

2 dy;

by using ���" D " and integration by parts we deduce that

�

Z
R2
y � r"�" dy D 2

Z
R2
"�" dy C

1

2

Z
R2
jr�"j

2 dy D
5

2

Z
R2
jr�"j

2 dy:

Hence,

.ƒ";My
�"/ D 2.My

�"; "/ �

Z
R2

"2

Q�
dy C

1

2

Z
R2
"2
y � rQ�

Q2�
dy

C
5

2

Z
R2
jr�"j

2 dy

D

Z
R2

"2

Q�
dy C

1

2

Z
R2
"2
y � rQ�

Q2�
dy C

1

2

Z
R2
jr�"j

2 dy:(7.7)
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Since y�rQ�
Q�

D y � r�Q� � �jyj
2 and y � r�Q� > y � r�Q > �4, we get that

.ƒ";My
�"/ D

Z
R2

"2

Q�
dy C

1

2

Z
R2
jr�"j

2 dy �
�

2

Z
R2

jyj2"2

Q�
dy

C
1

2

Z
R2

"2y � r�Q�

Q�
dy �

�

Z
R2

"2

Q�
dy C

1

2

Z
R2
jr�"j

2 dy �
�

2

Z
R2

jyj2"2

Q�
dy

� 2

Z
R2

"2

Q�
dy

� �

Z
R2

"2

Q�
dy C

1

2

Z
R2
jr�"j

2 dy �
�

2

Z
R2

jyj2"2

Q�
dy(7.8)

By using �s D �2�2 CO
� �2

jlog�j

�
we obtain that

�s

2�
.ƒ";My

�"/ � �

Z
R2

"2

Q�
dy �

�

2

Z
R2
jr�"j

2 dy C
�2

2

Z
R2

jyj2"2

Q�
dy

� �.My
�"; "/C

�

2

Z
R2
jr�"j

2 dy C
�2

2

Z
R2

jyj2"2

Q�
dy:(7.9)

Since
R

R2 jr�"j
2 dy � C� it holds

�s

2�
.ƒ";My

�"/ � �.My
�"; "/C

�2

2

Z
R2

jyj2"2

Q�
dy C

C�2

2
;(7.10)

with ı > 0 a sufficiently small constant independent of �. The previous inequality
and (7.4) imply the following bound on I,

I D
�s

2�
.ƒ";My

�"/ �
�s

2

�
@�Q�"

Q2�
; "

�
� �.My

�"; "/C
�2

2

Z
R2

jyj2"2

Q�
dy

�
�2

2

Z
R2

jyj2"2

Q�
dy C

C�2

2
CO.�

5
2 /

� �.My
�"; "/C

�2

ı
;(7.11)

with ı > 0 sufficiently small.

7.2 Estimation of the Error: II
REMARK 7.2. First we notice that E D z�ƒQ� � z�2r � .@�Q�r�@�Q�/ and

.ƒQ�;My
�"/ D .My

�.ƒQ�/; "/ D

�
2 �

M

2�

�
.1; "/ � �.j � j2; "/ D 0:
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Thanks to this cancellation, we are able to close our energy estimates.

Hence, by using

jr�@�Q� j . min
�
�jyjjlogjyjj;

jlogjyjj
jyj

�
and j@�Q�j . jyj2Q�

(these inequalities are from Proposition 4.4)

.E;My
�"/ D �z�

2.r � .@�Q�r�@�Q�/;M
y
�"/

. �2
�Z

R2

j@�Q�j
2jr�@�Q� j

2

Q�
dy

� 1
2
�Z

R2
Q�jrMy

�"j
2 dy

� 1
2

. �2jlog�j
3
2

�Z
R2
Q�jrMy

�"j
2 dy

� 1
2

. �

Z
R2
Q�jrMy

�"j
2 dy C �3jlog�j3:(7.12)

7.3 Estimation of III (Linear Terms)
Since

‚�."/ D �z�r � Œ@�Q�r�" C "r�@�Q� �;

and by

jr�@�Q� j . min
�
�jyjjlogjyjj;

jlogjyjj
jyj

�
and j@�Q�j . jyj2Q�;

we have

.‚�."/;My
�"/

D z�

� Z
R2
@�Q�r�" � rMy

�" dy C

Z
R2
"r�@�Q� � rM

y
�" dy

�
. �

�Z
R2
Q�jrMy

�"j
2 dy

� 1
2

�

��Z
R2

j@�Q�j
2jr�"j

2

Q�
dy

� 1
2

C

�Z
R2

jr�@�Q� j
2j"j2

Q�
dy

� 1
2
�

. �Œkr�"kL2 C k"kL2Q�
�

�Z
R2
Q�jrMy

�"j
2 dy

� 1
2

:(7.13)

Hence, by the bootstrap assumption k"kL2Q�
�
p
A� and kr�"kL2 D O.

p
�/ we

get

III D .‚�."/;My
�"/ . �

5
2 C
p
�

Z
R2
Q�jrMy

�"j
2 dy:
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7.4 Estimation of the Nonlinear Term: IV
For the nonlinear term we will use a Sobolev inequality not on " but on My

�"

because we control only the gradient of My
�". To do so we use the identity " D

Q�My
�"C �"Q�:

.N."/;My
�"/

D �

Z
R2
"r�" � rMy

�" dy

D �

Z
R2
Q�My

�"r�" � rMy
�" dy �

Z
R2
Q��"r�" � rMy

�" dy:(7.14)

To estimate
R

R2Q��"r�" � rM
y
�" dy we use supy2R2Q� D 8 and Proposi-

tion B.2:

(7.15)
Z

R2
Q��"r�" � rMy

�" dy �

k�"kL1k
p
Q�r�"kL2

�Z
R2
Q�jrMy

�"j
2 dy

� 1
2

:

By the Morrey inequality, ���" D ", and interpolation we get

k�"kL1 . k�"kL4 C kr�"kL4 . kr�"k1=2L2
�
k��"k

1=2

L2
C k�"k

1=2

L2

�
. kr�"k1=2L2

�
k"k

1=2

L2Q�
C k�"k

1=2

L2

�
:(7.16)

To control k�"kL2 we use Lemma C.1:

k�"k
1=2

L2
. k"k1=2

L2Q�
:(7.17)

Hence, by using the bootstrap assumption, we obtain k"kL2Q�
�
p
A�

Z
R2
Q��"r�" � rMy

�" dy . kr�"k3=2L2 k"k
1=2

L2Q�

�Z
R2
Q�jrMy

�"j
2 dy

� 1
2

. A
1
4�

�Z
R2
Q�jrMy

�"j
2 dy

� 1
2

.
p
A

ı
�2 C ı

Z
R2
Q�jrMy

�"j
2 dy;(7.18)

with ı a sufficiently small constant. Since the size of
R

R2Q�M
y
�"r�" �rMy

�" dy

is critical, we will take out the biggest component of " that is in the direction of
ƒQ�. To do so, we introduce the following decomposition of ":

" D ˛�ƒQ� C y";
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and we fix ˛� such that Z
R2
�ƒQ�Q�M

y
�y" dy D 0:(7.19)

This specific choice of the orthogonality condition is crucial here. Indeed, this
choice will ensure that ˛� has a weak dependence in A (the bootstrap constant)
and that the constant C in (A.1) is uniform with respect to �:Z

B

Q�jMy
�"j

2 dy � C

Z
R2
Q�jrMy

�"j
2 dy:

First let us prove that
j˛�j .

p
�:

Recall from (3.8) that

�ƒQ�Q� D ƒQ� �

��
2 �

M

2�

�
� �j � j2

�
Q�:

On the one hand, using Proposition 3.1 and Lemma 4.7 we haveZ
R2
�ƒQ�Q�M

y
�" dy

D ˛�

Z
R2

�
ƒQ� �

��
2 �

M

2�

�
� �j � j2

�
Q�

�
My

�ƒQ� dy

D ˛�

Z
R2

�
ƒQ� �

��
2 �

M

2�

�
� �j � j2

�
Q�

��
2 �

M

2�
� �jyj2

�
dy:(7.20)

Since .ƒQ�; 1/ D 0 and .ƒQ�; j � j2/ D �2.Q�; j � j2/ D �
M log�
2�

C O.1/, it
follows thatZ

R2
�ƒQ�Q�M

y
�" dy D ˛�

��
2 �

M

2�

�2
M CO.�jlog�j/

�
:(7.21)

On the other hand, using that
R

R2 " dy D
R

R2 "jyj
2 dy D .My

�";ƒQ�/L2 D 0,
we getZ

R2
�ƒQ�Q�M

y
�" dy D

Z
R2

�
ƒQ� �

��
2 �

M

2�

�
� �j � j2

�
Q�

�
My

�" dy

D �

Z
R2

��
2 �

M

2�

�
� �j � j2

�
Q�My

�" dy

D �

Z
R2

��
2 �

M

2�

�
� �j � j2

�
Q��":(7.22)

Hence, using that " has average zero and the decay of Q�, we get that

j˛�j .
Z

R2
Q�j�"jdy . kr�"kL2 :(7.23)

Also, we prove in the following proposition that the difference between .My
�"; "/

and .My
�y"; y"/ is of order �2jlog�j.
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PROPOSITION 7.3. If

."; 1/L2 D ."; j � j
2/L2 D 0; " D ˛�ƒQ� C y";

and
Z

R2
�ƒQ�Q�M

y
�y" dy D 0;

then

.Ly�";My
�"/ D .Ly�y";My

�y"/CO.�
3
jlog�j/;

.My
�"; "/ D .My

�y"; y"/CO.�
2
jlog�j/:

The proof is in the Appendix B. We plug the decomposition of " D ˛�ƒQ�Cy"
into Z

R2
Q�My

�"r�" � rMy
�" dy:

It then follows thatZ
R2
Q�My

�"r�" � rMy
�" dy

D ˛�

Z
R2
Q�My

�.ƒQ�/r�" � rMy
�y" dy

C ˛�

Z
R2
Q�My

�y"r�" � rMy
�.ƒQ�/ dy

C

Z
R2
Q�My

�y"r�" � rMy
�y" dy

C ˛2�

Z
R2
Q�My

�.ƒQ�/r�" � rMy
�.ƒQ�/dy:

Hence, by using My
�.ƒQ�/ D 2 �

M
2�
� �jyj2, we deduce

(7.24)

Z
R2
Q�My

�"r�" � rMy
�" dy

D ˛�

Z
R2
Q�My

�.ƒQ�/r�" � rMy
�y" dy„ ƒ‚ …

IV1

� 2�˛�

Z
R2
Q�My

�y"r�" � y dy„ ƒ‚ …
IV2

C

Z
R2
Q�My

�y"r�" � rMy
�y" dy„ ƒ‚ …

IV3

� 2�˛2�

Z
R2
Q�My

�.ƒQ�/r�" � y dy„ ƒ‚ …
IV4

:

We start by estimating the term IV1.
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Estimation of IV1
Since My

�.ƒQ�/ D 2 �
M
2�
� �jyj2 and by (7.23) we obtain

IV1 . j˛�j
Z

R2
Q�r�" � rMy

�y" dy C j˛�j�

Z
R2
Q�jyj

2
r�" � rMy

�y" dy

.
p
�kr�"kL2

�Z
R2
Q�jrMy

�y"j
2 dy

� 1
2

(7.25)

C �
3
2 k
p
Q�jyj

2
r�"kL2

�Z
R2
Q�jrMy

�y"j
2 dy

� 1
2

:

Notice that
p
Q�jyj

2 is uniformly bounded and kr�"kL2 . p�, which implies

IV1 . ı

Z
R2
Q�jrMy

�y"j
2 dy C

1

ı
�2 C

1

ı
�4

. ı

Z
R2
Q�jrMy

�y"j
2 dy C

1

ı
�2:

If we use Proposition B.1 we obtain

IV1 . ı

Z
R2
Q�jrMy

�"j
2 dy C

1

ı
�2 C �3jlog�j:(7.26)

Estimation of IV2
Now we estimate IV2. We remark that

p
Q�jyj is uniformly bounded, which

implies

IV2 . �j˛�j

�Z
R2
Q�jMy

�y"j
2 dy

� 1
2

k
p
Q�jyjr�"kL2

. �j˛�j

�Z
R2
Q�jMy

�y"j
2 dy

� 1
2

kr�"kL2 :(7.27)

Notice thatZ
R2
Q�jMy

�y"j
2 dy .

Z
R2
Q�jMy

�"j
2 dy C ˛2�

Z
R2
Q�jMy

�ƒQ�j
2 dy

.
Z

R2
Q�jMy

�"j
2 dy C C˛2�;(7.28)

which impliesZ
R2
Q�jMy

�y"j
2 dy .

Z
R2
Q�jMy

�"j
2 dy C � . A�:(7.29)

Hence, if we combine all the previous inequalities, it follows that

IV2 . �2A
1
2 kr�"kL2 . �

5
2A

1
2 :(7.30)



MINIMAL MASS BLOWUP 2001

Estimation of IV4
To estimate IV4, we use My

�.ƒQ�/ D 2 �
M
2�
� �jyj2:

IV4 . �˛2�

� Z
R2
Q�jr�"jjyj dy C �

Z
R2
Q�jr�"jjyj

3 dy

�
. �˛2�kr�"kL2 ŒkQ�jyjkL2 C kQ�jyj

3
kL2 � . �

5
2 :(7.31)

Estimation of IV3
To control the term IV3 we first use the Gagliardo-Nirenberg inequality,

kf kL4 . kf k1=2
L2
krf k

1=2

L2
;

with f D
p
Q�My

�y". Hence,Z
R2
Q�My

�y"r�" � rMy
�y" dy

�

�Z
R2
Q�jrMy

�y"j
2 dy

� 1
2
�Z

R2
Q�jMy

�y"j
2
jr�"j

2 dy

� 1
2

�

�Z
R2
Q�jrMy

�y"j
2 dy

� 1
2

pQ�My

�y"



L4
kr�"kL4

�

�Z
R2
Q�jrMy

�y"j
2 dy

� 1
2

kr�"kL4


pQ�My

�y"


1=2
L2

(7.32)

�


r�pQ�My

�y"
�

1=2
L2
:

We also apply the Gagliardo-Nirenberg inequality to kr�"kL4 and use ���" D ",
L2Q� ,! L2:Z

R2
Q�My

�y"r�" � rMy
�y" dy �

�Z
R2
Q�jrMy

�y"j
2 dy

� 1
2

kr�"k
1=2

L2
k"k

1=2

L2Q�

�


pQ�My

�"


1=2
L2



r�pQ�My
�y"
�

1=2
L2
:(7.33)

Now we estimate kr.
p
Q�My

�y"/k
2
L2

. Since jrQ�j
2

Q�
.
�
�2jyj2 C jyj2

.1Cjyj2/2

�
Q�,

we deduce

r�pQ�My
�y"
�

2
L2

.
Z

R2
Q�jrMy

�y"j
2 dy C

Z
R2

jrQ�j
2

Q�
jMy

�y"j
2 dy

.
Z

R2
Q�jrMy

�y"j
2 dy C �2

Z
R2
jyj2Q�jMy

�y"j
2 dy(7.34)

C

Z
R2

jyj2

.1C jyj2/2
Q�jMy

�y"j
2 dy:
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Then to control �2
R

R2 jyj
2Q�jMy

�y"j
2 dy and

R
R2

jyj2

.1Cjyj2/2
Q�jMy

�y"j
2 dy, we

use Proposition A.1 and Lemma A.2. Hence,

(7.35)

Z
R2
Q�My

�y"r�" � rMy
�y" dy

�

�Z
R2
Q�jrMy

�y"j
2 dy

� 1
2

A
1
2�

3
4

�

��Z
R2
Q�jrMy

�y"j
2 dy

� 1
4

C �
1
4

�Z
R2
Q�jMy

�y"j
2 dy

� 1
4
�
:

From (7.29) and Holder we get

(7.36)
Z

R2
Q�My

�y"r�" � rMy
�y" dy .

ı

Z
R2
Q�jrMy

�"j
2 dy C

�3A2

ı
C �3jlog�j:

Finally,

.N."/;My
�"/ .

1C A
1
2

ı
�2 C ı

Z
R2
Q�jrMy

�"j
2 dy;

with ı > 0 a sufficiently small constant.

7.5 Estimation of the Forcing Term: V
We notice first

F D
�s

2�
ŒƒQ� � z�ƒ@�Q�� � �sŒ@�Q� � @� z�@�Q� � z�@

2
�Q��;

and since .@�Q�;My
�"/ D .ƒQ�;My

�"/ D 0, it follows that

.F;My
�"/ D �z�

�s

2�
.ƒ@�Q�;My

�"/C �s z�.@
2
�Q�;My

�"/

D �z�
�s

2�
.y � r@�Q�;My

�"/C �s z�.@
2
�Q�;My

�"/

D z�
�s

2�
.@�Q�;r � .yMy

�"//C �s z�.@
2
�Q�;My

�"/

D z�
�s

2�
.@�Q�; y � rMy

�"/C �s z�.@
2
�Q�;My

�"/:(7.37)
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Hence, if we use Proposition 4.4, j�sj � 2�2, and z� � �, it holds that

.F;My
�"/ . �3

�Z
R2
Q�jMy

�"j
2 dy

� 1
2
�Z

R2

j@2�Q�j
2

Q�
dy

� 1
2

C �2
�Z

R2

j@�Q�j
2jyj2

Q�
dy

� 1
2
�Z

R2
Q�jrMy

�"j
2 dy

� 1
2

.
�
p
AC

1

ı

�
�2 C ı

Z
R2
Q�jrMy

�"j
2 dy:(7.38)

Finally, combining all the previous estimates, we obtain
1

2

d

ds
.My

�"; "/C �.K2 � 1 � ı/.My
�"; "/ � C.ı; A/�

2;(7.39)

with ı � 1 and C.A; ı/ . 1
ı
.
p
A.1C ı/C 1/ � A for A sufficiently large, which

concludes the energy estimates. �

Now we prove Proposition 2.3,

PROOF OF PROPOSITION 2.3. As set before, E.s/ D .My
�"; "/, and now set

K D K2 � 1 � ı > 1. If we use that j�.s/ � 1
2s
j �

C 0

sjlog sj , then

1

2
E 0.s/C

K

2s
E.s/ �

C.ı; A/

4s2
:(7.40)

Hence,
d

ds
.sKE.s// �

C.ı; A/sK�2

2
I

if we integrate, it follows that

sKE.s/ . C.ı; A/sK�1;

which concludes the proof, and we easily see that if we pick originally A suffi-
ciently large, the constant in the bootstrap gets smaller after each step. �

8 Proof of Corollary 1.4
PROOF OF COROLLARY 1.4. First, let us denote

mu.r; s/ D 2�

Z r

0

�u.�; t/d�;(8.1)

where r D jxj. Hence, we obtain the following local equation on mu:

@tmu D @rrmu �
@rmu

r
C
mu@rmu

r
;

mu.t D 0/ D m0 D

Z r

0

�u0.�/d�;

mu.r; t/ �! 8� as r !C1:
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The proof of the corollary is just based on the fact that for radial data, we can use
the equation on the partial mass and the comparison principle for radial solutions
(see [28]): If, for all r � 0, m2.t D 0; r/ � m1.t D 0; r/, then for all t > 0 and
r � 0,

m2.t; r/ � m1.t; r/:

Let us choose a radially symmetric initial data u10 satisfying the condition of
Theorem 1.1, compactly supported and such that u10.0/ > 0. Consequently, for
a > 0 large enough we can achieve that for all r � 0,

m0.r/ � m
1
0.r/;

where

m10.r/ D 2�

Z r

0

�.u10/1=a.�/d�:

In addition, if we choose

u20 D
K

�0
Q

�
x
p
�0

�
e�

x2

2 ;

where K > 1 is a constant picked to insure that the mass of u20 is 8� . Moreover,
u20 verifies the condition of Theorem 1.1, then, for a large enough one can deduce
easily that

m20.r/ � m0.r/;

where

m20.r/ D 2�

Z r

0

�.u20/a.�/d�:

Hence by applying the comparison principle it follows that

mu2.t/ � mu.t/ � mu1.t/;

where u2 is the solution with initial data .u20/a and u1 is the solution with initial
data .u10/1=a. In other words, because we can use the comparison principle we can
bound the partial mass of any radial solution between two rescaled solutions for
which Theorem 1.1 applies. To prove (1.10), we use that u1 and u2 follow the
dynamic of the solutions of Theorem 1.1. Indeed, we can decompose u1 and u2 as
in (1.8), but to be more consistent we use the decomposition (2.6):

ui .x; t/ D
1

�2i

zQ�i

�
x

�i
; t

�
C

1

�2i
"i

�
x

�i
; t

�
for i 2 f1; 2g;

where zQ�i is the approximate profile constructed in Section 4 and �i is a function
of t fixed in Section 5. Actually, with this decomposition we haveZ

R2
"i dy D 0:
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Consequently,

Z r
�i

0

"i .r
0/r 0 dr 0 D �

Z 1
r
�i

"i .r
0/r 0 dr 0:(8.2)

Moreover, we use that

zQ�i D Q�i � z�i@�iQ�i ;

where z�i D �i CO.�i=jlog�i j/.
From Propositions 4.3 and 4.4, we deduce that

8� �m zQ�i
D

Z 1
r
�i

Q�i .r
0/r 0 dr 0 � z�i

Z 1
r
�i

@�Q�i r
0 dr 0

D

Z 1
r
�i

Qe�i�T1C���i
r02

2 r 0 dr 0

� z�i

Z 1
r
�i

�
�T1 C @�i� �

r 02

2

�
Qe�i�T1C���i

r02

2 r 0 dr 0;

and there exists 0 < c < 1, uniform with respect to �i , such that

j�i�T1 C � j � c�i
r2

2
:

Hence, for all r > 0, we deduce that

j8� �m zQ�i
j

�

Z 1
r
�i

Qe��i .1�c/
r02

2 r 0 dr 0 C �i .1C c/

Z 1
r
�i

Qe��i .1�c/
r02

2 r 0 dr 0

�
1C c

1 � c

Z 1
r
�i

Qe��i .1�c/
r02

2 r 0 dr 0

C �i
.1C c/.1 � c/

1 � c

Z 1
r
�i

Qe��i .1�c/
r02

2 r 0 dr 0

�
8.1C c/

1 � c

� Z 1
r
�i

1

r 03
e��i .1�c/

r02

2 dr 0

C
�i .1 � c/

2

Z 1
r
�i

1

r 0
e��i .1�c/

r02

2 dr 0
�
:
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By integration by parts we obtain that

�i .1 � c/

2

Z 1
r
�i

1

r 0
e��i .1�c/

r02

2 dr 0 D

�2i e
��i .1�c/

r2

2

2r2
�

Z 1
r
�i

1

r 03
e��i .1�c/

r02

2 dr 0:

Consequently, we get for all r > 0 that

j8� �m zQ�i
j .

�2i e
��i .1�c/

r2

2�i

r2
:(8.3)

From Lemma 5.1 and Theorem 1.1 we get that

�i .t/ D

p
Ii

t log.2t C 1/CO.t log log.2t C 1//

and
�i .t/ D R.t/�i .t/ with R.t/ D

p
2t C 1:

Hence,

j8� �m zQ�i
j .

�2i e
�C1

r2

t

r2
:

Since,
R

R2 " dy D 0, we deduce thatZ 1
r
�i

"i .r
0/r 0dr 0 .

�Z 1
r
�i

Q�i .r
0/dr 0

� 1
2

k"ikL2Q�i

.
�Z 1

r
�i

Q.r 0/dr 0
� 1
2

k"ikL2Q�i

.
�2i

�2i C r
2
k"ikL2Q�

.
�2i

.�2i C r
2/t jlog t j

:

Consequently,

8� �mu2.r; t/ D 8� �m zQ�2
�m"2 .

�22e
�C2

r2

2

r2
Cm"2

�
r

�2
; t

�

.
�22e
�C2

r2

2

r2
C

�22

.�22 C r
2/t jlog t j

and

8� �mu1.r; t/ & �
�21e
�C1

r2

2

r2
�

�21

.�21 C r
2/t jlog t j

;



MINIMAL MASS BLOWUP 2007

with �i .t/ D
p
Iip

log.2tC1/CO.log.log.2tC1///
, where Ii depends on a and the second

moment of u. This concludes the proof. �

Appendix A Hardy Inequalities
PROPOSITION A.1. Let f 2 H 1.Q� dy/ be such that .f; �ƒQ�Q�/L2 D 0; then
there exists C uniform with respect to � such thatZ

R2
jf j2

jyj2

.1C jyj2/2
Q� dy � C

Z
R2
Q�jrf j

2 dy:(A.1)

PROOF. We first prove the inequalityZ
R2
jrf j2Q� dy C

Z
B

jf j2Q� dy �
3

4

Z
R2
jf j2

jyj2

.1C jyj2/2
Q� dy:(A.2)

Indeed, let 
 be a positive constant that we will fix later,Z
R2

ˇ̌̌̌
rf � 


yf

1C jyj2

ˇ̌̌̌2
Q� dy D

Z
R2
jrf j2Q� dy � 2


Z
R2

fy � rf

1C jyj2
Q� dy

C 
2
Z

R2

jf j2jyj2

.1C jyj2/2
Q� dy � 0:(A.3)

By integration by parts, we deduce

�2


Z
R2

fy � rf

1C jyj2
Q� dy D 


Z
R2

jf j2rQ� � y

1C jyj2
dy C 2


Z
R2

jf j2

1C jyj2
Q� dy

� 2


Z
R2

jf j2jyj2

.1C jyj2/2
Q� dy:(A.4)

Since

rQ� � y D .y � r�Q C �y � r�T1 C y � r� � �jyj
2/Q�

D

�
�

4jyj2

1C jyj2
C �y � r�T1 C y � r� � �jyj

2

�
Q�;

�0T1.r/ D O.r
3 log r/1fr�1g CO

�
log r
r

�
1fr�1g;

and

@r� . min
�
�2r jloghrij; �

jloghrij
r

�
;
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it follows that




Z
R2

jf j2rQ� � y

1C jyj2
dy C 2


Z
R2

jf j2

1C jyj2
Q� dy

D 


Z
R2

jf j2

1C jyj2

�
2.1 � jyj2/

1C jyj2

� �

�
jyj2 � y � r�T1 �

y � r�

�

�
„ ƒ‚ …

>0

�
Q� dy

� 2


Z
B

Q�jf j
2 dy:(A.5)

Hence, if we combine all the previous inequalities we obtainZ
R2
jrf j2Q� dy C 2


Z
B

Q�jf j
2 dy � .2
 � 
2/

Z
R2

jf j2jyj2

.1C jyj2/2
Q� dyI

if we select 
 D 1
2

, then (A.2) follows. Now to show (A.1) we prove that if
.f; �ƒQ�Q�/L2 D 0, thenZ

B

Q�jf j
2
� C

Z
R2
Q�jrf j

2 dy;(A.6)

withC uniform with respect to�. We first by contradiction prove (A.6) for fixed�.
Assume that (A.6) is false, then there exists fn 2 H 1.R2;Q�dy/ such thatZ

R2
Q�jrfnj

2 dy �
1

n
;

Z
B

Q�jfnj
2 dy D 1; and .fn; �ƒQ�Q�/L2 D 0:

Hence, up to a subsequence fn �! f1 inL2loc where f1 is a constant. In addition,
by (A.2) we deduce Z

R2

jfnj
2jyj2

.1C jyj2/2
Q�n dy � 1:

Since �ƒQ� .y/ D O.1=.1C jyj
2// we can pass to the limit in

.fn; �ƒQ�Q�/L2 D 0;(A.7)

and deduce that
.f1; �ƒQ�Q�/L2 D 0:

Since .1; �ƒQ�Q�/L2 ¤ 0, we get f1 D 0. However,Z
B

jf1j
2Q� dy D 1;

which contradicts f1 D 0. To prove the uniformity of C in (A.6), we argue by
contradiction. Suppose that C is not uniform with respect to �, then there exist
Cn > 0, �n > 0, and fn 2 H 1.R2;Q�ndy/ such that

Cn !C1; �n ! ��;
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with �� � 0. Z
R2
Q�n jrfnj

2 dy D
1

Cn
;

Z
B

Q�n jfnj
2 dy D 1;

and .fn; �ƒQ�nQ�n/L2 D 0:

Actually, �� D 0 is the most difficult case, since when � ! 0, Q� loses its
exponential decay at infinity. However, thanks to the fact that �ƒQ D O

�
1

1Cjyj2

�
has extra decay, one can still pass to the limit in .fn; �ƒQ�nQ�n/L2 D 0. Indeed,
for R > 0, we have

0 D .fn; �ƒQ�nQ�n/L2 D

Z
BR

fn�ƒQ�nQ�n dy C

Z
R2nBR

fn�ƒQ�nQ�n dy

and Z
BR

fn�ƒQ�nQ�n dy �!

Z
BR

f1�ƒQQdy:

Moreover, thanks to (A.2) we get thatZ
R2nBR

fn�ƒQ�nQ�ndy .
�Z

R2nBR

jfnj
2jyj2

.1C jyj2/2
Q�ndy

� 1
2

�

�Z
R2nBR

j�ƒQ�n j
2
jyj2Q�ndy

� 1
2

.
1

R2

�Z
R2nBR

jfnj
2jyj2

.1C jyj2/2
Q�ndy

� 1
2

:(A.8)

Since �Z
R2nBR

jfnj
2jyj2

.1C jyj2/2
Q�ndy

� 1
2

is uniformly bounded with respect to n, we deduce thatZ
R2nBR

fn�ƒQ�nQ�n dy �! 0;

when R ! C1 uniformly in n. For the other terms, one can pass to the limit
as it has been done before and reach the same contradiction, which concludes the
proof. �

LEMMA A.2. Let f 2 H 1.R2;Q� dy/ then there exists c0 > 0 uniform with
respect to � such thatZ

R2
Q�jyj

2
jf j2 dy �

c0

�2

Z
R2
Q�jrf j

2 dy C
c0

�

Z
B1

Q�jf j
2 dy;

where B1 is the unit ball in R2.
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PROOF. The proof is based on the following identity with 
 a positive constant
that will be fixed at the end of the proof:Z

R2
jrf � 
yf j2Q� dy D

Z
R2
jrf j2Q� dy � 2


Z
R2
fy � rfQ� dy

C 
2
Z

R2
jf j2jyj2Q� dy � 0:

By integrating by parts we get

�2


Z
R2
fy � rfQ� dy D 


Z
R2
jf j2r � .yQ�/dy

D 2


Z
R2
jf j2Q� dy C 


Z
R2
jf j2y � rQ� dy:

Hence,Z
R2
jrf j2Q� dy � �


2

Z
R2
jf j2jyj2Q� dy � 2


Z
R2
jf j2Q� dy

� 


Z
R2
jf j2y � rQ� dy:

From Proposition 4.4 there exists 0 < c < 1 uniform with respect to � such that

y � r�T1 C
y � r�

�
� cjyj2:

Since

y � rQ� D y � r�Q� � �jyj
2
D �

4jyj2

1C jyj2
� �

�
jyj2 � y � r�T1 �

y � r�

�

�
;

we getZ
R2
jrf j2Q� dy �

� 
.
 � .1 � c/�/

Z
R2
jf j2jyj2Q� dy � 2


Z
R2

1 � jyj2

1C jyj2
jf j2Q� dy:

If we choose 
 D .1�c/�
2

the conclusion follows. �

Appendix B Identities between " and y"

PROPOSITION B.1. If ."; 1/L2 D ."; j � j2/L2 D 0, " D ˛�ƒQ� C y", andR
R2Q�M

y
�y" dy D 0, then

.Ly�";My
�"/ D .Ly�y";My

�y"/CO.�
3
jlog�j/;

.My
�"; "/ D .My

�y"; y"/CO.�
2
jlog�j/:
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PROOF. The proof is just a consequence of the identities My
�.ƒQ�/ D 2 �

M
2�
� �jyj2 and Ly�.ƒQ�/ D �2�ƒQ�, and the orthogonality conditions on ".

Indeed, if we replace " in .My
�"; "/ by ˛�ƒQ� C y", it follows that

.My
�"; "/ D .My

�y"; "/C ˛�.My
�ƒQ�; "/

D .My
�y"; "/ D .My

�y"; y"/C ˛�.My
�y";ƒQ�/

D .My
�y"; y"/C ˛�

�
y"; 2 �

M

2�
� �j � j2

�
:

The fact that
R

R2 " dy D
R

R2 ƒQ� dy D 0 impliesZ
R2
y" dy D 0:

Hence,

.My
�"; "/ D .My

�y"; y"/ � ˛��.y"; j � j
2/:

Moreover, since
R

R2 "jyj
2 dy D 0, it followsZ

R2
y"jyj2 dy D �˛�.ƒQ�; j � j

2/ D 2˛�.Q�; j � j
2/ D ˛�

M

�
jlog�j CO.1/:

Then using that ˛� . p�, we deduce

.My
�"; "/ D .My

�y"; y"/CO.�
2
jlog�j/:

Now we prove the second identity and we replace " in .Ly�";My
�"/ by y"C˛�ƒQ�:

.Ly�";My
�"/ D .Ly�y";My

�"/C ˛�.Ly�ƒQ�;My
�"/

D .Ly�y";My
�"/ � 2�˛�.ƒQ�;My

�"/

D .Ly�y";My
�"/ � 2�˛�

�
2 �

M

2�
� �j � j2; "

�
D .Ly�y";My

�"/

D .Ly�y";My
�y"/C ˛�.Ly�y";My

�ƒQ�/

D .Ly�y";My
�y"/C ˛�.My

�y";Ly�ƒQ�/

D .Ly�y";My
�y"/ � 2�˛�.My

�y";ƒQ�/

D .Ly�y";My
�y"/C ˛�.My

�y";Ly�ƒQ�/

D .Ly�y";My
�y"/ � 2�˛�

�
y"; 2 �

M

2�
� �j � j2

�
:

As before we use that
R

R2 y" dy D 0,
R

R2 y"jyj
2 dy D ˛�

M
�
jlog�j C O.1/, and

˛� . p�, which imply

.Ly�";My
�"/ D .Ly�y";My

�y"/CO.�
3
jlog�j/:(B.1)

This concludes the proof. �
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The following estimations have been proved already in [31] for " 2 L2Q.R
2/,

but since Q� < Q we get that L2Q�.R
2/ ,! L2Q.R

2/, and we deduce easily from
their proposition the following:

PROPOSITION B.2. Let " 2 L2Q�.R
2/, then

kr�"kL4 � Ck"kL2Q�
:

If, in addition,
R

R2 " dy D 0, then

k�"kL1 � Ck"kL2Q�
; kr�"kL2 � Ck"kL2Q�

:

Appendix C Bounds on the Poisson Field
LEMMA C.1. Let " 2 L2Q�.R

2/ such thatZ
R2
".y/dy D

Z
R2
yi".y/dy D

Z
R2
jyj2".y/dy D 0;

then
k�"kL2 � Ck"kL2Q�

;

with C uniform with respect to �.

PROOF. For jxj � 1 we have

j�".x/j �

Z
R2
jlog.jx � yj/jj".y/jdy . k"kL2Q� ;

which implies Z
jxj�1

j�".x/j
2 dx . k"k2

L2Q�
:

For jxj � 1 we haveˇ̌̌̌
�".x/ �

log.jxj/
2�

Z
R2
".y/dy

ˇ̌̌̌
D

ˇ̌̌̌ Z
R2

log
�
jx � yj

jxj

�
".y/dy

ˇ̌̌̌
:(C.1)

We separate the integral into two pieces. Indeed, we look first at fjyj � jxjg:ˇ̌̌̌ Z
fjyj�jxjg

log
�
jx � yj

jxj

�
".y/dy

ˇ̌̌̌
D
1

2

ˇ̌̌̌ Z
fjyj�jxjg

log
�
jx � yj2

jxj2

�
".y/dy

ˇ̌̌̌
D

ˇ̌̌̌ Z
fjyj�jxjg

log
�
1C
jyj2

jxj2
�
2x � y

jxj2

�
".y/dy

ˇ̌̌̌
D

ˇ̌̌̌ Z
fjyj�jxjg

�
jyj2

jxj2
�
2x � y

jxj2
CO

�
jyj2��

jxj2��

��
".y/dy

ˇ̌̌̌
;
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with � small. Hence, by using
R

R2 yi".y/dy D
R

R2 jyj
2".y/dy D 0 we deduceˇ̌̌̌ Z

fjyj�jxjg

log
�
jx � yj

jxj

�
".y/dy

ˇ̌̌̌
.
Z
fjyj�jxjg

jyj2��

jxj2��
j".y/jdy .

k"kL2Q�

jxj2��
:

Now we look at the other part of the integral,ˇ̌̌̌ Z
fjyj�jxjg

log
�
jx � yj

jxj

�
".y/dy

ˇ̌̌̌
:

Since jx � yj2 � 2.jxj2 C jyj2/ and log.1 C t / � t1�� with � > 0 sufficiently
small, it followsˇ̌̌̌Z

fjyj�jxjg

log
�
jx � yj

jxj

�
".y/dy

ˇ̌̌̌
D
1

2

ˇ̌̌̌Z
fjyj�jxjg

log
�
jx � yj2

jxj2

�
".y/dy

ˇ̌̌̌
�
1

2

ˇ̌̌̌Z
fjyj�jxjg

log
�
2C 2

jyj2

jxj2

�
".y/dy

ˇ̌̌̌
�
1

2

ˇ̌̌̌Z
fjyj�jxjg

jyj2�2�

jxj2�2�
".y/dy

ˇ̌̌̌
:(C.2)

Hence, we deduce Z
jxj�1

j�".x/j
2 dx . k"k2

L2Q�
;(C.3)

which concludes the proof. �
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