Freezing Simulates Non-Freezing Tile Automata

Cameron Chalk®, Austin Luchsinger?*, Eric Martinez?, Robert Schweller?*,
Andrew Winslow?, and Tim Wylie?*

! Department of Electrical and Computer Engineering, University of Texas - Austin
ctchalk@utexas.edu
2 Department of Computer Science, University of Texas - Rio Grande Valley
{austin.luchsinger01,robert.schweller,andrew.winslow,timothy.wylie}@utrgv.edu

Abstract. Self-assembly is the process by which a system of particles
randomly agitate and combine, through local interactions, to form larger
complex structures. In this work, we fuse a particular well-studied gen-
eralization of tile assembly (the 2-Handed or Hierarchical Tile Assembly
Model) with concepts from cellular automata such as states and state
transitions characterized by neighboring states. This allows for a simpli-
fication of the concepts from active self-assembly, and gives us machinery
to relate the disparate existing models. We show that this model, coined
Tile Automata, is invariant with respect to freezing and mon-freezing
transition rules via a simulation theorem showing that any non-freezing
tile automata system can be simulated by a freezing one. Freezing tile
automata systems restrict state transitions such that each tile may visit
a state only once, i.e., a tile may undergo only a finite number of tran-
sitions. We conjecture that this result can be used to show that the
Signal-passing Tile Assembly Model is also invariant to this constraint via
a series of simulation results between that model and the Tile Automata
model. Further, we conjecture that this model can be used to consoli-
date the several oft-studied models of self-assembly wherein assemblies
may break apart, such as the Signal-passing Tile Assembly Model, the
negative-glue 2-Handed Tile Assembly Model, and the Size-Dependent
Tile Assembly Model. Lastly, the Tile Automata model may prove useful
in combining results in cellular automata with self-assembly.

1 Introduction

A diverse collection of different algorithmic self-assembly models have emerged
in recent years to explore the theoretical power of self-assembling systems under
a wide variety of experimentally motivated constraints. While many important
results continue to develop within these models, relatively little is known about
how models which allow active self assembly and/or disassembly relate to each
other. In this paper we propose to develop a tool set for proving connections
between a large set of diverse self-assembly models. Our approach is based on
the proposal of a new mathematical abstraction we term Tile Automata (TA)
which combines elements of passive tile self-assembly (such as the 2HAM [2])

* This author’s research is supported in part by National Science Foundation Grant
CCF-1817602.

with local state change rules similar to asynchronous cellular automata (see [9]
for a survey on cellular automata). Our goal is to study fundamental properties
of active self-assembly and connect the disparate models with this new abstract
model and a powerful tool set.

Active Self-Assembly. Self-assembly is the process by which a system of
particles randomly agitate and combine through local interactions to form larger
and more complex structures. Many forms of self-assembly are passive in nature,
meaning the component system monomers are static with no internal changing
of state, and simply interact based on a fixed surface chemistry. Newer models of
self-assembly add an active component where system particles store an internal
state that may adjust based on local interactions. These state changes affect
how a particle interacts with others. Active self-assembly models may include
substantial power (such as movement [4,12]) with an eye toward future technolo-
gies and swarm robotics. Other models focus on experimental techniques within
emerging technologies such as DNA strand displacement cascades which permit
a form of signal passing within tile systems [8,10,11].

Tile Automata. Tile Automata components are stateful square tiles living
in a 2D grid. Pairs of states may be assigned an affinity value, allowing assembled
collections of tiles to combine if a required threshold of affinity between the two
assemblies is reached. In this way, Tile Automata incorporates 2-handed self-
assembly. Similar to asynchronous cellular automata, a collection of transition
rules dictate state changes based on local neighbor states. Thus, tiles within an
assembly may undergo state changes, altering the internal affinities by which the
assembly is bound. If new affinities are added, new combination events may oc-
cur. If affinities are removed, previously stable assemblies may become unstable
and break apart.

The Tile Automata model is similar and partially inspired by the nubots
model [12]. However, an important limitation with Tile Automata is the absence
of a movement rule, which is a key feature prominent in nubot literature. Instead,
Tile Automata is closely linked to models such as the signal tile model [10], and
the active self-assembly model [8], in which tile self-assembly is augmented with
a signal passing scheme permitting glues on tile edges to flip on and off dynami-
cally. The Tile Automata model attempts to abstract away some of the specifics
of these models to allow for a cleaner mathematical approach to understanding
fundamental capabilities within this type of active self-assembly.

Our Contribution. Our primary result in this work is proving that freez-
ing® Tile Automata systems, in which a tile must never revisit the same state
twice, can simulate non-freezing systems, which have no such restriction. This
shows that within self-assembly, freezing and non-freezing systems are equiv-

3 We borrow the notion of freezing from the cellular automata literature [1,6,7]. There
are two informal perspectives towards freezing that are equivalent in CA but not
equivalent in TA. One is that a cell (tile) must never revisit the same state twice.
The other is that a position in Z* must never revisit the same state twice. Intuitively,
in TA, a position may see several tiles due to tiles attaching and detaching. Thus,
the perspectives are different. We choose the first perspective, matching the notion
that tiles themselves are stateful, and positions in space are not stateful.

alent up to constant scale simulation. This is in contrast to freezing within
cellular automata [6,7], in which freezing systems are substantially weaker than
non-freezing. The intuition for this contrast is that cellular automata cells are
“stuck” in place, and thus “frozen” cells become useless, whereas “frozen” tiles
may detach and be replaced by new ones. A freezing lemma such as this for
TA has the potential to resolve open problems in established models. Consider
the Signal Tile Assembly Model (STAM), where signals are “fire-once”, i.e., not
reusable. A generalized variant allowing perpetual reuse of signals would plau-
sibly yield substantial power and ease system design. This freezing result in TA
will give us the first tool needed in proving the conjecture that single-fire STAM
is just as powerful as the perpetual-fire STAM.

2 Model and Definitions

A Tile Automata system is a marriage between cellular automata and 2-handed
self-assembly. Systems consist of a set of monomer tile states, along with local
affinities between states denoting the strength of attraction between adjacent
monomer tiles in those states. A set of local state-change rules are included
for pairs of adjacent states. Assemblies (collections of edge-connected tiles) in
the model are created from an initial set of starting assemblies by combining
previously built assemblies given sufficient binding strength from the affinity
function. Further, existing assemblies may change states of internal monomer
tiles according to any applicable state change rules. An example system is shown
in Figure 1.

2.1 States, tiles, and assemblies

Tiles and States. Consider an alphabet of state types* X. A tile ¢ is an axis-
aligned unit square centered at a point L(t) € Z2. Further, tiles are assigned a
state type from X, where S(t) denotes the state type for a given tile t. We say
two tiles ¢; and ¢ are of the same tile type if S(t1) = S(t2).

Affinity Function. An affinity function takes as input an element in X2 x D,
where D = {1}, and outputs an element in N. This output is referred to as
the affinity strength between two states, given direction d € D. Directions | and
F indicate above-below and side-by-side orientations of states, respectively.

Transition Rules. Transition rules allow states to change based on their
neighbors. Formally, a transition rule is a 5-tuple (S14, S2a, S1p, Sap, d) with each
S1ayS2a, S1p, S2p € X and d € D = {1, F}. Essentially, a transition rule says that
if states S1, and S5, are adjacent to each other, with a given orientation d, they
can transition to states Sy, and Sy, respectively.

Assemblies. A positioned shape is any subset of Z2. A positioned assembly is
a set of tiles at unique coordinates in Z2, and the positioned shape of a positioned
assembly A is the set of coordinates of those tiles, denoted as SHAPE 4. For a
positioned assembly A, let A(x,y) denote the state type of the tile with location
(z,y) € Z* in A.

4 We note that ¥ does not include an “empty” state. In tile self-assembly, unlike
cellular automata, positions in Z? may have no tile (and thus no state).

For a given positioned assembly A and affinity function I7, define the bond
graph G 4 to be the weighted grid graph in which:
— each tile of A is a vertex,
— no edge exists between non-adjacent tiles,
— the weight of an edge between adjacent tiles T7 and T, with locations (x1, y1)
and (2, y2), respectively, is
I(S(T1), S(Tz), L) if y1 > ya,
H(5(T»),5(Th), L) if y1 <y,
H(S(Tl), S(Tg), ") if 1 < xo,
I(S(Ty), S(Th),F) if 1 > xs.

A positioned assembly A is said to be 7-stable for positive integer T provided
the bond graph G4 has min-cut at least 7.

For a positioned assembly 4 and integer vector v = (v1,vs), let A, denote
the positioned assembly obtained by translating each tile in A by vector v. An
assembly is a set of all translations A, of a positioned assembly A. A shape is
the set of all integer translations for some subset of Z2, and the shape of an
assembly A is defined to be the set of the positioned shapes of all positioned
assemblies in A. The size of either an assembly or shape X, denoted as |X|,
refers to the number of elements of any positioned assembly of X.

Breakable Assemblies. An assembly is 7-breakable if it can be split into
two assemblies along a cut whose total affinity strength sums to less than 7.
Formally, an assembly C is breakable into assemblies A and B if the bond graph
G for some positioned assembly C € C has a cut (A, B) for positioned assemblies
A € A and B € B of affinity strength less than 7. We call assemblies A and B
pieces of the breakable assembly C'.

Combinable Assemblies. Two assemblies are 7-combinable provided they
may attach along a border whose strength sums to at least 7. Formally, two
assemblies A and B are 7-combinable into an assembly C provided G¢ for any
C € C has a cut (A, B) of strength at least 7 for some positioned assemblies
A€ Aand B € B. We call C' a combination of A and B.

Transitionable Assemblies. Consider some set of transition rules A. An
assembly A is transitionable, with respect to A, into assembly B if and only if
there exist A € A and B € B such that for some pair of adjacent tiles ¢;,¢; € A:

— 3 a pair of adjacent tiles ty,, ¢, € B with L(t;) = L(ty) and L(t;) = L(tx)
— 3 a transition rule § € A s.t. 6 = (S(t;), S(¢5), S(tn), S(tx), L) or
6 = (S(t:), S(t;), S(tn), S(tr),)
— A—A{ti,t;} = B—{tn, tr}
2.2 Tile Automata model (TA)

A tile automata system is a 5-tuple (X, IT, A, A, 7) where X is an alphabet of
state types, II is an affinity function, A is a set of initial assemblies with each
tile assigned a state from X, A is a set of transition rules for states in X', and
7 € N is the stability threshold. When the affinity function and state types are
implied, let (A, A, 7) denote a tile automata system. An example tile automata
system can be seen in Figure 1.

States Affinity Functions

b] [E]l [Alcl-t [A]_ Producibles Terminals
ITlansih'onRules l _1 —2 @ A
[B[D—>BIE] =

Alc] [A[c] [A] BIE
Initial A bli |B|E|=2 =2 EE BID| B BE‘

Stability Threshold =2

m 0

(a) Tile Automata System I (b) The producibles and terminals of I".

Fig.1: An example of a tile automata system I'. Recursively applying the tran-
sition rules and affinity functions to the initial assemblies of a system yields a
set of producible assemblies. Any producibles that cannot combine with, break
into, or transition to another assembly are considered to be terminal.

Definition 1 (Tile Automata Producibility). For a given tile automata sys-
tem I' = (X, A, I, A, 7), the set of producible assemblies of I', denoted PRODr,
is defined recursively:
— (Base) A C PRODp
— (Recursion) Any of the following:
e (Combinations) For any A, B € PRODr such that A and B are T-combinable
into C, then C € PRODy.
e (Breaks) For any C € PRODp such that C is T-breakable into A and B,
then A, B € PRODr.
e (Transitions) For any A € PRODr such that A is transitionable into B
(with respect to A), then B € PRODp.

For asystem I' = (X, A, II, A, 7), we say A —1" B for assemblies A and B if A
is 7-combinable with some producible assembly to form B, if A is transitionable
into B (with respect to A), if A is 7-breakable into assembly B and some other
assembly, or if A = B. Intuitively this means that A may grow into assembly
B through one or fewer combinations, transitions, and breaks. We define the
relation —" to be the transitive closure of —1, ie., A —!" B means that A may
grow into B through a sequence of combinations, transitions, and/or breaks.
Definition 2 (Terminal Assemblies). A producible assembly A of a tile au-
tomata system I' = (X, A, II, A, 7) is terminal provided A is not T-combinable
with any producible assembly of I, A is not T-breakable, and A is not transi-
tionable to any producible assembly of I'. Let TERMr C PRODr denote the set of
producible assemblies of I which are terminal.

Definition 3 (Unique Assembly). A tile automata system I’ uniquely pro-
duces an assembly A if A € TERMp and for all B € PRODr, B —'" A.

Definition 4 (Unique Shape Assembly). A tile automata system I" uniquely
assembles a shape S provided that for all A € PRODp, there exists some B €
TERMp of shape S such that A —T B.

Definition 5 (Freezing). Consider a tile automata system I' = (X, A, II, A,)
and a directed graph G constructed as follows:

— each state type o € X is a vertex

(a) An example entry in R: (b) An example entry in R’: (c) An example entry in R':
an m-block representation a positioned assembly re- the same replacement func-
function with m = 9. placement function. tion with c-Fuzz.

Fig.2: Examples of m-block representation and mapping. (a) Essentially, the
partial function R, called an m-block representation function, takes a macro-
block and maps it to a state in the state space of some other system. (b) The
function R’ takes a positioned assembly, containing m-blocks, and maps it to a
positioned assembly over the state space of the other system using the m-block
representation function to perform the mapping. (¢) The lighter tiles represent
c-fuzz which does not change the mapping of the macro-block.

— for any two state types a, 8 € X, an edge from « to B exists if and only if
there exists a transition rule in A s.t. a transitions to 3

I' is said to be freezing if G is acyclic and non-freezing otherwise. Intuitively,
a tile automata system is freezing if any one tile in the system can never return
to a state which it held previously. This implies that any given tile in the system
can only undergo a finite number of state transitions.

2.3 Simulation Definitions

In this subsection we formally define what it means for one tile automata system
to simulate another. We use a standard block-representation scheme, similar to
what is done in [5], in which the simulating system maps m x m blocks of states
(for a scale factor m simulation) to single states within the simulated system’s
state space. With this block mapping we can generate an assembly mapping
as shown in Figure 2. A system is said to simulate another system at scale
factor m if such a block mapping exists such that it follows the rules laid out
in this section. The purpose of these rules is to provide a reasonable definition
for simulating the dynamics of a particular system. More exhaustive definitions
for simulation have been considered before (see [3]); however, our intent is to
provide relatively straightforward rules that allow for some flexibility while still
capturing the essence of what it means for one system to simulate another.

Consider two tile automata systems I" and I”. Let Xy and X denote the
set of state types used in I" and I, respectively.

Macro-blocks and assemblies. An m-block assembly, or macro-block, is a
partial function X : Z,, X Z,, — Xr, where Z,, = {0,1,...,m — 1}. Let Br
be the set of all m-block assemblies over Y. The m-block with no domain of
definition is said to be empty.

For an arbitrary positioned assembly A over state space X', define Agfy to
be the m-block defined by A", (i,7) = A(mx + i, my + j) for 0 < i,j < m.

Z,Y

Macro-block representation and mapping. As demonstrated in Fig-
ure 2, our simulation definition uses a macro-block representation and mapping
scheme. For a partial function R : B2" — Xp,, known as an m-block rep-
resentation function, define the partial function R’ that takes as input a po-
sitioned assembly A over state space Xr and outputs a positioned assembly
over state space Y. With T denoting a function whose input is an element in
¥ x 72 and T(o,x,y) outputting a tile with state o and location (x,y), define
R'(A) = {T(R(A}",),z,y) | for all non-empty blocks A7’ s.t. A7, € dom(R)}.

c-Fuzz. The concept of c-fuzz is essentially the idea that a macro-block can
have a bounded number of “extra” tiles attached to it without altering its map-
ping. This allows a simulating system to make minor intermediate attachments
while enacting the simulation. Another way to think of c-fuzz is as a reason-
able allowance for limited-size non-empty macro-blocks (that map to an empty
tile in the simulated system) to be used in the simulation process. Formally, a
mapping R'(A) = A’ is said to have c-fuzz, for some constant ¢, if and only if
for all non-empty blocks A7',, it is the case that (v + u,y +v) € dom(A’) for
some u,v € [—¢,c]. R is said to have c-fuzz if and only if every such mapping
R/'(A) = A’ has c-fuzz for all A € dom(R'). R has c-fuzz if R' has c-fuzz.

Assembly Replacement. For a c-fuzz R’, define the assembly replacement
function R* : PROD; — PROD such that R*(A) = A’ if and only if there exists
a positioned assembly A € A s.t. R'(A) € A’. When discussing the application
of R* to a set of assemblies 7", we use the notation R*(Y), where R*(Y) =
{R*(A)|A € T}.

Validity. A c-fuzz assembly replacement R*(A) is called valid if and only if:
(1) R'(A) = A',VA e A or (2) R'(A) = & and the minimum-diameter bounding
square of A is < 2mec, VA € A.

The assembly replacement function R* is said to be I'-valid if R*(A) is valid
for all A € I'. The m-block representation function R is said to be I'-valid if and
only if R* is I'-valid.

Simulation. Given a tile automata system I', a tile automata system I, a
constant ¢, and a I'-valid c-fuzz m-block representation function R : B2 — X
we say I’ simulates tile automata system I under the c-fuzz rule if and only if:

— R*(PRODF) D A,
— For any two assemblies A, B € PROD s.t. R*(A) = @ and R*(B) = @, A
and B can combine to form C only if the following is true:
e RF(C)=o
e or, R*(C) € Ap
— For any two assemblies A’, B’ € PROD, the following is true:
o if A/ =" B’ then it must be that 3A,B € PROD; s.t. R*(4) = A/,
R*(B) =B, and A =1 B.
e if A’ -»T" B’ then it must be that YA,B € PROD; where R*(A) = A/,
and R*(B) = B', A »' B.
— VA € TERM: if R*(A) = A’ € PROD, then it must also be that A" € TERM .
Observation. It is important to note that with R*(PRODr) D Apv, it fol-
lows directly from the application of our dynamics simulation definitions that
R*(PRODy) = PROD[.

Fig. 3: A simplified overview of simulating the transition AB - C'B. = indicates
a sequence of combination, breaking, and/or transition events occurring. The
middle tile in the blocks are the clock tiles, and the rest are wires. Before (1)
occurs, the blocks are attached at the adjacent wire tiles with affinity I7(A4, B,F)
from the original system. During (1), a signal proceeds down the wire from B to
A. Once the signal reaches A, A detaches. (2) is the attachment event where C'
is placed within the formerly-A block. (3) indicates a signal returning down the
wire after the C block has finished its transition. During (3), when the signal
passes back through the boundary between the blocks, tiles are left where the
wires meet with affinities matching IT(A4, B,F), allowing combination/breaking
events to follow matching the original system.

3 Simulating Non-freezing with Freezing Tile Automata

Here, we present the main result of the paper: for any non-freezing TA system,
there is a freezing TA system that simulates it. Subsection 3.1 gives an overview
of the construction. Subsection 3.2 presents some primitives for the construction.
Subsection 4 gives a formal statement of the theorem and its proof.

3.1 Simulation Overview

At a high-level, the approach is to simulate state transitions between tiles with
a process whereby a tile detaches from the assembly and is replaced by a new
tile. In this way, any cyclic state transitions are simulated by instead detaching
the tile whose state is to be transitioned and attaching a tile with the new state
in its place. One immediate issue with a naive, scale-1 version of this approach is
connectivity— e.g., in a 1 x 3 assembly, replacing the middle tile while keeping
the assembly connected is non-trivial.

This issue motivates using a block scheme wherein each tile in the original
system is simulated by a larger square block of tiles. The larger scale factor allows
blocks to stay connected while some interior tiles detach and are replaced. In the
center of the blocks is a clock tile, which determines which tile in the original
system the block maps to in the m-block representation function. Extending
from the clock tile to the four edges of the block are wires, a connected path
of tiles which (1) send information via token-passing to adjacent blocks about
initiating state transitions and (2) attach to wires on other blocks with affinities
corresponding to the original system.

A high-level overview omitting some particular details follows. Attachment
and detachment events are simulated by the wires exposing affinities matching
that of the original system. To simulate state transitions, several steps occur.
A simplified summary is in Figure 3. It begins with a sequence of state transi-
tions, called signals, beginning from a clock tile proceeding down a wire to an
adjacent block’s clock tile. Upon receiving signals from all neighbors, the clock

N,E, N,E,

S,wW S,W

Seek 74
(a) Primary components of a block. (b) Clock tile.

Fig.4: Blocks and clock tiles. (a) The primary components of a block are the
filler tiles (used for connectivity), the wire tiles (used for the passing of signals),
and the clock tile (used to control signal flow). (b) The clock tile contains infor-
mation about which of its tokens (N,E,S,W) it has, which of its neighbors tokens
(N,E,S,W) it has, which mode it is in (seeking, sending, off), and how many of
the constant number of transitions have occurred.

tile detaches from the block, and a new clock tile representing the new state
of the block takes its place. The wires are designed to be replaceable; in some
cases, while sending a sequence of state transitions down the wire, the wire tiles
detach (one-by-one) and are replaced with new tiles. This alleviates the issue of
the wires themselves dissatisfying the freezing constraint. When a signal passes
the boundary of one block and enters another, these tiles have full T-strength
affinity. This ensures the tiles may not detach while the transition occurs. After
the clock tile is replaced and the signal passes back through this boundary, it
leaves a tile with affinity matching the post-transition tile in the original system.

3.2 Simulation Primitives

Blocks. One block is constructed for each of the initial tile types in the original
system. Each block consists of 3 portions; filler tiles, wire tiles, and a clock tile.
The filler tiles are simply needed for the block to maintain connectivity when
replacing the clock or portions of the wire. The filler tiles undergo no state
transitions, save for one during the initial assembling of the block. The wires are
responsible for propagating a block’s incoming and outgoing signals to initiate
transition rules between blocks’ clocks. The wires in a block are used to maintain
the affinities between blocks (all affinity between two blocks is between wire tiles)
The clock tiles are the middle tile of each block, and send/receive signals to/from
the wire tiles which can initiate a state transition of that clock or another clock.
The clock tile is the main determinant used in the m-block replacement function
(discussed in the simulation definition). A clock tile is designed to represent
exactly one state x of the system to be simulated. We label the clock tiles’ states
according to the state they represent. We say a block represents exactly one
state x if its clock tile represents x.

Wires. Since each tile of the original system is replaced by a block, wires
send transition rules from the middle of the block to the edges. Wires send
a cascade of transition rules along a path of connected tiles. As an example
(Fig. 5), given a path of horizontally connected w tiles and the transition rule
wyw E wew,, if the leftmost tile is transitioned to w, (e.g. by a tile = to its left
and the rule zw F 2w,), the transition cascades down the path of w tiles (and,
e.g., transitioning a tile y to z at the end of the wire by the rule w,y F w,z.

(a) (b) () (d) (e)
Fig.5: A wire demonstrating its signal-passing ability. Given the rules XW F
XWg, WrW = WrWpg, and WRY + WrZ we can see the signal propogation
from (a) to (e).

(b) (c) (d) (e) (f)

Fig.6: A wire replacing tiles while passing a signal. Given the rules WrW
WgrWg and WrWg = WrpWpgk we replace tiles once they transition. Once a
signal has started propagating in (a) with the rule XW F XWpg yielding (b),
any further transitions with allow (d) to occur. The tile with Wy has no affinity
to its neighbors so it detaches (e) and a new tile with state W attaches (f).

Then, the presence of the x tile has been detected by the non-adjacent y tile
using a series of transitions along the wire.

In order to reuse the wires, the tiles must be replaced after at most a constant
number of uses due to freezing transition rules; otherwise, the wire could be
reset with transition rules alone. Figure 6 depicts this signal passing with the
required tile replacements. Towards a wire with replaceable tiles, consider the
following transition rules: w,w - w,w, and w,w, - wsw,. The first rule passes
the transition along the wire. The second rule sets the previous tile to a ”fall
off” state which is not bound to the assembly which contains the wire. The wy
tile may detach from the assembly, and a new w tile may attach in its place.

State-state Wires. We augment the wire scheme with state-state informa-
tion stored via the wire tiles’ states. State-state refers to the two states repre-
sented by the clock tiles which the wire lies between. When a block representing
x is first constructed, and when its wire is only touching one clock since the block
has no neighbor in that direction, the wires’ state-state is referred to as z-9.
Without loss of generalization, z-@ is the information on the wire protruding
east, and @-zx is the information on the wire protruding west. If the wire is be-
tween two clocks, perhaps representing = and y, the state-state is then referred
to as x-y (if the x block is to the west of the y block). When a block representing
x has a new adjacent neighboring block representing y via an attachment to an-
other assembly or via a block-state transition (Section 3.2), the state-state wire
between the two blocks must be updated. For example, the result may be an
x-z wire meeting a w-y wire. Via state transition, the wire information should
then be updated to z-y. On a horizontal state-state wire (without loss of gener-
alization), this updating is done by the following rules: if two state-state wires
disagree, e.g. an x-z wire tile on the left meets a w-y wire tile on the right, the
x-z wire changes the w-y wire tile to x-y. Similarly, the w-y wire tile can change

the z-z tile to xz-y. This works since the tile on the left-hand wire tile has the
correct information about the left-hand block, and the right-hand wire tile has
the right information about the right-hand block.

Seeking, Sending, and Off States. Clocks transition between seeking,
sending, and off states depending on their adjacent state-state wire information.
Transition of a clock tile representing x to the seeking state may occur if and
only if an adjacent -y wire is present such that a transition rule exists (w.r.t. the
cardinal direction that the wire is coming from) between x and y that changes
x to another state. Transition of a clock tile representing = to the sending state
may occur if and only if a neighbor block may transition to the seeking state.
Explicitly, this transition can occur if and only if an adjacent x-y wire is present
such that a transition rule exists (w.r.t. the cardinal direction that the wire is
coming from) between = and y that changes y to another state. Transition of a
clock tile to the off state may occur if and only if a clock holds all of its own
tokens (tokens will be described in the next paragraph) and no others. The off
state of the clock halts all token passing by the block. The purpose of these states
is to simulate terminal assemblies. Assemblies with no possible state transitions
are simulated by blocks which are all in the off state, halting transitions through
the wires. If neighboring blocks have no applicable transition rules, then the
seeking /sending state cannot be reached.

Token Passing. Tokens are passed between neighboring blocks using the
wire signal passing scheme shown earlier. Clock tiles are responsible for sending
and receiving tokens. A clock tile can have up to eight tokens: four of its own
tokens (one for each cardinal direction) and up to four of its neighbor’s tokens
(one for each cardinal direction). If a clock is in the seeking or sending state,
it may send its token through the wire to the clock on the other end. Token
ownership is represented by the state of the clock tile. The following rules hold
for token passing:

— With respect to one cardinal direction, tiles can have: their own token, their
own token and their neighbor token, or no tokens, i.e., a clock cannot have
its neighbor token but not its own. This is enforced via clock transition rules
wherein clocks cannot send their token if they hold their neighbor’s token.

— Tokens cannot pass through each other on the wire; if two tokens meet on
the wire, one is (nondeterministically) forced back to its clock.

— Tiles in the off state cannot receive tokens.

Block-state Transitions. When a clock receives all eight possible tokens
(its four own tokens and its four neighbor tokens), the clock may undergo a block-
state transition: a series of transitions within the clock’s block which changes
the state in the simulated system which the block represents. The clock, upon
receiving its eighth token, may go through the following sequence which simu-
lates a state transition: First, the clock undergoes a transition due to one of its
neighboring state-state wires (which inform the clock of what states his neigh-
bor blocks represent). This way, the clock nondeterministically samples from the
state transitions it may simulate based on the represented state of its neighbor
blocks. Once selecting a state to transition to, the clock stores (in an adjacent

Fig.7: Token passing between two blocks representing = and y. Squares on the
edge of blocks signify 7-strength affinity. Rhombuses signify affinities equal to
the affinity between z and y in the simulated system. As before, — indicates a
sequence of attachment, detachment, and/or combination events have occurred.
In the top sequence of transitions, the z block passes its token to y. As the
token passes the border between the two blocks, the states in the wire bind with
7 strength with the other block to ensure the blocks cannot detach until the
token is returned. In the bottom sequence of transitions, the y block sends x’s
token back. In this case, the 7 strength affinities with each block are removed,
and only an affinity matching that of the state to be simulated remains. As the
token returns, each wire tile is replaced with new tiles.

wire tile) information about that state. Then, the clock tile transitions to a state
in which it has no affinities and detaches from the block. A new tile attaches
in its place whose state is designed to read from the adjacent wire which stored
the information about which state it will become from the previous clock tile.
Once the new clock tile’s state is updated with the previous clock’s information,
the wire tile which stored the information then undergoes a state transition and
detaches to be replaced with a new wire tile. Then, the clock tile updates its ad-
jacent state-state wires to a new state-state wire effectively overwriting the old
state from the wire and replacing with the new state (e.g., an -y wire becomes
a z-y wire as the block simulates a transition from x to z).

Clock Replacement. As the clocks send and receive tokens, they undergo
state transitions. Therefore, the clock tiles must be replaced after a finite num-
ber of token passes. Each clock has a counter which increments each time it
undergoes a state transition. Once the clock reaches an arbitrarily designated
value, the clock will undergo a replacement. The clock first stores (in an adjacent
wire tile) information about its possessed tokens and the state in the simulated
system which it represents. Then, the clock tile transitions to a state in which it
detaches from the block. A new tile attaches in its place whose state is designed
to read from the adjacent wire which stored the information from the previous
clock tile. Once the new clock tile’s state is updated with the previous clock’s
information, the wire tile which stored the information then undergoes a state
transition and detaches to be replaced with a new wire tile.

Dummy Blocks. To initiate a block-state transition (Section 3.2), a block
requires four neighbors. Of course, in the simulated system, not all transitionable
tiles will have neighboring tiles. To alleviate this, include a set of blocks called
dummy blocks. Dummy blocks act as temporary neighbors to blocks which lack

(a) (b) ()

Fig.8: Block construction process. (a) The block construction process begins
with a pre-assembled frame. Four construction initiator tiles attach to the corners
of the frame, initiating the assembling of the pre-filler tiles. (b) Once each of the
pre-filler portions of the block are complete, blank wire tiles can begin attaching.
(¢) Upon completion of all four wire portions, a seed-clock tile can attach and (d)
begin changing the blank wires into wires of the same type as the clock. (¢) When
a wire segment has been changed to a typed-wire, it begins transitioning the pre-
filler tiles into filler tiles. (f) When all four filler sections have transitioned, the
block no longer has any affinity with the frame, and detaches.

(d) () (f)

them. Dummy blocks may pass tokens to neighboring blocks, but cannot receive
them. Include one set of dummy tiles for each cardinal direction. Dummy blocks
have two states: attach and detach. Dummy blocks in the attach state may
attach to any block in the system with 7 strength from one direction, e.g., the
north dummy block binds its south edge to the north edge of any block in the
system. Include a state transition between any block and the dummy block which
transitions the dummy block from its attach state to its detach state.

The detach state has no affinity with any blocks in the system except in
the case that a neighbor has received the dummy block’s token, in which case
a full 7 strength bond is held. Then, dummy blocks may attach to unoccupied
positions in the assembly, and subsequently transition and detach; however, they
may first pass a token, in which case they are attached to the assembly until
the token is removed from the neighbor. In this way, any block in the assembly
with a missing neighbor has a chance at attaching a dummy block neighbor and
grabbing its token. Dummy blocks cannot attach to blocks which are off.

3.3 Additional Simulation Primitives
Here we further detail a few of the primitives used in our construction with
details that are not as important, but are useful nonetheless.

Wire Replacement. As discussed prior, wires may replace tiles as signals
are passing through. Wires replace their tiles under the following circumstances:
1) if the block’s neighbor’s token is being sent back to its neighbor, and 2) if
the block’s own token is returning. Otherwise, signals may pass through the
wires freely. These two conditions enforce that the wire is replaced after a finite
number of signals are passed through.

Exposed Affinities on Blocks. The following rules are imposed on the
affinities of the wire tiles of a block which are exposed to other blocks:

— If the block’s token has not passed through the wire (the block still has its
token), and the neighbor’s token has not passed through the wire (the block
does not have its neighbor’s token), the affinity exposed matches the affinity
exposed by the state in the to-be-simulated system that the block represents.

— Otherwise, as a token passes through the wire causing the above condition
to fail, the wire attaches with full 7 strength to the neighboring block.

These rules ensure that all detachment and attachment events of the to-
be-simulated system may occur by the blocks, since the affinities exposed by
blocks match those of the simulated states when the tokens meet the above
requirements. Additionally, these rules ensure that when a block is undergoing a
state transition, the block is attached with 7 strength to his neighbors to ensure
a detachment does not occur prior to the state change. The process whereby the
affinity changes on the wire during token-passing is shown in Figure 7.

Block Construction. The blocks must be constructed by a series of com-
bination events beginning with single tiles. To imitate the tiles of the original
system, the blocks must use one tile on each edge to expose the affinities of the
original tile. Moreover, these edge affinities must be exposed “all at once” in
order to simulate the behavior of the original tiles (i.e., incomplete blocks may
expose only the northbound affinity of the original tile, whereas the original tiles
expose all of their affinities from the get-go). To achieve this, the blocks are con-
structed inside a frame, inhibiting their affinities from being exposed. Then, a
transition rule occurs between the block and the frame indicating that the block
has completed construction, in which the frame detaches from the block. This
process can be seen in Figure 8.

4 Simulation Proof

Theorem 1. Given a tile automata system I, there exists a freezing tile au-
tomata system I which simulates I under the 2-fuzz rule via a 9-block replace-
ment function.

Proof. For a given tile automata system I'" = (X', A", IT', A’ 7"), we generate a
tile automata system I" = (X, A, II, A, 7). In X, include seed, clock, and wire tile
types representing each state type in X’. Further, include the O(1) state types
required for the block construction and dummy blocks (Sec. 3.2).

Stability Threshold. I' requires T > 2 to use the wire technique 3.2. If I
has 7/ = 1, I must have 7 = 2. In this case, affinities of strength 1 in I are
simulated by affinities of strength 2 in I" when blocks expose affinities on the
wire designed to match the original system. Otherwise, to simulate a system
with 7/ > 2, the simulating system uses 7 = 7’.

State Complezity (|X|). X (the set of state types of I') includes state-state
wires (Section 3.2) for each pair of states in X’. Due to this, |X| = O(|X'|?). All
other techniques require at most ¢ x X’ state types for some constant c.

The Macro-block Representation and Mapping. The mapping of macro-blocks
in I" to states in I" is straightforward: for a state s € I'', there exists a block
in I whose clock represents s. Any block containing the clock representing s is
mapped to s in the macro-block representation function R. When the clock is
detached from the block, either through a block-state transition (Sec. 3.2) or a
clock replacement (Sec. 3.2), the block is mapped according to the neighboring
wire tile which is used to temporarily store the information of the clock tile.

2-Fuzz Rule. As the blocks of I are being constructed via the block con-
struction process, the clock tile does not represent any state in I". These blocks,
along with the frame they are assembled within, still satisfy simulation under the
2-fuzz rule (diameter of the minimum-diameter bounding square of the blocks
with frame is < 2mc), and hence map to the empty assembly. Additionally, the
attachment of dummy blocks (Section 3.2) which do not map to any states in I’
are also permissible under the 2-fuzz rule.

Initial Assemblies Our construction is designed such that for every tile in each
of the initial assemblies of I/, there exists a block in I" that was produced via the
block construction process described above. Thus, we see that R*(PRODf) D Ap.

Simulating Dynamics: Part 1. Consider the assemblies A’, B’ € PROD s.t.
A’ =" B’. Suppose that A’ can transition into B’ via an attachment using
state s. Any assembly A € PROD; where R*(A) = A’ contains a 9 x 9 block
which represents s. The A whose 9 x 9 “s”-block clock only has all four of its
own tokens (and is not currently attached to a dummy block) is guaranteed to
be able to make the same attachments via its 9 x 9 “s”-block as A’ is via s.
Now, suppose that A’ can transition into B’ via a state-transition of s into s’.
Again, any assembly A € PROD; where R*(A) = A’ contains a 9 x 9 block which
represents s. The A whose 9 x 9 “s”-block clock has collected all four of its own
tokens, and all four of its neighbors’ tokens is guaranteed to be able to make the
same transitions via its 9 x 9 “s”-block as A’ is via s.

Simulating Dynamics: Part 2. Consider the assemblies C, D € PRODp. Sup-
pose that C —! D. There are only a few instances where R*(C) # R*(D).
First, note that none of the internal state-transitions of the 9 x 9 blocks that
make up C, which are required for token-passing, alter the mapping of C. Nor
do the attachment of dummy blocks to C' alter its mapping. So for all of these
transitions, R*(C') = R*(D). So, the only instances R*(C) # R*(D) would be
due to a “block-sized” detachment event, an attachment event involving C' and
some other assembly, or a block-state transition within C. Since each 9 x 9
block in C' inherits its affinity from the states in R*(C), any “block-sized” at-
tachment /detachment events which involve C' could only occur if their state-
equivalent events were possible in R*(C'). Furthermore, since block-state tran-
sitions are inherited the same way, the only block-state transitions that could
occur in C must also be driven by equivalent events that could occur in R*(C).

Simulating Dynamics: Part 3. Consider an assembly £ € TERMp. We know
that every exposed wire on the perimeter of £ must not have affinity towards
any other 9 x 9 block in the system. This can only occur if R*(E) cannot attach
to any other assembly in I"”. Also, every clock in E must be stuck in the off
state, meaning no transitions are possible. This can only occur if R*(E) cannot
transition into any other assembly in I’ via a state transition. It must also
be the case that F is not breakable into any other assemblies. Since all of the
clocks in A are off, we know that, internally, each 9 x 9 block is not breakable.
Furthermore, we know that each 9 x 9 block in F is bound to its neighbors with
a total strength of at least 7. This can only occur if R*(E) is not breakable.
Therefore, by definition, R*(FE) € TERM . O

5

Conclusion & Future Work

This work introduces Tile Automata as a hybrid between tile self-assembly and
cellular automata. The model resembles other more complicated, well-studied
forms of active self-assembly, and thus results about simulation between TA
and other active self-assembly models should be pursued. We have shown in
this work that freezing TA can simulate non-freezing TA, allowing future proofs
about general TA to apply to freezing systems. Some optimizations are open:
the simulation herein uses 9 x 9 macro-blocks and a quadratic state-complexity
increase to achieve non-freezing behavior with a freezing system; a smaller macro-
block size and smaller state-complexity increase are welcome.

References

1.

10.

11.

12.

Florent Becker, Diego Maldonado, Nicolas Ollinger, and Guillaume Theyssier. Uni-
versality in freezing cellular automata. CoRR, abs/1805.00059, 2018. Available
from: http://arxiv.org/abs/1805.00059.

. Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J.

Patitz, Robert Schweller, Scott M. Summers, and Andrew Winslow. Two hands
are better than one (up to constant factors): Self-assembly in the 2ham vs. atam.
In STACS, volume 20 of LIPIcs, pages 172—184, 2013.

Erik D. Demaine, Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller,
Scott M. Summers, and Damien Woods. The two-handed tile assembly model
is not intrinsically universal. Algorithmica, 74(2):812-850, Feb 2016.

Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida Bazzi, Andréa W.
Richa, and Christian Scheideler. Leader Election and Shape Formation with Self-
organizing Programmable Matter, pages 117-132. Springer Inter. Publishing, 2015.
David Doty, Jack H. Lutz, Matthew J. Patitz, Robert Schweller, Scott M. Summers,
and Damien Woods. The tile assembly model is intrinsically universal. In Proc. of
the 53rd Conf. on Foundations of Computer Science, FOCS’12, 2012.

Eric Goles, Diego Maldonado, Pedro Montealegre, and Nicolas Ollinger. On the
computational complexity of the freezing non-strict majority automata. In Int.
Workshop on Cellular Automata and Discrete Complex Sys., pages 109-119, 2017.
Eric Goles, Nicolas Ollinger, and Guillaume Theyssier. Introducing freezing cellular
automata. In Cellular Automata and Discrete Complexr Systems, volume 24 of
AUTOMATA ’15, pages 65—-73, 2015.

Natasa Jonaska and Daria Karpenko. Active tile self-assembly, part 2: Self-similar
structures and structural recursion. J. of Fou. of Com. Sci., 25(02):165-194, 2014.
Jarkko Kari. Theory of cellular automata: A survey. Theoretical Computer Science,
334(1):3 — 33, 2005.

Jennifer E. Padilla, Matthew J. Patitz, Raul Pena, Robert T. Schweller, Nadrian C.
Seeman, Robert Sheline, Scott M. Summers, and Xingsi Zhong. Asynchronous sig-
nal passing for tile self-assembly: Fuel efficient computation and efficient assembly
of shapes. Inter. Journal of Foundations of Computer Science, 25:459, 2014.
Jennifer E. Padilla, Ruojie Sha, Martin Kristiansen, Junghuei Chen, Natasha
Jonoska, and Nadrian C. Seeman. A signal-passing dna-strand-exchange mech-
anism for active self-assembly of dna nanostructures. Angewandte Chemie Inter-
national Edition, 54(20):5939-5942, 2015.

Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and
Peng Yin. Active self-assembly of algorithmic shapes and patterns in polylogarith-
mic time. In Innov. in Theor. Comp. Sci., ITCS’13, pages 353-354, 2013.

http://arxiv.org/abs/1805.00059

	Freezing Simulates Non-Freezing Tile Automata

