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Abstract
We investigate the problem of assembling general shapes
and patterns in a model in which particles move based on
uniform external forces until they encounter an obstacle.
In this model, corresponding particles may bond when
adjacent with one another. Succinctly, this model con-
siders a 2D grid of “open” and “blocked” spaces, along
with a set of slidable polyominoes placed at open loca-
tions on the board. The board may be tilted in any of the
4 cardinal directions, causing all slidable polyominoes to
move maximally in the specified direction until blocked.
By successively applying a sequence of such tilts, along
with allowing different polyominoes to stick when adja-
cent, tilt sequences provide a method to reconfigure an
initial board configuration so as to assemble a collection
of previous separate polyominoes into a larger shape.

While previous work within this model of assembly
has focused on designing a specific board configuration
for the assembly of a specific given shape, we propose
the problem of designing universal configurations that are
capable of constructing a large class of shapes and pat-
terns. For these constructions, we present the notions of
weak and strong universality which indicate the presence
of “excess” polyominoes after the shape is constructed.
In particular, for given integers h,w, we show that there
exists a weakly universal configuration with O(hw) 1× 1
slidable particles that can be reconfigured to build any
h × w patterned rectangle. We then expand this result
to show that there exists a weakly universal configuration
that can build any h× w-bounded size connected shape.
Following these results, which require an admittedly re-
laxed assembly definition, we go on to show the existence
of a strongly universal configuration (no excess particles)
which can assemble any shape within a previously stud-
ied “drop” class, while using quadratically less space than
previous results.

Finally, we include a study of the complexity of
deciding if a particle within a configuration may be
relocated to another position, and deciding if a given
configuration may be transformed into a second given
configuration. We show both problems to be PSPACE-
complete even when no particles stick to one another and
movable particles are restricted to 1× 1 tiles and a single
2× 2 polyomino.

∗This research was supported in part by National Science

Foundation Grant CCF-1817602.
†Department of Computer Science, University of Texas -

Rio Grande Valley

1 Introduction

The “tilt” model of self-assembly is an elegant and
simple model of robotic motion planning and assem-
bly proposed by Becker et. al. [4] with foundations in
classical motion planning. The model consists of a 2D
grid board with “open” and “blocked” spaces, as well
as a set of slidable polyominoes placed at open loca-
tions on the board. At the micro or nano scale, indi-
vidually instructing specific particles may be impos-
sible. Thus, this model uses a global external force to
give all movable particles the same instruction. This
may be done through any external force such as a
magnetic field or gravity. In this work we assume
gravity is the global force, and this is where the tilt
term comes from. In the simplest form of the prob-
lem, the board may be tilted (as an external force) in
any of the four cardinal directions, causing all slid-
able polyominoes to slide maximally in the respective
direction until reaching an obstacle. These mechanics
have proved to be interesting bases for puzzle games,
as evidenced by the maximal movement of [1] and the
global movement signals in [2]. By adding bonding
glues on polyomino edges, as is done in self-assembly
theory [11,17,21], the polyominoes may stick together
after each tilt, enabling this model to be a framework
for studying the assembly of general shapes.

In this work we propose a new type of problem:
the design of board configurations that are universal
for a class of general shapes or patterns. That
is, we are interested in designing a single board
configuration that is capable of being reconfigured
to assemble any shape or pattern within a given
set of shapes or patterns by applying the proper
sequence of tilts. This problem is distinct from
problems considered in prior work in which a given
shape is assembled by encoding the particular shape
into a specific board configuration (i.e. encoding the
shape by way of placement of “blocked” locations
and initial polyomino placement). As an analogy,
prior work has focussed on building a specific purpose
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machine for building copies of a target shape via
a simple repeating tilt sequence. Here, we propose
to build something more akin to a computer printer
in which any shape or pattern, provided sufficient
fuel/ink/polyominoes, may be requested from the
machinery, and the particular shape requested is
encoded by a provided tilt sequence.

As our primary focus in this paper focuses on
the problem of reconfiguring board configurations, a
natural computational question arises: what is the
complexity of deciding if a given board configuration
may be reconfigured into a second target board con-
figuration? This problem has been considered in the
restricted case of 1 × 1 polyominoes that never stick
together and was shown to be NP-hard [5] (but is
not known to be in NP). A related but distinct prob-
lem of minimizing the number of tilts to reconfigure
between two configurations has also been considered
and shown to be PSPACE-complete. In this paper,
we add to this growing understanding of reconfigu-
ration complexity by showing that reconfiguration is
PSPACE-complete with 1×1 movable tiles and a sin-
gle 2×2 movable polyomino. We also show PSPACE-
completeness for a modified version of the reconfigu-
ration problem in which we ask whether a particular
polyomino may be relocated to a specific position.

1.1 Motivations. The beauty of the Tilt model is
its simplicity combined with its depth. These features
allow this model to be a framework for computation
and assembly within a number of potential applica-
tions at various scales. A few examples at the macro,
micro, and nano-scale are as follows.

Macro-scale. The simplicity of the Tilt model
allows for implementation with surprisingly simple
components. For instance, Becker et al. have con-
structed a modular, reconfigurable board with both
geometry and sliding components, which they have
demonstrated with video walkthroughs [3]. Further,
the components allow for attaching magnets to imple-
ment bonding between components. These bonded
components can be viewed as polyominoes, which can
even be sorted within a tilt system [13]. Even a basic
set of Legos is capable of quickly implementing many
of our proposed constructions. These systems can
be represented realistically with games like Tilt by
Thinkgames [20] and the marble based Labyrinth [9].

Micro-scale. It has been shown how to control
magneto-tactic bacterium via global signals to move
bacteria around complex vascular networks via mag-
nets [8], and how the same type of bacteria can be

moved magnetically through a maze [14]. This has a
plethora of medical uses, such as minimal invasive
surgery, targeted drug payloads, subdermal micro-
constructions, “targeted delivery of hemotherapeutic
agents or therapeutic genes into malignant cells while
sparing healthy cells” [19], and “medical intervention
in targeted zones inaccessible to catheterization” [15].

Nano-scale. Promising potential applications
for Tilt Assembly systems may even be found in the
emerging field of DNA nanotechnology. DNA walk-
ers have been engineered to traverse programmed
paths along substrates such as 2D sheets of DNA
origami [12, 23]. Such walkers may be augmented
with activation signals to drive the walker forward
one step by way of a DNA strand-displacement reac-
tion [22]. By flooding the system with a given sig-
nal, the walker could be pushed to continuously walk
forward until stopped by some form of blocked loca-
tion. By further implementing four such signal reac-
tions (one for each cardinal direction), and adding a
specifically chosen signal type at each stage or step
of the algorithm, a set of these DNA walkers be-
come a nanoscale implementation of the Tilt Assem-
bly model. If feasible, such an implementation im-
plies our Tilt algorithms offer a novel technique for
the construction of nanoscale shapes and patterns.

1.2 Our Contributions in Detail. We first show
the existence of a (weakly) universal configuration
for building any h × w bounded shape or pattern.
The result utilizes simple geometry (all concrete
tiles are connected), only a single type of bonding
particle, and is quadratically smaller in size than
the corresponding non-universal construction from
previous work [7]. Moreover, this is the first result
in the literature that is capable of building any
connected shape. However, we say this system is only
weakly universal in that it allows for the inclusion of
“helper” polyominoes that are not counted as part of
the final shape as they do not stick to any other tile.
Our next result is for strong universality in which
only a single final polyomino of the desired shape is
permitted. In this case we achieve a restricted class
of shapes termed “Drop” shapes which are shapes
buildable by dropping 1 × 1 polyominoes onto the
outside of the shape from any of the four cardinal
directions. Previous non-universal work has focused
on both constructing and identifying members of the
Drop shapes class [7]. A summary of universal shape
construction results, along with closely related prior
work, is provided in Table 1.
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Result Shape Universal Tilts Size Bonding Geometry Theorem
Class Complexity Complexity

Fixed Shape DROP No O(hw)1 O(h3w3) 2 labels Complex Thm. 6 in [7]

Universal Patterns All Weakly O(hwk) O(hwk) k labels Simple Thm. 3.1

Universal Shapes All Weakly O(hw) O(hw) 1 label Simple Thm. 3.2

Universal Shapes DROP Strongly O(h2w) O(h2w) 2 labels Complex Thm. 4.1

Table 1: An overview of the shape construction results. The Result is the type of constructor achieved,
and the Shape Class refers to the types of shapes that can be built. The Tilts are the number of board
tilts, or external forces, required to build the shape. The Size refers to the size of the board necessary with
respect to the size of the h× w bounding box of the shape being built. The Bonding Complexity is the
number of distinct particle types that can attach to each other and are necessary to build the shape. The
k labels needed for patterns is the number of desired types of particles in the pattern (1 ≤ k ≤ |S|). The
Geometry Complexity refers to the type of nonmovable tiles needed in the constructor. A simple object
has all nonmovable polyominoes as a single connected shape. A complex object has multiple stationary
pieces that are not connected. The Theorem refers to where this information is from.

Problem Shapes Complexity Theorem
Relocation 1× 1 NP-hard Thm. 1 in [5]

Tilt-minimization 1× 1 PSPACE-complete Thm. 10 in [5]
Relocation 1× 1, 2× 2 PSPACE-complete Thm. 5.1

Reconfiguration 1× 1, 2× 2 PSPACE-complete Thm. 6.1

Table 2: An overview of the computational complexity results related to tilt assembly and our results. The
Problem gives the computational question. The Shapes refer to the size of the polyominos that are allowed
to move within the world. The Complexity refers to the computational complexity class that the problem
was proven to be a member, and the Theorem is the reference to the result.

Our next set of results focus on the problem of
deciding if a given polyomino may be relocated to
another given location on a board, termed the relo-
cation problem, and whether a given board configu-
ration may be reconfigured into a second given con-
figuration, termed the reconfiguration problem. We
show both problems to be PSPACE-complete, even
when polyominoes are restricted to be 1 × 1 and
2 × 2 pieces that never stick to each other. Our
proof for both relies on a reduction from a 2-toggle
gadget network game that was recently proven to be
PSPACE-complete by Demaine, Grosof, Lynch, and
Rudoy [10]. Previous work on relocation has shown
the problem to be NP-hard [5] even when restricted
to 1 × 1 pieces that do not stick. A closely related
problem of computing the minimum number of tilts
needed to reconfigure between two board configura-
tions has been shown to PSPACE-complete for 1× 1
non-sticking pieces [5]. A summary of our complex-
ity results, along with closely related prior work, is
provided in Table 2.

1This technique permits “pipelined” construction for the

2 Preliminaries

Board. A board (or workspace) is a rectangular
region of the 2D square lattice in which spe-
cific locations are marked as blocked. Formally,
an m × n board is a partition B = (O,W ) of
{(x, y)|x ∈ {1, 2, . . . ,m}, y ∈ {1, 2, . . . , n}} where O
denotes a set of open locations, and W denotes a
set of blocked locations- referred to as “concrete”
or “walls.” The geometry of a board is said to be
simple if the locations in W are a connected set with
respect to adjacency in the 2D square lattice, and
complex otherwise.

Tiles. A tile is a labeled unit square centered on a
non-blocked point on a given board. Formally, a tile
is an ordered pair (c, a) where c is a coordinate on
the board, and a is an attachment label. Attachment
labels specify which types of tiles will stick together
when adjacent, and which have no affinity. For
a given alphabet of labels Σ, and some affinity

creation of n copies of the target shape in amortized O(1)
number of tilts per copy.
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function G : Σ × Σ → {0, 1} which specifies which
pairs of labels attract (G(a, b) = 1) and which do not
(G(a, b) = 0), we say two adjacent tiles with labels a
and b are bonded if G(a, b) = G(b, a) = 1.

Polyomino. A polyomino is a finite set of tiles
P = {t1, . . . tk} that is 1) connected with respect to
the coordinates of the tiles in the polyomino and 2)
bonded in that the graph of tiles in P with edges
connecting bonded tiles is connected. A polyomino
that consists of a single tile is informally referred to
as simply a “tile”.

Configurations. A configuration is an arrange-
ment of polyominoes on a board such that there
are no overlaps among polyominoes, or with
blocked board spaces. Formally, a configuration
C = (B,P = {P1 . . . Pk}) consists of a board B,
along with a set of non-overlapping polyominoes
P that each each do not overlap with the blocked
locations of board B.

Step. A step is a way to turn one configuration
into another by way of a global signal that moves all
polyominoes in a configuration one unit in a direction
d ∈ {N,E, S,W} when possible without causing an
overlap with a blocked location, or another poly-
omino. Formally, for a configuration C = (B,P ),
consider the translation of all polyominoes in P by 1
unit in direction d. If no overlap with blocked board
spaces occurs, then the new configuration is derived
by first performing this translation, and then merg-
ing each pair of polyominoes that each contain one
tile from a now (adjacently) bonded pair of tiles. If
an overlap does occur, for each polyomino for which
the translation causes an overlap with a blocked
space, temporarily add these polyominoes to the set
of blocked spaces and repeat. Once the translation
induces no overlap with blocked spaces, execute the
translation and merge polyominoes based on newly
bonded tiles to arrive at the new configuration. If
all polyominoes are eventually marked as blocked
spaces, then the step transition does not change
the initial configuration. If a configuration does not
change under a step transition for direction d, we
say the configuration is d-terminal. In the special
case that a step causes a polyomino to “leave the
board”, we simply remove the polyomino from the
configuration.

Tilt. A tilt in direction d ∈ {N,E, S,W} for a
configuration is executed by repeatedly applying a
step in direction d ∈ {N,E, S,W} until a d-terminal
configuration is reached. We say that a configuration
C can be reconfigured in one move into configuration
C ′ (denoted C →1 C ′) if applying one tilt in some
direction d to C results in C ′. We define the relation
→∗ to be the transitive closure of →1. Therefore,
C →∗ C ′ means that C can be reconfigured into C ′

through a sequence of tilts.

Tilt Sequence. A tilt sequence is a series of tilts
which can be inferred from a series of directions
D = 〈d1, d2, . . . , dk〉; each di ∈ D implies a tilt
in that direction. For simplicity, when discussing
a tilt sequence, we just refer to the series of di-
rections from which that sequence was derived.
Given a starting configuration, a tilt sequence
corresponds to a sequence of configurations based on
the tilt transformation. An example tilt sequence
〈S,W,N,W, S,W, S〉 and the corresponding sequence
of configurations can be seen in Figure 1.

(a) Start (b) South (c) West (d) North

(e) West (f) South (g) West (h) South

Figure 1: Tilt Example

Universal Configuration. A configura-
tion C ′ is universal to a set of configura-
tions C = {C1, C2, . . . , Ck} if and only if
C ′ →∗ Ci ∀ Ci ∈ C.

Configuration Representation. A configuration
may be interpreted as having constructed a “shape”
in a natural way. Define a shape to be a connected
subset S ⊂ Z2. A configuration strongly represents
S if the configuration consists of a single polyomino
whose tile coordinates are exactly the points of
some translation of S. A weaker version (discussed
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in detail in section 3) allows for some “helper”
polyominoes to exist in the configuration and not
count towards the represented shape. In this case,
we say a configuration weakly represents S. We
extend this idea of shape representation to include
patterns. We say a configuration represents a pattern
if each attachment label used in the representation
corresponds to exactly one symbol of the pattern.
For example, a configuration with attachment labels
{a1, a2, . . . , an} represents a pattern with symbols
{s1, s2, . . . , sn} if the location of each tile ti ∈ C
with attachment label ai matches with the positions
of symbol si in the pattern.

Universal Shape Builder. Given this representa-
tion, we say a configuration C ′ is universal for a set
of shapes U if and only if there exists a set of con-
figurations C such that 1) each u ∈ U is represented
by some C ∈ C and 2) C ′ is universal for C. If each
u ∈ U is strongly represented by some C ∈ C, we say
C ′ is strongly universal for U . Alternately, if each
u ∈ U is weakly represented by some C ∈ C, we say
C ′ is weakly universal for U . In a similar way, a con-
figuration can be universal for a set of patterns.

3 Patterns and General Shapes

In this section we present a shape builder which is
universal for the set of all h × w binary-patterned
rectangles. We then extend this approach to achieve
a universal constructor for any connected shape, or
even any patterned connected shape. We first cover
a high-level overview of how the construction works
and then formally state and prove the result.

3.1 Binary-patterned Rectangles: Construc-
tion. The high-level idea behind this construction
is simple: tiles are removed from the fuel chamber
one at a time and are either used in “line assem-
bly,” or ejected from the system. Once a patterned
line is complete, it is used for “rectangle assembly”.
Essentially, we are assembling a patterned rectangle
pixle-by-pixel, row-by-row. For a given rectangle size
(h×w), we can construct a tilt assembly configuration
(Figure 2) which can assemble any binary-patterned
rectangle of that size.

Construction Chamber. The construction
chamber is the portion of the tilt assembly system
where our pattern will be constructed. Its dimen-
sions are determined by the size of the rectangle to
be constructed. This chamber becomes split into two
by a long horizontal polyomino which we call the gate.

(a) Starting Configuration

1 3

2

(b) Sections

Figure 2: An overview of the universal pattern
and shape constructor. (a) The universal binary-
patterned rectangle builder configuration in a start-
ing configuration. (b) We refer to various sections
of the configuration by different names. Section 1 is
the fuel chamber, section 2 is the gate chamber, and
section 3 is the construction chamber. We call the
light-blue polyomino in section 2 the gate.

(a) (b)

(c) (d)

Figure 3: The rectangle construction process at
different points. Patterns are built row by row and
then added to the final shape. The gate ensures
the finished portion will not be changed except when
adding a new row. (a) depicts an assembled row of the
pattern. (b) and (c) show subsequent configurations
after more rows have been added and (d) shows the
final assembled pattern.

The upper portion (with dimensions h×w) is where
the binary-patterned rectangle will be constructed.
The lower portion (with dimensions 1×w) is used to
pre-assemble the lines (rows) which are used for that
construction.

Fuel Chamber. The fuel chamber is the portion
of our system which contains the tiles that are used
for construction. Our construction utilizes 2 types of
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(a) Add Tile

(b) Remove Tile

Figure 4: Basic sequences used in the construc-
tor. The cyclic sequence to advance the fuel is
〈S,E,N,E, S,E, . . . 〉. (a) The sequence to add a tile
to the line is 〈E,N,E〉. (b) The sequence to remove
a tile from the system is 〈E,S〉.

tiles that attach to themselves and to each other, and
1 tile that does not attach to anything (we often refer
to this tile as sand)2. We must be able to fill up the
entire hw-sized porion of the construction chamber
with either of the “sticky” tiles, so we need to allocate
room for that many tiles in the fuel chamber. In the
fuel chamber, each sticky tile must be separated by
a sand tile, so we do not end up with “clumps” of
fuel. Thus, we have 4hw tiles in our fuel chamber.
To progress fuel through the fuel chamber, an input
sequence of 〈E,S,E,N〉 is required.

Line Construction. The 1×w lines (rows of the
rectangle) are constructed pixel-by-pixel (tile-by-tile)
from right-to-left. For each pixel, the user decides if
a blue or red tile should be placed and discards the
other (as well as the separating sand). The sequences
required for tile addition and removal are in Figure

2The term sand is inspired by the game Minecraft [16] in
which blocks of type “sand” do not stick to adjacent blocks
and will fall freely if nothing lies beneath them. Here, sand

refers to 1 × 1 tiles that do not stick to any other tile and are
not counted as part of the final assembly.

4.
Rectangle Construction. Once the line (row)

is complete, the next step is to add it to the con-
struction chamber. To do this, the user must open
the gate, add the line to the construction chamber,
and then close the gate. The sequences for all moves
are in Table 3.

Moves Add tile Remove tile Add line
Tilts 〈E,N,E, S〉 〈E,S〉 〈W,N,E, S〉

Table 3: Tilt sequences used for general shape and
pattern construction. Some key tilt effects are: any
S tilt “loads” a tile into the entrance of the gate
chamber, any W tilt opens the gate, and any E
tilt closes the gate. Also, note that a tile will
not be removed during the Add Tile and Add Line
commands (despite the presence of 〈E,S〉 in both)
because of the preceding N command and the fact
that the rightmost column of the fuel chamber will
be missing at least 1 tile.

3.2 Patterned Rectangles and General
Shapes: Formal Results

Theorem 3.1. Given two positive integers h,w ∈
Z+, there exists a configuration C which is weakly
universal for the set of patterns U = {u | u is an h×
w rectangle, where each pixel has a label x ∈ {0, 1}}.
This configuration has size O(hw) and uses O(hw)
tilts to reconfigure into a configuration which weakly
represents any pattern u ∈ U .

Proof. We show this by constructing a configuration
C = (B,P ), similar to that shown in Figure 2a, where
B is the board and P is the 1× 1 polyominoes in the
fuel chamber in their starting configuration.
The three chambers of the board (fuel, gate, and
construction) with scale based on h and w are:

• Construction chamber. The construction cham-
ber can be described as a large set of open lo-
cations with a perimeter of blocked locations re-
sembling the figures above. Let the construction
chamber have height h + 5 and width w + 2.

• Gate chamber. The gate must be w+1 tiles long,
which dictates the length of the gate chamber,
and a height of only 5 is needed.

• Fuel chamber. Let the fuel chamber of this
configuration be of height h + 5 and length
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8w + 2. The fuel chamber is a rectangular area
with staggered columns of blocked locations, so
as to create a serpentine path of length 4hw.
Let this path be filled with tiles of alternating
attachment labels a, b buffered with label ε,
where G(a, a) = 1, G(a, b) = 1, G(b, b) = 1 and
ε is the attachment label with no affinity. This
allows enough room to have a single serpentine
line of 4hw tiles that do not stick to each other.
(Note that only height h + 2 is required, but
we match the construction chamber height for
aesthetics).

By observing the dimensions of the chambers, the
height of the board is h + 5 and the width of the
board is 10w + 4. So, the size of the board is O(hw).

Reconfiguration. Consider the set of configura-
tions C′, where each c′ ∈ C′ is similar to that shown
in Figure 2a and weakly represents some u ∈ U by
a patterned-rectangle in the construction area. From
configuration c, and the construction shown above,
there exists a tilt sequence to construct any binary-
colored line pixel-by-pixel. There also exists a tilt
sequence to construct a rectangle with these binary-
colored lines row-by-row. These sequences, along
with that to discard any superfluous tiles, shows that
there exists a complete sequence to build any rectan-
gular binary pattern. Thus, ∀ c′ ∈ C′, C →∗ c′. �

General Patterns. By increasing the size of the
fuel chamber, we can easily generalize this result to k
tile types (represented by labels or colors). Given
k different labeled tiles for the pattern, the fuel
chamber just needs to repeat the sequence of tiles in
order, with sand in between each labeled tile, enough
times to ensure the desired pattern can be built.

Corollary 3.1. Given two positive integers h,w ∈
Z+, there exists a configuration C which is weakly
universal for the set of patterns U = {u | u is an h×
w rectangle, where each pixel has a label x ∈
{0, 1, . . . , k}}. This configuration has size O(hwk)
and uses O(hwk) tilts to reconfigure into a con-
figuration which weakly represents any pattern
u ∈ U .

Proof. We use the construction from Theorem 3.1
and extend the fuel chamber to include k colors.
The length of the serpentine fuel line would then be
O(hwk) meaning the width of our board would now
scale with k as well. Also, since each pixel requires
the user to select a color and discard the others, the
number of tilts would also scale with k. �

General Shapes. With a simple extension of
this result, we are able to achieve the construction
of general shapes. By including sand in the building
process and the finished pattern, we can construct
any connected shape. This is weakly built by our
definition since there are non-attached tiles built
along with it. Figure 5 shows this process.

Theorem 3.2. Given two positive integers h,w ∈
Z+, there exists a configuration C which is weakly
universal for the set of shapes U = {u|u ⊆
{1, . . . , h} × {1, . . . , w}}. This configuration has size
O(hw) and uses O(hw) tilts to reconfigure into a con-
figuration which weakly represents any shape u ∈ U .

Proof. Following Theorem 3.1, we know that we
can construct any rectangular binary pattern. By
removing one of the labeled (“sticky”) tile types, we
can create a binary pattern using only one labeled
type and the ε (sand) tiles. Then the only connected
portion of the shape is the parts with the one labeled
tile type. Hence, we can build a connected shape
surrounded by “sand.” This process results in a shape
builder that is universal for the set of polyomino
shapes that fit within an h× w bounding box. �

(a) (b)

(c) (d)

Figure 5: The shape construction process at different
intervals. (a) The first row of the shape being built,
however, the shape does not need this row and so
only sand is added to the row. (b-c) Partially built
shape with several disconnected sections of the shape
being built simultaneously. (d) The finished shape
with sand encasing the shape.

Patterned Shapes. By keeping any number
of labeled tiles, we can also build any patterned
connected shape.
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Corollary 3.2. Given two positive inte-
gers h,w ∈ Z+, there exists a configura-
tion C which is weakly universal for the
set of shapes U = {u|u ⊆ {1, . . . , h} ×
{1, . . . , w}, and each pixel in u has a label x ∈
{0, 1, . . . , k}}. This configuration has size O(hwk)
and uses O(hwk) tilts to reconfigure into a configu-
ration which weakly represents any shape u ∈ U .

Proof. By the same argument as Theorem 3.1, we can
add k colors to our fuel chamber, causing the board
size and number of tilts to scale with k. �

3.3 Additional Notes
Keeping the Undesirable Tiles. One aspect

of the constructor that may be undesirable is the idea
of removing pieces from the board. Although not
shown due to space constraints, the constructor can
easily be modified to handle the tiles in numerous
ways.

• Trash. The easiest solution is to have a chamber
with another gate (where E opens it) that the
tiles are thrown down into. The chamber must
be large enough to accommodate pieces arbitrar-
ily sticking together.

• Only Sand as Trash. Each labeled (colored)
sticky tile can have its own fuel chamber still
using sand to separate each piece. Each fuel
chamber would be a 2n2 × 1 vertical chamber
that requires a unique tilt sequence to get a piece
of fuel of that type out. The only trash is then
sand, so the trash chamber would also only need
to be h× w large.

• Reusing tiles. With the standard fuel tank,
the unwanted tile could be routed down and
around to the back of the fuel chamber to be
reinserted. This recycling would only require an
extra chamber of sand to put between labeled
pieces that were recycled consecutively because
the sand in between them was used in the shape.

Freeing the shape. Another possible drawback
of the constructor as presented is that the shape is
trapped in the constructor itself. The constructor
may be easily modified to allow for one shape to be
released and another constructed. The top of the
h × w construction chamber can be replaced with a
width w + 1 gate that requires a unique tilt sequence
to open and close. Thus, the gate can be opened, an
N tilt releases the shape, and then the gate can be
closed to begin the assembly of the next shape.

4 Drop Shapes

Next, we consider a class of shapes discussed in [7]
which we refer to as drop shapes. A drop shape is any
polyomino which is constructable by adding particles
from any of the four cardinal directions {N, E, S, W}
towards a fixed seed. For a formal definition of this
class of shapes, see constructable polyominoes for the
Tilt Assembly Problem (TAP) in [7]. Figure 6 shows
an example of a valid and invalid drop shape. Here,
we present a shape builder which is strongly universal
for the set of drop shapes.

(a) Valid (b) Invalid

Figure 6: Drop Shapes examples. (a) This polyomino
is buildable with the drop shape method, whereas (b)
is a polyomino that is not a constructable drop shape.
From a fixed single tile seed, it is not possible to
build (b) by adding one tile at a time from a cardinal
direction.

4.1 Universal Drop Shape Builder: Con-
struction. Figure 7 is an example of our universal
drop-shape builder for polyominoes fitting within a
4×4 bounding box. At a high-level, this construction
works by following five phases, which are indicated by
the labeled areas in Figure 7b.

1. Select a red or blue tile from the fuel chamber.
Area 1 shows the two types of fuel that stick to
each other. Here, we use a sequence to pick the
one we want.

2. Choose which direction to add the tile from. We
move the shape into the appropriate N,S,E, or
W location and move the tile to the side we are
adding from. As the area 2 labels show, we can
move the new tile to the appropriate side of the
shape.

3. Choose which column/row to add the tile on the
shape. This example is for any 4 × 4 shape, so
we choose columns (N/S) or row (E/W) to shoot
the tile onto the shape where it will be added.

4. This area is where the shape is held when the
new tile is added. There is a different holding
area for each of the four directions.
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5. In the last phase we move the shape to area 5
where it is held while we get the next tile to add.
This holding chamber ensures the polyomino
being built does not interfere with getting the
next tile ready.

A full overview of the process with a flowchart
and the necessary tilt sequences is shown in Figure
10a and Table 4, respectively.

Figure 8: Tile selection gadget. Each tile is pulled out
with the sequence 〈E,N,W, S,E, S〉, and stops at the
first square. Then the left tile type (blue) is either
pulled out of the gadget or put back in the storage
area. This shows it being added back to the storage
with 〈E,S,W,N,W, S〉. This sequence puts the next
tile type (red) in a decision location. The red tile is
selected with the sequence 〈W,N,W, S,W, S〉.

Fuel Chamber: Section 1. The fuel chamber
consists of one or more tile reservoirs. Each reservoir
contains a tile type with the same attachment label.
The tilt sequence 〈E,N,W, S,E, S〉 extracts one fuel
tile out of each reservoir. After extraction, we select
which tile we want one at a time. For each extracted
tile, we can either perform a tilt sequence to return
the fuel tile to its reservoir, or to select it to be used
in shape construction. Figure 8 shows an example of
selecting the second type of fuel. Once a fuel tile has
been selected with the sequence 〈W,N,W, S,W, S〉,
the storing tilt sequence must be performed for the
rest of the fuel tiles that were not selected. To store a
fuel tile the tilt sequence is 〈E,S,W,N,W, S〉. Note
that the position of a selected fuel piece remains the
same after an application of the storage sequence.

On all iterations after the first, we must also con-
sider the position of the polyomino/assembly which
is being constructed. Before executing the tilt se-
quence to extract a tile, the polyomino is located in
the northmost eastmost notch of the holding cham-
ber. A quick observation will note that the tilt se-

quence required to traverse the holding chamber is
identical to the tile extraction sequence. Also note
that the position of the assembly after an extraction,
like the selected fuel piece, is invariant after each ap-
plication of the storage sequence. When the extracted
fuel tile is to enter the selection chamber, the assem-
bly will be ready to enter the construction chamber.

Selection Chamber: Section 2. After select-
ing the fuel tile and storing the rest of the extracted
tiles, we now move the fuel tile into the selection
chambers. This stage of the construction simply se-
lects the direction of attachment. After tilting 〈N〉,
the fuel enters the eastern selection chamber and the
assembly enters the construction chamber. To se-
lect an attachment from the east, perform the tilt
sequence 〈E,S,W 〉 (notice that this will position the
assembly to the west of the eastern alignment cham-
ber), else tilt 〈W 〉 to select the next direction. Af-
ter this western tilt, to select an attachment from
the north, perform the tilt sequence 〈N,E, S〉 (notice
this also positions the assembly below the northern
alignment chamber), else tilt 〈S〉 to select the next di-
rection. Now, after this southern tilt, to attach from
the west perform the tilt sequence 〈W,N,E〉 (this
too positions the assembly to the east of the western
alignment chamber), else to select the last direction
tilt 〈E〉. At this point, the fuel must be attached from
the south. The sequence 〈S,W,N〉 will prepare the
fuel tile for an attachment from the south (while also
positioning the assembly to the north of the southern
alignment chamber).

Alignment Chambers: Sections 3. After
an attachment direction has been chosen, the tile
enters a gadget to select the row/column of the
polyomino to target with the new tile. Figure 9
shows an example for a northern selection gadget
for a 4 × 4 polyomino. The tilt sequence to align
with a particular location varies with respect to the
direction of attachment. If the rightmost pixel of a
northern attachment is chosen, the tilts 〈W,S〉 would
be performed. Each successive column is chosen by
performing the sequence 〈E,S,W, S〉. This sequence
is repeated, each time moving tile further down the
gadget, until the desired location is reached, at which
point the attachment sequence 〈W,S〉 is executed.
The alignment sequence for each attachment chamber
does not affect the position of the assembly (it will
remain positioned in the attachment chamber). Note
the southern alignment gadget is slightly different but
serves the same purpose. This difference is so the
alignment and extraction sequences do not overlap.
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(a) Starting Configuration

1

2

2

2

2

4

5

3

3

3

3

(b) Sections

Figure 7: (a) The universal drop-shape builder. (b) An overview of the parts of the drop shape builder.
Area 1 is the fuel chamber, area 2 is the selection chamber, the area 3’s are the alignment chambers, area 4
is the construction chamber, and area 5 is the holding chamber.

Figure 9: The column selection gadget for drop
shapes. Assuming the shape to build is at a fixed
location, this gadget allows any column to be selected
to drop the new tile onto. The number of columns to
drop from in this gadget determines the size of the
shape we can build. Thus, this is for a drop shape
within a 4×4 bounding box. This gadget is repeated
on each of the four sides of the drop-shape constructor
(with a slightly modified one on the south side).

Construction Chamber: Section 4. This
central chamber is where the constructed assembly
will be housed as it is being assembled. As we saw
in the selection paragraph, the sequences required
to position the assembly in front of a particular
alignment chamber are the same as the sequences
required to prepare the fuel piece to attach from that

chamber. This, along with the alignment chamber
process, allows us to pinpoint the attachment location
of a fuel piece to the assembly.

Holding Chamber: Section 5. Once the new
tile has been added, we return the assembly to the
holding chamber, which is where the assembly resides
while the next fuel tile is being selected (Section 1).
Once again, the target location in the holding cham-
ber is the northmost westmost notch. As mentioned,
the holding chamber’s tilt sequences’s are identical to
that of the fuel chamber’s. This ensures that we can
select a fuel type without repositioning the assembly.

4.2 Universal Drop Shape Builder: Theorem
and Proof.

Theorem 4.1. Given two positive integers h,w,
there exists a configuration C which is strongly uni-
versal for the set of drop shapes U = {u|u ⊆
{1, . . . , h} × {1, . . . , w}}. WLOG, let h ≥ w. This
configuration has size O(h2w) and uses O(h2w) tilts
to reconfigure into a configuration which strongly rep-
resents any shape u ∈ U .

Proof. This is a proof by construction. We begin
with a configuration C where all chambers are empty
except the fuel chambers. Following the process
outlined in Figure 10a, we can extract the desired
fuel piece, and the fuel piece can be moved from the
alignment chamber to the shape via the construction
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s0 〈E,N,W, S,E, S〉+ 〈E,S,W,N,W, S〉i + 〈W,N,W, S,W, S〉+ 〈E,S,W,N,W, S〉j
sE1 〈N,E, S,W, S〉
sN1 〈N,W,N,E, S〉
sW1 〈N,W,S,W,N,E〉
sS1 〈N,W,S,E, S,W,N〉
sE2 〈S,W,N,W 〉j + 〈N,W,S,E, S,E, S〉
sN2 〈E,S,W, S〉j + 〈W,S,E,N,E, S,E, S〉
sW2 〈N,E, S,E〉j + 〈S,E,N,W,E, S,E, S,E, S〉
sS2 〈W,N〉j + 〈E,N,W, S,W,N,E, S,E, S〉

Table 4: The sequence of tilts used in the flowchart (Figure 10a). s0 denotes the tile selection from i+ j + 1
different tile types and chambers. The sequence also places the current polyomino in the correct area for the
next sequences (Figure 10b). For area 2 in Figure 7b, sE1, sN1, sW1, sS1 represents choosing to attach the
new tile from the east, north, west, or south side, respectively. Similarly, the alignment selection (area 3),
from the east, north, west, or south side, is represented by sE2, sN2, sW2, and sS2, respectively. Note there
may be up to j − 1 columns.

Claunch

CE1

CN1 CW1

CS1

CE2

CN2 CW2

CS2

Cstart

S0

SE1

SN1 SW1

SS1

SE2

SN2 SW2

SS2

S0

S0 S0

S0

(a) Flowchart

1

2
3 4

(b) Example Claunch Position

Figure 10: (a) A flowchart where each state represents a set of configurations and the symbols represent
sequences that can move from one state to another. The sequences for each of the symbols is shown in Table
4. (b) An example configuration in the Claunch state. Configurations in Claunch always have the assembly
located in box 1 at the rightmost bottom corner, the next fuel tile to be shot located in box 2, and all fuel
pieces in the fuel chamber are in their proper reservoir pushed to the far left as depicted in box 3 and 4. A
configuration strongly representing a drop shape u ∈ U is in Claunch with no more tiles to launch and the
fuel chamber empty.
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(a) Crossing 2-Toggle (C2T) (b) C2T State Change

Figure 11: (a) This gadget represents paths
traversable by the robot. The robot can only move in
the direction the arrow is pointing, and traversing a
gadget will reverse the directions of both arrows. (b)
Alternate state of a C2T gadget.

chamber. We repeat this process to add single
fuel pieces to the shape from any direction. After
the fuel chambers are empty, we have generated a
configuration C ′ from C by performing a series of
tilts. Thus, C →∗ C ′, and to show the transition from
the starting configuration to the configuration that
represents shape u ∈ U , we use the process shown in
the flowchart of Figure 10a. �

5 Relocation

Our next contribution is a continuation of the work
done in [4–6]. In their papers, they discuss the re-
location problem in a tilt-based system which asks
whether a tile can be moved from one location to an-
other specific location. They show this problem is
NP-Hard. Additionally, they show that finding the
optimal tilt sequence to relocate a tile to another lo-
cation is PSPACE-complete. In this section, we show
that deciding if a tilt sequence exists to move a poly-
omino in a given configuration to a given location is
PSPACE-complete. Further, in line with many ge-
ometric problems, we show that deciding if a given
configuration is reachable from a starting configura-
tion is also PSPACE-complete. Our hardness proofs
rely on a recent result in [10]. They show that the
puzzle solvability problem, which asks whether or not
a robot can traverse a system of specific types of gad-
gets, is PSPACE-Complete. We reduce from a gadget
model proposed by them that is used to analyze the
complexity of traversing particles. We first describe
the puzzle solvability problem which we will reduce
from to show PSPACE-Hardness.

First we summarize one of the gadget models
introduced in [10], and define several of the key terms.

• Locations. A gadget consists of one or more
locations, which are the points of entry and exit
to the gadget.

• States. Each state s of the gadget defines a
labeled directed graph on the locations, where
a directed edge (a, b) with label s′ means that
the robot can enter the gadget at location a and
exit at location b, forcing the state to change to
s′. The gadgets are defined by state spaces. A
state space is a directed graph whose vertices are
state and location pairs, where a directed edge
from (s, a) to (s′, b) means that the robot can
traverse through the gadget from a to b if it is
in state s, such that traversing will change the
state of the gadget to s′. We use gadgets with
at most two states.

• Toggle. A toggle is a tunnel that can only be
traversed in a single direction as dictated by
its state. Each toggle has 2 states dictating
which direction a robot is allowed to traverse the
tunnel. Tunnels are routes between two locations
that the robot can traverse through. The state
of the toggle gadget changes when the tunnel is
traversed.

• C2T. Crossing 2-Toggle is a gadget that has
two toggle tunnels perpendicular to each other.
Traversing either tunnel causes the gadget’s state
to change, which means the state (or direction)
of both tunnels are changed (or reversed). Fig-
ure 11a shows how the gadget is represented with
two arrows denoting the current traversable tun-
nels in the gadget. Figure 11b shows the gadgets
other state with the tunnels both reversed.

• Puzzle. A puzzle is a problem posed as a system
of interconnected gadgets, their initial states, the
wires connecting them, and the robot’s start and
goal location. A puzzle is said to be solvable if
there is a path from the start location to the goal
location using only moves allowed by the wires
and gadgets.

5.1 Relocation Gadget Model Preliminaries.
Now, we show a tilt gadget that behaves like the
C2T gadget in order to simulate its complexity for
our reduction. Figure 13 shows an overview of the
gadget. Figure 13a shows the basic sections of the
gadget which we describe later. The main idea is
that a single 1 × 1 tile, referred to as the state tile,
is confined to the gadget, and its possible paths
represent what state the toggle is in. Figures 13b
and 13c show the paths of the state tile and robot
polyomino (the polyomino traversing the toggles),
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respectively. Figure 12 gives an overview of the two
movable polyominoes in our system. As before, we
will begin with a high-level overview of the gadget,
and proceed to a more detail explanation.

(a) State Tile (b) Robot Polyomino

Figure 12: (a) The state tile is a 1× 1 tile that exists
within the gadget. The possible path of the state tile
in the toggle gadget determines whether the robot
polyomino can move up/right or down/left. Once it
is used by the robot polyomino to pass through the
gadget, it ends up on the alternate path meaning the
gadget has flipped. (b) The robot polyomino is the
2×2 polyomino that we are attempting to move from
one location in the board to another location.

In order to reduce from the puzzle solvability
problem, we recreate the individual properties of a
C2T gadget in our tilt assembly model. We must
create a structure that can restrict traversal through
itself to certain directions and allow for those direc-
tions to be changed after a traversal has been made.
In our representation, a tunnel traversal through a
C2T gadget is represented by relocating a 2×2 poly-
omino from an initial location to a final location in
the gadget via a sequence of tilts. Our gadget’s struc-
ture restricts traversal with specific geometry archi-
tecture that causes a 2×2 polyomino to become stuck
if the gadget is traversed incorrectly. For a 2 × 2
polyomino to traverse through these otherwise un-
traversable gadgets, we require the assistance of a
1× 1 helper tile confined within our gadgets. Figure
14 shows an example of a pathway not reachable by
the 2×2 polyomino without the geometric assistance
of a 1×1 tile. In Figure 14 we see an example of a 1×1
confined pathway that is changable into another with
the assistance of the 2 × 2 polyomino. This depicts
one of two different states that the 1 × 1 tile can be
in. By combining these elements we create a complex
gadget which can limit 2 × 2 polyominoes traversals
in 2 perpendicular directions, and limits a 1 × 1 tile
in a confined set of pathways within the gadget.

Robot Polyomino. The robot polyomino is a
2 × 2 polyomino that traverses through a puzzle.
Figure 13c shows all paths of the robot in a gadget.
The dotted lines show its path without the help of
the state tile.

(a) State Path Depiction (b) Enforced State Change

(c) Robot Limited Path (d) Robot Assisted Path

Figure 14: Relocation Properties. (a) A gadget
with states 1 (dark) and 2 (light). (b) The robot-
traversal “toggles” the gadget. (c) A gadget cannot
be traversed by the robot alone. (d) The same gadget
being robot-traversed with the help of the state tile.

State Tile. The relocation gadget has a state
tile, which is a single tile that is trapped inside
the gadget. The state tile can freely move in one
of the solid lines shown in Figure 13b, where the
dotted lines depict a pathway traversable by the state
tiles only with the assistance of the traversing robot
polyomino’s geometry.

Relocation Gadget. Our Relocation gadget
consists of openings at its four cardinal directions
which we will call N ,E,S,W . The internal architec-
ture is diagonally symmetrical and allows for traver-
sal between its openings. Wires are made with 2-tile
wide hallways attached at gadget openings. A high-
level overview of the four relocation gadget sections
is shown in Figure 14.

Entrance/Exit Chambers. Marked as section
1 in 13a, the entrance/exit chambers represent loca-
tions in a C2T gadget. These chambers do not en-
force any behavior or move sequence constraints on
a robot polyomino, letting it move in or out of the
chamber with no difficulty. However, these chambers
have spaces on its sides designed to keep the state tile
within the gadget. Once a state tile becomes stuck
in the spaces, the gadget becomes inoperable. These
chambers change from entrance to exit chambers de-
pending on the state of the gadget, where if the state
tile is in the NE side of the gadget, the NE chambers
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2
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(a) Sections of Gadgets (b) Paths of the State Tile (c) Paths of the Robot Polyomino

Figure 13: (a) Relocation sections where 1) represents entrance/exits locations, 2) represents areas where
the robot polyomino becomes stuck if unassisted by the state tile, and 3) and 4) represent the NE and SE
state tile areas. State and robot paths are shown in (b) and (c), where the state tile is stuck on the solid
lines and traverses through the dotted lines when changing states, and where the robot polyomino travels
through one location to the next through the solid lines, assisted by the state tile, or traverses the dotted
lines if unassisted by the state tile

become entrance chambers and the SW side cham-
bers become exit chambers and vice versa. These
different states correspond to the depicted states of
C2T gadgets in Figure 11.

Assistance Chamber. Marked as section 2 in
13a, an assistance chamber is the place where a robot
polyomino and a state tile meet to assist the robot
polyomino’s traversal through the gadget. A robot
polyomino can reach the assitance chamber opposite
of where it entered from. The only way a robot
polyomino can move through an assistance chamber
is if the state tile is in the correct path. See Figure
15 for an example travesal. If a robot polyomino
enters a gadget whose state tile is in the opposite
side, the robot polyomino becomes stuck inside the
gadget. This forces the robot to enter through the
correct entry points.

State Chambers. Section 3 and 4 in 13a, state
chambers store the state tiles and dictate the state
of the gadget. These chambers allow the state tile to
move freely through its north side to its east side
and vice versa, or from its south side to its west
side and vice versa. When the state tile moves to
the opposite state chamber, the state of the gadget
changes along with the positions of the entry and exit
location points. See Figure 13b for the possible paths
of the state tile in its two states.

Intersections. To allow robots to change direc-
tions in the paths between gadgets, we must have

(a) 3-way intersection (b) 4-way intersection

Figure 16: Intersections of tunnels. The geometric
block in the center stops the robot and allows it to
choose any of the tunnels to move through. (a) Three
tunnels intersecting. (b) A four-way intersection.

geometry to stop the robot and then choose which
direction it will proceed. We place a 2 × 2 block-
ing piece of geometry in the middle of the wire and
expand the surrounding area to allow the robot to
make traversing decisions. Examples of 3-way and 4-
way intersections are shown in Figures 16a and 16b,
respectively.

Like a puzzle consisting of C2T gadgets, a robot
polyomino traverses through a system of relocation
gadgets via their directed tunnels and the wires that
connect them. For a directed tunnel (a, b) to exist
in our gadget means that a sequence of tilts exists
such that we can relocate our robot polyomino from
location a to location b. The location of the state
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(a) 〈S,E,N,E, S〉 (b) 〈E,N,E, S〉 (c) 〈E,N,E,N,E〉

Figure 15: Example of a traversing sequence and state change when a gadget is in the state from Figure 11a.
The robot polyomino enters the gadget in (a) and performs the sequence shown. The robot geometrically
assists the state tile to traverse around in (b), and in (c) the state tile assists the robot polyomino via its
geometry to exit through the opposite location. In the end the robot would have traversed the gadget, and
the state tile would have gone from section 4’s red path in Figure 13b to section 3’s green path; Therefore,
the gadget was toggled.

tile implies the state of our gadget by determining
which directed tunnels exist in our gadget. In order
for a robot polyomino to traverse a relocation gadget,
the state tile must be in the correct path. Being
in the NE path implies the existence of directed
tunnels (N,S) and (E,W ), while being in the SE
path implies the reversal of those tunnels. When the
robot polyomino enters the gadget correctly and gets
assisted by the state tile to traverse safely, it forces
the state tile to change its path and toggle the state
of the gadget.

5.2 Relocation Gadget Results. The relocation
gadget’s architecture itself cannot prevent the robot
polyomino from traversing a direction that does not
comply with our tunnels. Thus, the gadget is de-
signed such that the robot can not traverse the gad-
get incorrectly or it will get stuck within the gadget.
We can list all the ways the robot can try to cheat in
a relocation gadget, i.e., move in a way that does not
comply with the rules of a C2T. Following, we give
the ways the gadget could fail and show why this can
not happen. The different types of ways to cheat or
break the gadget are:

• The robot polyomino traverses the gadget in a
way where a directed tunnel from its entrance to
its exit did not exist prior to the entrance of the
robot polyomino.

• The robot polyomino traverses the gadget with-
out forcing the gadget to change states.

• The state tile leaves the gadget.

Lemma 5.1. The robot polyomino can traverse from
location A to location B in a gadget if and only if an
implied directed tunnel from location A to location B
exists at the time of its entrance.

Proof. We used a computer simulation and proved by
exhaustion that the only way the robot polyomino
can move through the system is in a way that
complies with the directed tunnel in our gadgets. We
define a graph G = (V,E) where each vertex is a pair
(r, s) where r and s are robot and state tiles positions
in the gadget, respectively, and each edge is a directed
3-tuple (v, v′, d) edge from vertex v to v′ with label
d where d ∈ {N,S,E,W}. We create a graph
with a seed vertex v, where v is a possible starting
configuration of the robot polyomino and state tile,
and recursively perform tilts in all four directions
from that vertex, adding new vertices that did not
already exist in the graph. Adding a directed edge
e = (v, v′, d) from v to v′ with label d means you can
get from configuration v to v′ by tilting in direction d.
We call a valid starting configuration a configuration
such that an implied tunnel exists from the robots
location to the opening on the opposite side of the
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gadget, while an invalid starting configuration is
a configuration such that no implied tunnel exists
from the robot’s location. The computer program
generates a set of graphs showing that for every seed
vertex which represents a valid starting configuration
there is a path that allows us to traverse through
the gadget. It also shows that for every invalid
starting configuration there is no way to traverse the
gadget at all (the robot and state polyominoes can
not leave); the robot can only leave the same way
it came in, or enter a “stuck” configuration, from
which there is no way to exit the gadget. Information
about the verification and sourcecode are available at
https://github.com/asarg/TumbleTiles. �

Lemma 5.2. If a tunnel is traversed in the gadget,
the state of the gadget is changed (the tunnels are
reversed).

Proof. The state of our gadget is inferred from the
path that the state tile is in. This means we
must ensure that if a robot polyomino traverses a
tunnel, then the state tile must switch to the other
path without switching back alone. Using the same
method of proof by exhaustion, there is no sequence
that will allow the robot to completely traverse a
tunnel without switching the path the state tile is in.
Sourcecode: https://github.com/asarg/TumbleTiles.
�

Lemma 5.3. The relocation gadget correctly imple-
ments the behavior of the C2T gadget.

Proof. Lemma 5.1 and 5.2 show that our gadget can
simulate the main properties of a C2T gadget. Upon
inspection we can see that in addition to these two
properties, a state tile is never able to leave a gadget,
as the entrances/exits are designed in a way that 1×1
tiles can not get through, and enter a hallway they
can not exit. We have proven that the only way to
traverse a gadget is through a directed tunnel, and
that if a tunnel is fully traversed then the gadget’s
state must change, Therefore our gadget implements
the properties of a C2T gadget. �

Theorem 5.1. Given an initial configuration C, a
polyomino t at location a in C, and an empty location
b in C, it is PSPACE-complete to decide whether
there exists a sequence of tilts to reconfigure C into
a configuration in which t has moved from location a
to location b.

Proof. First, we observe that this problem is in
PSPACE. Given a directed graph G = (V,E) where

each vertex is a configuration on the board B and
each edge ei,j = (vi, vj) connects two vertices if there
exists one tilt that reconfigures vi to vj . Clearly, a
nondeterministic search of this graph will yield the
answer in polynomial space, implying membership
in NPSPACE. Since NPSPACE = PSPACE, we get
membership in PSPACE.

We now show PSPACE-hardness by a reduction
from the puzzle solvability problem from [10]. A
puzzle is a graph of connected gadgets including
crossovers where the goal is to find a way through the
maze. Thus, a puzzle of C2T gadgets has a solution
if and only if there is a sequence of tilts that will
relocate the robot from a to b through the puzzle of
relocation gadgets.

If a C2T puzzle has a solution then any move-
ment through a tunnel can be transformed to a se-
quence of tilts that allow traversal through the relo-
cation gadget. Any movements through a single wire
can be transformed to tilts through a hallway, while
movements through an intersection of wires can be
transformed to a sequence of tilts through the inter-
sections mentioned above. Since we can convert all
the moves in the solution to a C2T puzzle to moves
in our relocation gadget system, a solution to a C2T
puzzle implies a solution to our relocation problem.

Suppose there is a sequence of tilts that relocate
the robot from a to b from starting configuration
C. We can easily convert this sequence of tilts to a
sequence of moves that a robot in a C2T puzzle can
perform. We can map the sequence of tilts necessary
to get through our relocation gadget to a simple
N,E, S,W direction for the robot to move through
the C2T gadget. A similar simplification is needed
for each intersection. Thus, we can create directions
to move through the C2T puzzle by simplifying the
sequence of tilts and thus solve the C2T puzzle. �

6 Reconfiguration

In [6], it was shown that computing a shortest se-
quence of tilts required to transform one configura-
tion into another is PSPACE-complete. In this sec-
tion, we show that even the problem of determining if
a reconfiguration sequence exists between two given
configurations, termed the reconfiguration problem,
is PSPACE-complete. Our reduction is similar to the
reduction for the relocation problem. But for the re-
configuration problem we must provide a unique final
configuration for the problem input, as opposed to
just a final location of a single polyomino. The pre-
vious gadget is insufficient for this problem as there
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is generally not a unique final configuration for all
successful traversals, and it would not be polynomial
time computable even in the cases that it were. The
issue is that we would not know the state of each of
the gadgets, and thus not know the location of the
state tile. We address this issue by expanding on the
relocation gadget to allow for a final tilt sequence that
positions the state tile for each gadget, regardless of
the state, into a unique identical position, thereby
providing a polynomial time computable target con-
figuration for the reduction.

• Reconfiguration Gadget. The Reconfiguration
gadget is a relocation gadget with additional
architecture. Each state tile has additional
pathways that lead to an inescapable chamber
on the perimeter of the gadget. The robot
polyomino maintains the same pathways it held
in the relocation gadget.

• Reconfiguration Ring. Each reconfiguration gad-
get has a reconfiguration ring located on its
perimeter reachable by the state tiles only.
These hallways help answer the reconfiguration
problem as they convert all gadgets to one global
unique configuration. To insert all state tiles to
this ring, the user can move the state tile through
the new architecture (depicted in Figure 19a)
into the reconfiguration ring, and render all gad-
gets inoperable.

• State Tile Restarting Positions. We define
restarting positions for all state tiles (depicted
by the solid state tiles in Figure 19a). We ini-
tialize all state tiles of the same state to the same
position in the gadget. This could be either of
the two state positions in section 4 (Figure 18a).
Applying a global motion signal will ensure that
all state tiles (in the same state) will be in the
same position at all times.

• Intermediate Wire. An intermediate wire (Fig-
ure 17) is a small chamber gadget placed on
wires and between every pair of reconfiguration
gadgets to ensure the state tiles will not enter
the perimeter hallway. The intermediate gadget
gives the traversing robot room to make tilts in
all directions. After every reconfiguration gad-
get traversal, the robot can move freely in the
corresponding intermediate wire and reposition
the state tiles to their restarting positions.

Figure 17: Intermediate Wire

6.1 Reconfiguration Theorems and Proofs.
Using proof by computer to show that the reloca-
tion gadget is immune to cheaters, we show that in a
system of reconfiguration gadgets the state tiles can
be moved to their initial positions using the inter-
mediate wire. We show that by placing intermediate
wires before every reconfiguration gadget, we can tra-
verse through one gadget to the next and place the
state tiles back in their initial positions. We include
this in our results to save the traversing robot from
accidentaly placing a state tile in its reconfiguration
ring before the user is ready to “freeze” all gadgets.
Therefore, everytime the robot enters a gadget the
state tiles will be in one of the two initial positions
we depict in Figure 18b. The relocation gadget is a
subset of the reconfiguration gadget. Before answer-
ing the reconfiguration problem, we must first answer
the relocation problem by applying a sequence of tilts
that relocates a robot polyomino to its goal location.
When the relocation problem has been answered we
then proceed to move all the state tiles through the
added architecture hallways until they are in the gad-
get’s reconfiguration ring. This converts all of the
gadgets to one configuration type. The only cause of
concern for this gadget is the possibility of uninten-
tionally moving the state tile into the reconfiguration
ring while the robot is traversing through the system
of gadgets. However, with a specific tilt sequence per-
formed after each gadget traversal, we can ensure this
will never happen.

Lemma 6.1. For every system of gadgets there exists
a sequence of tilts that allows the robot to traverse the
gadget system without prematurely moving the state
tile into the reconfiguration ring.

Proof. There exists a set of tilt sequences that allow
the robot polyomino to traverse the gadget while
preserving the state tile restarting positions defined
above. Thus, depending on the direction traveled,
every state tile will be in a specific location depending
on the gadget’s state as the polyomino is exiting the
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(a) Reconfiguration Gadget Sections (b) Reconfiguration Gadget Positions

Figure 18: (a) Sections 1 are the entrance chambers, sections 2 are the pre-reconfiguration tunnels, section 3
is the reconfiguration tunnel, section 4 is the relocation gadget. The solid lines depict the pathways the state
tile and robot polyomino are free to move through, and dotted lines are the accessible by assistance.

gadget, or trivially be one tilt away. This is true
not only for the gadget being traversed, but also
for every gadget in the system. This ensures that
while traversing through the hallways no state tiles
are forced into a reconfiguration ring. From the top-
right and bottom-left state tile restarting positions, a
total of 13 tilts are required to permanently trap the
state tile in the reconfiguration ring, and tilts must
be performed in a clockwise order to progress the tile
through the reconfiguration hallway. The maximum
number of hallways to connect two gadgets or a
gadget to an intersection is five. Thus, at most five
tilts are needed in a hallway traversal. This means no
state tile can enter the reconfiguration ring while only
traversing hallways. The intersections are designed
to use counter-clockwise tilts in choosing a direction,
and therefore does not allow progression through the
chamber. Finally, since the entrance to every gadget
is preceeded by an intermediate wire, we can perform
tilts in these wires to reposition the state tiles to
their optimal positions. In the worst case scenario all
state tiles are located in their gadget’s reconfiguration
hallway, however, we have shown that even from this
scenario there is a tilt sequence that will reposition
all state tiles into their optimal starting positions. �

Theorem 6.1. Given a board B and configurations

C and D, it is PSPACE-complete to decide whether
C can be reconfigured into D.

Proof. Since the reconfiguration gadget shares the
same structure and properties as the relocation gad-
get, it also behaves as a C2T gadget in our reduction.
We use an exhaustive computer simulation, as in the
proof of the relocation gadget, to ensure the gadget
works as described. This, in addition to Lemma(6.1)
shows that answering the relocation problem is fea-
sible using reconfiguration gadgets. After answering
the relocation problem using reconfiguraton gadgets,
we can proceed to move all state tiles into the recon-
figuration ring. Doing so will move all state tiles into
a specific location within each gadget that is specified
as part of our final configuration D, which also has
the destination of the single polyomino. �

7 Future Work

There are a number of open questions and directions
for future work that stem from our results. In the
area of complexity, we have shown that relocation
and reconfiguration problems are PSPACE-complete
if both 1 × 1 and 2 × 2 blocks are considered. The
complexity of this problem is only known to be NP-
hard if restricted to 1 × 1 movable blocks [5]. In [5]
the authors showed that 1×1 blocks have substantial
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(a) Reconfiguration state tile paths.

Figure 19: When the robot has reached its goal location, all the state tiles will be in one of the two state paths
(red or light green). The user could then maneuver all state tiles through the paths (dark green and blue)
and place them inside the reconfiguration ring. Doing so will convert all gadgets to a global configuration.

limitations such as the impossibility of implementing
a certain type of fanout gate. This might be evidence
that this variant is not PSPACE-complete. On the
other hand, the existence of necessarily exponentially
long tilt sequences for reconfiguration shown in [5]
provides some evidence that the problem does not lie
within the class NP. An alternate modification is the
consideration of simple (connected) geometry in the
blocking structure of the board. Does the problem
remain PSPACE-complete with this restriction, or
does the problem become simpler, perhaps allowing
for a polynomial time solution?

Another direction of future work is to explore
strong universal configurations for classes beyond the
“drop” class. One plausible extension might entail
building drop shapes as a subroutine and combining
them together in a hierarchical “staged assembly”
fashion. Another could be to employ a “sand sifter”
along with this staged assembly as a part of the
pattern builder. Related to this is the consideration
of speeding up the assembly process by attempting to
build distinct portions of a target shape in parallel.
This approach has been recently explored [18], but
has not been considered in the context of building
universal configurations.

One interesting direction for future work involves
relaxing the constraint in which polyominos slide

maximally until stopped. Instead, polyominos could
slide a fixed amount per tilt, or travel at some partic-
ular speed. This strengthens the model significantly,
but is motivated by a number of practical proposed
implementations. What interesting added capabili-
ties does this modification allow, and how do com-
plexity questions change for this model?
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