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Abstract. We analyze the security of the Thorp shuffle, or, equivalently, a maximally
unbalanced Feistel network. Roughly said, the Thorp shuffle on N cards mixes any
N1−1/r of them in O(r lg N ) steps. Correspondingly, making O(r) passes of maximally
unbalanced Feistel over an n-bit string ensures CCA security to 2n(1−1/r) queries.
Our results, which employ Markov chain techniques, particularly couplings, help to
justify a practical, although still relatively inefficient, blockcipher-based scheme for
deterministically enciphering credit card numbers and the like.

Keywords. Card shuffling, Coupling, Format-preserving encryption, Modes of oper-
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1. Introduction

1.1. Small-Space Encryption

Suppose you want to encrypt a 9-decimal-digit plaintext, say a US social security number,
into a ciphertext that is again a 9-decimal-digit number. A shared key K is used to
control the encryption. Syntactically, you seek a cipher E : K×M → M where M =
{0, 1, . . . , N−1}, N = 109, and EK = E(K , ·) is a permutation for each key K ∈ K.
You aim to construct your scheme from a well-known primitive, say AES, and to prove
your scheme is as secure as the primitive from which you start.

The problem is harder than it sounds. You cannot just encode each plaintext M ∈ M as
a 128-bit string and then apply AES, say, as that will return a 128-bit string and projecting
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back onto M will destroy permutivity. Standard blockcipher modes of operation are of
no use, and constructions such as balanced Feistel [21,35] or Benes [1,34] have security
that falls off by, at best, the square root of the size of the domain, N . Here N is so small
that such a result may provide no practically useful guarantee.

The above small-space encryption problem was first investigated by Black and Rog-
away [7], but those authors could find no efficient and provably secure solution for small
N values. While one does have the option to spend �(N ) time and use a construction
such as the “prefix cipher” [7], this rapidly becomes unattractive. This paper provides a
provably secure solution for enciphering on these small domains.

1.2. Thorp Shuffle

Our approach is based on the Thorp shuffle [42], which works like this. Suppose you
want to shuffle N cards, where N is even. Cut the deck into two equal piles. Drop
the bottom card from either the left or right pile according to the outcome of a fair
coin flip, and then, drop the card from the bottom of the other pile. Continue in this
way, flipping N/2 independent coins and using each to decide whether you drop cards
left-then-right or right-then-left. This is one round of the shuffle; repeat for as many
rounds as you like. Expressed a bit more algebraically, for each round r = 1, 2, . . . , R
the cards at positions x and x + N/2, where x ∈ {0, . . . , N/2 − 1}, are moved either
to positions 2x and 2x + 1 or else to positions 2x + 1 and 2x , which one of these
possibilities being determined by a uniform coin flip c ∈ {0, 1}. See the left-hand side of
Fig. 1. Let Th[N , R] denote the Thorp shuffle with message space M = {0, . . . , N −1}
and R rounds.

The potential utility of the Thorp shuffle to cryptography and complexity theory was
first noticed by Naor nearly 30 years ago [31, p. 62], [37, p. 17]. He observed that
the Thorp shuffle is oblivious in the following sense: one can trace the route of any
given card in the deck without attending to the remaining cards in the deck. If the Thorp
shuffle mixes cards quickly enough, this property would make it suitable for small-space
encryption. Namely, the random bit c used for cards x and x + N/2 at round r could be
determined by applying a pseudorandom function F , keyed by some underlying key K ,
to x and r . Conceptually, the string K compactly names all of the (N/2) · R random
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Fig. 1. Two views of the Thorp shuffle (one round). Left: each card is paired with the one N/2 positions away.
For cards at positions x and x + N/2, a random bit c (not shown) determines whether the cards get mapped to
2x and 2x + 1 or to 2x + 1 and 2x . Right: each card is regarded as an n-bit string X (assume N = 2n ). Now
card b ‖ x gets sent to x ‖ b⊕ FK (x) for a uniform (and round-dependent) random function FK .
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bits that would be needed to shuffle the entire deck. But because the Thorp shuffle is
oblivious, only R of these bits, so only that many pseudorandom function (PRF) calls,
would be needed to encipher an input x .

1.3. Feistel View

There are a variety of alternative views of what goes on in the Thorp shuffle. The one
most resonant to cryptographers is this. Suppose that N = 2n is a power of two. In
this case, the Thorp shuffle coincides with a maximally unbalanced Feistel network.
In an unbalanced Feistel network [39] the left and right portions in the n-bit string
that is being enciphered may have different lengths. Throughout this paper, “maximally
unbalanced Feistel” means that the round function takes in n − 1 bits and outputs a
single bit—a “source-heavy” scheme. See the right-hand side of Fig. 1. A moment’s
reflection will make clear that, if the round function FK provides uniform random bits,
independently selected for each round, then maximally unbalanced Feistel is the Thorp
shuffle.

As it takes n rounds of maximally unbalanced Feistel until each bit gets its turn in
being replaced, we term n rounds of maximally unbalanced Feistel (or �lg N� rounds of
Thorp) a pass. One might hope that the Thorp shuffle mixes the deck well after a small
number of passes.

1.4. Our Results

Assume N = 2n is a power of two, r ≥ 1, and let E = Th[N , R] be the Thorp shuffle
with R = 2rn rounds (that is, with 2r passes over the input). We will show that an
adversary mounting a nonadaptive chosen-plaintext attack and making q queries will
have advantage that is at most (q/(r + 1)) · (4nq/N )r at distinguishing E from a ran-
dom permutation on n bits. We prove this bound by regarding the Thorp shuffle of a
designated q out of N cards as a Markov chain and applying a coupling argument. This
marks the first time that coupling has been used to prove security for a symmetric cryp-
tographic primitive. Using a result of Maurer, Pietrzak, and Renner [23], we can then
infer that 4rn rounds (4r passes) are enough so that a q-query adversary making an
adaptive chosen-ciphertext attack will have advantage at most (2q/(r + 1)) · (4nq/N )r

at distinguishing E from a random permutation and its inverse. Put in asymptotic
terms, we are saying that a maximally unbalanced Feistel network is CCA secure to
2n(1−1/r) queries using O(r) passes (and a uniformly random function from n − 1
bits to 1 bit). This far exceeds what balanced Feistel delivers, providing a demonstra-
ble separation between the information-theoretic security of balanced and unbalanced
Feistel.

While our result is strong compared to what was known before, we emphasize that
there remains a large gap between our security result and the best attack known. We
cannot rule out the possibility that with a number of passes r that is a small constant—
perhaps as small as two—one already achieves information-theoretic security up to
N = 2n queries (or at least up to cN queries). Narrowing this gap is an intriguing open
problem.
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1.5. Practicality

While our work has been motivated by a practical problem, in the end, the number of
rounds we require to get a good security bound is not competitive with what one can do,
heuristically, using a balanced Feistel network. Because of this, when people actually
want to encipher strings over a small domain, they opt for a maximally balanced Feistel
network. This is what NIST elected in their 2016 standard, and what we had suggested
to them [5,6,11]. It is also what the arbitrary-input-length blockcipher AEZ elected to
do [14]. While the choice of balanced Feistel precludes information-theoretic security
beyond

√
N queries, no computationally practical attacks are known, even if one asks

up to N − 2 queries, as long as one is careful in selecting an adequate number of rounds
for enciphering very short strings [3]. (The “minus 2” is needed because a permutation
determined by a balanced Feistel network is always even [32, Theorem 6.1].)

1.6. Related Work

The conference version of our paper appeared in 2009 [30]. Here we describe some of
what came before and after, and place our work in further context.

The problem of enciphering on a small or unusual domain is a special case of format-
preserving encryption, a goal addressed (albeit incorrectly) in an old NBS cryptographic
standard [29], described informally by Brightwell and Smith [8], named and popularized
in industry by Spies [41], and formalized by Bellare et al. [4].

One could always solve the small domain encryption problem with a de novo con-
struction, creating from scratch a confusion/diffusion primitive with an unusually rich
domain. This was what Schroeppel did in his Hasty Pudding cipher [40], anticipating by
several years a formulation of the general problem. It is also what Granboulan, Levieil,
and Piret investigate [12] in their treatment of blockciphers with domains other than bit
strings, and what is addressed in the subsequent work of Baignères et al. [2].

For balanced Feistel, the classical analysis by Luby and Rackoff [21] shows that three
rounds provide CPA security (four rounds for CCA security) to nearly 2n/4 queries. This
was improved by Maurer and Pietrzak [22], who showed that R rounds of balanced
Feistel could withstand about 2n/2−1/R queries (in the CCA setting). Patarin [33,35]
went on to show that a constant number of rounds (six for CCA security) was already
enough to withstand nearly 2n/2 queries. He suggested that enough rounds of maximally
unbalanced Feistel ought to achieve security approaching 2n queries [33, p. 527].

Naor and Reingold analyzed unbalanced Feistel constructions, showing that one pass
over a maximally unbalanced Feistel network that operates on n bits remains secure to
nearly 2n/2 queries [31]. In their treatment, pairwise independent permutations bracket
the Feistel construction. Kaplan, Naor, and Reingold describe a method to reduce the
number of bits needed to specify a permutation that will appear uniform against some
number q of queries [17]. They do this by derandomizing a construction such as the
Thorp shuffle.

Morris established that the mixing time for the Thorp shuffle—roughly, the number
of steps until all q = N cards are ordered nearly uniformly—is polylogarithmic: he
showed it was O(lg44 N ) [27]. This was later improved to O(lg19 N ) [24] and then to
O(lg4 N ) [25] (for arbitrary N ) and O(lg3 N ) [26] (for N a power of 2). After our work
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demonstrated that the Thorp shuffle mixes N 1−ε of the cards in O(lg N ) rounds, Czumaj
and Vöcking show mixing of any cN cards (c < 1) in O(lg2 N ) rounds.

Granboulan and Pornin [13] describe a method to perfectly realize a random per-
mutation using a shuffling procedure of Czumaj, Kanarek, Kutyłowski, and Loryś [9].
Their approach requires one to repeatedly sample from a hypergeometric distribution
using parameters that are large and vary during the shuffle. In an implementation, they
accomplish this with an arbitrary-precision floating-point package. In the end, about 109

machine cycles are used to encipher on a space of N < 232 points.
Building on the conference version of the current paper and its use of couplings

[30], Hoang and Rogaway analyze a variety of Feistel variants, including alternating,
unbalanced, and numerical Feistel networks [16]. The work includes a coupling-based
analysis for the Thorp shuffle with the number of cards arbitrary, not just a power of two,
extending what we establish here. Hoang, Morris, and Rogaway went on to describe the
Swap-or-Not shuffle [15], an oblivious shuffle closely related to the Thorp shuffle and
invented to provide better proven security—up to cN adversarial queries, for an arbitrary
constant c < 1. Building on an idea of Ristenpart and Yilek [36], Morris and Rogaway
then described the Sometimes-Recurse shuffle [28], which can permit all N points to
be queried and has fast expected running time: it shuffles all N cards in log N expected
rounds.

Following our work [16,30], coupling arguments have increasingly been used to ana-
lyze constructions in symmetric cryptography. A good and early example is Lampe,
Patarin, and Seurin [18], who use a coupling argument to analyze the iterated Even–
Mansour cipher.

2. Preliminaries

By a cipher, we mean a map E : K × M → M where K and M are finite
nonempty sets (the key space and the domain) and EK (·) = E(K , ·) is a permu-
tation on M for every K ∈ K. Let A be an adversary, meaning an algorithm
with access to an oracle. For the game used to define E’s indistinguishability from
a random permutation, the oracle will depend on a permutation f : M → M. It
will respond to a query (enc, x) with f (x) and it will respond to a query (dec, y)
with f −1(y). Queries outside of {enc,dec} × M are ignored. Define Advcca

E (A) =
P (K ←← K : A±EK ⇒ 1) −P (π ←← Perm(M) : A±π ⇒ 1) where A± f denotes A
interacting with the f -dependent oracle just described and A f ⇒ 1 is the event that it
outputs a 1.

We say that adversary A is nonadaptive if its queries are the same on each and every
run. It carries out a chosen-plaintext attack if each query is an encryption query, and
a chosen-ciphertext attack if queries may be either encryption or decryption queries.
Let Advncpa

E (q) = maxA Advcca
E (A) where the maximum is taken over all nonadap-

tive adversaries that ask at most q encryption queries and no decryption queries. By
the standard averaging argument, the notion is unchanged if nonadaptive adversaries
are assumed to be deterministic: they statically choose their queries x1, . . . , xq . Let
Advcca

E (q) = maxA Advcca
E (A) where the maximum is taken over all adversaries that

ask at most q queries.
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3. Markov Chains and Coupling

We now give a brief description of the coupling technique for proving rapid mixing of
a Markov chain; see any text on the subject, such as Levin, Peres, and Wilmer [19], for
a more comprehensive account.

Let � be a finite nonempty set and let μ, ν be probability distributions on �. Let

‖μ − ν‖ = max
S⊂�

μ(S) − ν(S) = 1
2

∑

x∈�

|μ(x) − ν(x)| (1)

be the total variation distance between μ and ν.
A coupling of μ and ν is a pair of random variables (X,Y ), defined on the same prob-

ability space, such that the marginal distributions of X and Y are μ and ν, respectively.
The total variation distance has the following alternative description using couplings:

‖μ − ν‖ = min
X∼μ, Y∼ν

P(X �= Y ), (2)

where Z ∼ τ means that Z has distribution τ . The minimum in the right-hand side of
(2) is taken over all couplings (X,Y ) of μ and ν.

3.1. The Coupling Technique

Consider a Markov chain on state space � with transition matrix P and stationary
distribution π . For a probability distribution μ on �, we write μt for the distribution
of the chain at time t when the initial distribution is μ. Suppose we wish to bound
the total variation distance ‖μt − νt‖ for two different starting distributions μ and ν.
(Typically, one wants to bound the distance ‖μt − π‖ for some starting distribution μ;
this corresponds to letting ν = π , so that νt = π for all t .) To use the coupling technique,
one constructs a pair process {(Xt ,Yt ) : t ≥ 0}, the coupling, that satisfies the following
conditions:

1. We have X0 ∼ μ and Y0 ∼ ν.
2. Individually, {Xt } and {Yt } are Markov chains with transition matrix P .
3. For every t ≥ 0, if Xt = Yt then Xt+1 = Yt+1.

The random variable T = min{t : Xt = Yt } is called the coupling time. Then, from (2),
we have

‖μt − νt‖ ≤ P (Xt �= Yt )

= P (T > t) .

The idea is to define the coupling in such a way that T is unlikely to be large.

4. The Projected Thorp Shuffle

Fix N = 2n . Let {Tht : t ≥ 0} be the Markov chain representing the Thorp shuffle with
N cards. More formally, let C be a set of cardinality N , whose elements we call cards.
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For concreteness, we take C = {0, 1}n . The state space of {Tht } is the set of bijections
from C to {0, 1}n . For a card z∈C, we interpret Tht (z) as the position of card z at time t .
For cards z1, . . . , z j , we define Tht (z1, . . . , z j ) = (Tht (z1), . . . , Tht (z j )).

Let A be a deterministic adversary that makes exactly q queries. Our proof is based
on an analysis of the mixing rate of the Thorp shuffle. However, since A makes only
q queries, we need only bound the rate at which a subset of the cards mixes. Fix m
with 1 ≤ m ≤ N , let z1, . . . , zm be distinct cards in C, and let Xt be the vector of
positions of cards z1, . . . , zm at time t . For j in {1, . . . ,m}, we write particle j for card
z j , we write Xt ( j) for the position of particle j at time t , and define Xt (1, . . . , j) =
(Xt (1), . . . , Xt ( j)).

We shall call Xt the projected Thorp shuffle withm particles.Note that since the Thorp
shuffle is a random walk on a group (see, e.g., [38]), it has uniform stationary distribution.
Hence the stationary distribution of Xt , which we denote by π , is uniform over the set
of distinct m tuples of elements from {0, 1}n . Equivalently, π is the distribution of m
samples without replacement from {0, 1}n . Let τt denote the distribution of Xt .

Let Xt be the projected Thorp shuffle. It will be convenient to use a rule for generating
the evolution of Xt that uses m fair coins, c1, . . . , cm , each of which is flipped at each
step. Formally, each c j is a sequence {c jt : t ≥ 0} of Bernoulli(1/2) random variables,
where we interpret c jt as the outcome of coin c j at time t . We assume that all of the c jt
are independent.

We now give the rule for updating the positions of each of the m particles in the
projected Thorp shuffle. Say that two cards are adjacent at time t if their positions
(viewed as elements of {0, 1}n) are the same except for the first bit (or, viewed as
elements of {0, . . . , N − 1}, they differ by N/2). Note that if two particles are adjacent,
then it is sufficient to describe how the position of one of them is updated, since this
implies how the position of the other is updated. We shall use the following rule, which
we call Rule R:

Update rule R :
If particle i is adjacent to particle j with j < i , then we determine the position
of particle i at time t + 1 using coin c j and coin flip c jt as follows:

1. the first (leftmost) bit of the position of particle i is set to 1−c jt , and then
2. the position of particle i undergoes a cyclic left bit shift.

If, on the other hand, particle i is not adjacent to a particle of smaller label,
then we determine the position of particle i at time t + 1 using coin ci and
coin flip cit as follows:

1. the first (leftmost) bit of the position of particle i is set to cit , and then
2. the position of particle i undergoes a cyclic left bit shift.

Note that when two particles are adjacent, the way that they are updated is entirely
determined by the coin of the particle with the smaller label.

A key property of the projected Thorp shuffle is that when particles are not adjacent
they move independently. The following lemma shows that particles are very unlikely
to be adjacent after sufficiently many steps of the chain.
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Lemma 1. If t ≥ n − 1 then for any pair of particles i and j we have

P (i and j are adjacent at time t) ≤ 21−n . (3)

Proof. Assume that update rule R is used to generate Xt . Note that (by reordering if
necessary) we may assume that i = 1 and j = 2. Let E be the event that particles 1 and
2 are adjacent at time t . If E occurs, then at each step during times t − 1, . . . , t − n + 1,
when their bits are changed (in step 1 of the update rule), the same change must occur
for both particles. This occurs only if coins c1 and c2 have the same outcomes at times
t − 1, . . . , t − n + 1, which occurs with probability 21−n . It follows that P (E) ≤ 21−n .

�

Theorem 1. (Rapid mixing) Let N = 2n, suppose q ∈ {1, . . . , N }, and let {Xt : t ≥ 0}
be the projected Thorp shuffle with q particles, π its stationary distribution, and τt the
distribution of Xt . Then, for any r ≥ 1,

‖τr(2n−1) − π‖ ≤ q

r + 1

(
4nq

N

)r

.

Proof. We use a hybrid argument. Fix cards z1, . . . , zq . For each l ≤ q, consider
the vector (Z1, . . . , Zq) such that Zi = zi if i ≤ l and Zi is chosen uniformly from
{0, 1}n\{Z1, . . . , Zi−1} otherwise, and let μl be the distribution of the location of cards
Z1, . . . , Zq after r(2n − 1) Thorp shuffles. Note that μq is τr(2n−1) and μ0 is π .

The distributions μl and μl+1 have the following property: The conditional distribu-
tion of the last q−l−1 particles, given the positions of the first l+1 particles, is uniform
over all the possibilities. Thus, if we write μl

l+1 (respectively, μl+1
l+1) for the marginal

distribution, with respect to μl (respectively, μl+1), of the first l + 1 particles, then

μl(x1, . . . , xq) = μl
l+1(x1, . . . , xl+1)/A; μl+1(x1, . . . , xq) = μl+1

l+1(x1, . . . , xl+1)/A,

for some normalizing constant A. Hence

‖μl − μl+1‖ = 1
2

∑

x1,...xq

|μl(x1, . . . , xq) − μl+1(x1, . . . , xq)|

= 1
2

∑

x1,...xq

A−1|μl
l+1(x1, . . . , xl+1) − μl+1

l+1(x1, . . . , xl+1)|

= 1
2

∑

x1,...xl+1

|μl
l+1(x1, . . . , xl+1) − μl+1

l+1(x1, . . . , xl+1)|. (4)

Thus, the total variation distance between μl and μl+1 depends only on the marginal
distributions of the first l + 1 particles. If we write random variables as shorthand for
their distributions, then (4) implies that

‖μl − μl+1‖ = ‖Thr(2n−1)(z1, . . . , zl+1) − Thr(2n−1)(z1, . . . , Zl+1)‖. (5)
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To bound this total variation distance, we will use coupling. We will construct a
pair process {(Wt , W̃t ) : t ≥ 0} such that Wt (resp. W̃t ) has the distribution of cards
z1, . . . , zl+1 (resp. cards z1, . . . , zl , Zl+1) at time t , in the Thorp shuffle. Let

W0 = (Th0(z1), . . . , Th0(zl+1)) W̃0 = (Th0(z1), . . . , Th0(zl), Th0(Zl+1)).

It remains to describe the rule for generating (Wt+1, W̃t+1) from (Wt , W̃t ). Note that
both Wt and W̃t are projected Thorp shuffles with l + 1 particles. We shall generate the
evolution of {(Wt , W̃t ) : t ≥ 0} using rule R with the same coins c1, . . . , cl+1 updating
both Wt and W̃t . Note that under rule R, the updates for the first l particles are determined
by coins c1, . . . , cl alone (since coin cl+1 is only used to update particle l + 1 when it is
not adjacent to a particle in {1, . . . , l}.) Since the positions of the first l particles initially
agree in both W0 and W̃0 (that is, W0( j) = W̃0( j) for all j ≤ l), and we are using
the same coin flips c1

t , . . . , c
l
t to update them each step, the positions of these particles

remain matched for all times t . Furthermore, if at any point the position of particle l + 1
becomes matched, then at that point all of particles 1, . . . , l + 1 are matched and hence
will stay matched from that point on. Thus, we have

‖Wt − W̃t‖ ≤ P
(
Wt (l + 1) �= W̃t (l + 1)

)

= P (T > t) , (6)

where T = min{t : Wt (l + 1) = W̃t (l + 1)} is the coupling time.
Let A be the event that at some time in {n−1, n, . . . , 2n−2}, particle l+1 is adjacent

to particle j for some j ≤ l, in either the W process, or the W̃ process. Unless A occurs,
coupling occurs by time 2n − 1. Summing equation (3) over 2 processes, n time steps,
and l smaller indices shows that

P (A) ≤ 2nl · 21−n . (7)

It follows that
P (T > 2n − 1) ≤ p , (8)

where p = nl22−n . Note that (8) holds regardless of the initial state (W0, W̃0) and
that the process {(Wt , W̃t ) : t ≥ 0} is itself a Markov chain. Now imagine that
we have a sequence of trials where in each trial we run the coupling for an addi-
tional 2n − 1 steps. The probability that particle l + 1 remains unmatched after the
first trial is at most p. Furthermore, by the memoryless property of Markov chains,
given that it remained unmatched after the first r − 1 trials, the conditional probability
that it remains unmatched after the r -th trial is again at most p. Hence, by induction,
P (particle l + 1 remains unmatched after r trials) ≤ pr = (nl22−n)r , that is,

P (T > r(2n − 1)) ≤ (nl22−n)r . (9)

Combining this with (6) and (5) shows that ‖μl − μl+1‖ is at most (nl22−n)r . This
holds for every l with l ≤ q. Since μq is τr(2n−1) and μ0 is π , we have, by the triangle
inequality,
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‖τr(2n−1) − π‖ ≤
q−1∑

l=0

(nl22−n)r ≤
∫ q

0
(n22−n)r xr dx

≤ qr+1

r + 1
· nr22r−nr = q

r + 1

(
4nq

N

)r

.

�

5. Pseudorandomness of the Thorp Shuffle

5.1. CPA Security

The total variation distance is identical to the advantage with respect to a (determinis-
tic) nonadaptive chosen-plaintext attack. So, reformulating Theorem 1 in cryptographic
terms, what we have shown is the following.

Theorem 2. (nCPA security, concrete) Let N = 2n and 1 ≤ q ≤ N. Then, for any
r ≥ 1,

Advncpa
Th[N ,r(2n−1)](q) ≤ q

r + 1

(
4nq

N

)r

.

5.2. Time-Reverse Thorp Shuffle

Let Th−1[N , R] = (Th[N , R])−1 denote the time-reverse Thorp shuffle on N cards with
R rounds: in round r ∈ {1, . . . , R} it sends cards 2x and 2x + 1, where 0 ≤ x < N/2,
either to x and x + N/2, or to x + N/2 and x , depending on a random bit c(x, r).
The inverse of the time-reverse Thorp shuffle is the Thorp shuffle itself. For N a power
of two the forward and reverse Thorp shuffle are “isomorphic” Markov chains in the
sense that there is a relabeling of states from Th[N , R] to Th−1[N , R] that preserves the
transition rule. As a consequence, the bound of Theorem 1 applies to the time-reverse
Thorp shuffle as well as to the original. The observation is needed for concluding the
theorem below.

5.3. CCA Security

A lovely result of Maurer, Pietrzak, and Renner [23] allows us to extend Theorem 2 to a
larger class of adversaries—namely, we can trade our nCPA adversaries for CCA ones.
The cost of doing so is just a doubling in the number of rounds, as well as the advantage
bound.

Theorem 3. (CCAsecurity, concrete) Let N = 2n and 1 ≤ q ≤ N. Then, for any
r ≥ 1,
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Advcca
Th[N ,r(4n−2)](q) ≤ 2q

r + 1

(
4nq

N

)r

.

Proof. We use the second half of Corollary 5 from Maurer et al. [23, p. 148]. Although
the notation of that paper is very different from what we use here, the authors’ result
implies that for any n-bit blockciphers F andG, we have thatAdvcca

H (q) ≤ Advncpa
F (q)+

Advncpa
G (q), where H is the cipher defined by HK ,K ′(X) = G−1

K ′ (FK (x))). Note that F
and G are independently keyed. We use this fact with F being the (R/2)-round Thorp
shuffle, F = Th[N , R/2], and G being the (R/2)-round time-reverse Thorp shuffle,
G = Th−1[N , R/2]. Applying Theorem 2 and the observation that the time-reverse
Thorp shuffle coincides with the usual Thorp shuffle gives the result. �

5.4. Graphical Illustration

The bounds of Theorems 2 and 3 are illustrated in Fig. 2. For example, for 16 passes
and N = 240 points (third curve on the bottom right), an adversary must ask at least
226.2 queries to have CCA advantage 0.5. For comparison, when applied to a maximally
unbalanced Feistel network, the earlier analysis of Naor and Reingold [31, Theorem 6.2]
would have topped out—with one pass—at 216.8 queries. Had we enciphered strings
using a balanced Feistel network instead, then the result of Maurer and Pietrzak [22,
Theorem 1] would give a family of curves (depending, like ours, on how many rounds
were performed) that would top out by 218.5 queries. Patarin’s result for six-round
Feistel [35] would apparently be similar, but the concrete security is not explicitly given
in that work, and the quantitative bounds are difficult to extract.

nCPA
n = 30

CCA
n = 30

nCPA
n = 40

CCA
n = 40

Fig. 2. Proven security of the Thorp shuffle. Each x-axis gives the log (base 2) of the number of queries. Each
y-axis gives the upper bound on an adversary’s nCPA advantage by Theorem 2 (top) or its CCA advantage
by Theorem 3 (bottom). The curves in each plot are for N = 230 points (left) or N = 240 points (right). The
five curves in each plot are for 4, 8, 16, 32, and 64 passes.
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5.5. Asymptotic Interpretation

For an asymptotic interpretation of Theorem 2, fix r > 0 and suppose that q = N 1−1/r

and where, as before, N = 2n . Then

Advncpa
Th[N ,2rn](q) ≤ q

r + 1

(
4nq

N

)r

= 4r nr

r + 1
· 1

N 1/r
.

In other words, we have upper-bounded the advantage by an expression of the form
(a logb N )/N 1/r for r -dependent constants a and b. Since this goes to 0 as n → ∞, we
conclude the following.

Corollary 4. (nCPA-security, asymptotic) Let r ≥ 1 be an integer. Then

lim
n→∞Advncpa

Th[2n ,2rn]
(

2n(1−1/r)
)

= 0 .

In English, a maximally unbalanced Feistel network on n bits employing 2r passes main-
tains security to nearly 2n queries: specifically, to 2n(1−1/r) queries for large enough n.
Said differently, you can achieve security up to N 1−ε nonadaptive queries, for any ε > 0,
provided you make at least 2 ·�1/ε� passes. This is far better than what a balanced Feistel
network can achieve. The asymptotic version of Theorem 3 is similar.

Corollary 5. (CCA security, asymptotic) Let r ≥ 1 be an integer. Then

lim
n→∞Advcca

Th[2n ,4rn]
(

2n(1−1/r)
)

= 0 .

5.6. Designated-Point Security

The PRP notion of security formalizes an adversary’s inability to detect nonuniform
behavior when it sees a population of plaintext/ciphertext pairs. Many security notions
instead demand that the adversary figure something out about a designated point that
it selects: the customary formulations for find-then-guess security, semantic security,
unforgeability, and nonmalleability are all this way. Weakening the security notion along
these lines facilitates a stronger bound for the Thorp shuffle.

Let E : K × M → M be a cipher and let A be an adversary. We measure the
effectiveness of A in carrying out what we call a (nonadaptive) designated-point attack
on E by Advdpa

E (A) = P
(AG ⇒ 1

) − P
(AH ⇒ 1

)
where oracles G and H behave

like this. Both oracles begin by sampling K ←← K and then answering queries (enc, x)
by EK (x). Oracle G answers the same way for a query (test, x), but H answers such a
query by a uniformly chosen value that has not yet been returned to A. No other types
of queries are allowed. The adversary may ask a single test query, its last: once a test
query is asked, any subsequent query returns ⊥. Let Advdpa

E (q) = maxA Advdpa
E (A)

where the maximum is taken over all deterministic, nonadaptive adversaries that ask
exactly q enc queries. The DPA notion is similar to but weaker than the IUP notion
investigated by Desai and Miner [10], the main difference being that, with IUP security,
the value x may depend on prior oracle responses.
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DPA
n = 30

DPA
n = 40

Fig. 3. Proven security of the Thorp shuffle, continued. The x-axis gives the log (base 2) of the number of
queries. The y-axis gives an upper bound on an adversary’s (nonadaptive) DPA advantage by Theorem 6, both
for N = 230 points (left) and N = 240 points (right). The two curves in each figure are for two passes and
then four.

Theorem 6. (Designated-point security) Let N = 2n and 1 ≤ q ≤ N. Then, for any
r ≥ 1,

Advdpa
Th[N ,r(2n−1)](q) ≤

(
4nq

N

)r

.

The proof follows immediately from Eqs. (6) and (9). The bounds are illustrated in Fig. 3.
An asymptotic counterpart for the result is as follows.

Corollary 7. (Designated-point security, asymptotic) For any ε > 0,

lim
n→∞Advdpa

Th[2n ,2n−2)]
(

2n(1−ε)
)

= 0.

5.7. More General Message Spaces

We emphasize that our results on the Thorp shuffle have assumed that the size of the
message is a power of two. By using the cycle-walking construction [7], this suffices to
encipher messages on any message space {0, . . . , N − 1}. But the cost of applying this
domain transformation can be nearly as bad as an expected doubling in the encryption
and decryption time. It would be more desirable for the results to directly apply to Thorp-
enciphering for any even N . Precisely such a result has been achieved in the follow-on
work by Hoang and Rogaway [16]. The bounds are little unchanged.

6. Practical Considerations

In this section, we sketch some practical consideration in implementing Thorp shuffle
encryption. We keep this section short in view of the fact that the most practical choice
of all is not to implement the Thorp shuffle in the first place, but to use a maximally
balanced Feistel network of many fewer rounds. One does not get the sort of strong
provable security guarantee that is the focus of this paper, but one saves about an order
of magnitude in rounds. For this reason, maximally balanced Feistel was chosen for
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NIST Recommendation 800-38G [11] and for the AEZ-tiny portion of the arbitrary-
input-length blockcipher AEZ [14].

6.1. Round Function

A practical realization of Th[N , R] must associate with each pair x, x + N/2 and each
round r a coin flip c(x, r). The function c(x, r) would normally be built directly from
AES. The number of rounds would then corresponds precisely to the number of AES
calls.

The approach is wasteful in the sense that one is using only one of the 128 output
bits from AES. With care, the 128 bits of AES output can be used to compute up to
five rounds of the Thorp shuffle at once. The trick can be easily rediscovered and was
described in the proceedings version of our paper [30]. We note that many modern
processors now compute AES extremely quickly, making it unclear whether it is worth
the conceptual and algorithmic complexity manipulate the 128-bit AES output to save
on AES calculations.

Figure 4 illustrates our security bounds for Thorp shuffle enciphering messages of 20,
30, and 40 bits. A practical but fairly large number of rounds, typically hundreds, are
needed to get good guarantees. Even then, guarantees do not reach to q = N/(4 lg N )

queries. For comparison, FF1 [11] uses 10 rounds to encipher a 40-bit string, while AEZ
[14] uses 16 rounds, both with anticipated computational security to q = N −2 queries.

6.2. Tweaking

A practical realization for small-space encryption should be tweakable, a notion for-
malized by Liskov, Rivest, and Wagner [20]. The syntax of the cipher is extended to
take an additional argument, the tweak, and each tweak effectively names a random
independent cipher. A PRF-based scheme for small-space encryption can be modified
to accommodate a tweak by including it in the scope of the PRF. As a simple example
of the utility of doing so, an application might encipher the middle digits of a US social
security number using a tweak that is the remaining digits.

Fig. 4. Concrete security of the Thorp shuffle. The columns indicate the domain size N = 2n ; the number of
passes r ; the number of rounds R (or the number of AES calls, using a naive implementation); and the log
(base 2) of the number of queries q that can be tolerated until our bound on Advxxx

Th[2n ,rn](q) is about 0.5, for
xxx ∈ {dpa, ncpa, cca}. With substantially fewer queries than this, the advantage is very small.
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6.3. Variable Input Length

It may be desirable that a realization of the Thorp shuffle achieve security in the sense
of a variable-input-length (VIL) cipher; the size of the message space may vary from
query to query in an adversarially selected way. This is easily achieved by including the
domain size N within the scope of the PRF that is used to realize the shuffle. Use of a
VIL enciphering scheme facilitates, for example, enciphering database fields that have
various lengths.
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[9] A. Czumaj, P. Kanarek, M. Kutyłowski, K. Loryś, Fast generation of random permutations via networks
simulation. Algorithmica: 21(1), (Springer, 1998)

[10] A. Desai, S. Miner, Concrete security characterizations of PRFs and PRPs: reductions and applications,
in ASIACRYPT 2000. LNCS, vol. 1976 (Springer, 2000), pp. 503–516

[11] M. Dworkin, Recommendation for block cipher modes of operation: methods for format-preserving
encryption. NIST Special Publication 800-38G (2016)

[12] L. Granboulan, E. Levieil, G. Piret, Pseudorandom permutation families over abelian groups, in FSE
2006. LNCS vol. 4047 (Springer, 2006), pp. 57–77

[13] L. Granboulan, T. Pornin, Perfect block ciphers with small blocks, in Fast Software Encryption (FSE
2007). LNCS vol. 4593 (Springer, 2007), pp. 452–465

[14] V. T. Hoang, T. Krovetz, P. Rogaway, Robust authenticated-encryption: AEZ and the problem that it
solves, in EUROCRYPT 2016 (1). LNCS vol. 9056 (Springer, 2015), pp. 15–44

http://ccsrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html


536 B. Morris et al.

[15] V. T. Hoang, B. Morris, P. Rogaway, An enciphering scheme based on a card shuffle, in CRYPTO 2012.
LNCS vol. 7417 (Springer, 2012), pp. 1–13

[16] V. T. Hoang, P. Rogaway, On generalized Feistel networks, in CRYPTO 2010. LNCS vol. 6223 (2010),
pp. 613–630

[17] E. Kaplan, M. Naor, O. Reingold, Derandomized constructions of k-wise (almost) independent per-
mutations, in Randomization and Computation (RANDOM 2005). LNCS vol. 3624 (Springer, 2005),
pp. 354–365

[18] R. Lampel, J. Patarin, Y. Seurin. An asymptotically tight security analysis of the iterated Even-Mansour
cipher, in ASIACRYPT 2012. LNCS 7658 (Springer, 2012), pp. 278–295

[19] D. Levin, Y. Peres, E. Wilmer, Markov chains and mixing times (American Mathematical Society 2008)
[20] M. Liskov, R. Rivest, D. Wagner, Tweakable block ciphers, inCRYPTO 2002, LNCS vol. 2442 (Springer,

2002), pp. 31–46
[21] M. Luby, C. Rackoff, How to construct pseudorandom permutations from pseudorandom functions.

SIAM J. Comput. 17(2), 373–386 (1988)
[22] U. Maurer, K. Pietrzak, The security of many-round Luby-Rackoff pseudo-random permutations, in

EUROCRYPT 2003. LNCS vol. 2656 (Springer, 2003), pp. 544–561
[23] U. Maurer, K. Pietrzak, R. Renner, Indistinguishability amplification, inCRYPTO 2007. LNCS vol. 4622

(Springer, 2007), pp. 130–149
[24] R. Montenegro, P. Tetali, Mathematical aspects of mixing times in Markov chains, in Foundations and

Trends in Theoretical Computer Science 1(3) (Now Publishers, 2006)
[25] B. Morris, Improved mixing time bounds for the Thorp shuffle and L-reversal chain. Ann. Probab. 37(2),

453–477 (2009)
[26] B. Morris, Improved mixing time bounds for the Thorp shuffle. Comb. Probab. Comput. 22(1) (2013)
[27] B. Morris, The mixing time of the Thorp shuffle. SIAM J. Comput. 38(2), 484–504 (2008) Earlier

version in STOC 2005
[28] B. Morris, P. Rogaway, Sometimes-Recurse shuffle: almost-random permutations in logarithmic

expected time, in EUROCRYPT 2014. LNCS vol. 8441 (Springer, 2014), pp. 311–326
[29] National Bureau of Standards. FIPS PUB 74: Guidelines for Implementing and Using the NBS Data

Encryption Standard (1981)
[30] B. Morris, P. Rogaway, T. Stegers, How to encipher messages on a small domain: deterministic encryption

and the Thorp shuffle, in CRYPTO 2009. LNCS vol. 2009 (Springer, 2009), pp. 286–302
[31] M. Naor, O. Reingold, On the construction of pseudo-random permutations: Luby-Rackoff revisited. J.

Cryptol. 12(1), 29–66 (1999)
[32] J. Patarin, Generic attacks on Feistel schemes. Cryptology ePrint report 2008/036
[33] J. Patarin, Luby-Rackoff: 7 rounds are enough for 2n(1−ε) security, in CRYPTO 2003. LNCS vol. 2729

(Springer, 2003), pp. 513–529
[34] J. Patarin, A proof of security in O(2n) for the Benes scheme, inProgress inCryptology –AFRICACRYPT

2008. LNCS vol. 5023 (Springer, 2008), pp. 209–220
[35] J. Patarin, Security of random Feistel schemes with 5 or more rounds, in CRYPTO 2004. LNCS vol. 3152

(Springer, 2004), pp. 106–122
[36] T. Ristenpart, S. Yilek, The Mix-and-Cut shuffle: small-domain encryption secure against N queries, in

CRYPTO 2013, Part I. LNCS vol. 8042 (Springer, 2013), pp. 392–409
[37] S. Rudich, Limits on the provable consequences of one-way functions. Ph.D. Thesis, UC Berkeley (1989)
[38] L. Saloff-Coste, Random walks on finite groups, in Probability on Discrete Structures, Encyclopedia of

Mathematical Sciences, vol. 110, H. Kesten, editor (Springer 2004), pp. 263–346
[39] B. Schneier, J. Kelsey, Unbalanced Feistel networks and block-cipher design, inFast SoftwareEncryption

(FSE 1996). LNCS vol. 1039 (Springer, 1996) pp. 121–144
[40] R. Schroeppel, Hasty Pudding Cipher specification (1998). http://richard.schroeppel.name:8015/hpc/

hpc-spec (revised 5/99)
[41] T. Spies, Personal communications (2009)
[42] E. Thorp, Nonrandom shuffling with applications to the game of Faro. J. Am. Stat. Assoc. 68, 842–847

(1973)

http://richard.schroeppel.name:8015/hpc/hpc-spec
http://richard.schroeppel.name:8015/hpc/hpc-spec

	Deterministic Encryption with the Thorp Shuffle
	1. Introduction
	1.1. Small-Space Encryption
	1.2. Thorp Shuffle
	1.3. Feistel View
	1.4. Our Results
	1.5. Practicality
	1.6. Related Work

	2. Preliminaries
	3. Markov Chains and Coupling
	3.1. The Coupling Technique

	4. The Projected Thorp Shuffle
	5. Pseudorandomness of the Thorp Shuffle
	5.1. CPA Security
	5.2. Time-Reverse Thorp Shuffle
	5.3. CCA Security
	5.4. Graphical Illustration
	5.5. Asymptotic Interpretation
	5.6. Designated-Point Security
	5.7. More General Message Spaces

	6. Practical Considerations
	6.1. Round Function
	6.2. Tweaking
	6.3. Variable Input Length

	Acknowledgements
	References




