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Abstract Tile self-assembly is a well-studied theoretical model of geomet-
ric computation based on nanoscale DNA-based molecular systems. Here, we
study the two-handed tile self-assembly model or 2HAM at general temper-
atures, in contrast with prior study limited to small constant temperatures,
leading to surprising results. We obtain constructions at larger (i.e., hotter)
temperatures that disprove prior conjectures and break well-known bounds for
low-temperature systems via new methods of temperature-encoded informa-
tion.

In particular, for all n ∈ N, we assemble n × n squares using O(2log
∗ n)

tile types, thus breaking the well-known information theoretic lower bound of
Rothemund and Winfree. Using this construction, we then show how to use
the temperature to encode general shapes and construct them at scale with
O(2log

∗K) tiles, where K denotes the Kolmogorov complexity of the target
shape. Following, we refute a long-held conjecture by showing how to use
temperature to construct n × O(1) rectangles using only O(log n/ log log n)
tile types. We also give two small systems to generate nanorulers of varying
length based solely on varying the system temperature.

These results constitute the first real demonstration of the power of high
temperature systems for tile assembly in the 2HAM. This leads to several
directions for future explorations which we discuss in the conclusion.
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1 Introduction

In the early 1980s, Ned Seeman [19] introduced a method for creating DNA-
based crystals that assemble according to base-pair interactions. Erik Win-
free [23] leveraged this approach to create systems of DNA-based nanoscale
tiles that assemble algorithmically according to programmable molecular in-
teractions, initiating the field of algorithmic self-assembly. To formalize the
study of these self-assembling DNA tiles, Winfree also introduced the abstract
Tile Assembly Model or aTAM.

Early study of the aTAM established the model’s ability to compute univer-
sally [23] and assemble desired shapes using a number of tile varieties asymp-
totically matching information theoretic lower bounds [1,16,23]. Since then, the
sophistication of both experimental and theoretical results has grown tremen-
dously, ranging from the 5-bit binary counters of Evans [12] and a structural
complexity theory for dozens of tile assembly models [24].

Two-handed assembly. Excluding the aTAM, perhaps the most popular tile
assembly model is the two-handed tile assembly model (2HAM) [3], also called
the hierarchical or polyomino model. The key distinction between the aTAM
and the 2HAM is “seededness” or “handedness”: in the (seeded, one-handed)
aTAM, growth occurs via single tile addition to a growing seed assembly,
whereas in the (unseeded, two-handed) 2HAM, growth occurs via unrestricted
attachment of assembly pairs (or tile pairs, as a special case). The seededness
of the aTAM simplifies design and analysis [5], but is difficult to enforce in
experimental systems [17], motivating the study of the 2HAM.

Temperature. One critical parameter in tile assembly models is temperature:
the threshold of bonding strength needed for attachment between assemblies.
A major open problem in tile assembly concerns the capabilities of systems
at the lowest temperature, where one bond suffices for attachment [11, 13–
15]. Dynamic temperature has also been studied under the name temperature
programming as a mechanism for guiding assembly [22].

In the aTAM, systems at higher temperatures exhibit additional dynam-
ics [6]. These differences further incur provable reductions in the minimum
number of tile types needed to build certain shapes at higher temperatures [20].
However, if scaling is permitted, then these dynamics do not confer additional
capabilities [10].

This is not the case in the 2HAM: higher temperatures exhibit dynam-
ics not found at lower temperature, regardless of scaling [8]. However, these
additional dynamics have not been demonstrated to confer additional capa-
bilities. Recently, it was proven that the unique assembly verification problem
is coNP-complete in the 2HAM with arbitrary temperature [18], but is still
an open problem at constant temperature. Further, it was shown that for any
shape, there is a constant sized tile set that can assemble the shape at scale by
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setting the glues as a function of the temperature [4]. These provides further
evidence that the additional dynamics allow for additional power.

Our results. Here we give several such demonstrations for benchmark prob-
lems in tile assembly, e.g. the efficient assembly of squares and thin rectangles.
In some cases, these capabilities exceed those possible at low temperatures.
A summary of some of our results and relation to prior work can be seen in
Table 1.

Result 1: O(2log
∗ n) squares.. Our first result achieves assembly of n × n

squares using O(2log
∗ n) tile types for any n (Section 3).1 Our result uses

temperature τ = O(n). For any constant bounded temperature, this result
beats an information theoretic lower bound of Ω( logn

log logn ) tile types required
for almost all integers n. By combining our square construction with the con-
struction of [21], we get the surprising corollary that any connected shape S is
self-assembled in O(2log

∗K(S)) tile types, where K(S) denotes the Kolmogorov
complexity of S, if a scaled-up version of S is permitted. For any constant-
bounded temperature system this beats the information theoretic lower bound

of Ω( K(S)
logK(S) ) tile types. Small constant factor gaps have been shown to exist

between temperatures 1 and 2 within the 2HAM [3]. In the aTAM, constant
factor gaps in tile complexity have been shown to exist for any pair of dis-
tinct temperatures [20]. In contrast, our result provides a provable gap in tile
complexity much larger than a constant factor. Further, the previous work
constructed fairly exotic shapes to achieve the desired gaps, while our result
applies to both the natural, standard benchmark shape of an n×n square, as
well as general shapes if scaling is permitted.

Result 2: n×O(1) thin rectangles with O(log(n)/ log log(n)) tiles.. Our
next result is the self-assembly of n×O(1) thin2 rectangles usingO(log(n)/ log log(n))
tile types for any positive integer n. This result overcomes not an information
bound, but a “geometric bandwidth” bound: in the aTAM, n×O(1) rectangles
require nΩ(1) tile types to assemble [7]; a similar bound has been conjectured
in the 2HAM [9]. Our result refutes this conjecture in the case of higher tem-
peratures.

Result 3: Temperature-controlled shapes.. Finally, we present two sys-
tems with well-behaved and distinct behavior across a range of temperatures
(Section 5). These systems assemble rectangles of dimensions O(log n)× r for
r varying across Θ(n) distinct lengths according to the O(n) system temper-
ature. Such systems thus behave as “thermometers” that may be useful for
measurement and calibration in high-temperature settings. These temperature-
controlled constructions differ from previous temperature programming re-
sults [22], in that our temperature-controlled systems assemble a variety of
shapes, each at a fixed temperature, instead of assembling a variety of shapes,
each using dynamically varying temperature.

1 The function log∗ n is the iterated logarithm: the number of times the logarithm must
be repeatedly applied, beginning with n, until a value of less than 1 is reached.

2 The term thin refers to the constant height of the rectangle.
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Unique Assembly of n× n Squares

Model Tile Complexity τ Reference

aTAM Θ( logn
log logn ) O(1) [1, 16]

2HAM Θ( logn
log logn ) O(1) [1, 16]

2HAM O(2log
∗ n) O(n) Thm. 1

Unique Assembly of n×O(1) Thin Rectangles

Model Tile Complexity τ Reference

aTAM nΘ(1) O(1) [7]

2HAM O( logn
log logn ) O(n) Thm. 2

Table 1: Comparison of two of our main results with prior work. τ is the
temperature of the system. Several of our results are not listed here; specifically
Theorems 3, 4, and Corollary 1.

2 Definitions

Here we give a compressed presentation of the two-handed tile assembly model
(2HAM) and associated definitions used throughout the paper.

Tiles. A tile is an axis-aligned unit square centered at a point in Z2, where
each edge is labeled by a glue selected from a glue set Π. A strength function
str : Π → N denotes the strength of each glue. Two tiles that are equal up to
translation have the same type.

Assemblies. A positioned shape is any subset of Z2. A positioned assembly
is a set of tiles at unique coordinates in Z2, and the positioned shape of a
positioned assembly A is the set of coordinates of those tiles.

For a given positioned assembly Υ , the bond graph GΥ is the weighted grid
graph in which each tile of Υ is a vertex and the weight of an edge between tiles
is the strength of the matching coincident glues or 0. A positioned assembly
C is said to be τ -stable for positive integer τ provided the bond graph GC has
min-cut at least τ .

For a positioned assembly A and integer vector v = (v1, v2), let Av denote
the assembly obtained by translating each tile in A by vector v. An assembly
is the set of all translations Av of a positioned assembly A. A shape is the set
of all integer translations for some subset of Z2, and the shape of an assembly
A is the shape consisting of the set of all the positioned shapes of all positioned
assemblies in A. The size of either an assembly or shape X, denoted as |X|,
refers to the number of elements of any positioned element of X.

Combinable assemblies. Informally, two assemblies are τ -combinable
provided they may attach to form a τ -stable assembly. Formally, two assem-
blies A and B are τ -combinable into an assembly C provided there exist A′ ∈ A
and B′ ∈ B such that A′

⋃
B′ is a τ -stable element of C.

Two-handed tile assembly model (2HAM). A two-handed tile as-
sembly system (2HAM system) is an ordered pair (T, τ) where T is a set of
single tile assemblies, called the tile set, and τ ∈ N is the temperature. Assem-
bly proceeds by repeated combination of assembly pairs to form new τ -stable
assemblies, starting with single-tile assemblies. The producible assemblies are
those constructed in this way. For a given 2HAM system Γ = (T, τ), the set
of producible assemblies of Γ , denoted PRODΓ , is defined recursively:
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– (Base) T ⊆ PRODΓ
– (Recursion) For any A,B ∈ PRODΓ with A and B τ -combinable into C,
C ∈ PRODΓ .

For a system Γ = (T, τ), we say A →Γ
1 B for assemblies A and B if

A is τ -combinable with some producible assembly to form B, or if A = B.
Intuitively this means that A may grow into assembly B through one or fewer
combination reactions. We define the relation →Γ to be the transitive closure
of →Γ

1 , i.e., A →Γ B means that A may grow into B through a sequence of
combination reactions.

A producible assembly A of a 2HAM system Γ = (T, τ) is terminal pro-
vided A is not τ -combinable with any producible assembly of Γ . A 2HAM sys-
tem Γ = (T, τ) uniquely assembles a shape S provided that for all A ∈ PRODΓ ,
there exists some B ∈ PRODΓ of shape S such that A→Γ B.

3 Squares with O(2log∗ n) Tile Types

We prove that for any n ∈ N, there exists a 2HAM tile system with O(2log
∗ n)

tile types and temperature τ = O(n) that uniquely assembles an n×n square.
In fact, the construction can be modified to work not only for a specific τ , but
any τ ≥ cn for some constant c.

Theorem 1 For any positive integer n, there exists a 2HAM system (T, τ)
with |T | = O(2log

∗ n), τ = O(n) that uniquely assembles an n× n square.

The construction is recursive, with each level of recursion using a distinct
constant-size tile set behaving identically, but independently, to corresponding
tile sets at other levels. Below, the tile set is decomposed into conceptually
distinct components described in separate subsections. Many of the compo-
nents utilize standard techniques from prior tile assembly work; these sections
give only an overview of the component, along with references to complete
descriptions. The key component is a novel high-temperature unary counter
utilizing both high temperature and two-handedness, described in Section 3.6.

3.1 Construction Sketch

We begin with a sketch of the construction, followed by details in Sections 3.3
through 3.9. There are two primary key ideas introduced in this construction.
The first key component is that the tile set is generated recursively: the size
n×n square is built upon tile sets for two distinct smaller squares of size at most
log n × log n which are generated recursively. This yields an upper bound on
tile complexity described by the recurrence equation T (n) = 2T (log n)+O(1).
The second key component in our construction is the application of a high-
temperature unary counter. The unary counter drops a unit strength glue at
each counter step, thereby ceasing to grow at a value dictated by the (high)
system temperature. The components, and how they fit together, are now
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Fig. 1: A schematic of assembling n×n squares using O(2log
∗ n) tile types. (a)

The starting seed squares are assembled recursively. (b) Two counter “rows”
that nondeterministically assembled with matching glue arrangements that
can bind together. (c) Two other counter rows with matching glue arrange-
ments but insufficient strength (i.e., glue count). (d) Counter rows with insuf-
ficient glue counts assemble into a “reverse” counter that bonds to the east of
a “normal counter”. (e) The counter assembly is grown into a completed n×n
square.

sketched, followed by more detailed descriptions for each component in the
subsequent sections.

Figure 1a: recursive O(log n)×O(log n) squares. The assembly of an n×n
square is based on recursive assembly of two squares (Figure 1a): an x × x
square X and a y×y square Y , with x, y ≤ log n. Let T (n) be an upper bound
on the number of tile types used to build an n× n square; then assembling X
and Y uses at most 2T (log n) tile types.

Figure 1b: planks. Each x×x square X is grown into a plank of size roughly
x× (2x +x) = O(log n)×O(n) by applying a standard binary counter scheme
(see [16] for an example). Planks will serve as rows in a unary counter used
to assemble the n × n square. The scheme for this growth is standard: treat
the east face of assembly X as a column of 0 bits denoting the initial value
of a binary counter. Each successive column reads and increments the previ-
ous column’s bit-wise value, stopping once the counter has reached maximum
value.

We mask one modification to the counter-based plank assembly: during
assembly, a transition column is non-deterministically selected. The exposed
glues on the completed plank to the west and east of this location are white
and gray, respectively. The non-deterministic selection of the transition col-
umn causes planks with every possible transition column to be assembled.
Following standard previous binary counters, the number of tile types needed
to implement this counting and transition scheme is O(1).

Figure 1b-c: high-temperature unary counter. The assembled planks are
used as rows in a unary counter (in contrast with the binary-counter approach
used to assemble them). This unary counter uses high temperature to control
assembly. The assembled planks from the counter-extension step are coated
with tiles exposing unit-strength glues on each exposed north/south tile surface
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occurring before the planks counter transition. Thus, planks can attach if their
transition occurs in a column rightward enough to cause the plank surface to
expose sufficient unit-strength glues relative to τ , the system’s strength.

High-strength glues at the beginning and end of the counter transition
enforce that plank pairs only attach if their transition locations differ by 1.
For example, the column-8-transition plank (Fig. 1b), only attaches to the
top of a column-9-transition plank. Additional technical details ensure that
the planks attach one at a time, from bottom to top, by way of not placing
the glues on the north surface of a plank until it has attached to the growing
counter.

A specified number of planks assemble into a counter, controlled by the
system temperature τ , starting with the two planks that transition in the last
two possible columns (exposing the largest number of glues). A special “cap”
plank is the last to attach, verifying that the unary counter is completed. The
detailed O(1)-sized tile set for this step is provided in Section 3.6.

Figure 1d: precise-height assembly and reverse counter. The assembled
unary counter consists of planks with small dimension O(log n), implying that
the assembly may differ from a target height by up to Θ(log n). To reach a
precise target height, a second recursively assembled square Y of dimension y
is used, where y is exactly the difference between the desired height and the
height of the assembled unary counter. The square Y attaches to the base of
the unary counter, yielding the desired height (see Figure 1d). The number
of tile types used to assemble Y is at most T (log n) (defined earlier in this
section).

The assembly of the unary counter potentially creates unused planks whose
transition column is not sufficiently rightward to enable attachment to other
planks. These planks are used in a second “reversed” version of the unary
counter, where planks attach via glues to the right of the transition (instead
of left, as in the “normal” counter). Both counter versions grow to the same
height, but are assembled from planks beginning with those with the rightmost
(or leftmost) transitions. The size of X is chosen so that at least half of the
planks are used in the unary counter, and thus every plank is used in one
or both of the two counter versions. Of note is that each plank only initially
places it’s unit-strength glues on it’s southern face, but not it’s northern face.
The glues along the northern face are different for the first counter than for
the reverse counter. The reverse counter is seeded with a distinct assembly,
which in turn causes each attached plank in the reverse counter to attach the
glues specific to the reverse counter. Thus, planks “know” which counter they
are in because their attachment to the respective counter is what causes them
to add the glues unique to that counter.

Both counter versions are assembled into a single assembly (see Figure 1d)
along with the square Y . The second counter version requires only O(1) addi-
tional tile types.

Figure 1e: finishing the square. The assembly consisting of both counter
versions has a precise desired height n′. This height is chosen so that an O(1)-
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sized set of filler tiles can extend the dimensions of this assembly into an n×n
square. This filling scheme is standard and similar to square constructions seen
in prior work, e.g. [16]. A small modification is made to expose a set of glues
used as invariants in the recursive square recursion (described in Section 3.4).
This filling and formatting requires O(1) tile types.

Analysis. The total tile complexity for our construction based on the above
steps is bounded by T (n) = 2T (log n) + c for a constant c. Solving this recur-
rence equations yields the final tile complexity of O(2log

∗ n).

3.2 Extension to general shapes

Soloveichik and Winfree [21] proved that a seed assembly encoding a desired
shape S as a binary string can be combined with an additional set of O(1) tile
types to assemble a scaled version of S. Theorem 1 gives a method to encode
arbitrary numbers n in unary; the exposed glue invariants of the construction
(see Section 3.4) allow compresssing such unary encodings into binary encod-
ings of arbitrary numbers (or shapes). Thus, combining the two constructions
gives the following result based on the the Kolmogorov complexity K(S) of
shape S:

Corollary 1 For any shape S, there exists a tile system (T, τ) with |T | =
O(2log

∗K(S)), τ = O(K(S)) that uniquely assembles a scaled version of S.

The remainder of this section presents the detailed construction and anal-
ysis for our n× n square construction.

3.3 Preliminaries

For simplicity, we assume τ is even; replacing occurrences of τ/2 with bτ/2c
and dτ/2e where appropriate gives the same result for odd τ . Let x, y =
O(log n) as described in Sections 3.6 and 3.8. The complete tile set for as-
sembling an n× n square consists of five subsets:

– TX , assembling the x× x square X.
– TY , assembling the y × y square Y .
– A plank tile set, assembling planks from X (described in Section 3.5).
– A high-temperature unary counter tile set, assembling the unary counter

from planks (described in Section 3.6).
– A finishing tile set, filling in the completed n × n square from the unary

counter assembly (described in Section 3.7).

3.4 Exposed glue invariants of assembled squares

Given the recursive nature of our construction, we start by stating the require-
ments of the assembled square; specifically, of exposed glues. These exposed
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Fig. 2: Initial attachments for the high-temperature unary counter.

glue requirements may be presumed for squares X and Y . The requirements
are:

1. The exposed glues are unique to the square assembled, i.e., the exposed
glues on any pair of assembled squares are distinct.

2. The 4 · 4 = 16 exposed glue locations on corner tiles and tiles adjacent to
corner tiles each contain a distinct glue.

3. Each remaining exposed glue location has a τ/2-strength glue unique to
the glue’s direction (north, east, south, or west).

The eastmost glue on the north and south surfaces are referred to as p1 and
p2, respectively.

3.5 Plank tile set

The plank tile set uses an x× x square assembly X (satisfying the invariants
of Section 3.4) as a “seed” to assemble a x × 2Θ(x) assembly eastward using
a standard single-tile-attachment binary counter consisting of single-tile and
two-tile attachments [16]. This counter uses x− 3 glues of the east surface of
X as an initial 0-valued column of the counter, which will grow by 2x−3 − 1
additional columns before ceasing.

Two of the unused glues of the east surface of X are reserved for non-
counter purposes, and one more as a as well as a single glue to use as a state
bit. The state bit’s value is initalized to 1, and is through each counter column.
During the assembly of each new column of the counter, 1-valued state bits
are non-deterministically selected to remain 1 or transition to 0; 0-valued state
bits never transition back to 1.

Each column of the counter exposes matching white (a, c) or gray (b,
d) glues on the north and south ends (seen in Figure 2a-d). White glues
are exposed in all locations, except the first two columns after the state bit
transition, (where gray glues are exposed instead). The resulting set of (non-
deterministically) produced assemblies is a set of length x+2(x−3) blocks, each
with a specific transition point denoted by gray glues.
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Fig. 3: The high-temperature unary counter tile set.

In the rare cases where the state bit transition occurs at the last possible
location, first possible location, or never occurs, green, red, or yellow glues
are exposed on the east end of the assembly, respectively (Figure 2a-c). The
4 types of planks shown in Figure 2a-d, are named according to their east-face
glue: green, yellow, red, and basic. Let ` = 2x−3. Basic assemblies come in
`− 1 forms, one for each number of possible white glues exposed on the north
surface to the west of the transition (a glues to the west of the 2 consecutive
b glues). Call the basic assembly with i pre-transition white glues Bi, for
i ∈ {1, 2, . . . , `− 1}.

3.6 High-temperature unary counter tile set

Next, completed planks from Section 3.5 are assembled with a set of tile types
(listed in Figure 3) that enable them to assemble into a (high-)temperature-
controlled unary counter.

The bottom subset of the tile set coats the south surfaces of each Bi assem-
bly with i unit-strength dark blue glues, 1 p2 glue (strength specified later),
and ` − i unit-strength light blue glues (B5 is shown in Fig. 2d). The top
subset of the tile set coats the north surface of each Bi assembly with i − 1
unit-strength dark blue glues, 1 p2 glue, and `−i+1 yellows glues. The bottom
and top subsets also coat a select subset of the the north and south surfaces
of the green, red, and yellow assemblies.

Counter growth. Growth initiates from the attachment of the green and
B`−1 planks (Figure 4a) using `− 1 unit strength glues, glue p1, and glue p2,
(i.e., g(p1) + `− 1 + g(p2) ≥ τ). Upon combination, a cooperative attachment
between the green plank and B`−1 directs the attachment of top tiles to the
north surface of B`−1. Subsequently, basic planks B`−2, B`−3, etc. attach
sequentially to the top of this growing counter assembly, presenting decreasing
numbers (`− 2, `− 3, . . .) of unit-strength dark blue glues.

Attachment of basic planks continues until assembly Br with g(p1) + r +
g(p2) = τ attaches. Thus choosing the strengths g(p1) and g(p2) such that
g(p1) + r + g(p2) = τ causes the counter attachments to cease after attaching
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Fig. 4: (a) Seeded by the green plank, basic planks B`, B`−1, etc. attach
in order. Each subsequent basic plank attaches with one less strength. (b)
Depending upon the strength of glue p2 and the temperature τ , eventually
no more basic planks can attach. (c) By choosing the strength of glue p3
carefully, the yellow plank attaches exactly when no more basic planks are
able to attach, thereby “capping” the finished counter. (d) To dispose of the
unused basic planks, a reversed version of this counter is seeded by the red
assembly using the same basic assemblies in reverse order.

Br, the (`− r)th basic assembly to attach (Figure 4b). The strength of p3 (on
the yellow plank) is chosen such that g(p1)+g(p3)+`−r = τ , so that the yellow
plank uniquely attaches to the completed counter as a “cap” (Figure 4c).

Reverse counter. The counter seeded by the green plank serves the primary
purpose of growing to within x of a desired height. In general, the assembly
process excludes some basic planks, which must be incorporated as part of the
final square assembly.

As a solution, the red planks are used to initiate growth of a reverse counter.
The high-temperature unary counter tile set (Figure 3) coats the north sur-
face of the red plank with 1 dark blue glue, 1 p2 glue, and ` − 1 light blue
glues (Figure 2b), enabling the attachment of basic planks B1, B2, etc. with
decreasing glue strength.

As in the original counter, the yellow plank attaches exactly when no more
basic planks are able to attach via carefully chosen glue strengths. Provided the
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Fig. 5: The finished high-temperature unary counter attached to the reverse
counter and augmented with assembly Y .

original counter includes at least half of the basic planks (B`−1, B`−2, . . . , B`/2),
the entire set of basic planks have bonding positions between the two counters
(see Section 3.8 for details). The two completed counters attach when com-
pleted via glues on the green and red planks, yielding a finished unary counter
as seen in Figure 5.

Fixing the offset. The complete (two-)counter construction grows a stack of
a specified number of planks based on the chosen strengths of glues p2 and
p3. However, each basic assembly has height x = O(log n). Thus, achieving an
arbitrarily desired height requires adding 0 ≤ y < x additional length to the
counter. This is done by recursive construction of a y×y assembly Y attached
to the south surface of the green plank, as shown in Figure 5.

3.7 Finishing tile set

The final tile set accomplishes two goals. First, “finishing” the unary counter
rectangle into an n× n square. Second, “formatting” the surface glues of the
final assembly to satisfy the invariants of Section 3.4. Given a unary counter
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rectangle of height n′ and width m, existing tile assembly techniques can be
easily applied to extend such a rectangle into a (n′ + m) × (n′ + m) square
(the square construction in [16]). Thus, the unary counter’s height is n −m,
where m = x+ 2x−3, the width of a plank. Glue formatting is easy due to the
special assemblies at key locations, e.g., the square Y in the lower left corner.

3.8 Additional details

The high-temperature unary counter must grow to height n′ and width m
such that n′ + m = n. Moreover, to ensure the system has a unique terminal
assembly requires that all basic planks are used in either the primary or the
reverse counter, so the number of basic planks assembled cannot exceed the
number needed by more than a factor of 2. So the maximum n′ achievable by
the counter system is a function of x, the dimension of the recursively assem-
bled square X. The maximum height of the counter is x · 2x−3 (a maximum
of 2x−3 basic assemblies, each of height x). The width w of the counter is
2(x+ 2x−3) = 2x+ 2x−2, the width of two adjacent basic assemblies.

Selecting x to be the smallest even integer such that n′ + m = x2x−3 +
2x−2 + 2x ≥ n ensures that the counter has sufficient capacity to grow to a
height between n′−x and n′, yielding the exact dimensions. The counter must
also use at least half of the basic assemblies to ensure a deterministic assembly.
In some scenarios, due to the factor of x in x2x−3, the smallest value x might
cause less than half of the basic blocks to be used. However, the next smallest
even x undershoots by at most a constant multiple of 2x−3. Such cases are
handled by padding basic assemblies with a constant height and selecting the
smaller x value.

3.9 Tile complexity analysis

Let T (n) denote the number of distinct tile types used for a given integer n. Tile
subsets TX and TY each have size T (O(log n)), while the other three subsets
are each constant-sized. Thus T (n) = 2T (O(log n)) + O(1) and T (1) = 1,
giving a closed form of T (n) = O(2log

∗ n).

4 Constant-Width Rectangles with O(log n/ log log n) Tile Types

The study of precise length linear assemblies is an established benchmark
problem in self-assembly for comparing the power of different models and
techniques. The importance of this problem stems from both its inherent dif-
ficulty based on the limited geometric bandwidth in the thin shape, and its
usefulness as a tool in the assembly of more elaborate shapes.

Tile complexity for n×O(1) rectangles in the aTAM is known to beΘ(n1/c),
where c denotes the constant height of the rectangle [7]. The question of tile
complexity for thin rectangles in the 2HAM was first asked around 2004 [7], but
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(a) Horizontal counter gadgets. (b) A mismatched pair.

(c) A finished, correct counter.

(d) Failed verification. (e) Successful verification.

Fig. 6: A high-level schematic of assembling counter rows. (a) Left (gray) and
right (white) bit strings are non-deterministically paired, including (b) mis-
matched pairs. (c) Correctly paired bit strings form the rows of a “horizontal
counter” that grows to a precise length. (d-e) Incorrectly and correctly paired
bit strings are identified and separated by verification assemblies.

has remained open. It has been widely conjectured that no poly-logarithmic
solution exists in the 2HAM, and substantial consideration has gone into gen-
eralizing lower bound techniques such as the window movie lemma [15] in
order to confirm that the 2HAM cannot beat the lower bound for the aTAM.
In contrast to these conjectures, we prove that by utilizing high temperature,
thin rectangles of any specified length (n × O(1) lines) may be uniquely self-
assembled with O( logn

log logn ) tile types.

While we achieve unique assembly of n × O(1) lines, this result differs
from the previous result for n × n squares in that the construction does not
yield a unique assembly (stemming from the garbage collection step of the
construction). That is, our construction non-deterministically assembles a set
of terminal assembles that all have the unique shape of a target n × O(1)
rectangle. It is still open whether a result like ours can be obtained with a
unique final assembly.

Construction sketch. The construction uses a “traditional” method: small
assemblies encoding consecutive counter values attach to form larger intervals
of value iterations. The novelty lies in using high temperature to overcome the
geometric “bandwidth” constraint: the height of the assembly is insufficient to
“communicate” the value of the counter.

The construction is based on a set of O(log n)-length “horizontal counter
rows” that each non-deterministically encode two binary strings (a left and
right string, gray and white respectively in Figure 6a). In the (unlikely) case
that the two strings are equal, the right string is incremented by 1 (via several
single-tile attachments) to create a row of a “sideways” counter (Figure 6c).
The constant height of the final assembly prevents the left and right bit strings
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0 1 10010 1 10 1 0
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...

Filler Region

Filler Region

Filler RegionGarbage Collection Region

Filler Region

Fig. 7: The n × O(1) rectangle is grown by counter gadgets connecting in
order, counting to the target length n. The key is constructing counter blocks:
constant-height assemblies that encode a number and its increment on the
southwest and southeast assembly surfaces, respectively.

from coordinating their values by more than a constant number of bits, un-
avoidable assemblies of unequal bit string pairs are also assembled (Figure 6b).

Key Idea. The key idea of this constructions is to utilize high temperature
to differentiate assemblies that contain equal and unequal bit string pairs. By
identifying and neutralizing any unequal bit string pairs, the remaining equal
counter gadgets assemble in sequence to form a precise length assembly. To
identify equal bit string pairs, two “verification” assemblies potentially attach
to the top and bottom of the bit string pair (Figure 6d) via glues at each bit
whose strength matches the corresponding power of two. These assemblies are
both attachable exactly when the left and right bit strings are equal. This is
achieved by using a strength of attachment equal to the binary value of the
left counter value, plus the binary value of the complement of the right counter
value, to attach the top assembly, while using the reverse for the attachment
of the bottom assembly. For example, in Figure 6d, the top assembly attaches
with strength-2 from the binary value 0010 encoded in the left assembly, and
strength-6 for the value 0110, which is the complement of the encoded value
1001 in the right assembly. The key insight is that the minimum strength
between the top and bottom attachments under this scheme is maximized
when the left and right bit-strings match, thereby allowing for a temperature
value that allows both attachments only for equal bit string pairs. Assemblies
without both verification assemblies attached are “disposed”.

An overview of how the different parts are assembled is shown in Figure 7.
This shows where garbage is collected, how the counter pieces are put together,
and then regions that must be filled to make a solid rectangle. Further details
are in Section 4.1.
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4.1 Construction Details

In [7], a lower bound of nΩ(1) is given for the number of tile types needed to as-
semble a n×O(1) rectangle in the aTAM. In contrast to theΩ(log(n)/ log log(n))
information theoretic lower bound that applies to squares and rectangles in
both the aTAM and 2HAM [16], the bound of [7] is derived from the “geomet-
ric bandwidth” restrictions of the shape’s thinness. A similar bound for the
2HAM has been conjectured [7, 9] but the flexibility of 2HAM assembly dy-
namics has made proving such a bound difficult. Here we refute the conjecture,
using high temperatures to circumvent geometric bandwidth restrictions.

Theorem 2 For any positive integer n, there exists a 2HAM system (T, τ)
with |T | = O( logn

log logn ) and τ = O(n) that uniquely assembles an n × O(1)
rectangle.

Proof The foundation of the construction is a base-b, d-digit counter using
O(b+d) tile types and operating within a constant-height region by leveraging
high system temperature. Forming the desired shape is finished via filler tiles
and garbage collection. A high-level sketch is seen in Figure 7.

Base b, d-digit assembly. The key piece of our construction is the as-
sembly of a O(1) height counter that grows to a specific target length. To
achieve this we construct counter blocks as described in Figure 8 which, for
a given b and d, assembles a height O(1), width O(bd) assembly consisting of
d sections, with each section encoding a number from 0 to b − 1 through the
location (in one of b positions) of a geometric bump. Together this assembly
represents a given base-b, d-digit number. Further, as shown in Figure 8e, each
digit exposes the number of glues equal to the value of the given digit, and
the strength of the glues for the ith digit from the left is bi−1. Thus, the net
strength of all exposed glues is exactly the value of the number encoded by
the assembly.

The next step of the process, Figure 8d, runs a line of tiles across the
assembly surface to compute whether the assembly’s number is greater or
equal to some given value n0, which can be done within O(d + b) tiles. By
ensuring that all counter blocks start at some minimum value that we can
encode in the tile set, we are able to precisely control the total length of the
counter. If the assembled number is at least n0, assembly proceeds to step (e).
If not, assembly is halted at this step and the assembly will instead attach to
a nearly finished rectangle assembly. To uniquely assemble our goal shape of
a n × O(1) rectangle, all producible assemblies must have a forward growth
path towards a terminal assembly of this shape. Thus, in this case and in a
subsequent case, we will design garbage assemblies such as this to have glues to
attach to a special location on nearly finished correct rectangular assemblies,
thereby ensuring that this garbage assembly still has a forward growth path
to a correct final assembly.

Pairing identical numbers. To create the counter blocks for our con-
struction, we need a left and right number assembly to pair as increments of



Too Hot 2HAMdle 17

(a) (b)

(c)

(d)

(e)

b(=5): base value

d(=3):
digits

25 25 25 1 13 0 2

Fig. 8: The construction of a d-digit, base-b assembly, using O(d+b) tile types.
(a) A chain of O(b) tiles assemble 2b long gray assemblies which nondetermin-
istically partition the assembly into two portions separated by light gray tiles.
The b possible positions of the light gray tiles represent the value of a single
digit in a base b counter. (b) Each gray line assembly non-deterministically
attaches to one of d distinct digit assemblies, which coat the gray assembly
on each side with tiles specific to the chosen digit assembly. (c) Each of the
d types of coated assemblies attach in a specific order to form a 2bd+ d long
assembly. (d) A line of tiles grows across the North and South face of the as-
sembly to check that the non-deterministically selected number (in this case,
302 in base 5) is at least a given value n0. (e) If the digit assembly is at least
n0 in value, a set of geometric bumps is attached that encode the value of the
assembly with geometry. Further, each digit exposes a number of glues equal
to the value of the digit, with each glue of strength corresponding to the digit
position.

one another. As incrementing by one is straightforward, we simplify this goal
to pair identical left and right values of two instances of the base b, d-digit as-
semblies from Figure 8. The O(1) height restriction of all producible assemblies
makes it impossible to communicate the super constant information of a left
number to a right number. Therefore, we abandon trying to only pair identical
numbers, but instead non-deterministically pair all possible pairs of numbers
(Figure 9a). We then select only the correctly paired numbers for continued
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(52)x3 =75 (51)x4 =20 (50)x2 =2 

(50)x2 =2 (52)x1 =25 (51)x0 =0 

(52)x1 =25 (51)x0 =0 (50)x2 =2 
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3 4 3 4 0 1

(a)

(b)

Fig. 9: (a) Two separate instances (left and right) of the d-digit, base b number
assembly non-deterministically attach end to end. The sum total of exposed
glue strengths for all glues is exactly bd − 1 if and only if the left and right
numbers match. (b) We create 4 instances of the left/right paired counter
assemblies such that all 4 will combine into a single assembly if and only if
the left and right numbers represented by the assemblies match. The top two
assemblies can attach if the right number is less or equal to the left. The
bottom two assemblies can attach if the right number is greater or equal to
the left. By setting the black glues to have strength τ/4, all four assemblies
combine only when the left and right numbers are equal. By setting the yellow
glue to have strength τ − bd + 1, this scheme can be applied for any τ ≥ bd− 1

.

growth into blocks that may be incorporated into our counter, leaving the re-
maining incorrectly paired blocks inert. To aid in selecting only the correctly
paired assemblies for continued growth, the right versions of the paired as-
semblies are modified such that for a given digit value i, the digits for the left
assemblies expose i glues for the given digits, and the right assemblies expose
b− i− 1 glues.
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3 4 2 3 4 3

Fig. 10: The final counter assembly block is completed if and only if the left
and right numbers are equal. A final collection of tiles increment the right
number and place geometry that encodes the counter values.

Rather than a single instance of the left-right paired counter assemblies, we
construct four distinct instances of this type of assembly in a similar fashion,
as shown in Figure 9. For any given pair of left-right numbers, there exists a
corresponding set of 4 such assemblies matching the pair. Our goal is to ensure
that all 4 assemblies assemble if and only if the left-right pair of numbers
represented by these assemblies are exact matches. To see how this works,
consider the top two assemblies of Figure 9. First, by the geometry of the
shapes, we are ensured that the 4 assemblies encode the same pair of numbers.
Second, by setting the temperature to exactly bd − 1, we are ensured that the
right number of the pair must be less or equal to the left, as the number of
glues for a given digit value x is x and b − x for the left and right numbers
respectively. Conversely, the bottom two gadgets combine only if the right
number denotes a number that is greater or equal to the left. Therefore, both
the top and bottom combine if and only if the left and right are exactly
equal, in which case the two top and bottom assemblies may combine into one
assembly. This final combination in turn causes a growth of tiles that places
appropriate geometry on the surface of the assembly that denotes the left
number and the increment of the right number, which is our desired counter
block. The assemblies that mismatched left and right values will not become
counter blocks in the counter assembly, but instead will maintain attachment
sites for sticking to nearly completed rectangular assemblies.

Finishing the rectangle. Let b = d logn
log logne, d = d logn

log logn−log log logne.
For these parameters, note that our counter gadget is able to count up to
bd ≥ n, and the tile complexity of the constructions is O(b+ d) = O( logn

log logn ),

and the temperature τ = bd − 1 = O(n). Further, select n0, the starting value
of the counter, to be such that the counter grows just shy of the desired length
n. The short-length will be at most the length of the counter block, which
is O(bd) = O(log2 n). With constant width (width 3 is sufficient) standard
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Fig. 11: (a) The tile set for a temperature controlled constant-width ruler with
1 ≤ n ≤ 8 along with the maximal assembly produced. (b) A similar tile set
using geometry to achieve a temperature that is linear in the length of the
ruler.

tile counter systems [7] can extend our assembly by this length within the
O( log

log logn ) tile complexity bound. The remaining filler regions sketched in
Figure 7 can be filled in with similar techniques. Finally, a special attachment
zone must be reserved to attach both types of garbage assemblies generated
within the construction- ensuring that all producible assemblies have a forward
growth path to a terminal rectangle of the desired dimensions.

5 Temperature-Controlled Assembly

5.1 Temperature-controlled rectangles

Here, we use temperature to control the assembly process of a fixed tile set.
Specifically, for any n ∈ N, two O(log n)-sized tile sets are given that assemble
O(log n) × r rectangles, where r is in a Θ(n) range of values (that grow lin-
early or exponentially), depending upon the temperature. These tile sets then
function as telescoping “nanorulers”, where raising the temperature causes the
length to reduce and vice versa. As with the previous result for thin rectangles,
this construction yields multiple terminal assembles, each with the same final
shape, making the system have a unique shape, but not a unique assembly.

Theorem 3 For any positive integer n and integer r where 0 ≤ r ≤ n − 2,
there exists a single tile set T , |T | = O(log n), such that Γ = (T, τr), where
τr = n log n+ r, uniquely assembles a O(log n)× (n− r + 1) rectangle.

Proof We prove this by construction. Figure 11a shows an example tile set
and assembly when 1 ≤ n ≤ 8, which consists of O(log n) triples. Each triple
is built with τ strength glues. These triples create a binary counter, which is
represented by the 1 or 0 on the center tile. Every Gi and Pi glue are of equal
strength where str(Gi) = str(Pi) = n for 0 ≤ i ≤ 2. Since there are log n
glues for each of the digits, the strength of just the special glues in a column
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is n log n. Thus, whether the next column can attach with τr = n log n + r
is dependent upon the Bi glues, which encode the counting mechanism for
the rectangle. Each Bi glue pair binds with strength 2i, str(Bi) = 2i. The
first column has full strength and each subsequent column has one less total
binding strength because of the Bi glues counting down until there are none.
Let str(Si) = str(Ci) = str(Ai) = n log n+ n for i = {1, 2}.

Garbage Collection. When the temperature is τr = n log n + r, only
r columns will combine, and the other n − r columns could not attach. We
collect them as garbage so there is a single terminal assembly. This is be done
by attaching a special column to the left of the finished assembly, attached
with glue Rs that is twice the height of the rectangle. It exposes the glue Rt-
providing a place for any column to attach above the current rectangle. Figure
12 shows a high-level sketch. The remaining space is filled in by a single filler
triple that cooperatively binds to a glue that is on the top of every column
(Rc) in the original shape and the middle tile of each triple (Rf ). The strength
of these glues are str(Rs) = n log n + n, str(Rc) = n log n, and str(Rf ) = n.
Now there is one terminal assembly of size (6 log n)× (n− r + 1).

Fig. 12: Garbage collection can be done above the object by allowing any
column to attach and filling in the empty space with cooperative binding.

Exploiting geometry. The temperature controlled rectangles require a temper-
ature of at least n log n. Here, via the use of some geometry, we are able to lower
that dependency and give τ = 2k+1 + r where k is the number of bits needed
(log n), which means the temperature is linear in the size of the rectangle.
Figure 11b shows the basic gadgets and how they assemble. This construction
uses the same binary counting trick as the previous result. In order to ensure
that both upper and lower borders must be used and at least one Bi is used
(with strength 2i), the connecting glues for the upper and lower sections have
strength 2k, and thus τ = 2k+1 + r. Due to the geometry, each gadget has
width-4, and we can take care of the garbage in a similar way as the previous
result.

Theorem 4 For any positive integer n and integer r where 0 ≤ r ≤ n − 2,
there exists a single tile set T , |T | = O(log n), such that Γ = (T, τr), where
τr = 2k+1 + r where k = log n, uniquely assembles a O(log n) × 4(n − r)
rectangle.
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6 Future Work

Our work leads to a number of important directions for future work. A few
are as follows.

– We have shown that any n×n square self-assembles in the 2HAM at tem-
perature τ = O(n) with O(2log

∗ n) tile types. Is this the smallest achievable
tile complexity? Can general n be assembled with a O(1)-size tile set? We
have shown that with the addition of negative glues, and for special n, this
is the case, but we conjecture this to be impossible in the basic model.

– Our O(2log
∗ n) tile type square construction can be viewed as a unary en-

coding of a target value n, and applied accordingly to problems such as
building scaled-up general shapes. The unary encoding of n causes an expo-
nential blowup in scale factors. Is it possible to utilized high-temperature
systems to generate a more compact poly-logarithmic scale encoding of
a target n? Achieving a more compact encoding would allow for high-
temperature techniques to be used as a more general, modular tool within
lower-scale bound constructions, similar to more classic “binary counter”
tile assembly subroutines.

– In the case of constant-height rectangles, we have shown assembly is possi-
ble using asymptotically as few tile types as for thicker rectangles, a prov-
ably impossible feat within the aTAM. However, it is still open whether or
not any poly-logarithmic tile complexity is achievable without using a su-
per constant temperature parameter. We conjecture the high-temperature
is needed, but leave this as an open problem. Expanding on this area, a
further direction is to develop trade-offs with respect to tile complexity,
temperature, and rectangle height.

– Our constant-height rectangle construction achieves unique shape assem-
bly, but non-deterministically assembles multiple distinct final assembles
(of the same final shape). This type of non-deterministic assembly is known
to allow for more efficient assembly of some classes of shapes within the
abstract tile assembly model [2], but little is known how nondeterminism
versus determinism affect tile type complexity within the 2HAM, and little
is know in either model with regards to fundamental benchmark shapes
such as rectangles. Is it possible to achieve our tile complexity, or anything
close, without nondeterminism?

– We have introduced a preliminary class of temperature controlled self-
assembly systems which build rectangles of dimension specified by the sys-
tem temperature. This is perhaps just the beginning of a new class of tile
sets that are programmable into precise and intricate shapes by way of
careful temperature parameter setting. Imagine a single set of universal
tiles for which any target shape can be constructed simply by finely tuning
the temperature at which the tiles interact. Expanding on our initial results
here towards this general goal is an exciting direction for future work.
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