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Abstract The algorithmic self-assembly of shapes has
been considered in several models of self-assembly. For
the problem of shape construction, we consider an ex-
tended version of the Two-Handed Tile Assembly Model
(2HAM), which contains positive (attractive) and neg-
ative (repulsive) interactions. As a result, portions of
an assembly can become unstable and detach. In this
model, we utilize fuel-efficient computation to perform
Turing machine simulations for the construction of the
shape. In this paper, we show how an arbitrary shape
can be constructed using an asymptotically optimal
number of distinct tile types (based on the shape’s Kol-
mogorov complexity). We achieve this at O(1) scale
factor in this straightforward model, whereas all previ-
ous results with sublinear scale factors utilize powerful
self-assembly models containing features such as stag-
ing, tile deletion, chemical reaction networks, and tile
activation/deactivation. Furthermore, the computation
and construction in our result only creates constant-
size garbage assemblies as a byproduct of assembling
the shape.
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1 Introduction

A fundamental question within the field of self-assembly,
and perhaps the most fundamental, is how to efficiently
self-assemble general shapes with the smallest possible
set of system monomers. This question has been con-
sidered in multiple models of self-assembly. Soloveichek
and Winfree [15] first showed that any shape S, if scaled
up sufficiently, is self-assembled within the abstract tile
assembly model (aTAM) using O(%) tile types,
where K (S) denotes the Kolmogorov or descriptional
complexity of shape S with respect to some universal
Turing machine, which matches the lower bound for this
problem. This seminal result presented a concrete con-
nection between the descriptional complexity of a shape
and the efficiency of self-assembling the shape, and rep-
resents an elegant example of the potential connections
between algorithmic processes and the self-assembly of
matter. The only drawback with this result is the ex-
tremely large scale factor required by construction: the
scale factor to build a shape S is at least linear in |5/,
and is typically far greater in their construction. To lay
claim as a true universal shape building scheme for po-
tential experimental application, a much smaller scale
factor is needed. Unfortunately, example shapes exist
(long thin rectangles for example) which prove that the
aTAM cannot build all shapes at o(]|S]) scale in the
minimum possible O(%) tile complexity. This mo-
tivates the quest for small scale factors in more powerful
self-assembly models.

The next result by Demaine, Patitz, Schweller, and
Summers [5] considers general shape assembly within
the staged RNAse self-assembly model. In this model,
system tiles are separated into separate bins and mixed
over distinct stages of the algorithm in a way that mod-
els realistic laboratory operations. In addition, each tile
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type in this model is of type DNA or RNA, and the
staging permits the addition of an RNAse enzyme at
any step in the staging, thereby dissolving all tiles of
type RNA, leaving DNA tiles untouched. By adding the
powerful operations of separate bins, sequential stages,
and tile deletion, [5] achieves general shape construc-
tion within optimal O(%) tile complexity using
only a constant number of bins and stages, and only
a logarithmic scale factor. This leap in scale factor re-
duction constituted a great improvement, but required
a very powerful model with both staging and tile dis-
solving. In addition, the holy grail of O(1) scale factor
remained elusive.

The next entry into the quest for Kolmogorov opti-
mal shape assembly at small scale comes from a recent
work by Schiefer and Winfree [13]. Schiefer and Win-
free introduce the chemical reaction network tile assem-
bly model (CRN-TAM) in which chemical reaction net-
works and abstract tile assembly systems combine and
interact by allowing CRN species to activate and deac-
tivate tiles, while tile attachments may introduce CRN
species. This powerful interaction allowed the construc-
tion of Kolmogorov optimal systems for the assembly of
general shapes at O(1) scale. Although the result pro-
vides a great scale factor, the CRN-TAM constitutes a
substantial jump in model complexity and power.

In this paper we study the optimal shape build-
ing problem within one of the simplest, and most well
studied models of self-assembly: the two handed tile as-
sembly model (2HAM), where system monomers are
4-sided tiles with glue types on each edge. Assembly
in the 2HAM proceeds whenever two previously as-
sembled conglomerations of tiles, or assemblies, collide
along matching glue types whose strength sums to some
temperature threshold. Our only addition to the model
is the allowance of negative strength (i.e., repulsive)
glues, an admittedly powerful addition based on re-
cent work [6,8-10, 14], but an addition motivated by
biology [11] that maintains the passive nature of the
model as system monomers are static, state-less pieces
that simply attract or repulse based solely on surface
chemistry (Figure 1). While the negative glue 2HAM
has been used for works such as fuel-efficient compu-
tation [14] and recently universal shape replication [1],
it is also one of the simplest models where the general
shape assembly problem has been considered. Our re-
sult is on par with the best possible result: we show
that any connected shape S is self-assembled at O(1)-
scale in the negative glue 2HAM within O(%) tile
types, which is met by a matching lower bound.

Our Approach. We achieve our result by com-
bining the fuel efficient Turing machine construction
published in SODA 2013, [14], with a number of novel

negative glue based gadgets. At a high level, the fuel
efficient Turing machine system extracts a description
of a path that walks the pixels of the constant-scaled
shape from a compressed initial binary string. From
there, the steps of the path are translated into walker
gadgets which conceptually walk along the surface of
the growing path and eventually deposit an additional
pixel in the specified direction, with the aid of path ex-
tension gadgets. When all pixels have been placed, the
path through the shape is filled, resulting in a scaled
version of the original shape.

Additional Related Work. Additional work has
considered assembly of O(1)-scaled shapes by break-
ing the assembly process up into a number of distinct
stages. In particular, [3] introduces the model of staged
self-assembly in which intermediate tile assemblies grow
in separate bins and are mixed and split over a se-
quence of distinct stages. This approach is applied to
achieve O(1)-scaled shapes with O(1) tiles types, but a
large number of bins and stages which encode the target
shape. In [4] this approach is pushed further to achieve
tradeoffs in terms of bin complexity and stage complex-
ity, while maintaining construction of a final assembly
with no unbonded edges. In [7] similar constant-scale re-
sults are obtained in the step-wise self-assembly model
in which tile sets are added in sequence to a growing
seed assembly. Finally, in [16] O(1)-scaled shapes are
assembled with O(1) tile types by simply adjusting the
temperature of a given system over multiple assembly
stages. While each of above staged approaches offers im-
portant algorithmic insights, the large number of stages
required by each makes the approaches infeasible for
large shapes. Furthermore, the system complexity of
these systems (which includes the staging algorithms)
greatly exceeds the descriptional complexity of the goal
shape in a typical case.

Paper layout. Our construction consists of a num-
ber of detailed gadgets for specific tasks. Presentation is
thus organized incrementally to walk through a version
of each gadget (with symmetry there may be multiple).
Section 2 gives the preliminary definitions and back-
ground. In Section 3 we provide a high-level overview
of the entire process as a guide for the rest of the paper.
We then show the details of our construction with the
gadgets and methods we use for constructing a straight
line of the path (Section 4) and turning corners in the
path (Section 5). Additional gadget variations are de-
tailed in Section 6. Section 7 provides the analysis of our
construction, with the lower bound on tile complexity
for shape assembly presented in Section 8, and details
for pushing our construction to achieve a matching up-
per bound in Section 9. Then we conclude in Section 10.
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Fig. 1: This figure introduces notation for our construc-
tions, as well as a simple example of negative glues.
On each tile, the glue label is presented. Red (shaded)
labels represent negative glues, and the relevant glue
strengths for the tiles can be found in the captions. For
caption brevity, for a glue type X we denote str(X)
simply as X (e.g., X +Y = str(X) + str(Y)). In this
temperature 7 = 1 example, X =2, Y =1, Z =2 and
N = —1. (a) The three tile assembly on the left attaches
with the single tile with strength Z+ N =2 -1 =171
resulting in the 2 x 2 assembly shown in (b). However,
this 2 x 2 assembly is unstable along the cut shown by
the dotted line, since Y + N = 1 — 1 < 7. Then the
assembly is breakable into the assemblies shown in (c).

2 Definitions and Model

In this section we first define the two-handed tile self-
assembly model with negative and positive strength
glue types. We also formulate the problem of designing
a tile assembly system that constructs a constant-scaled
shape given the optimal description of that shape.

Tiles and Assemblies. A tile is an axis-aligned
unit square centered at a point in Z2, where each edge is
labeled by a glue selected from a glue set I1. A strength
function str : II — N denotes the strength of each glue.
Two tiles equal up to translation have the same type.
A positioned shape is any subset of Z2. A positioned
assembly is a set of tiles at unique coordinates in Z2,
and the positioned shape of a positioned assembly A is
the set of those coordinates.

For a given positioned assembly 7", define the bond
graph Gy to be the weighted grid graph in which each
element of 7" is a vertex and the weight of an edge
between tiles is the strength of the matching coincident
glues or 0.! A positioned assembly C is said to be 7-
stable for positive integer 7 provided the bond graph
G ¢ has min-cut at least 7, and C'is said to be connected
if every pair of vertices in G¢ has a connecting path
using only positive strength edges.

For a positioned assembly A and integer vector v =
(v1,v2), let Ay, denote the positioned assembly obtained

1 Note that only matching glues of the same type contribute
a non-zero weight, whereas non-equal glues always contribute
zero weight to the bond graph. Relaxing this restriction has
been considered as well [2].

by translating each tile in A by vector v. An assembly
is a translation-free version of a positioned assembly,
formally defined to be a set of all translations Ay of a
positioned assembly A. An assembly is 7-stable if and
only if its positioned elements are T-stable. An assembly
is connected if its positioned elements are connected.
A shape is the set of all integer translations for some
subset of Z2, and the shape of an assembly A is defined
to be the set of the positioned shapes of all positioned
assemblies in A. The size of either an assembly or shape
X, denoted as | X, refers to the number of elements of
any positioned element of X.

Breakable Assemblies. We say an assembly is 7-
breakable if it can be cut into two pieces along a cut
whose strength sums to less than 7. Formally, an as-
sembly C'is breakable into assemblies A and B if A and
B are connected, and the bond graph G¢» for some as-
sembly C’ € C' hasacut (A',B’) for A’ € Aand B’ € B
of strength less than 7. We call A and B pieces of the
breakable assembly C'.

Combinable Assemblies. Two assemblies are 7-
combinable provided they may attach along a border
whose strength sums to at least 7. Formally, two as-
semblies A and B are 7-combinable into an assembly
C provided G¢» for any C' € C has a cut (4’,B’) of
strength at least 7 for some A’ € A and B’ € B. We
call C' a combination of A and B.

Note that A and B may be combinable into an as-
sembly that is not stable (and thus breakable). This is
a key property that is leveraged throughout our con-
structions. See Figure 1 for an example. For a system
I =(T,7), we say A —1" B for assemblies A and B if
either A is 7-breakable into pieces that include B, or A
is T-combinable with some producible assembly to yield
B, or if A = B. Intuitively this means that A may grow
into assembly B through one or fewer combination or
break reactions. We define the relation —!" to be the
transitive closure of —1', ie., A —" B means that A
may grow into B through a sequence of combination or
break reactions.

Producibility and Unique Assembly. A two-
handed tile assembly system (2HAM system) is an or-
dered pair (7, 7) where T is a set of single tile assem-
blies, called the tile set, and 7 € N is the temperature.
Assembly proceeds by repeated combination of assem-
bly pairs, or breakage of unstable assemblies, to form
new assemblies starting from the initial tile set. The
producible assemblies are those constructed in this way.
Formally:

Definition 1 (2HAM Producibility) For a given
2HAM system I' = (T, 7), the set of producible assem-
blies of I', denoted PROD, is defined recursively:
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— (Base) T C PRODf

— (Combinations) For any A, B € PROD such that A
and B are 7-combinable into C, then C' € PROD.

— (Breaks) For any assembly C € PRODp that is 7-
breakable into A and B, then A, B € PROD.

Definition 2 (Terminal Assemblies) A terminal as-
sembly of a 2HAM system is a producible assembly that
cannot break and cannot combine with any other pro-
ducible assembly. Formally, an assembly A € PROD of
a 2HAM system I' = (T, 7) is terminal provided A is 7-
stable (will not break) and not 7-combinable with any
producible assembly of I" (will not combine).

Definition 3 (Unique Assembly - with bounded
garbage) A 2HAM system I = (T, 7) uniquely pro-
duces an assembly A with garbage bound ¢ € {0} JZ*
provided that A is terminal, and for all B € PROD such
that |[B| > ¢, B = A.

Definition 4 (Unique Shape Assembly - bounded
garbage) A 2HAM system I = (T, 7) uniquely assem-
bles a finite shape S with garbage bound ¢ € {0} |JZ*
if for every A € PROD such that |A| > ¢, there exists a
terminal A’ € PROD of shape S such that A —T A’.

Definition 5 (Kolmogorov Complexity) The Kol-
mogorov complexity (or descriptional complexity) of a
shape S with respect to some fixed universal Turing
machine U is the smallest bit string such that U out-
puts a list of exactly the positions in some translation
of shape S when provided the bit string as input. We
denote this value as K(S).

3 Concept/Construction Overview

This section presents a high-level overview of the shape
construction process. First, we will present the concep-
tual overview, which explains the fundamental ideas
behind our shape self-assembly process. Then, we will
show a high-level look at how our construction imple-
ments this process.

3.1 Conceptual Overview

Starting with the Kolmogorov-optimal description of a
shape (as a base b string, b > 2), we simulate a Turing
machine which converts any base b string into its equiv-
alent base 2 representation (Sec. 9) We then simulate
another Turing machine that takes the binary descrip-
tion of a shape, finds a spanning tree for that shape,
and outputs a path around that spanning tree as a set

(b) Shape X at scale 2
with spanning tree.

(a) Non-scaled shape X
with spanning tree.

(c) Shape X at scale 6

with spanning tree.
Fig. 2: The Turing machine calculates a spanning tree
of the tiles in the shape (a), scales the shape in order to
allow a path around the spanning tree (b), and further
scales the shape for the gadgets (c).

of instructions (forward, left, right) starting from a be-
ginning node on the perimeter.

A simple depth-first search will find the spanning
tree for any shape. Scaling the shape to scale 2 cre-
ates a perimeter path that outlines the spanning tree,
and assembles the shape. Scaling again, this time by a
multiple of 3, now allows space for the perimeter path
with an equal-sized space buffer on both sides (Fig. 2).
This buffer is required as it allows sufficient space for
our construction gadgets to “walk” along the perimeter
path being built.

Process Ouverview:

1. Given the Kolmogorov-optimal description of a par-
ticular shape, run a base conversion Turing machine
to get its binary equivalent.

2. Given that binary string, run another Turing ma-
chine that outputs the description of a path around
the shape’s spanning tree as a set of instructions
(forward, left, right).

3. Given those instructions, build the path. Our con-
struction begins with a tape containing this path de-
scription for a scale 24 shape.
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Fig. 4: (a)-(c) The overlay process covers the tape while
making the data readable on top. (d)-(f) Reading the
leftmost piece of data and creating an information block
(depicted in green). (g)-(i) Information Walking on the
path to the end where the information is used. (j)-
(1) When the information block reaches the end of the
path, the block triggers a Path Extension. (m)-(o) Once
the information has been read, Tape Reduction removes
that piece of the tape.

3.2 Construction Overview

The construction overview begins at step 3 of the con-

ceptual overview, using the output from step 2. Through-

out this paper, we will be referring to this output as
the tape, meaning the fuel-efficient Turing machine tape
with path-building instructions encoded on it. This tape
is detailed in Section 4.

Construction Steps Overview:

SR | |

(a) Early Path

Construction

(b) Intermediate
Construc-

Path
tion

(c) Final Path

Construction

(d) Begin Fill

. Overlay. The overlay process is the first step in

shape construction. Figure 4a-c shows an abstrac-
tion of how the output from step 2 in the concept
overview gets covered during the overlay process.
The overlay initiator gadget can only attach to a
completed tape. This begins a series of cooperative
attachments that will cover the tape. Each bit of in-
formation on the tape is covered by its correspond-
ing overlay piece, and thus is readable on the top of
the overlay. The overlay process is finished once the
entire tape is covered.

. Reading. After the overlay process is complete, in-

formation can be extracted from the tape through
the read process (Figs. 4d-f). Information can only
be extracted from the covered leftmost section of
the tape if it has not already been read. When a
tape section is read, information is extracted from
the tape and a corresponding information block is
created.

. Information Walking. Once the information block

is created, it begins walking until it reaches the end
of the tape/path (Figs. 4g-1). Walking gadgets allow
the information to travel down the entire path.

4. Path Extension. When an information block can-

not travel any further, the path is extended (Figs.
4j-1). The path can be extended forward, left, or
right. The direction of the path extension is depen-
dent on which information block is at the end of the
path. After the path is extended, the information
block is removed from the path.

. Tape Reduction. Once information is extracted

from the tape and sent down the path, one tape
section is removed (Figs. 4m-o0). Only tape sections
that have been read are removed, which then allows
the next section to be read. This process continues
until every section of the tape is read/removed.

. Repeat. Repeat the tape read, information walk,

path extend, and tape reduction processes until all
path instructions have been read (Figs. 3a-c).

(e) Continue Fill (f) End Fill

Fig. 3: (a)-(c) The process is repeated until all information has been read/removed from the tape.
(d)-(f) The final step is Path Filling the shape.
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Fig. 5: (a) A completed tape consisting of all forward instructions. (b) Overlay Initiator gadget attaching to tape.
(c-d) Overlay fillers begin covering all tape sections from right to left.

7. Path Filling. The final tape section that gets read
begins the shape fill process (Figs. 3d-f). In this pro-
cess, the path is padded with tiles which fill it in and
results in the final shape.

4 Construction Details

In this section, we detail the steps of our construction
process. This is the process by which information is read
from the tape and portions of the path are assembled.

We will also cover the gadgets required for each step,
and review the tape construction from the fuel-efficient
Turing machine used in [14]. This construction uses
pre-constructed assemblies called gadgets. These gad-
gets are designed to work in a temperature 7 = 10 sys-
tem. In our figures, a perpendicular black line through
the middle of the edge of two adjacent tiles indicates a
unique 27 = 20 strength bond?. Each gadget provides
a different function to the shape creation process.

Turing Machine Tape. A detailed look at a fuel-
efficient Turing machine tape is seen in Figure 5a. No-
tice each tape section has a pair of tiles on top of it
where the information is stored. Each pair of dark grey
tiles on top of the tape sections represents a piece of
information describing the path.

The Overlay Initiator Gadget attaches to the end
of the completed tape, and begins the overlay process
(Fig. 5b-d). Each bit of information on the tape is cov-
ered by a corresponding overlay section, allowing the
information to be read on top of the overlay. This pro-
cess continues, section by section, until the entire tape
is covered. Once finished, the overlay layer will act as an
interface, allowing the gadgets to use the information
on the tape.

2 The strongest detaching force used in our construction is
a 7 strength detachment, and since the internal bonds of our
gadgets are meant to withstand even the strongest repulsive
force, it follows that those bonds must be of strength at least
2T.

Read. The read gadget is required for “reading” the
Turing machine tape. Essentially, this gadget extracts
the information that is relayed from the tape through
the overlay blocks. The read process (Fig. 6a-c) can
only begin if the leftmost tape section has not previ-
ously been read. Once attached, the gadget allows the
attachment of an information block (corresponding to
the information being read) that will be used to carry
the build instructions through the rest of our construc-
tion. Once the information block is present, the remain-
ing read-helpers can attach. The final helper destabi-
lizes the read gadget, allowing it to fall off and expose
the newly attached information block. The read gadget
was designed to produce this information block, alter
the tape section that is being read (making it unread-
able), and then detach from the assembly. This design
ensures that each tape section is only read once, and
allows us to transfer the instructions to other locations
in our construction via the walking gadgets. A particu-
lar cut in the read process is of note, as it may result in
an infinite attachment/detachment loop (between Fig.
6b-c). Since each assembly within this loop still has a
growth path towards the final terminal assembly, this
is merely a peculiarity which has no impact on our con-
struction.

Information Walking. The walking gadgets begin the
information walking process (Fig. 7), which allows in-
structions to travel throughout our construction. After
a tape section has been read and an information block
has been placed, a walking gadget can attach. Once at-
tached, the walking gadget allows a new information
block (of the same type) to attach, while also detach-
ing the the previous information block. Notice that this
detachment will always be O(1) size. After the previous
information is removed, the walking gadget detaches as
well, allowing the new info block to interact with other
gadgets. Thus, the same information has traveled from
the tape, through the overlay, and is now traveling along
the tape. This process is repeated until the information
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Fig. 6: (a) The Read Gadget attaches (n+T7+F = 2+7+1 > 7). (b) The information block attaches (F+F+.J2 =
14+ 1+ 8 > 7), along with the read-helpers. (¢) After all read helpers have attached, the read gadget becomes
unstable and detaches (F+F+M4+n+T+F+Q=14+1+1+4+24+74+1-7<7).

(b)

Fig. 7: (a) A Walking Gadget attaches to the overlay and the information block (F+F+J1=1+1+8> 7). (b)
The negative interaction between the D glues destabilizes the old information block, along with the two walking-
helpers (J24+ A2+ A2+ F+F+D=8+4+2+2+1+4+1-7<7). (c) Once the second walking-helper is attached,
the walking gadget becomes unstable (FF+ 02+ J1+D=1+74+8—-7<7).

has traveled to the end of the path, at which point it is
used to construct the next path portion. This method is
desirable because it does not allow duplicate readable
instructions to be attached to the path at any time.

Path Extension. After the information block has tra-
veled to the end of the path, a path extension gadget
can attach to the assembly. Once attached, the gad-
get allows the path extension process (Fig. 8) to begin,
which extends the path in a given direction (forward,
left, or right) based on the instruction carried by the in-
formation block. The extension gadget “reads” the in-
formation block, and then extends the path in the given
direction. Afterwards, the extension helpers destabilize
the information block and extension gadget, causing a
O(1) sized detachment. We designed the extension gad-
get to essentially replace an instruction block with a
corresponding path portion. This design allows us to
attach a O(1) sized path portion for each instruction
read from the tape.

Tape Reduction. After a tape section has been read,
we no longer need it. Instead of continuing to grow the
assembly, we can remove O(1) size portions of the tape
as it is being read. This is where the tape reduction gad-
get initiates the tape reduction process (Fig. 9). The at-
tachments left behind by the read/walk processes allow

the tape reduction gadget to attach to a tape section
that has already been read. The gadget then removes it-
self, along with the previously read tape section, expos-
ing the next section of the tape for reading. This tech-
nique is desirable because it allows us to break apart
the tape into O(1) sized pieces as we use it. As the tape
is reduced, the path continues to grow until there are
no more tape sections to be read.

Filling. After the entire path has been built, all previ-
ous tape sections will have been read/removed, save for
one. The fill initiator gadget then attaches to the final
tape section (Fig. 10), and begins the fill process. A se-
ries of cooperative attachments flood the sides (above
and below) the path we’ve constructed. The initiator
gadget, as well as the final tape section, remain to be-
come the first pixel of the shape.

5 Turning Corners

The previous section detailed all of the tools needed for
our construction to build straight lines. This section
shows the mechanisms required for the path to turn left
or right during its construction. The process by which
the information is extracted and moves along the path is
identical to that of Section 4. The key difference is how
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Fig. 8: (a) The forward-extension gadget attaches to the information block and Turing tape (B+C + F+p =3+
44142 > 7). (b) The second extension-helper comes with the negative D glue that causes targeted destabilization
(X+p+J1+X+D=2+4+2+8+2—7<7). The extension gadget and its helpers, along with the information
block and its helpers are no longer stable along their tape-overlay edges. (c) The final result is a one path-pixel

extension of the path.

(©)

Fig. 9: (a) The tape reduction gadget attaches to the read-helpers (A2 + U = 2+ 8 > 7). (b) Filler tiles attach
(s+s=8+4+82> 1), and create a strong bond to the tape reduction gadget. (c) The two negative o glues cause a
strong targeted destabilization of the previously read tape section (e +ul +u2+0+0=3+8+8—-5—-5<7).

the information is used once it gets to the end of the
path. Previously, forward extension and walking gadgets
were used to extend the path. Here, specific gadgets are
used in order to turn the path left and right.

Extend Left and Right. The process for extend-
ing left and right is very similar to extending forward.
Just as before, the information block must walk to the
end of the path before it can be used for extension.
The difference now, is the direction of the extension.
The left/right information block allows the left/right-
extension gadget to attach and extend the path using
the same mechanics as forward-extension. (Figs. 11 and
12). The extension gadget reads the information block,
extends the path in the given direction, and then de-
taches all but the newly extended path.

Walk Left and Right. The walk-(left/right) proce-
dures also utilize the same mechanics as walking for-
ward, but with slightly different gadgets(Figs. 13 and
14). The information block only allows the correct walk-
ing gadget to attach and begin the walking process.
Once attached, the walking gadget allows a new infor-
mation block (of the same type) to attach, while also
detaching the previous info block. After the previous

information is removed, the walking gadget detaches as
well, allowing the new info block to interact with other
gadgets. Thus, the same information has traveled along
a left or right path turn.

Fill Left. The filler blocks continue attaching until they
encounter a corner (Fig. 15). For left turns, the topside
fillers encounter a concave corner, while the underside
fillers encounter a convex corner. The design of the filler
blocks allows them to simply transition from one block
type to the next for concave corners. Convex corners,
however, require a filler transition block to start filling
in the new direction. Again, there are unique sets of
filler blocks for filling along the topside and underside
of the path.

Fill Right. The right-fill process is a reflection of the
left-turn process (Fig. 16). Here, the topside fillers en-
counter the convex corner, and the underside fillers en-
counter the concave corner. Both filler types are de-
signed to flood their respective sides of the path.
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Fig. 10: (a) The fill initiator gadget attaches to the tape (H +I =8+ 5 > 7). (b) The first topside fillers attach
(s+G1 =848 > 7, Y0+G1 = 948 > 7), as well as the underside fillers (X +S5S+X = 2+5+2 > 7,Y0+G3 = 9+8 >
7) (c) The topside and underside line filler blocks continue to attach (Y2+G1=94+8>7,Y6+G3=9+8 > 7).

6 Gadget Variations

Walkers 1 & 2 The first walking gadget (Fig 17a) is
used for all subsequent steps along the tape, after the
standard walking gadget (Sec 4) has executed the in-
formation block’s initial step. The second walking gad-
get (Fig 17¢) allows the information block to transition
from walking on the tape, to walking on the path. This
gadget is required because single tape and path sections
differ in size and glue types.

Walkers 3 & 4 Once an information block has tran-
sitioned from the tape to the path, the third walking
gadget (Fig 17b) allows it to take an initial step on the
path. The fourth walking gadget (Fig 17d) allows the
information block to continue walking along the path.
These gadgets are required because a single path sec-
tion is shorter than a single tape section, which these
gadgets account for.

Extenders 1 & 2 Two gadgets (Figure 18a-b) are re-
quired to extend the path after the initial extension

gadget (Sec 4) builds the first path portion. Extender
1 (Fig 18a) is designed to build the second path por-
tion. Once the second path portion has been built, the
extender 2 (Fig 18b) carries out all remaining forward
extensions, with the exception of two special cases after
a left turn.

Extenders 3 & 4 After a left extend (Sec 5, two more
extender variations (Fig 18c-d) are required to extend
the path to a sufficient length that allows the walk-
ing/extending gadgets to be used. The first two of these
forward extensions require extenders 3 and 4. Extender
3 (Fig 18c) extends the path in the new direction after
the turn. Extender 4 (Fig 18d) then builds an additional
path portion in the direction of the turn.

7 Constant Scaled Shapes

In this section, we formally state the results based on
our construction.

Theorem 1 For any finite connected shape S, there
exists a 2HAM system I' = (T, 10) that uniquely pro-

Fig. 11: (a) The left-extension gadget attaches to the information block and shape path (B+ C + L + X =
34+4+4+ 142> 7). (b) The negative D glue on the second extension-helper causes targeted destabilization. The
extension gadget and its helpers, along with the information block and its helpers are no longer bound to the path
with sufficient strength. (X + X +G14+ X +D =2+2+8+2—7 < 7) (c) The final result is a one path-pixel
extension of the path to the left of the direction the info block was walking.
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(b)

Fig. 12: (a) The right-extension gadget attaches to the information block (B+C+ R+ X =3+4+14+2> 7).
(d) The second extension-helper comes with a negative D glue that causes targeted destabilization. The extension
gadget and its helpers, along with the information block and its helpers are no longer bound to the path with
sufficient strength(X + X +G14+ X +D =2+42+48+2—7 < 7). (f) The final result is a one path-pixel extension
of the path to the right of the direction the info block was walking.

Fig. 13: The left-walking gadget attaches to the path and the information block (C+F+W =4+1+5 > 7). (b)
The negative interaction between the D glues destabilizes the old information block, along with the two walking-
helpers(X +G1+C+F+D =24844+4+1—7 < 7). (¢) Once the second walking-helper is attached, the walking
gadget becomes unstable due to the negative @ glues (W + 034+ F+Q=5+7+1—-4<7).

duces S (with a O(1) garbage bound) at a O(1) scale

factor, and |Ts| = O(M)

log K(S)

Proof. We show this by constructing a 2HAM system
I' = (Ts,10). One portion of Ts consists of the tile
types which assemble a higher base Kolmogorov-optimal
description of S (Section 9). This portion of Ts consists
of 0(1051((8()5)) tile types, as analyzed in Section 9. An-
other portion of Ts consists of the tile types needed to
assemble a fuel-efficient Turing machine, as described
by [14], that performs a simple base conversion to bi-
nary using 0(%) tile types, as analyzed in Sec-
tion 9. The next portion of Ts consists of the tile types
required to assemble another fuel-efficient Turing ma-
chine that finds and outputs the description of a path

around the spanning tree of S. This Turing machine is

of O(1) size, and thus adds O(1) tile types using the
method from [14]. The final portion of Ts consists of
the tile types that construct the gadgets and assem-
blies shown in Section 4. With the number of tile types
used for computing the path description and for our
construction process being O(1), our final tile complex-
ity is O(—22) ).

log K(5)

Now, consider assembly A to be the fully constructed
tape assembly (Section 4) encoded with path-building
instructions specific to S. Also, suppose assembly B is
some terminal assembly that has shape S at a constant
scale factor. To assemble A, we had to start with an as-
sembly which represents a higher base description of S.
By using the fuel-efficient Turing machines of [14], we
can transition this higher-base assembly into A. Dur-
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Fig. 14: The right-walking gadget attaches to the path and the information block (C+F+W =44+1+5 > 7). (b)
The negative interaction between the D glues destabilizes the old information block, along with the two walking-
helpers (X +G14+C+F+D =2+48+4+1—-7<7). (c) Once the second walking-helper is attached, the walking
gadget becomes unstable due to the negative @ glues(F + O3+ E+Q=14+7+5-4<7).
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Fig. 15: (a) The northern topside fillers attach until
they encounter a left corner (Y2+G1=9+8 > 7). (b)
The southern underside fillers attach until they reach a
corner as well (Y6+G3 =9+8 > 7).(c) The underside
south-east filler attaches (Y6 +G2=9+8<7) (d) A
completely filled left turn.

ing this process the only assembly larger than 56 tiles
is the Turing machine tape on which the computation
is being performed, which inevitably becomes A.

Note that the remaining assembly process of I" fol-
lows the details of Section 4. This process was designed
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Fig. 16: (a) The northern topside fillers attach until
they encounter a right corner (Y2+ Gl =9+8 > 7).
(c¢) The eastern topside fillers attach (Y5 + G2 =9 +
8 > 7).(d) The south underside fillers attach until they
reach a corner as well (Y6 + G2 =9+8 < 7) (f) A
completely filled right turn.
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(c) Walker 2 (d) Walker 4

Fig. 17: These are the walking gadget variations. Each
variation also has specific versions for the different in-
structions that are carried by the information blocks.
While slightly different, all walking gadgets utilize the
same mechanics shown in Section 4. The changes here
are due to what they are walking on, be it the tape or
the path.

(c) Extender 3

(d) Extender 4

Fig. 18: As with the walking gadgets, all extension gad-
gets are mechanically the same as the gadget introduced
in Section 4. While their function of these gadgets are
the same (to extend the path by one section), the pri-
mary difference is in their geometry.

so that two assemblies are combinable only if at least
one of those assemblies is at most a constant size (70
tiles), and every breakable assembly can only break into
two subassemblies if one of those assemblies is at most
another constant size (118 tiles). In our construction,
the only assemblies which are not bounded by this 118
tile constant are A, B, and any intermediate assembly
that consists of some portion of the tape, and some par-
tially assembled section of the final shape. Of these, B
is the only terminal assembly.

While A and the intermediate assemblies continue
engaging in a series of attachments and detachments,
the tape continues to get smaller and the path contin-
ues to grow. The attachment and detachment of O(1)
size pieces with these assemblies will continue until we
reach the terminal assembly B, at which time A will
have been disassembled into chunks of constant-sized
garbage. Therefore, we see that A =1 B.

O

8 Lower Bound

Here we present a brief argument for the lower bound
of Q(%) on the tile types needed to assemble a
scaling of a shape S, under the assumption of constant
bounded temperature, constant bounded glue strengths,
and a fairly reasonable assumption that the system to
build S does not grow infinitely many distinct pro-
ducible assemblies. This argument is nearly identical to
what is presented in [2,12,15], and we refer the reader
there for a more detailed explanation.

Theorem 2 Consider a 2HAM system I = (T, 1) such
that T is bounded by some constant, and each glue used
within T has an absolute strength value bounded by a
constant, and the number of producible assembles of
I' is finite. If I' uniquely produces a scale-c version
of a shape S for some constant garbage bound, then
IT] = sy

Proof. Note that a 2HAM system I" = (T, 7 = O(1))
can be uniquely represented by a string of O(|T'| log |T'])
bits. In particular, each tile may be encoded as a list
of its 4 glues, and each glue may be represented by
a O(log|T|)-bit string taken from an indexing of the
maximum possible 4|T| distinct glue types of the sys-
tem, along with a constant number of bits encoding
the glue strength. The constant bounded temperature
incurs an additional additive constant. Given this rep-
resentation, consider a simulation program that inputs
a negative glue 2HAM system, and outputs the posi-
tions of any uniquely produced scale-c shape (with up
to O(1) garbage), if one exists. Utilizing the assumption
of a finite set of producible assemblies, this simulator
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could achieve this by simply generating all producible
assemblies in a brute force manner and halting upon
verifying that all such assemblies grow into a termi-
nal scaling of shape S. This simulator, along with the
O(|T'|log|T'|) bit encoding of a system I" which assem-
bles S at scale ¢, constitute a program which outputs
the positions of S, and is thus lower bounded in bits by
K(S). Therefore K(S) < d|T|log|T| for some constant

d, implying |T| = 2(5Ek). O

K(S)

9 Extension to m

The starting assembly for our shape construction al-
gorithm is the tape assembly from [14] with a binary
string as its value. For a binary string A = aq...ag_1,
such an assembly can be constructed in a straightfor-
ward manner using O(k) tile types (simply place a dis-
tinct tile for each position in the assembly, for example).
However, by using a base conversion trick, we can take
advantage of the fact that each tile type is asymptot-
ically capable of representing slightly more than 1 bit
in order to build the string in O(k/log k) tile types. To
achieve this, first we consider the base-b representation
B = by...by_1 of the string A for some higher base
b > 2. Note that the number of digits of this string is
d < f@} = O(ﬁ). We are able to assemble this
shorter string (by brute force with distinct tile types at
each position) with only O(d) tile types.

Next, we consider a Turing machine which converts
any base b string into its equivalent base 2 representa-
tion. Such a Turing machine can be constructed using
O(b) transition rules. Therefore, we can apply the re-
sult of [14] to run this Turing machine on the initial
tape assembly representing string B to obtain string
A. The cost of this construction in total is O(d) tiles
to construct the initial tape assembly, plus O(b) tiles to
implement the rules of the conversion Turing machine?,
for a total of O(d + b) tiles.

Finally, we select b = [10’; 7l = O(%M), which
yields d = O(m) = O(&), implying that
the entire tile cost of setting up the initial tape assem-
bly representing binary string B is O(b+ d) = O(@)
tile types. In our case k = O(K(S)) where K(S) de-
notes the Kolmogorov complexity of shape S for some
given universal Turing machine, and so we achieve our

final tile complexity of O(%)_

3 The formal theorem statement of [14] cites the product
of the states and symbols of the Turing machine as the tile
type cost. However, the actual cost is the number of transition
rules, which is upper bounded by this product.

10 Conclusion

In this work, we considered the optimal shape building
problem in the negative glue 2-handed assembly model,
and provided a system that allows the self-assembly of
general shapes at scale 24. Shape construction has been
studied in more powerful self-assembly models such as
the staged RNA assembly model and the chemical re-
action network-controlled tile assembly model. How-
ever, our result constitutes the first example of opti-
mal general shape construction at constant scale in a
passive model of self-assembly where no outside exper-
imenter intervention is required, and system monomers
are state-less, static pieces which interact solely based
on the attraction and repulsion of surface chemistry.

Our work opens up a number of directions for future
work. We have not considered a runtime model for this
construction, so analyzing and improving the running
time for constant-scaled shape self-assembly in the 2-
handed assembly is one open direction. Another is de-
termining the lowest necessary temperature and glue
strengths needed for O(1) scale shape construction. We
use temperature value 10 for the sake of clarity, and
have not attempted to optimize this value.
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