
Noname manuscript No.
(will be inserted by the editor)

Self-Assembly of Shapes at Constant Scale using Repulsive
Forces

Austin Luchsinger · Robert Schweller · Tim Wylie

Received: date / Accepted: date

Abstract The algorithmic self-assembly of shapes has

been considered in several models of self-assembly. For

the problem of shape construction, we consider an ex-

tended version of the Two-Handed Tile Assembly Model

(2HAM), which contains positive (attractive) and neg-

ative (repulsive) interactions. As a result, portions of

an assembly can become unstable and detach. In this

model, we utilize fuel-efficient computation to perform

Turing machine simulations for the construction of the

shape. In this paper, we show how an arbitrary shape

can be constructed using an asymptotically optimal

number of distinct tile types (based on the shape’s Kol-

mogorov complexity). We achieve this at O(1) scale

factor in this straightforward model, whereas all previ-

ous results with sublinear scale factors utilize powerful

self-assembly models containing features such as stag-
ing, tile deletion, chemical reaction networks, and tile

activation/deactivation. Furthermore, the computation

and construction in our result only creates constant-

size garbage assemblies as a byproduct of assembling

the shape.

This research was supported in part by National Science
Foundation Grants CCF-1555626 and CCF-1817602.

Austin Luchsinger
austin.luchsinger01@utrgv.edu

Robert Schweller
robert.schweller@utrgv.edu

Tim Wylie
tim.wylie@utrgv.edu

University of Texas - Rio Grande Valley, Edinburg, TX, USA

1 Introduction

A fundamental question within the field of self-assembly,

and perhaps the most fundamental, is how to efficiently

self-assemble general shapes with the smallest possible

set of system monomers. This question has been con-

sidered in multiple models of self-assembly. Soloveichek

and Winfree [15] first showed that any shape S, if scaled

up sufficiently, is self-assembled within the abstract tile

assembly model (aTAM) using O(K(S)
logK(S)) tile types,

where K(S) denotes the Kolmogorov or descriptional

complexity of shape S with respect to some universal

Turing machine, which matches the lower bound for this

problem. This seminal result presented a concrete con-

nection between the descriptional complexity of a shape

and the efficiency of self-assembling the shape, and rep-

resents an elegant example of the potential connections

between algorithmic processes and the self-assembly of

matter. The only drawback with this result is the ex-

tremely large scale factor required by construction: the

scale factor to build a shape S is at least linear in |S|,
and is typically far greater in their construction. To lay

claim as a true universal shape building scheme for po-

tential experimental application, a much smaller scale

factor is needed. Unfortunately, example shapes exist

(long thin rectangles for example) which prove that the

aTAM cannot build all shapes at o(|S|) scale in the

minimum possible O(K(S)
logK(S)) tile complexity. This mo-

tivates the quest for small scale factors in more powerful

self-assembly models.

The next result by Demaine, Patitz, Schweller, and

Summers [5] considers general shape assembly within

the staged RNAse self-assembly model. In this model,

system tiles are separated into separate bins and mixed

over distinct stages of the algorithm in a way that mod-

els realistic laboratory operations. In addition, each tile

2 Austin Luchsinger et al.

type in this model is of type DNA or RNA, and the

staging permits the addition of an RNAse enzyme at

any step in the staging, thereby dissolving all tiles of

type RNA, leaving DNA tiles untouched. By adding the

powerful operations of separate bins, sequential stages,

and tile deletion, [5] achieves general shape construc-

tion within optimal O(K(s)
logK(S)) tile complexity using

only a constant number of bins and stages, and only

a logarithmic scale factor. This leap in scale factor re-

duction constituted a great improvement, but required

a very powerful model with both staging and tile dis-

solving. In addition, the holy grail of O(1) scale factor

remained elusive.

The next entry into the quest for Kolmogorov opti-

mal shape assembly at small scale comes from a recent

work by Schiefer and Winfree [13]. Schiefer and Win-

free introduce the chemical reaction network tile assem-

bly model (CRN-TAM) in which chemical reaction net-

works and abstract tile assembly systems combine and

interact by allowing CRN species to activate and deac-

tivate tiles, while tile attachments may introduce CRN

species. This powerful interaction allowed the construc-

tion of Kolmogorov optimal systems for the assembly of

general shapes at O(1) scale. Although the result pro-

vides a great scale factor, the CRN-TAM constitutes a

substantial jump in model complexity and power.

In this paper we study the optimal shape build-

ing problem within one of the simplest, and most well

studied models of self-assembly: the two handed tile as-

sembly model (2HAM), where system monomers are

4-sided tiles with glue types on each edge. Assembly

in the 2HAM proceeds whenever two previously as-

sembled conglomerations of tiles, or assemblies, collide

along matching glue types whose strength sums to some

temperature threshold. Our only addition to the model

is the allowance of negative strength (i.e., repulsive)

glues, an admittedly powerful addition based on re-

cent work [6, 8–10, 14], but an addition motivated by

biology [11] that maintains the passive nature of the

model as system monomers are static, state-less pieces

that simply attract or repulse based solely on surface

chemistry (Figure 1). While the negative glue 2HAM

has been used for works such as fuel-efficient compu-

tation [14] and recently universal shape replication [1],

it is also one of the simplest models where the general

shape assembly problem has been considered. Our re-

sult is on par with the best possible result: we show

that any connected shape S is self-assembled at O(1)-

scale in the negative glue 2HAM within O(K(S)
logK(S)) tile

types, which is met by a matching lower bound.

Our Approach. We achieve our result by com-

bining the fuel efficient Turing machine construction

published in SODA 2013, [14], with a number of novel

negative glue based gadgets. At a high level, the fuel

efficient Turing machine system extracts a description

of a path that walks the pixels of the constant-scaled

shape from a compressed initial binary string. From

there, the steps of the path are translated into walker

gadgets which conceptually walk along the surface of

the growing path and eventually deposit an additional

pixel in the specified direction, with the aid of path ex-

tension gadgets. When all pixels have been placed, the

path through the shape is filled, resulting in a scaled

version of the original shape.

Additional Related Work. Additional work has

considered assembly of O(1)-scaled shapes by break-

ing the assembly process up into a number of distinct

stages. In particular, [3] introduces the model of staged

self-assembly in which intermediate tile assemblies grow

in separate bins and are mixed and split over a se-

quence of distinct stages. This approach is applied to

achieve O(1)-scaled shapes with O(1) tiles types, but a

large number of bins and stages which encode the target

shape. In [4] this approach is pushed further to achieve

tradeoffs in terms of bin complexity and stage complex-

ity, while maintaining construction of a final assembly

with no unbonded edges. In [7] similar constant-scale re-

sults are obtained in the step-wise self-assembly model

in which tile sets are added in sequence to a growing

seed assembly. Finally, in [16] O(1)-scaled shapes are

assembled with O(1) tile types by simply adjusting the

temperature of a given system over multiple assembly

stages. While each of above staged approaches offers im-

portant algorithmic insights, the large number of stages

required by each makes the approaches infeasible for

large shapes. Furthermore, the system complexity of

these systems (which includes the staging algorithms)

greatly exceeds the descriptional complexity of the goal

shape in a typical case.

Paper layout. Our construction consists of a num-

ber of detailed gadgets for specific tasks. Presentation is

thus organized incrementally to walk through a version

of each gadget (with symmetry there may be multiple).

Section 2 gives the preliminary definitions and back-

ground. In Section 3 we provide a high-level overview

of the entire process as a guide for the rest of the paper.

We then show the details of our construction with the

gadgets and methods we use for constructing a straight

line of the path (Section 4) and turning corners in the

path (Section 5). Additional gadget variations are de-

tailed in Section 6. Section 7 provides the analysis of our

construction, with the lower bound on tile complexity

for shape assembly presented in Section 8, and details

for pushing our construction to achieve a matching up-

per bound in Section 9. Then we conclude in Section 10.

Self-Assembly of Shapes at Constant Scale using Repulsive Forces 3

(a) (b) (c)

Fig. 1: This figure introduces notation for our construc-

tions, as well as a simple example of negative glues.

On each tile, the glue label is presented. Red (shaded)

labels represent negative glues, and the relevant glue

strengths for the tiles can be found in the captions. For

caption brevity, for a glue type X we denote str(X)

simply as X (e.g., X + Y = str(X) + str(Y)). In this

temperature τ = 1 example, X = 2, Y = 1, Z = 2 and

N = −1. (a) The three tile assembly on the left attaches

with the single tile with strength Z + N = 2 − 1 = τ

resulting in the 2× 2 assembly shown in (b). However,

this 2× 2 assembly is unstable along the cut shown by

the dotted line, since Y + N = 1 − 1 < τ . Then the

assembly is breakable into the assemblies shown in (c).

2 Definitions and Model

In this section we first define the two-handed tile self-

assembly model with negative and positive strength

glue types. We also formulate the problem of designing

a tile assembly system that constructs a constant-scaled

shape given the optimal description of that shape.

Tiles and Assemblies. A tile is an axis-aligned

unit square centered at a point in Z2, where each edge is

labeled by a glue selected from a glue set Π. A strength

function str : Π → N denotes the strength of each glue.

Two tiles equal up to translation have the same type.

A positioned shape is any subset of Z2. A positioned

assembly is a set of tiles at unique coordinates in Z2,

and the positioned shape of a positioned assembly A is

the set of those coordinates.

For a given positioned assembly Υ , define the bond

graph GΥ to be the weighted grid graph in which each

element of Υ is a vertex and the weight of an edge

between tiles is the strength of the matching coincident

glues or 0.1 A positioned assembly C is said to be τ -

stable for positive integer τ provided the bond graph

GC has min-cut at least τ , and C is said to be connected

if every pair of vertices in GC has a connecting path

using only positive strength edges.

For a positioned assembly A and integer vector v =

(v1, v2), let Av denote the positioned assembly obtained

1 Note that only matching glues of the same type contribute
a non-zero weight, whereas non-equal glues always contribute
zero weight to the bond graph. Relaxing this restriction has
been considered as well [2].

by translating each tile in A by vector v. An assembly

is a translation-free version of a positioned assembly,

formally defined to be a set of all translations Av of a

positioned assembly A. An assembly is τ -stable if and

only if its positioned elements are τ -stable. An assembly

is connected if its positioned elements are connected.

A shape is the set of all integer translations for some

subset of Z2, and the shape of an assembly A is defined

to be the set of the positioned shapes of all positioned

assemblies in A. The size of either an assembly or shape

X, denoted as |X|, refers to the number of elements of

any positioned element of X.

Breakable Assemblies. We say an assembly is τ -

breakable if it can be cut into two pieces along a cut

whose strength sums to less than τ . Formally, an as-

sembly C is breakable into assemblies A and B if A and

B are connected, and the bond graph GC′ for some as-

sembly C ′ ∈ C has a cut (A′, B′) for A′ ∈ A and B′ ∈ B
of strength less than τ . We call A and B pieces of the

breakable assembly C.

Combinable Assemblies. Two assemblies are τ -

combinable provided they may attach along a border

whose strength sums to at least τ . Formally, two as-

semblies A and B are τ -combinable into an assembly

C provided GC′ for any C ′ ∈ C has a cut (A′, B′) of

strength at least τ for some A′ ∈ A and B′ ∈ B. We

call C a combination of A and B.

Note that A and B may be combinable into an as-

sembly that is not stable (and thus breakable). This is

a key property that is leveraged throughout our con-

structions. See Figure 1 for an example. For a system

Γ = (T, τ), we say A →Γ
1 B for assemblies A and B if

either A is τ -breakable into pieces that include B, or A

is τ -combinable with some producible assembly to yield

B, or if A = B. Intuitively this means that A may grow

into assembly B through one or fewer combination or

break reactions. We define the relation →Γ to be the

transitive closure of →Γ
1 , ie., A →Γ B means that A

may grow into B through a sequence of combination or

break reactions.

Producibility and Unique Assembly. A two-

handed tile assembly system (2HAM system) is an or-

dered pair (T, τ) where T is a set of single tile assem-

blies, called the tile set, and τ ∈ N is the temperature.

Assembly proceeds by repeated combination of assem-

bly pairs, or breakage of unstable assemblies, to form

new assemblies starting from the initial tile set. The

producible assemblies are those constructed in this way.

Formally:

Definition 1 (2HAM Producibility) For a given

2HAM system Γ = (T, τ), the set of producible assem-

blies of Γ , denoted PRODΓ , is defined recursively:

4 Austin Luchsinger et al.

– (Base) T ⊆ PRODΓ

– (Combinations) For any A,B ∈ PRODΓ such that A

and B are τ -combinable into C, then C ∈ PRODΓ .

– (Breaks) For any assembly C ∈ PRODΓ that is τ -

breakable into A and B, then A,B ∈ PRODΓ .

Definition 2 (Terminal Assemblies) A terminal as-

sembly of a 2HAM system is a producible assembly that

cannot break and cannot combine with any other pro-

ducible assembly. Formally, an assembly A ∈ PRODΓ of

a 2HAM system Γ = (T, τ) is terminal provided A is τ -

stable (will not break) and not τ -combinable with any

producible assembly of Γ (will not combine).

Definition 3 (Unique Assembly - with bounded

garbage) A 2HAM system Γ = (T, τ) uniquely pro-

duces an assembly A with garbage bound c ∈ {0}
⋃

Z+

provided that A is terminal, and for all B ∈ PRODΓ such

that |B| > c , B →Γ A.

Definition 4 (Unique Shape Assembly - bounded

garbage) A 2HAM system Γ = (T, τ) uniquely assem-

bles a finite shape S with garbage bound c ∈ {0}
⋃

Z+

if for every A ∈ PRODΓ such that |A| > c, there exists a

terminal A′ ∈ PRODΓ of shape S such that A→Γ A′.

Definition 5 (Kolmogorov Complexity) The Kol-

mogorov complexity (or descriptional complexity) of a

shape S with respect to some fixed universal Turing

machine U is the smallest bit string such that U out-

puts a list of exactly the positions in some translation

of shape S when provided the bit string as input. We

denote this value as K(S).

3 Concept/Construction Overview

This section presents a high-level overview of the shape

construction process. First, we will present the concep-

tual overview, which explains the fundamental ideas

behind our shape self-assembly process. Then, we will

show a high-level look at how our construction imple-

ments this process.

3.1 Conceptual Overview

Starting with the Kolmogorov-optimal description of a

shape (as a base b string, b > 2), we simulate a Turing

machine which converts any base b string into its equiv-

alent base 2 representation (Sec. 9) We then simulate

another Turing machine that takes the binary descrip-

tion of a shape, finds a spanning tree for that shape,

and outputs a path around that spanning tree as a set

(a) Non-scaled shape X
with spanning tree.

(b) Shape X at scale 2
with spanning tree.

(c) Shape X at scale 6
with spanning tree.

Fig. 2: The Turing machine calculates a spanning tree

of the tiles in the shape (a), scales the shape in order to

allow a path around the spanning tree (b), and further

scales the shape for the gadgets (c).

of instructions (forward, left, right) starting from a be-

ginning node on the perimeter.

A simple depth-first search will find the spanning

tree for any shape. Scaling the shape to scale 2 cre-

ates a perimeter path that outlines the spanning tree,

and assembles the shape. Scaling again, this time by a
multiple of 3, now allows space for the perimeter path

with an equal-sized space buffer on both sides (Fig. 2).

This buffer is required as it allows sufficient space for

our construction gadgets to “walk” along the perimeter

path being built.

Process Overview:

1. Given the Kolmogorov-optimal description of a par-

ticular shape, run a base conversion Turing machine

to get its binary equivalent.

2. Given that binary string, run another Turing ma-

chine that outputs the description of a path around

the shape’s spanning tree as a set of instructions

(forward, left, right).

3. Given those instructions, build the path. Our con-

struction begins with a tape containing this path de-

scription for a scale 24 shape.

Self-Assembly of Shapes at Constant Scale using Repulsive Forces 5

(a) Abstract tape (b) Overlay Pro-
cess

(c) Resulting As-
sembly

(d) Begin Read (e) Continue
Read

(f) End Read

(g) Begin Walk (h) Continue
Walk

(i) End Walk

(j) Begin Extend (k) Continue Ex-
tend

(l) End Extend

(m) Begin Reduc-
tion

(n) Continue Re-
duction

(o) End Reduc-
tion

Fig. 4: (a)-(c) The overlay process covers the tape while

making the data readable on top. (d)-(f) Reading the

leftmost piece of data and creating an information block

(depicted in green). (g)-(i) Information Walking on the

path to the end where the information is used. (j)-

(l) When the information block reaches the end of the

path, the block triggers a Path Extension. (m)-(o) Once

the information has been read, Tape Reduction removes

that piece of the tape.

3.2 Construction Overview

The construction overview begins at step 3 of the con-

ceptual overview, using the output from step 2. Through-

out this paper, we will be referring to this output as

the tape, meaning the fuel-efficient Turing machine tape

with path-building instructions encoded on it. This tape

is detailed in Section 4.

Construction Steps Overview:

1. Overlay. The overlay process is the first step in

shape construction. Figure 4a-c shows an abstrac-

tion of how the output from step 2 in the concept

overview gets covered during the overlay process.

The overlay initiator gadget can only attach to a

completed tape. This begins a series of cooperative

attachments that will cover the tape. Each bit of in-

formation on the tape is covered by its correspond-

ing overlay piece, and thus is readable on the top of

the overlay. The overlay process is finished once the

entire tape is covered.

2. Reading. After the overlay process is complete, in-

formation can be extracted from the tape through

the read process (Figs. 4d-f). Information can only

be extracted from the covered leftmost section of

the tape if it has not already been read. When a

tape section is read, information is extracted from

the tape and a corresponding information block is

created.

3. Information Walking. Once the information block

is created, it begins walking until it reaches the end

of the tape/path (Figs. 4g-i). Walking gadgets allow

the information to travel down the entire path.

4. Path Extension. When an information block can-

not travel any further, the path is extended (Figs.

4j-l). The path can be extended forward, left, or

right. The direction of the path extension is depen-

dent on which information block is at the end of the

path. After the path is extended, the information

block is removed from the path.

5. Tape Reduction. Once information is extracted

from the tape and sent down the path, one tape

section is removed (Figs. 4m-o). Only tape sections

that have been read are removed, which then allows

the next section to be read. This process continues

until every section of the tape is read/removed.

6. Repeat. Repeat the tape read, information walk,

path extend, and tape reduction processes until all

path instructions have been read (Figs. 3a-c).

(a) Early Path
Construction

(b) Intermediate
Path Construc-
tion

(c) Final Path
Construction

(d) Begin Fill (e) Continue Fill (f) End Fill

Fig. 3: (a)-(c) The process is repeated until all information has been read/removed from the tape.

(d)-(f) The final step is Path Filling the shape.

6 Austin Luchsinger et al.

(a)

(b) (c) (d)

Fig. 5: (a) A completed tape consisting of all forward instructions. (b) Overlay Initiator gadget attaching to tape.

(c-d) Overlay fillers begin covering all tape sections from right to left.

7. Path Filling. The final tape section that gets read

begins the shape fill process (Figs. 3d-f). In this pro-

cess, the path is padded with tiles which fill it in and

results in the final shape.

4 Construction Details

In this section, we detail the steps of our construction

process. This is the process by which information is read

from the tape and portions of the path are assembled.

We will also cover the gadgets required for each step,

and review the tape construction from the fuel-efficient

Turing machine used in [14]. This construction uses

pre-constructed assemblies called gadgets. These gad-

gets are designed to work in a temperature τ = 10 sys-

tem. In our figures, a perpendicular black line through

the middle of the edge of two adjacent tiles indicates a

unique 2τ = 20 strength bond2. Each gadget provides

a different function to the shape creation process.

Turing Machine Tape. A detailed look at a fuel-

efficient Turing machine tape is seen in Figure 5a. No-

tice each tape section has a pair of tiles on top of it

where the information is stored. Each pair of dark grey

tiles on top of the tape sections represents a piece of

information describing the path.

The Overlay Initiator Gadget attaches to the end

of the completed tape, and begins the overlay process

(Fig. 5b-d). Each bit of information on the tape is cov-

ered by a corresponding overlay section, allowing the

information to be read on top of the overlay. This pro-

cess continues, section by section, until the entire tape

is covered. Once finished, the overlay layer will act as an

interface, allowing the gadgets to use the information

on the tape.

2 The strongest detaching force used in our construction is
a τ strength detachment, and since the internal bonds of our
gadgets are meant to withstand even the strongest repulsive
force, it follows that those bonds must be of strength at least
2τ .

Read. The read gadget is required for “reading” the

Turing machine tape. Essentially, this gadget extracts

the information that is relayed from the tape through

the overlay blocks. The read process (Fig. 6a-c) can

only begin if the leftmost tape section has not previ-

ously been read. Once attached, the gadget allows the

attachment of an information block (corresponding to

the information being read) that will be used to carry

the build instructions through the rest of our construc-

tion. Once the information block is present, the remain-

ing read-helpers can attach. The final helper destabi-

lizes the read gadget, allowing it to fall off and expose

the newly attached information block. The read gadget

was designed to produce this information block, alter

the tape section that is being read (making it unread-

able), and then detach from the assembly. This design

ensures that each tape section is only read once, and

allows us to transfer the instructions to other locations

in our construction via the walking gadgets. A particu-

lar cut in the read process is of note, as it may result in

an infinite attachment/detachment loop (between Fig.

6b-c). Since each assembly within this loop still has a

growth path towards the final terminal assembly, this

is merely a peculiarity which has no impact on our con-

struction.

Information Walking. The walking gadgets begin the

information walking process (Fig. 7), which allows in-

structions to travel throughout our construction. After

a tape section has been read and an information block

has been placed, a walking gadget can attach. Once at-

tached, the walking gadget allows a new information

block (of the same type) to attach, while also detach-

ing the the previous information block. Notice that this

detachment will always be O(1) size. After the previous

information is removed, the walking gadget detaches as

well, allowing the new info block to interact with other

gadgets. Thus, the same information has traveled from

the tape, through the overlay, and is now traveling along

the tape. This process is repeated until the information

Self-Assembly of Shapes at Constant Scale using Repulsive Forces 7

(a) (b) (c)

Fig. 6: (a) The Read Gadget attaches (n+T+F = 2+7+1 ≥ τ). (b) The information block attaches (F+F+J2 =

1 + 1 + 8 ≥ τ), along with the read-helpers. (c) After all read helpers have attached, the read gadget becomes

unstable and detaches (F + F +M + n+ T + F +Q = 1 + 1 + 1 + 2 + 7 + 1− 7 ≤ τ).

(a) (b) (c)

Fig. 7: (a) A Walking Gadget attaches to the overlay and the information block (F +F + J1 = 1 + 1 + 8 ≥ τ). (b)

The negative interaction between the D glues destabilizes the old information block, along with the two walking-

helpers (J2 +A2 +A2 + F + F +D = 8 + 2 + 2 + 1 + 1− 7 ≤ τ). (c) Once the second walking-helper is attached,

the walking gadget becomes unstable (F +O2 + J1 +D = 1 + 7 + 8− 7 ≤ τ).

has traveled to the end of the path, at which point it is

used to construct the next path portion. This method is

desirable because it does not allow duplicate readable

instructions to be attached to the path at any time.

Path Extension. After the information block has tra-

veled to the end of the path, a path extension gadget

can attach to the assembly. Once attached, the gad-

get allows the path extension process (Fig. 8) to begin,

which extends the path in a given direction (forward,

left, or right) based on the instruction carried by the in-

formation block. The extension gadget “reads” the in-

formation block, and then extends the path in the given

direction. Afterwards, the extension helpers destabilize

the information block and extension gadget, causing a

O(1) sized detachment. We designed the extension gad-

get to essentially replace an instruction block with a

corresponding path portion. This design allows us to

attach a O(1) sized path portion for each instruction

read from the tape.

Tape Reduction. After a tape section has been read,

we no longer need it. Instead of continuing to grow the

assembly, we can remove O(1) size portions of the tape

as it is being read. This is where the tape reduction gad-

get initiates the tape reduction process (Fig. 9). The at-

tachments left behind by the read/walk processes allow

the tape reduction gadget to attach to a tape section

that has already been read. The gadget then removes it-

self, along with the previously read tape section, expos-

ing the next section of the tape for reading. This tech-

nique is desirable because it allows us to break apart

the tape into O(1) sized pieces as we use it. As the tape

is reduced, the path continues to grow until there are

no more tape sections to be read.

Filling. After the entire path has been built, all previ-

ous tape sections will have been read/removed, save for

one. The fill initiator gadget then attaches to the final

tape section (Fig. 10), and begins the fill process. A se-

ries of cooperative attachments flood the sides (above

and below) the path we’ve constructed. The initiator

gadget, as well as the final tape section, remain to be-

come the first pixel of the shape.

5 Turning Corners

The previous section detailed all of the tools needed for

our construction to build straight lines. This section

shows the mechanisms required for the path to turn left

or right during its construction. The process by which

the information is extracted and moves along the path is

identical to that of Section 4. The key difference is how

8 Austin Luchsinger et al.

(a) (b) (c)

Fig. 8: (a) The forward-extension gadget attaches to the information block and Turing tape (B+C +F + p = 3 +

4+1+2 ≥ τ). (b) The second extension-helper comes with the negative D glue that causes targeted destabilization

(X + p+ J1 +X +D = 2 + 2 + 8 + 2− 7 ≤ τ). The extension gadget and its helpers, along with the information

block and its helpers are no longer stable along their tape-overlay edges. (c) The final result is a one path-pixel

extension of the path.

(a) (b) (c)

Fig. 9: (a) The tape reduction gadget attaches to the read-helpers (A2 + U = 2 + 8 ≥ τ). (b) Filler tiles attach

(s+ s = 8 + 8 ≥ τ), and create a strong bond to the tape reduction gadget. (c) The two negative o glues cause a

strong targeted destabilization of the previously read tape section (e+ u1 + u2 + o+ o = 3 + 8 + 8− 5− 5 ≤ τ).

the information is used once it gets to the end of the

path. Previously, forward extension and walking gadgets

were used to extend the path. Here, specific gadgets are

used in order to turn the path left and right.

Extend Left and Right. The process for extend-

ing left and right is very similar to extending forward.

Just as before, the information block must walk to the

end of the path before it can be used for extension.

The difference now, is the direction of the extension.

The left/right information block allows the left/right-

extension gadget to attach and extend the path using

the same mechanics as forward-extension. (Figs. 11 and

12). The extension gadget reads the information block,

extends the path in the given direction, and then de-

taches all but the newly extended path.

Walk Left and Right. The walk-(left/right) proce-

dures also utilize the same mechanics as walking for-

ward, but with slightly different gadgets(Figs. 13 and

14). The information block only allows the correct walk-

ing gadget to attach and begin the walking process.

Once attached, the walking gadget allows a new infor-

mation block (of the same type) to attach, while also

detaching the previous info block. After the previous

information is removed, the walking gadget detaches as

well, allowing the new info block to interact with other

gadgets. Thus, the same information has traveled along

a left or right path turn.

Fill Left. The filler blocks continue attaching until they

encounter a corner (Fig. 15). For left turns, the topside

fillers encounter a concave corner, while the underside

fillers encounter a convex corner. The design of the filler

blocks allows them to simply transition from one block

type to the next for concave corners. Convex corners,

however, require a filler transition block to start filling

in the new direction. Again, there are unique sets of

filler blocks for filling along the topside and underside

of the path.

Fill Right. The right-fill process is a reflection of the

left-turn process (Fig. 16). Here, the topside fillers en-

counter the convex corner, and the underside fillers en-

counter the concave corner. Both filler types are de-

signed to flood their respective sides of the path.

Self-Assembly of Shapes at Constant Scale using Repulsive Forces 9

(a) (b) (c)

Fig. 10: (a) The fill initiator gadget attaches to the tape (H + I = 8 + 5 ≥ τ). (b) The first topside fillers attach

(s+G1 = 8+8 ≥ τ, Y 0+G1 = 9+8 ≥ τ), as well as the underside fillers (X+S+X = 2+5+2 ≥ τ, Y 0+G3 = 9+8 ≥
τ) (c) The topside and underside line filler blocks continue to attach (Y 2 +G1 = 9 + 8 ≥ τ, Y 6 +G3 = 9 + 8 ≥ τ).

6 Gadget Variations

Walkers 1 & 2 The first walking gadget (Fig 17a) is

used for all subsequent steps along the tape, after the

standard walking gadget (Sec 4) has executed the in-

formation block’s initial step. The second walking gad-

get (Fig 17c) allows the information block to transition

from walking on the tape, to walking on the path. This

gadget is required because single tape and path sections

differ in size and glue types.

Walkers 3 & 4 Once an information block has tran-

sitioned from the tape to the path, the third walking

gadget (Fig 17b) allows it to take an initial step on the

path. The fourth walking gadget (Fig 17d) allows the

information block to continue walking along the path.

These gadgets are required because a single path sec-

tion is shorter than a single tape section, which these

gadgets account for.

Extenders 1 & 2 Two gadgets (Figure 18a-b) are re-

quired to extend the path after the initial extension

gadget (Sec 4) builds the first path portion. Extender

1 (Fig 18a) is designed to build the second path por-

tion. Once the second path portion has been built, the

extender 2 (Fig 18b) carries out all remaining forward

extensions, with the exception of two special cases after

a left turn.

Extenders 3 & 4 After a left extend (Sec 5, two more

extender variations (Fig 18c-d) are required to extend

the path to a sufficient length that allows the walk-

ing/extending gadgets to be used. The first two of these

forward extensions require extenders 3 and 4. Extender

3 (Fig 18c) extends the path in the new direction after

the turn. Extender 4 (Fig 18d) then builds an additional

path portion in the direction of the turn.

7 Constant Scaled Shapes

In this section, we formally state the results based on

our construction.

Theorem 1 For any finite connected shape S, there

exists a 2HAM system Γ = (TS , 10) that uniquely pro-

(a) (b) (c)

Fig. 11: (a) The left-extension gadget attaches to the information block and shape path (B + C + L + X =

3 + 4 + 1 + 2 ≥ τ). (b) The negative D glue on the second extension-helper causes targeted destabilization. The

extension gadget and its helpers, along with the information block and its helpers are no longer bound to the path

with sufficient strength. (X + X + G1 + X + D = 2 + 2 + 8 + 2 − 7 ≤ τ) (c) The final result is a one path-pixel

extension of the path to the left of the direction the info block was walking.

10 Austin Luchsinger et al.

(a) (b) (c)

Fig. 12: (a) The right-extension gadget attaches to the information block (B + C + R +X = 3 + 4 + 1 + 2 ≥ τ).

(d) The second extension-helper comes with a negative D glue that causes targeted destabilization. The extension

gadget and its helpers, along with the information block and its helpers are no longer bound to the path with

sufficient strength(X +X +G1 +X +D = 2 + 2 + 8 + 2− 7 ≤ τ). (f) The final result is a one path-pixel extension

of the path to the right of the direction the info block was walking.

(a) (b) (c)

Fig. 13: The left-walking gadget attaches to the path and the information block (C +F +W = 4 + 1 + 5 ≥ τ). (b)

The negative interaction between the D glues destabilizes the old information block, along with the two walking-

helpers(X +G1 +C+F +D = 2 + 8 + 4 + 1− 7 ≤ τ). (c) Once the second walking-helper is attached, the walking

gadget becomes unstable due to the negative Q glues (W +O3 + F +Q = 5 + 7 + 1− 4 ≤ τ).

duces S (with a O(1) garbage bound) at a O(1) scale

factor, and |TS | = O(K(S)
logK(S)).

Proof. We show this by constructing a 2HAM system

Γ = (TS , 10). One portion of TS consists of the tile

types which assemble a higher base Kolmogorov-optimal

description of S (Section 9). This portion of TS consists

of O(K(S)
logK(S)) tile types, as analyzed in Section 9. An-

other portion of TS consists of the tile types needed to

assemble a fuel-efficient Turing machine, as described

by [14], that performs a simple base conversion to bi-

nary using O(K(S)
logK(S)) tile types, as analyzed in Sec-

tion 9. The next portion of TS consists of the tile types

required to assemble another fuel-efficient Turing ma-

chine that finds and outputs the description of a path

around the spanning tree of S. This Turing machine is

of O(1) size, and thus adds O(1) tile types using the

method from [14]. The final portion of TS consists of

the tile types that construct the gadgets and assem-

blies shown in Section 4. With the number of tile types

used for computing the path description and for our

construction process being O(1), our final tile complex-

ity is O(K(S)
logK(S)).

Now, consider assembly A to be the fully constructed

tape assembly (Section 4) encoded with path-building

instructions specific to S. Also, suppose assembly B is

some terminal assembly that has shape S at a constant

scale factor. To assemble A, we had to start with an as-

sembly which represents a higher base description of S.

By using the fuel-efficient Turing machines of [14], we

can transition this higher-base assembly into A. Dur-

Self-Assembly of Shapes at Constant Scale using Repulsive Forces 11

(a) (b) (c)

Fig. 14: The right-walking gadget attaches to the path and the information block (C+F +W = 4+1+5 ≥ τ). (b)

The negative interaction between the D glues destabilizes the old information block, along with the two walking-

helpers (X+G1 +C+F +D = 2 + 8 + 4 + 1−7 ≤ τ). (c) Once the second walking-helper is attached, the walking

gadget becomes unstable due to the negative Q glues(F +O3 + E +Q = 1 + 7 + 5− 4 ≤ τ).

(a) (b)

(c) (d)

Fig. 15: (a) The northern topside fillers attach until

they encounter a left corner (Y 2 +G1 = 9 + 8 ≥ τ). (b)

The southern underside fillers attach until they reach a

corner as well (Y 6 +G3 = 9 + 8 ≥ τ).(c) The underside

south-east filler attaches (Y 6 +G2 = 9 + 8 ≤ τ) (d) A

completely filled left turn.

ing this process the only assembly larger than 56 tiles

is the Turing machine tape on which the computation

is being performed, which inevitably becomes A.

Note that the remaining assembly process of Γ fol-

lows the details of Section 4. This process was designed

(a) (b)

(c) (d)

Fig. 16: (a) The northern topside fillers attach until

they encounter a right corner (Y 2 + G1 = 9 + 8 ≥ τ).

(c) The eastern topside fillers attach (Y 5 + G2 = 9 +

8 ≥ τ).(d) The south underside fillers attach until they

reach a corner as well (Y 6 + G2 = 9 + 8 ≤ τ) (f) A

completely filled right turn.

12 Austin Luchsinger et al.

(a) Walker 1 (b) Walker 3

(c) Walker 2 (d) Walker 4

Fig. 17: These are the walking gadget variations. Each

variation also has specific versions for the different in-

structions that are carried by the information blocks.

While slightly different, all walking gadgets utilize the

same mechanics shown in Section 4. The changes here

are due to what they are walking on, be it the tape or

the path.

(a) Extender 1 (b) Extender 2

(c) Extender 3 (d) Extender 4

Fig. 18: As with the walking gadgets, all extension gad-

gets are mechanically the same as the gadget introduced

in Section 4. While their function of these gadgets are

the same (to extend the path by one section), the pri-

mary difference is in their geometry.

so that two assemblies are combinable only if at least

one of those assemblies is at most a constant size (70

tiles), and every breakable assembly can only break into

two subassemblies if one of those assemblies is at most

another constant size (118 tiles). In our construction,

the only assemblies which are not bounded by this 118

tile constant are A, B, and any intermediate assembly

that consists of some portion of the tape, and some par-

tially assembled section of the final shape. Of these, B

is the only terminal assembly.

While A and the intermediate assemblies continue

engaging in a series of attachments and detachments,

the tape continues to get smaller and the path contin-

ues to grow. The attachment and detachment of O(1)

size pieces with these assemblies will continue until we

reach the terminal assembly B, at which time A will

have been disassembled into chunks of constant-sized

garbage. Therefore, we see that A→Γ B.

8 Lower Bound

Here we present a brief argument for the lower bound

of Ω(K(S)
logK(S)) on the tile types needed to assemble a

scaling of a shape S, under the assumption of constant

bounded temperature, constant bounded glue strengths,

and a fairly reasonable assumption that the system to

build S does not grow infinitely many distinct pro-

ducible assemblies. This argument is nearly identical to

what is presented in [2, 12, 15], and we refer the reader

there for a more detailed explanation.

Theorem 2 Consider a 2HAM system Γ = (T, τ) such

that τ is bounded by some constant, and each glue used

within T has an absolute strength value bounded by a

constant, and the number of producible assembles of

Γ is finite. If Γ uniquely produces a scale-c version

of a shape S for some constant garbage bound, then

|T | = Ω(K(S)
logK(S)).

Proof. Note that a 2HAM system Γ = (T, τ = O(1))

can be uniquely represented by a string of O(|T | log |T |)
bits. In particular, each tile may be encoded as a list

of its 4 glues, and each glue may be represented by

a O(log |T |)-bit string taken from an indexing of the

maximum possible 4|T | distinct glue types of the sys-

tem, along with a constant number of bits encoding

the glue strength. The constant bounded temperature

incurs an additional additive constant. Given this rep-

resentation, consider a simulation program that inputs

a negative glue 2HAM system, and outputs the posi-

tions of any uniquely produced scale-c shape (with up

to O(1) garbage), if one exists. Utilizing the assumption

of a finite set of producible assemblies, this simulator

Self-Assembly of Shapes at Constant Scale using Repulsive Forces 13

could achieve this by simply generating all producible

assemblies in a brute force manner and halting upon

verifying that all such assemblies grow into a termi-

nal scaling of shape S. This simulator, along with the

O(|T | log |T |) bit encoding of a system Γ which assem-

bles S at scale c, constitute a program which outputs

the positions of S, and is thus lower bounded in bits by

K(S). Therefore K(S) ≤ d|T | log |T | for some constant

d, implying |T | = Ω(K(S)
logK(S)).

9 Extension to K(S)
logK(S)

The starting assembly for our shape construction al-

gorithm is the tape assembly from [14] with a binary

string as its value. For a binary string A = a0 . . . ak−1,

such an assembly can be constructed in a straightfor-

ward manner using O(k) tile types (simply place a dis-

tinct tile for each position in the assembly, for example).

However, by using a base conversion trick, we can take

advantage of the fact that each tile type is asymptot-

ically capable of representing slightly more than 1 bit

in order to build the string in O(k/ log k) tile types. To

achieve this, first we consider the base-b representation

B = b0 . . . bd−1 of the string A for some higher base

b > 2. Note that the number of digits of this string is

d ≤ d k
blog2 bc

e = O(k
log b). We are able to assemble this

shorter string (by brute force with distinct tile types at

each position) with only O(d) tile types.

Next, we consider a Turing machine which converts

any base b string into its equivalent base 2 representa-

tion. Such a Turing machine can be constructed using

O(b) transition rules. Therefore, we can apply the re-

sult of [14] to run this Turing machine on the initial

tape assembly representing string B to obtain string

A. The cost of this construction in total is O(d) tiles

to construct the initial tape assembly, plus O(b) tiles to

implement the rules of the conversion Turing machine3,

for a total of O(d+ b) tiles.

Finally, we select b = d k
log k e = O(k

log k), which

yields d = O(k
log k−log log k) = O(k

log k), implying that

the entire tile cost of setting up the initial tape assem-

bly representing binary string B is O(b+ d) = O(k
log k)

tile types. In our case k = O(K(S)) where K(S) de-

notes the Kolmogorov complexity of shape S for some

given universal Turing machine, and so we achieve our

final tile complexity of O(K(S)
logK(S)).

3 The formal theorem statement of [14] cites the product
of the states and symbols of the Turing machine as the tile
type cost. However, the actual cost is the number of transition
rules, which is upper bounded by this product.

10 Conclusion

In this work, we considered the optimal shape building

problem in the negative glue 2-handed assembly model,

and provided a system that allows the self-assembly of

general shapes at scale 24. Shape construction has been

studied in more powerful self-assembly models such as

the staged RNA assembly model and the chemical re-

action network-controlled tile assembly model. How-

ever, our result constitutes the first example of opti-

mal general shape construction at constant scale in a

passive model of self-assembly where no outside exper-

imenter intervention is required, and system monomers

are state-less, static pieces which interact solely based

on the attraction and repulsion of surface chemistry.

Our work opens up a number of directions for future

work. We have not considered a runtime model for this

construction, so analyzing and improving the running

time for constant-scaled shape self-assembly in the 2-

handed assembly is one open direction. Another is de-

termining the lowest necessary temperature and glue

strengths needed for O(1) scale shape construction. We

use temperature value 10 for the sake of clarity, and

have not attempted to optimize this value.

References

1. Chalk, C., Demiane, E.D., Demaine, M.L., Martinez,
E., Schweller, R., Vega, L., Wylie, T.: Universal shape
replicators via self-assembly with attractive and repul-
sive forces. In: Proc. of the 28th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’17) (2017)

2. Cheng, Q., Aggarwal, G., Goldwasser, M.H., Kao, M.Y.,
Schweller, R.T., de Espanés, P.M.: Complexities for gen-
eralized models of self-assembly. SIAM Journal on Com-
puting 34, 1493–1515 (2005)

3. Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque,
M., Rafalin, E., Schweller, R.T., Souvaine, D.L.: Staged
self-assembly: nanomanufacture of arbitrary shapes with
O(1) glues. Natural Computing 7(3), 347–370 (2008)

4. Demaine, E.D., Fekete, S.P., Scheffer, C., Schmidt, A.:
New geometric algorithms for fully connected staged self-
assembly. In: DNA Computing and Molecular Program-
ming, Lecture Notes in Computer Science, vol. 9211, pp.
104–116 (2015). DOI 10.1007/978-3-319-21999-8 7

5. Demaine, E.D., Patitz, M.J., Schweller, R.T., Summers,
S.M.: Self-assembly of arbitrary shapes using RNAse en-
zymes: Meeting the Kolmogorov bound with small scale
factor (extended abstract). In: Proc. of the 28th Interna-
tional Symposium on Theoretical Aspects of Computer
Science (STACS’11) (2011)

6. Doty, D., Kari, L., Masson, B.: Negative interactions in
irreversible self-assembly. Algorithmica 66(1), 153–172
(2013). DOI 10.1007/s00453-012-9631-9

7. Mauch, J., Stacho, L., Stoll, C.: Step-wise tile assembly
with a constant number of tile types. Natural Computing
11(3), 535–550 (2012). DOI 10.1007/s11047-012-9321-1

8. Patitz, M.J., Rogers, T.A., Schweller, R., Summers,
S.M., Winslow, A.: Resiliency to multiple nucleation in
temperature-1 self-assembly. In: DNA Computing and

14 Austin Luchsinger et al.

Molecular Programming. Springer International Publish-
ing (2016)

9. Patitz, M.J., Schweller, R.T., Summers, S.M.: Exact
shapes and Turing universality at temperature 1 with a
single negative glue. In: DNA Computing and Molecu-
lar Programming, LNCS, vol. 6937, pp. 175–189 (2011).
DOI 10.1007/978-3-642-23638-9 15

10. Reif, J.H., Sahu, S., Yin, P.: Complexity of graph self-
assembly in accretive systems and self-destructible sys-
tems. Theoretical Comp. Sci. 412(17), 1592–1605 (2011).
DOI http://dx.doi.org/10.1016/j.tcs.2010.10.034

11. Rothemund, P.W.K.: Using lateral capillary forces to
compute by self-assembly. Proceedings of the National
Academy of Sciences 97(3), 984–989 (2000). DOI
10.1073/pnas.97.3.984

12. Rothemund, P.W.K., Winfree, E.: The program-size com-
plexity of self-assembled squares (extended abstract). In:
Proc. of the 32nd ACM Sym. on Theory of Computing,
STOC’00, pp. 459–468 (2000)

13. Schiefer, N., Winfree, E.: Universal Computation
and Optimal Construction in the Chemical Reaction
Network-Controlled Tile Assembly Model, pp. 34–54.
Springer International Publishing, Cham (2015). DOI
10.1007/978-3-319-21999-8 3

14. Schweller, R., Sherman, M.: Fuel efficient computation
in passive self-assembly. In: SODA 2013: Proceedings
of the 24th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1513–1525. SIAM (2013)

15. Soloveichik, D., Winfree, E.: Complexity of self-
assembled shapes. SIAM Journal on Computing 36(6),
1544–1569 (2007)

16. Summers, S.M.: Reducing tile complexity for the self-
assembly of scaled shapes through temperature program-
ming. Algorithmica 63(1), 117–136 (2012)

	Introduction
	Definitions and Model
	Concept/Construction Overview
	Construction Details
	Turning Corners
	Gadget Variations
	Constant Scaled Shapes
	Lower Bound
	Extension to K(S)logK(S)
	Conclusion

