
Applying Deep Learning to the Newsvendor Problem

Afshin Oroojlooy, Lawrence Snyder, Martin Takáč

Department of Industrial and Systems Engineering

Lehigh University, Bethlehem, PA, USA

Abstract

The newsvendor problem is one of the most basic and widely applied inventory

models. If the probability distribution of the demand is known, the problem can be

solved analytically. However, approximating the probability distribution is not easy

and is prone to error; therefore, the resulting solution to the newsvendor problem

may be not optimal. To address this issue, we propose an algorithm based on deep

learning that optimizes the order quantities for all products based on features of the

demand data. Our algorithm integrates the forecasting and inventory-optimization

steps, rather than solving them separately, as is typically done, and does not require

knowledge of the probability distributions of the demand. One can view the optimal

order quantities as the labels in the deep neural network. However, unlike most deep

learning applications, our model does not know the true labels (order quantities), but

rather learns them during the training. Numerical experiments on real-world data

suggest that our algorithm outperforms other approaches, including data-driven and

machine learning approaches, especially for demands with high volatility. Finally,

in order to show how this approach can be used for other inventory optimization

problems, we provide an extension for (r,Q) policies.

1 Introduction

The newsvendor problem optimizes the inventory of a perishable good. Perishable goods are those

that have a limited selling season; they include fresh produce, newspapers, airline tickets, and fashion

goods. The newsvendor problem assumes that the company purchases the goods at the beginning

of a time period and sells them during the period. At the end of the period, unsold goods must

be discarded, incurring a holding cost (sometimes referred to as an overage cost). In addition, if

it runs out of the goods in the middle of the period, it incurs a shortage cost (or underage cost),

losing potential profit. Therefore, the company wants to choose the order quantity that minimizes the

expected sum of the two costs described above. The problem dates back to Edgeworth (1888); see

Porteus (2008) for a history and Zipkin (2000), Porteus (2002), and Snyder and Shen (2019), among

others, for textbook discussions.

The optimal order quantity for the newsvendor problem can be obtained by solving the following

optimization problem:

min
y
C(y) = Ed [cp(d− y)+ + ch(y − d)+] , (1)

where d is the random demand, y is the order quantity, cp and ch are the per-unit shortage and holding

costs (respectively), and (a)+ := max{0, a}. In the classical version of the problem, the shape of

the demand distribution (e.g., normal) is known, and the distribution parameters are either known or

estimated using available (training) data. If F (·) is the cumulative density function of the demand

distribution and F−1(·) is its inverse, then the optimal solution of (1) can be obtained as

y∗ = F−1
(

cp
cp + ch

)
= F−1(α), (2)

where α = cp/(cp + ch) (see, e.g., Snyder and Shen (2019)).

Extensions of the newsvendor problem are too numerous to enumerate here (see Choi (2012) for

examples); instead, we mention two extensions that are relevant to our model. First, in real-world

problems, companies rarely manage only a single item, so it is important for the model to provide

solutions for multiple items. Second, companies often have access to some additional data—called

features—along with the demand information. These might include weather conditions, day of the

week, month of the year, store location, and so on (Ban and Rudin 2018). The goal is to choose

today’s order quantity, given the observation of today’s features. We will call this problem the

2

multi-feature newsvendor (MFNV) problem. In this paper, we propose an approach for solving this

problem that is based on deep learning, i.e., deep neural networks (DNN).

The remainder of this paper is structured as follows. A brief summary of the literature relevant to

the MFNV problem is presented in Section 2. Section 3 presents the details of the proposed algorithm.

Numerical experiments are provided in Section 4. Section 5 introduces an extension of the approach

for (r,Q) policies, and the conclusion and a discussion of future research complete the paper in

Section 6.

2 Literature Review

2.1 Current State of the Art

Currently, there are five main approaches in the literature that are applicable to the MFNV. The

first category, which we will call the estimate-as-solution (EAS) approach, involves forecasting the

demand and then simply using it as the order quantity. The forecasting usually is done via classical

approaches like ARIMA, TRANSFER, and GARCH models (Box et al. 2015, Shumway and Stoffer

2010); or sometimes by deep neural networks (Efendigil et al. 2009, Qiu et al. 2014b, Vieira 2015).

Although EAS is a relatively naive approach for solving the MFNV—unlike the subsequent four

approaches—it is common both in practice and in the literature; see below. This approach involves

first clustering the demand observations, then forecasting the demand, and then simply treating the

point forecast as a deterministic demand value, i.e., setting the order quantity equal to the forecast. By

clustering, we mean that all demand observations that have the same feature values are put together in

a set, called a cluster. For example, when there are 100 demand records for two products in two stores,

there are four clusters, and on average each cluster has 25 records. The forecast may be performed in

a number of ways, some of which we review in the next few paragraphs.

Figure 1 illustrates EAS and the other four approaches. In the figure, each square represents a

cluster and the arrows indicate the steps used to move from the clustered data to the end result, i.e.,

the newsvendor solution. Figure 1a shows that in the SEO approach, we simply calculate an estimate

µ̂k of the mean of the demands in cluster k and then set the order quantity equal to µ̂k.

This approach ignores the key insight from the newsvendor problem, namely, that we should not

simply order the mean demand, but rather choose a level that strikes a balance between holding and

3

k

µ̂k =⇒ y∗ = µ̂k

(a) Estimate-as-solution (EAS).

k

µ̂k, σ̂k =⇒ y∗ = NV(µ̂k, σ̂k)

(b) Separated estimation and optimization (SEO).

k

d1k ≤ d2k ≤ · · · ≤ d
rk
k

=⇒ y∗ = F̂−1k (α)

(c) Empirical quantile (EQ).

k

w1
k w2

k · · · wrk
k

↓ ↓ · · · ↓
d1k ≤ d2k ≤ · · · d

rk
k

=⇒ y∗ = SAA
({
wi

k

}rk
i=1

)
(d) K-nearest neighbors (KNN) and random forest (RF).

NLP

y∗ = wTx

(e) Linear machine learning (LML).

Figure 1: Approaches for solving MFNV problem. Squares represent clusters.

stockout costs using the distribution of the demand. Nevertheless, the approach is common in the

literature on the newsvendor problem and other production–inventory-type problems. For example,

Yu et al. (2013) propose a support vector machine (SVM) model to forecast newspaper demands

at different types of stores, along with 32 other features. Chi et al. (2007) propose a SVM model

to determine the replenishment point in a vendor-managed replenishment system, and a genetic

algorithm is used to solve it. The common theme in these papers is that they provide only a forecast

of the demand, which is then be treated as the solution to the MFNV or other optimization problem.

This is the EAS approach.

The second approach for solving MFNV-type problems, which Ban and Rudin (2018) refer to as

separated estimation and optimization (SEO), involves first estimating (forecasting) the demand

distribution and then plugging the estimate into an optimization problem such as the classical

newsvendor problem. The estimation step is performed similarly as in the EAS approach except that

we estimate more than just the mean. For example, we might estimate both mean (µk) and standard

4

deviation (σk) for each cluster, which we can then use in the optimization step. (See Figure 1b, in

which we estimate the standard deviation in cluster k, σk, in addition to the mean µk, and then use

the estimates µ̂k and σ̂k as inputs to the classical newsvendor problem.) Or we might use the σ that

was assumed for the error term in a regression model. The main disadvantage of this approach is that

it requires us to assume a particular form of the demand distribution (e.g., normal), whereas empirical

demand distributions are often unknown or do not follow a regular form. A secondary issue is that we

compound the data-estimation error with model-optimality error. Ban and Rudin (2018) show that for

some realistic settings, the SEO approach is provably suboptimal. This idea is used widely in practice

and in the literature; a broad list of research that uses this approach is given by Turken et al. (2012).

Ban and Rudin (2018) analyze it as a straw-man against which to compare their solution approach.

The third approach was proposed by Bertsimas and Thiele (2005) for the classical newsvendor

problem. Their approach involves sorting the demand observations in ascending order d1 ≤ d2 ≤

· · · ≤ dn and then estimating the αth quantile of the demand distribution, F−1(α), using the

observation that falls 100α% of the way through the sorted list, i.e., it selects the demand dj such that

j = dn cp
cp+ch

e. This quantile is then used as the order quantity, in light of (2). Since they approximate

the αth quantile, we refer to their method as the empirical quantile (EQ) method. (See Figure 1c,

which depicts the sorted demands in each cluster, with the solution set equal to the αth quantile of

the resulting implied demand distribution.) Importantly, EQ does not assume a particular form of

the demand distribution and does not approximate the probability distribution, so it avoids those

pitfalls. However, an important shortcoming of this approach in our context is that it does not use

the information from features. In principle, one could extend their approach to the MFNV by first

clustering the demand observations and then applying their method to each cluster. However, similar

to the classical newsvendor algorithm, this would only allow it to consider categorical features and

not continuous features, which are common in supply chain demand data, e.g., Ali and Yaman (2013)

and Ban and Rudin (2018). Moreover, even if we use this clustering approach, the method cannot

utilize any knowledge from other data clusters, which contain valuable information that can be useful

for all other clusters. Finally, when there is volatility among the training data, the estimated quantile

may not be sufficiently accurate, and the accuracy of EQ approach tends to be worse.

5

In the newsvendor problem, the optimal solution is a certain quantile of the demand distribution.

Thus, the problem can be modeled as a quantile regression problem, in a manner similar to the

empirical quantile model of Bertsimas and Thiele (2005). Taylor (2000) was the first to propose the

use of neural networks as a nonlinear approximator of the quantile regression to get a conditional

density of multi-period financial returns. Subsequently, several papers used quantile-regression neural

networks to obtain a quantile regression value. For example, Cannon (2011) uses a quantile-regression

neural network to predict daily precipitation; El-Telbany (2014) uses it to predict drug activities; and

Xu et al. (2016) uses a quantile autoregression neural network to evaluate value-at-risk. One can

consider our approach as a quantile-regression neural network for the newsvendor problem. However,

our approach is much more general and can be applied to other inventory optimization problems,

even those whose optimal solutions is not simply a quantile, provided that a closed-form cost function

exists. To demonstrate this, in Section 5 we extend our approach to solve an inventory problem that

does not have a quantile-type solution, namely, optimizing the parameters of an (r,Q) policy.

A fourth approach for solving MFNV-type problems can be derived from the method proposed by

Bertsimas and Kallus (2014), which applies several machine learning (ML) methods on a general

optimization problem given by

z∗(x) = argmin
z

E [c(z, y)|x] , (3)

where {(x1, y1), . . . , (xN , yN)} are the available data—in particular, xi is a d-dimensional vector of

feature values and yi is the uncertain quantity of interest, e.g., demand values—and z is the decision

variable. They test five algorithms to optimize (3): k-nearest neighbor (KNN), random forest (RF),

kernel method, classification and regression trees (CART), and locally weighted scatterplot smoothing

(LOESS). They use sample average approximation (SAA) as a baseline, and each algorithm provides

substitute weights for the SAA method. For example, KNN identifies the set of k nearest historical

records to the new observation x such that

N (x) =

i = 1, . . . , n :

n∑
j=1

I{||x− xi|| ≥ ||x− xj ||} ≤ k

 .

Bertsimas and Kallus (2014) assign weights wi = 1/k for all i ∈ N (x) (and zero otherwise) and call

a weighted SAA; for example, if applied to the newsvendor problem, the SAA might take the form

q = inf

{
dj :

j∑
i=1

wi ≥
cp

cp + ch

}
, (4)

6

where dj are the ascending sorted demands. (See Figure 1d, where the weight wr
k for each sample

r in cluster k is obtained and the sorted demands in each cluster determines the solution via (4).)

Similarly, in RF, there are T trees. The weight of each observation is obtained using

wi =
1

T

T∑
t=1

I{Rt(x) = Rt(xi)}
|{j : Rt(xj) = Rt(xi)}|

,

whereRt(x) is the region of tree t that observation x is in. In other words, the RF algorithm counts all

trees in which the new observation x is in the same region as historical observation xi, i = 1, . . . , n,

and normalizes them over all observations in tree t that have the same region. Finally, it normalizes

the weights over all trees. Using these weights, the method of Bertsimas and Kallus (2014) as applied

to the newsvendor problem calls the weighted SAA (4) to get the order quantity. Bertsimas and

Kallus (2014) discuss asymptotic convergence of their methods and compare their performance with

that of SAA.

The fifth approach for the MFNV, and the one that is closest to our proposed approach, was

introduced by Ban and Rudin (2018); we refer to it as the linear machine learning (LML) method.

They postulate that the optimal order quantity is related to the demand features via a linear function;

that is, that y∗ = wTx, where x is the vector of features and w is a vector of (unknown) weights.

They estimate these weights by solving the following nonlinear optimization problem, essentially

fitting the solution using the newsvendor cost:

minw
1
n

∑n
i=1

[
cp(di − wTxi)

+ + ch(w
Txi − di)+

]
+ λ||w||2k

s.t. (di − wTxi)
+ ≥ di − w1 −

p∑
j=2

wix
j
i ; ∀i = 1, . . . , n

(wTxi − di)+ ≥ w1 +
p∑

j=2

wix
j
i − di; ∀i = 1, . . . , n

(5)

where n is the number of observations, p is the number of features, and λ||w||2k is a regularization

term. (See Figure 1e, which shows that a non-linear programming model is solved to obtain weights

w∗, which then determine the order quantity) The LML method avoids having to cluster the data, as

well as having to specify the form of the demand distribution. Ban and Rudin (2018) comprehensively

analyze the effects of adding nonlinear combinations of features into the feature space, as well as

the effects of regularization and of overfitting. (For more theoretical details on these concepts, see

Smola and Schölkopf (2004).) However, this model does not work well when p� n, and its learning

is limited to the current training data. In addition, if the training data contains only a small number

of observations for each combination of the features, the model learns poorly. Finally, it makes the

7

strong assumption that x and y∗ have a linear relationship. We drop this assumption in our model

and instead use DNN to quantify the relationship between x and y∗; see Section 3. Ban and Rudin

(2018) also propose a kernel regression (KR) model to optimize the order quantity, in which weighted

historical demands are used to build an empirical cdf of the demand. The weights are proportional to

the distance of the newly observed feature value with historical feature values, i.e.,

wi =
K(x− xi)∑n
j=1K(x− xj)

,

where K(u) = exp(−||u||22/2h)/
√
2π and h is the kernel bandwidth that has to be tuned. Then they

call weighted SAA (4) to obtain the order quantity. In addition, they provide a mathematical analysis

of the generalization errors associated with each method.

In addition to the five methods discussed above, there is a large body of literature on data-driven

inventory management that assumes we do not know the demand distribution and instead must

directly use the data to make a decision. Besbes and Muharremoglu (2013) consider censored data

(in which some demands cannot be observed due to stockouts) in the newsvendor problem. The

paper proposes three models and algorithms to minimize the regret when real, censored, and partially

censored demand are available. They propose an EQ-type algorithm (discussed above) for observable

demand. For censored and partially censored demand, they propose two algorithms, as well as lower

and upper bounds on the regret value for all algorithms. Burnetas and Smith (2000) propose an

adaptive model to optimize price and order quantity for perishable products with an unknown demand

distribution, assuming historical data of censored sales are available. They assume that the demand is

continuous and propose two algorithms, one for a fixed price and another for the pricing/ordering

problem. Their algorithm for choosing the order quantity provides an adaptive policy and works even

when there is nearly no historical information, so it is suitable for new products. It starts from an

arbitrary point q0 and iteratively updates it with some learning rate and information about whether or

not the order quantity qt was sufficient to satisfy the demand in period t.

Neither of these two papers use features, which is the key aspect of our problem. One data-

driven approach that does use features is by Ban et al. (2017), who propose a model to choose the

order quantity for new, short-life-cycle products from multiple suppliers over a finite time horizon,

assuming that each demand has some feature information. They propose a data-driven algorithm,

called the residual tree method, which is an extension of the scenario tree method from stochastic

8

programming, and prove that this method is asymptotically optimal as the size of the data set grows.

Their approach has separate steps for estimation (using regression) and optimization (using stochastic

linear programming). Although their problem has some similarities to ours, it is not immediately

applicable since it is designed for finite-horizon problems with multiple suppliers.

2.2 Deep Learning

In this paper, we develop a new approach to solve the newsvendor problem with data features, based

on deep learning. Deep learning, or deep neural networks (DNN), is a branch of machine learning

that aims to build a model between inputs and outputs. Deep learning has many applications in

image processing, speech recognition, drug and genomics discovery, time series forecasting, weather

prediction, and—most relevant to our work—demand prediction. On the other hand, one major

criticism of deep learning (in non-vision-based tasks) is that it lacks interpretability—that is, it is

hard for a user to discern a relationship between model inputs and outputs; see, e.g. Lipton (2016).

In addition, it usually needs careful hyper-parameter tuning, and the training process can take many

hours or even days. We provide only a brief overview of deep learning here; for comprehensive

reviews of the algorithm and its applications, see Goodfellow et al. (2016), Schmidhuber (2015),

LeCun et al. (2015), Deng et al. (2013), Qiu et al. (2014a), Shi et al. (2015), and Längkvist et al.

(2014).

DNN uses a cascade of many layers of linear or nonlinear functions to obtain the output values

from inputs. A general view of a DNN is shown in Figure 2. At each node j (j = 1, . . . , n) of a

given layer l (l = 1, . . . , L), the input value

zlj =

n∑
i=1

al−1i wij (6)

is calculated. A function glj(z
l
j), called the activation function, transforms the input in order to

determine the output value of the node. The value of glj(z
l
j) is called the activation of the node, and is

denoted by alj . Typically, all nodes in the network have similar glj(·) functions. The most commonly

used activation functions are the sigmoid (1/(1 + e−z
l
j)), tanh ((1− e−2z

l
j)/(1 + e−2z

l
j)), and Relu

(max{0, zlj}) functions, which add non-linearity into the model. (For more details, see LeCun et al.

(2015), Goodfellow et al. (2016)). The activation value of each node is the input for the next layer,

and finally, the activation values of the nodes in the last layer determine the output values of the

9

Figure 2: A simple deep neural network.

j

k

Input layer

Hidden layers

Output layer

wjk

zk
l+1

zl
j

al
j = gl

j(z
l
j)

network. The general flow of the calculations between two layers of the DNN, highlighting zlj , alj ,

wjk, and zl+1
j , is shown in Figure 2.

The goal of the DNN is to determine the weights w of the network such that a given set of inputs

results in a true set of outputs. A loss function is used to measure the closeness of the outputs of

the model and the true values. The most common loss functions are the hinge, logistic regression,

softmax, and Euclidean loss functions. The goal of the network is to provide a small loss value, i.e.,

to optimize:

min
w

1

n

n∑
i=1

E(θ(xi;w), yi) + λR(w),

where E(·) is the loss function, w is the matrix of the weights, xi is the vector of the inputs from

the ith instance, θ(·) is the DNN function, and R(w) is a regularization function with weight λ. The

regularization term prevents over-fitting and is typically the `1 or `2 norm of the weights. (Over-fitting

means that the model learns to do well on the training set but does not extend to the out-of-training

samples; this is to be avoided.) Finally, yi is the target value that the DNN attempts to predict, and

in the context of the newsvendor problem, it is the optimal order quantity. In supervised problems

like image classification the label is known, though in the newsvendor problem the optimal order

quantity is not known and we provide a way to learn it. In particular, we use the demand observations

in the training phase to obtain the newsvendor cost and then update the weights of the network in a

direction that minimize the newsvendor cost.

In each DNN, the number of layers, the number of nodes in each layer, the activation function

inside each node, and the loss function have to be determined. After selecting those characteristics

and building the network, DNN starts with some random initial solution. In each iteration, the

10

activation values and the loss function are calculated. Then, the back-propagation algorithm obtains

the gradient of the network and, using one of several optimization algorithms (Rumelhart et al. 1988),

the new weights are determined. The most common optimization algorithms are gradient descent,

stochastic gradient descent (SGD), SGD with momentum, and Adam optimizer. (For details on each

optimization algorithm see Goodfellow et al. (2016).) This procedure is performed iteratively until

some stopping condition is reached; typical stopping conditions are (a) reaching a maximum number

of iterations and (b) attaining ||∇w`(θ(xi;w), yi)|| ≤ ε through the back-propagation algorithm.

Since the number of instances, i.e., the number of training records, is typically large, it is common

(Goodfellow et al. 2016, Bottou 2010) to use a stochastic approximation of the objective function.

That is, in each iteration, a mini-batch of the instances is selected and the objective is calculated only

for those instances. This approximation does not affect the provable convergence of the method. For

example, in networks with sigmoid activation functions in which a quadratic loss function is used,

the loss function asymptotically converges to zero if either gradient descent or stochastic gradient

descent are used (Tesauro et al. 1989, Bottou 2010).

2.3 Our Contribution

To adapt the deep learning algorithm for the newsvendor problem with data features, we propose

a revised loss function, which considers the impact of inventory shortage and holding costs. The

revised loss function allows the deep learning algorithm to obtain the minimizer of the newsvendor

cost function directly, rather than first estimating the demand distribution and then choosing an order

quantity. Unlike in image classification, in the newsvendor problem the training set does not contain

any true labels (order quantities), only feature values and corresponding demand observations. We

use the feature values as the inputs of the DNN to obtain the order quantity. For this purpose, we

use the demand observations only in the training phase to learn the optimal order quantities. The

execution phase takes new feature values as inputs, outputs order quantities, and runs in real-time.

In the presence of sufficient historical data, this approach can solve problems with known probability

distributions as accurately as (2) solves them. However, the real value of our approach is that it

is effective for problems with small quantities of historical data, problems with unknown/unfitted

probability distributions, or problems with volatile historical data—all cases for which the current

approaches fail.

11

3 Deep Learning Algorithm for Newsvendor with Data Features

In this section, we present the details of our approach for solving the newsvendor problem with data

features. Assume there are n historical demand observations for m products. Also, for each demand

observation, the values of p features are known. That is, the data can be represented as{
(x1i , d

1
i), . . . , (x

m
i , d

m
i)
}n
i=1

,

where xqi ∈ Rp and dqi ∈ R for i = 1, . . . , n and q = 1, . . . ,m. The problem is formulated

mathematically in (7) for a given period i, i = 1, . . . , n, resulting in the order quantities y1i , . . . , y
m
i :

Ei = min
y1
i ,...,y

m
i

1

m

[
m∑
q=1

(
ch(y

q
i − d

q
i)

+ + cp(d
q
i − y

q
i)

+
)]
, (7)

where Ei is the loss value of period i and E = 1
n

∑n
i=1Ei is the average loss value. Since at least

one of the two terms in each term of the sum must be zero, the loss function (7) can be written as:

Ei =

m∑
q=1

Eq
i

Eq
i =


cp(d

q
i − y

q
i) , if yqi < dqi ,

ch(y
q
i − d

q
i) , if dqi ≤ y

q
i .

(8)

E, the average of the Ei values defined in (7), serves as the value to be minimized by the DNN, i.e.,

the DNN finds values for the variables y1i , . . . , y
m
i that obtain the minimum average cost. In other

words, for each input xqi , the DNN obtains a single output yqi that will serve as the order quantity for

the corresponding input features. Note, though, that the decision variables of the model are not the

yqi values directly; rather, they are the weights of the neural network, i.e., wjk for j = 1, . . . , nnl,

k = 1, . . . , nnk, and l, k ∈ {1, . . . , L}. The order quantity yqi can be written explicitly as a function

of those weights, so that the output of the network, i.e., aL0 , is the order quantity. The order quantity

outputs are optimized through the training process by iteratively updating the weights of the network

to minimize the loss function (7).

Note that, in contrast, the EAS approach would simply seek to predict dqi rather than to optimize

yqi —say, by replacing the term inside the brackets in (7) with
m∑
q=1

||yqi − d
q
i ||.

Using the newsvendor cost in the loss function, rather than simply the distance to the true demand,

allows our model to capture the tradeoff between the holding and stockout costs, true to the aim of

the newsvendor problem.

12

As noted above, there are many studies on the application of deep learning for demand prediction

(see Shi et al. (2015)). Most of this research uses the Euclidean loss function (see Qiu et al. (2014b)).

However, the demand forecast is an estimate of the first moment of the demand probability distribution;

it is not, however, the optimal solution of model (7). Therefore, another optimization problem must be

solved to translate the demand forecasts into a set of order quantities. This is the separated estimation

and optimization (SEO) approach described in Section 2.1, which may result in a non-optimal order

quantity (Ban and Rudin 2018). To address this issue, we propose using the newsvendor cost function

(7) as the loss function (as well as a variant of it, essentially a revised Euclidean loss function,

described in the next paragraph), so that instead of simply predicting the demand, the DNN minimizes

the newsvendor cost function. Thus, running the corresponding deep learning algorithm gives the

order quantity directly.

We found that squaring the cost for each product in (7) sometimes leads to better solutions, since

the function is smooth, and the gradient is available in the whole solution space. Therefore, we also

test the following revised Euclidean loss function:

Ei = min
y1
i ,...,y

m
i

1

m

[
m∑
q=1

[
cp(d

q
i − y

q
i)

+ + ch(y
q
i − d

q
i)

+
]2]

(9)

which penalizes the order quantities that are far from di much more than those that are close. Then

we have

Eq
i =


1
2 ||cp(d

q
i − y

q
i)||22 , if yqi < dqi ,

1
2 ||ch(y

q
i − d

q
i)||22 , if dqi ≤ y

q
i .

(10)

The two propositions that follow provide the gradients of the loss functions with respect to the weights

of the network. In both propositions, i is one of the samples, wjk represents a weight in the network

between two arbitrary nodes j and k in layers l and l + 1,

alj = glj(z
l
j) =

∂(zlk)

∂wjk
(11)

is the activation function value of node j, and

δlj =
∂Eq

i

∂zlj
=
∂Eq

i

∂alj

∂alj
∂zlj

=
∂Eq

i

∂alj
(glj)

′(zlj). (12)

Also, let

δlj(p) = cp(g
l
j)
′(zlj)

δlj(h) = ch(g
l
j)
′(zlj)

(13)

13

denote the corresponding δlj for the shortage and excess cases, respectively. Proofs of both proposi-

tions are provided in Appendix A.

Proposition 1. The gradient with respect to the weights of the network for loss function (8) is:

∂Eq
i

∂wjk
=


aljδ

l
j(p) if yqi < dqi ,

aljδ
l
j(h) if dqi ≤ y

q
i .

(14)

Proposition 2. The gradient with respect to the weights of the network for loss function (10) is:

∂Eq
i

∂wjk
=

(dqi − y
q
i)a

l
jδ

l
j(p), if yqi < dqi

(yqi − d
q
i)a

l
jδ

l
j(h), if dqi ≤ y

q
i .

(15)

Our deep learning algorithm uses gradients (14) and (15) under the proposed loss functions (8)

and (10), respectively, to iteratively update the weights of the networks. In order to obtain the new

weights, an SGD algorithm with momentum is called, with a fixed momentum of 0.9. This gives us

two different DNN models, using the linear loss function (8) and the quadratic loss function (10),

which we call DNN-`1 and DNN-`2, respectively.

In order to obtain a good structure for the DNN network, we use the HyperBand algorithm (Li et al.

2016). In particular, we generate 100 fully connected networks with random structures. In each, the

number of hidden layers is randomly selected as either two or three (with equal probability). Let

nnl denote the number of nodes in layer l; then nn1 is equal to the number of features. The number

of nodes in each hidden layer is selected randomly based on the number of nodes in the previous

layer. For networks with two hidden layers, we choose nn2 ∈ [0.5nn1, 3nn1], nn3 ∈ [0.5nn2, nn2],

and nn4 = 1. Similarly, for networks with three hidden layers, nn2 ∈ [0.5nn1, 3nn1], nn3 ∈

[0.5nn2, 2nn2], nn4 ∈ [0.5nn3, nn3], and nn5 = 1. The nnl values are drawn uniformly from the

ranges given. For each network, the learning rate and regularization parameters are drawn uniformly

from [10−2, 10−5]. In order to select the best network among these, following the HyperBand

algorithm, we train each of the 100 networks for one epoch (which is a full pass over the training

dataset), obtain the results on the test set, and then remove the worst 10% of the networks. We then

run another epoch on the remaining networks and remove the worst 10%. This procedure iteratively

repeats to obtain the final best networks.

14

4 Numerical Experiments

In this section, we discuss the results of our numerical experiments. In addition to implementing

our deep learning models (DNN-`1 and DNN-`2), we implemented the EQ model by Bertsimas

and Thiele (2005), modifying it so that first the demand observations are clustered according to the

features and then EQ is applied to each cluster. We also implemented the LML and KR models by

Ban and Rudin (2018) and the KNN and RF models by Bertsimas and Kallus (2014). Finally, we test

the SEO approach, obtaining the mean by training a DNN over the feature values and then assuming

a normally distributed error term to use (2). We train the DNN with both `1 and `2 regularizers

since we do the same for our DNN approach, and denote the corresponding results as SEO-`1 and

SEO-`2. Additionally, we provide results of another, simpler, version of the SEO approach in which

we calculate the classical solution from (2) with parameters µ and σ set to the mean and standard

deviation of the training data in each data cluster; the corresponding results are denoted by by

parametric SEO (PSEO). We do not include results for EAS since it is dominated by PSEO: PSEO

uses the newsvendor solution based on estimates of µ and σ, whereas EAS simply sets the solution

equal to the estimate of µ. In order to compare the results of the various methods, the order quantities

were obtained with each algorithm and the corresponding cost function

cost =
n∑

i=1

m∑
q=1

[
cp(d

q
i − y

q
i)

+ + ch(y
q
i − d

q
i)

+
]

was calculated.

All of the deep learning experiments were done with TensorFlow (Abadi et al. 2016) in Python.

(We have released our code as an open-source Python project; see url.)1 Note that the deep learning,

LML, KR, KNN, and RF algorithms are scale dependent, meaning that the tuned parameters of

the problem for a given set of cost coefficients do not necessarily work for other values of the

coefficients. Thus, we performed a separate tuning for each set of cost coefficients. In addition, we

translated the categorical data features to binary representations (using one-hot encoding, in which

each category is indicated by a binary variable). These two implementation details improve the

accuracy of the learning algorithms. All computations were done on 16-core machines with cores of

1.8 GHz computation power and 32 GB of memory.

1We plan to release the open-source code once this paper is accepted for publication; at that time, a URL will

be provided here.)

15

url

Table 1: Demand of one item over three weeks.
Mon Tue Wed Thu Fri Sat Sun

Week 1 1 2 3 4 3 2 1
Week 2 6 10 12 14 12 10 10
Week 3 3 6 8 9 8 6 5

In what follows, we demonstrate the results of the ten algorithms in three separate experiments.

First, in Section 4.1, we conduct experiments on a very small data set in order to illustrate the

differences among the methods. Second, the results of the ten algorithms on a real-world dataset

are presented in Section 4.2. Finally, in Section 4.3, to determine the conditions under which deep

learning outperforms the other algorithms on larger instances, we present the results of the ten

approaches on several randomly generated datasets.

Note that there is an assumption inherent in all machine learning algorithms (including neural

network, regression, random forest, k-nearest neighbor, etc.) that the underlying demand distribution is

the same in the testing and training data, and that all samples are picked identically and independently.

If this assumption is violated, there are no performance guarantees. Therefore, in all datasets, we

randomly shuffle the available data so that this assumption holds.

4.1 Small Data Set

Consider the small, single-item instance whose demands are contained in Table 1.

In order to obtain the results of each algorithm, the first two weeks are used for training data and

the third week is used for testing. To train the corresponding deep network, a fully connected network

with one hidden layer is used. The network has eight binary input nodes for the day of week and

item number. The hidden layer contains one sigmoid node, and in the output layer there is one inner

product function. Thus, the network has nine variables.

Table 2 shows the results of the ten algorithms. The first column gives the cost coefficients. Note

that we assume cp ≥ ch since this is nearly always true for real applications; however, none of the

methods requires this. The table first lists the actual demand for each day, repeated from Table 1

for convenience. For each instance (i.e., set of cost coefficients), the table lists the order quantity

generated by each algorithm for each day. The last column lists the total cost of the solution returned

by each algorithm, and the minimum costs for each instance are given in bold.

16

Table 2: Order quantity proposed by each algorithm for each day and the corresponding cost. The
bold costs indicate the best newsvendor cost for each instance.

Day & Demand
(cp, ch) Algorithm Mon Tue Wed Thu Fri Sat Sun Cost

True demand 3 6 8 9 8 6 5

(1,1)

DNN-`2 3.5 6.0 7.5 9.0 7.5 6.5 5.5 2.5
DNN-`1 4.6 6.0 8.5 9.0 8.6 5.6 5.6 2.9
EQ 1.0 2.0 3.0 4.0 3.0 2.0 1.0 29.0
LML 1.3 2.2 3.1 4.0 4.9 5.8 6.7 20.3
PSEO 3.5 6.0 7.5 9.0 7.5 6.5 5.5 2.5
SEO-`1 3.2 6.0 5.3 6.4 6.4 5.8 5.0 7.3
SEO-`2 3.6 6.2 7.9 9.1 7.8 6.7 5.3 2.0
KR 4.0 6.0 6.0 6.0 6.0 4.0 4.0 11.0
KNN 6.0 6.0 6.0 6.0 6.0 6.0 6.0 11.0
RF 6.0 6.0 6.0 6.0 6.0 6.0 6.0 11.0

(2,1)

DNN-`2 5.8 7.3 8.9 9.7 8.9 8.1 7.0 10.7
DNN-`1 6.0 6.0 7.9 9.3 9.3 6.4 6.1 5.9
EQ 6.0 10.0 12.0 14.0 12.0 11.0 10.0 30.0
LML 6.0 7.0 8.0 9.0 10.0 11.0 12.0 18.0
PSEO 5.0 8.4 10.2 12.0 10.2 9.2 8.2 18.5
SEO-`1 5.3 7.0 7.8 8.5 7.8 7.3 7.5 8.9
SEO-`2 4.7 6.8 8.8 10.1 8.8 7.5 6.3 8.0
KR 6.0 10.0 12.0 14.0 12.0 11.0 10.0 30.0
KNN 10.0 6.0 10.0 10.0 10.0 10.0 10.0 25.0
RF 6.0 10.0 10.0 10.0 11.0 11.0 11.0 24.0

(10,1)

DNN-`2 5.6 9.3 11.2 13.1 11.2 10.2 9.2 24.6
DNN-`1 6.9 10.2 10.2 10.2 10.2 10.2 10.2 22.8
EQ 6.0 10.0 12.0 14.0 12.0 11.0 10.0 30.0
LML 8.0 10.0 12.0 14.0 16.0 18.0 20.0 53.0
PSEO 8.2 13.6 16.0 18.4 16.0 15.0 14.0 56.2
SEO-`1 5.8 9.5 11.5 13.5 11.5 10.5 9.5 26.8
SEO-`2 5.8 9.5 11.5 13.5 11.5 10.5 9.5 26.8
KR 6.0 10.0 12.0 14.0 12.0 11.0 10.0 30.0
KNN 6.0 10.0 12.0 12.0 12.0 11.0 10.0 39.0
RF 12.0 12.0 12.0 14.0 12.0 12.0 12.0 41.0

(20,1)

DNN-`2 5.8 9.6 11.6 13.5 11.6 10.6 9.6 27.2
DNN-`1 6.1 11.3 11.3 11.3 11.3 11.3 11.3 28.6
EQ 6.0 10.0 12.0 14.0 12.0 11.0 10.0 30.0
LML 8.0 10.0 12.0 14.0 16.0 18.0 20.0 38.0
PSEO 9.4 15.4 18.1 20.8 18.1 17.1 16.1 70.1
SEO-`1 7.2 11.3 15.8 15.8 13.6 12.5 11.6 40.6
SEO-`2 7.2 11.3 15.8 16.0 13.6 12.5 11.6 40.8
KR 10.0 12.0 14.0 14.0 14.0 12.0 11.0 42.0
KNN 14.0 14.0 14.0 14.0 14.0 14.0 14.0 53.0
RF 14.0 14.0 14.0 14.0 14.0 14.0 14.0 53.0

17

First consider the results of the EQ algorithm. The EQ algorithm uses ch and cp and returns the

historical data value that is closest to the αth fractile, where α = cp/(ch + cp). In this data set, there

are only two observed historical data points for each day of the week. In particular, for cp/ch = 1, the

EQ algorithm chose the smaller of the two demand values as the order quantity, and for cp/ch > 1, it

chose the larger value. Since the testing data vector is nearly equal to the average of the two training

data vectors, the difference between EQ’s output and the real demand values is quite large, and

consequently so is the cost. This is an example of how the EQ algorithm can fail when the historical

data are volatile.

Consider the KNN algorithm. Since there are only two weeks of historical data, we opt to use all

possible historical records without any validation and set k = 14. KNN gets the k historical records

that are nearest to the new observation, each with a weight of 1
k , and then chooses the point that

weighted SAA selects. The demand of that point is the order quantity. So, as cp/ch increases, it

selects larger values. However, the demands during the third week (the testing set) are close to the

mean demand of the first two weeks (the training set); therefore, the increased order quantity chosen

by KNN turns out to be too large. Similarly, in RF we select 2000 forests, and in KR we select

h = 0.5 and use all data from the two weeks of the training set. Since both algorithms work with

sorted demands, once cp/ch increases, they select larger demands from the training sets. Therefore,

RF and KR also result in large cost values, for similar reasons as KNN.

Now consider the results of all versions of the SEO algorithm. For the case in which ch = cp

(which is not particularly realistic), SEO-`2 attains the best result among all the algorithms; however

SEO-`1 does not perform well. PSEO’s output is approximately equal to the mean demand, which

happens to be close to the week-3 demand values. This gives PSEO a cost of 2.5, which ties DNN-`2

for second place. For all other instances, however, the increased value of cp/ch results in an inflated

order quantity and hence a larger cost.

Finally, both DNN-`1 and DNN-`2 outperform the LML algorithm by Ban and Rudin (2018),

because LML uses a linear kernel, while DNN uses both a linear and non-linear kernel. Also, there

are only two features in this data set, so LML has some difficulty to learn the relationship between

the inputs and output. Finally, the small quantity of historical data negatively affects the performance

of LML.

18

1 2 3 4 5 6 7 8 9 10

1

1.2

1.4

1.6

1.8

2

co
st

 r
at

io

Figure 3: Ratio of each algorithm’s cost to DNN-`1 cost on a real-world dataset.

This small example shows some conditions under which DNN outperforms the other three algo-

rithms. In the next section we show that similar results hold even for a real-world dataset.

4.2 Real-World Dataset

We tested the ten algorithms on a real-world dataset consisting of basket data from a retailer in 1997

and 1998 from Pentaho (2008). There are 13170 records for the demand of 24 different departments

in each day and month, of which we use 75% for training and validation and the remainder for testing.

The categorical data were transformed into their binary equivalents, resulting in 43 input features.

The results of each algorithm for 100 values of cp and ch are shown in Figure 3. In the figure,

the vertical axis shows the normalized costs, i.e., the cost value of each algorithm divided by the

corresponding DNN-`1 cost. The horizontal axis shows the ratio cp/ch for each instance. As before,

most instances use cp ≥ ch to reflect real-world settings, though a handful of instances use cp < ch

to test this situation as well.

As shown in Figure 3, for this data set, DNN-`1 outperforms the other algorithms for every value

of cp/ch. Among the remaining algorithms, the results of SEO-`2, SEO-`1, KNN, and RF (in that

order) are the closest to those of DNN. On average, their corresponding cost ratios are 1.04, 1.08,

1.15, and 1.16, whereas the ratios for EQ, LML, KR, and PSEO are 1.26, 1.53, 1.16, 1.26, and 1.23

respectively. The average cost ratio of DNN-`2 is 1.13. Note that none of the other approaches are

stable, in the sense that their cost ratios increase with the ratio cp/ch.

19

The superior performance of DNN-`1 vs. SEO-`1 and SEO-`2 suggests that the strength of our

method comes from its end-to-end nature, choosing order quantities directly from the data, and not

simply from the improved performance of the deep learning models. If we use SEO but “boost” the

estimation step by using deep learning instead of simpler forecasting methods, we still do not attain

the performance of our integrated method.

DNN-`2 requires more tuning than DNN-`1, but the DNN-`2 curve in Figure 3 does not reflect

this additional tuning. The need for additional tuning is suggested by the fact that DNN-`2’s loss

value increases as cp or ch increase, suggesting that it might need a smaller learning rate (to avoid

big jumps) and a larger regularization coefficient λ (to strike the right balance between cost and

over-fitting). Thus, tuning DNN-`2 properly would require a larger search space for the learning rate

and λ, which would make the procedure harder and more time consuming. In our experiment, we

did not expend this extra effort; instead, we used the same procedure and search space to tune the

network for both DNN-`1 and DNN-`2, in order to compare them fairly.

Nevertheless, it is worth investigating how the performance of DNN-`2 could be improved if it

is tuned more thoroughly. To that end, we selected integer values of cp/ch = 3, . . . , 9, and for

each value, we applied more computational power and tuned the parameters using a grid search.

We fixed the network as [43, 350, 100, 1], tested it with 702 different parameters, and selected the

best test result among them. The grid search procedure is explained in detail in Appendix B. The

corresponding result is labeled as DNN-`2-T in Figure 3. As the figure shows, this approach has

better results than the original version of DNN-`2; however, DNN-`1 is still better.

The DNN algorithms execute more slowly than some of the other algorithms. For the basket

dataset, the PSEO and EQ algorithms each execute in about 10 seconds. The DNN algorithm requires

about 50 seconds (on a relatively large network, e.g., [43, 90, 150, 56, 1]) for each epoch of training,

while the LML, KR, KNN, and RF algorithms require on average, respectively, about 40 seconds

(per regularization value), 15 seconds (per bandwidth), 5 seconds (for a given k), and 4 seconds

(per tree) for training for a given cp and ch. As the size of the search space for hyper-parameter

tuning increases, so does the training time for DNN, LML, KR, RF, and KNN. For LML, we tested

30 different bandwidths—2h, h ∈ {−20, . . . , 10}—which resulted in 1200 seconds of training, on

average. For KR, we tested bandwidth values of 10−5, 10−4, 10−3, 10−2, 0.05, 0.1, and 0.25, with

20

Table 3: Summary of hyper-parameter (HP) tuning process for each method. Times reported are
approximate training times for a single problem instance.

Approx. Avg. Approx.
HP Values Training Time Total Training

HP Tested HP Values Tested per HP (sec) Time (sec)
SEO – – 10
EQ – – 10
LML 1 30 2h, h ∈ {−20, . . . , 10} 40 1200
KR 1 7 {10−5, 10−4, 10−3, 10−2, 0.05, 0.1, 0.25} 15 105
KNN 1 6 {5, 10, 15, 50, 100, 150} 5 30
RF 1 5 {10, 20, 50, 100, 150} 4 (per tree) 1320
DNN 4 100 (see Section 3) 600 44,050

a total time of 110 seconds on average. KNN needs to tune k, for which we tested six values—

5, 10, 15, 50, 100, and 200—which took 30 seconds on average. Similarly, for RF we tested five

forest sizes—10, 20, 50, 100, and 150—which resulted in 1320 seconds of training on average. For

DNN-`1 DNN-`2, SEO-`1, and SEO-`2 we used the HyperBand algorithm to tune the network. We

tested several different values of each of the hyper-parameters (as explained at the end of Section 3),

resulting in a total of 881 epochs, which took 12.25 hours of training on average. The best network

runs for 16 epochs, which took 600 seconds on average. Table 3 summarizes the hyper-parameters

used during the tuning process for each method, and their approximate computation times. Note that

the times reported in the table are for one instance of the basket dataset, i.e., one value of cp/ch.

On the other hand, DNN, SEO, and LML algorithms execute in less than one second, i.e., once the

network is trained, the methods generate order quantities for new instances very quickly. In contrast,

KR, KNN, and RF required approximately 15, 5, and 4t seconds, respectively, for inference, where t

is the number of trees that is selected.

Since tuning the DNN hyper-parameters can be time-consuming, in Appendix C we propose a

simple tuning-free network for the newsvendor problem.

Finally, we performed a small experiment to provide some intuition about which features have the

most impact on the order quantity. In particular, we calculated the order quantity for each of the

7× 12× 24 = 2016 possible combinations of the feature values, using the DNN model tuned for a

uniform distribution with 100 clusters. For each individual feature value, we calculated the average

order quantity; these are plotted in Figure 4. From the figure it is evident that—for this data set—the

order quantity is affected most strongly by the product category, then by the day of the week, and

then by the month of the year. The average order quantity ranges (max − min) for the product, day,

and month are 682.9, 540.7, and 371.9, respectively.

21

1 2 3 4 5 6 7
day

0

500

1000

1500

av
er

ga
e

or
de

r
qu

an
tit

y

(a)

1 2 3 4 5 6 7 8 9 10 11 12
month

0

500

1000

1500

av
er

ga
e

or
de

r
qu

an
tit

y

(b)

0 5 10 15 20 25
product

0

500

1000

1500

2000

av
er

ga
e

or
de

r
qu

an
tit

y

(c)

Figure 4: The effect each feature on the order quantity for uniformly distributed data with 100

clusters.

This sort of approach could be used to analyze the results of the DNN algorithm for any set of

categorical features. The results could be useful to managers attempting to decide whether to use a

feature-based approach—including DNN or the other models discussed here—rather than treating

the entire data set as a single cluster. For example, if the a supply chain manager for the supermarket

data set did not have access to the product category labels, a feature-based optimization approach

would be less valuable, since the day and month features provide less differentiation in the order

quantities; in this case, ignoring the features and treating the entire data set as a single cluster would

result in less error than it would if product category labels were available. Of course, these insights

pertain only to this data set. We are not claiming that product is a stronger differentiator than month

in general, but rather illustrating how the DNN model can be used to generate such insights.

4.3 Randomly Generated Data

In this section we report on the results of an experiment using randomly generated data. This

experiment allows us to test the methods on many more instances; however, the disadvantage is that

these data are much cleaner than those typically encountered in real supply chains, i.e., they come

from a single probability distribution with no noise. This should be kept in mind when interpreting

these results. In short, the results in this section indicate that, when the data are non-noisy, all of the

methods perform more or less similarly, with some exceptions. In all cases, DNN’s performance is

competitive with, if not better than, the other methods; and since it also performs better on messier

data sets (e.g., the real-world data set in Section 4.2), we recommend its use in general. We now

present a more detailed discussion of this experiment.

22

Table 4: Demand distribution parameters for randomly generated data.
Number of Clusters

Distribution 1 10 100 200
Normal N (50, 10) N (50i, 10i) N (50i, 5i) N (50i, 5i)

Lognormal lnN (2, 0.5) lnN (1 + 0.1(i+ 1), lnN (0.05(i+ 1), lnN (0.02(i+ 1),

0.5 + 0.1(i+ 1)) 0.01(i+ 1)) 0.005(i+ 1))

Exponential exp(10) exp(5 + 2(i+ 1)) exp(5 + 0.2(i+ 1) exp(5 + 0.05(i+ 1)

Beta 20B(1, 1) 100B(0.6(i+ 1), 100B(0.1(i+ 1), 100B(0.07(i+ 1),

0.6(i+ 1)) 0.1(i+ 1)) 0.07(i+ 1))

Uniform U(1, 21) U(5(i+ 1, U((i+ 1), U(0.5(i+ 1),

15 + 5(i+ 1)) 15 + (i+ 1)) 15 + 0.5(i+ 1))

We conducted tests using five different probability distributions for the demand (normal, lognormal,

exponential, uniform, and beta distributions). For each distribution, we generated 257,500 records.

The parameters for the five demand distributions are given in Table 4; these parameters were selected

so as to provide reasonable demand values. All demand values are rounded to the nearest integer.

Each group of 257,500 records is divided into training and validation (10,000 records) and testing (99

sets, each 2,500 records) sets.

In each of the distributions, the data were categorized into clusters, each representing a given

combination of features. Like the real-world dataset, we considered three features: the day of the

week, month of the year, and department. We varied the number of clusters (i.e., the number of

possible combinations of the values of the features) from 1 to 200 while keeping the total number of

records fixed at 257,500; thus, having more clusters is the same as having fewer records per cluster.

In this experiment, an “instance” refers to a given combination of demand distribution (normal,

exponential, ...) and number of clusters (1, 10, ...).

Each problem was solved for cp/ch = 5 using all ten algorithms (including both loss functions for

DNN), without assuming any knowledge of the demand distribution. We conducted additional tests

using additional cp/ch ratios; the results and conclusions were similar, so they are omitted here in the

interest of conciseness.

In part, this experiment is designed to model the situation in which the decision maker does not

know the true demand distribution. To that end, our implementations of the SEO and PSEO algorithm

assumes the demands come from a normal distribution (regardless of the true distribution for the

dataset being tested), since this distribution is used frequently as the default distribution in practice.

23

The other algorithms (DNN, LML, EQ, KNN, KR, and RF) do not assume any probability distribution.

Additionally, since we know the underlying demand distributions, we also calculated and reported the

optimal solution in each case. The average times required to tune or execute each of the algorithms,

per instance, are similar to those in Table 3.

Figure 5 plots the average cost ratio (cost divided by optimal cost) for the five distributions. Each

point on a given plot represents the average cost (over 99 testing sets) for one instance. Figure 6

contains magnified versions of the plots in Figure 5 for three of the distributions. From the plots, we

can draw the following conclusions:

• If there is only a single cluster, then all ten algorithms produce nearly the same results. This

case is essentially a classical newsvendor problem with 7,500 data observations, for which

all algorithms do a good job of providing the order quantity in the test sets.

• As the number of clusters increases, i.e., the number of training samples in each cluster

decreases, the methods begin to differentiate somewhat. In particular:

• DNN-`1, SEO-`2, PSEO, EQ, KR, and KNN perform the best and have roughly equal

performance.

• The SEO methods perform well when the demands are normally distributed but less well

otherwise. This is because one has to assume a demand distribution in order to use SEO, and

we assumed normal. If the demands happen to come from a normal distribution, therefore,

SEO works well. In practice, however, the demand distribution is usually unknown and

often non-normal.

• SEO-`2 and EQ perform relatively well in general in this experiment because, when the

data are non-noisy, it is easier to estimate a quantile. However, for both the small data set

(Section 4.1) and the real-world data set (Section 4.2), which are noisier, SEO-`2 and EQ do

not perform as well as in the simulated data.

• The performance of DNN-`2 is quite good except in the case of normal demands with 100

or 200 clusters. In these cases, the method would benefit from further tuning (similar to the

additional tuning that we did for the basket data set in Section 4.2).

24

1 10 100 200

number of clusters

1

2

3

4

5

6

c
o

s
t

ra
ti

o

(a) normal

1 10 100 200

number of clusters

1.00

1.05

1.10

1.15

c
o

s
t

ra
ti

o

(b) exponential

1 10 100 200

number of clusters

0.99

1.08

1.18

c
o

s
t

ra
ti

o

(c) beta

1 10 100 200

number of clusters

1

1.5

2

c
o

s
t

ra
ti

o

(d) lognormal

1 10 100 200

number of clusters

1

3

5

7

c
o

s
t

ra
ti

o

(e) uniform

number of clusters

cost rat
io

Figure 5: Ratio of each algorithm’s cost to optimal cost on randomly generated data from each

distribution.

1 10 100 200

number of clusters

1.00

1.03

1.06

c
o

s
t

ra
ti

o

(a) normal

1 10 100 200

number of clusters

0.99

1.13

1.27

c
o

s
t

ra
ti

o

(b) lognormal

1 10 100 200

number of clusters

1.05

1.14

1.24

c
o

s
t

ra
ti

o

(c) uniform

number of clusters

cost rat
io

Figure 6: Magnified results for normal, lognormal, and uniform distributions.

• LML and RF are nearly always worse than the other methods because there is not enough

data for them to learn the distribution well. (As a result, we have omitted them from

Figure 6.)

To confirm these findings statistically, Figures 7 and 8 plot 95% confidence intervals for each

algorithm for normally and uniformly distributed demands (respectively). The confidence intervals

are calculated using the mean and standard error of the cost ratio over the 99 test data sets. When

25

two confidence intervals are non-overlapping, we can conclude that the performance of the two

corresponding methods is statistically different. If a given method is excluded from a plot, it means

that the method is much worse than the methods that are plotted. From these figures, we can draw the

following conclusions:

• DNN-`1 is statistically better than all other methods for some cases (e.g., uniform demands

with 100 clusters); is in statistical second place to PSEO for normal demands with 200

clusters and to DNN-`2 for uniform demands with 100 and 200 clusters; and is tied for first

place in all other cases.

• PSEO is statistically better than all other methods for normal demands with 200 clusters and

statistically worse than all other methods for uniform demands with any number of clusters.

It is tied with other methods (not in first place) for most other instances.

• SEO-`2 in most cases is in a statistical tie with DNN-`1. The exceptions are uniform

demands with 10 and 100 clusters, and normal demands with 100 clusters.

• DNN-`2, EQ, KNN, and KR are, in most cases, in a statistical tie.

• LML, SEO-`1, and RF are statistically worse than all other methods, except in the case of

normal demands with 1 cluster.

• In nearly every instance, no method obtains solutions that are statistically equal to the

optimal solution. The exception is normal demands with 100 clusters, for which DNN-`1 is

statistically tied with the optimal solution.

Suppose we take a naive approach toward the MFNV problem and ignore the data features,

optimizing the inventory level as though there were only a single cluster. How significant an error is

this? To answer this question, we solved the problem using DNN-`1, grouping all of the data into a

single cluster. (Note that this data set is different from the 1-cluster data sets discussed above. The

data sets above assume there is only a single cluster, i.e., all demand records have identical feature

values, whereas the data set here has multiple sets of feature values, but we are ignoring them to

emulate the naive approach.) Figure 9 plots the ratio between the cost of the resulting solution and the

cost of the DNN-`1 solution that accounts for the clusters, for the five probability distributions and for

data sets with 10, 100, and 200 clusters. Clearly, the errors resulting from this naive approach can be

significant: They range from 5.6% (for the exponential distribution with 200 clusters) to 677.9% (for

26

0 2 4 6 8 10 12
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

co
st

 r
at

io

(a) 1 cluster

0 2 4 6 8 10 12
1

1.0079

1.0159

1.0238

co
st

 r
at

io

(b) 10 clusters

0 2 4 6 8 10 12
1

1.0102

1.0204

1.0306

co
st

 r
at

io

(c) 100 clusters

0 2 4 6 8 10 12
1

1.0145

1.0289

1.0434

co
st

 r
at

io

(d) 200 clusters

Figure 7: Confidence intervals for each algorithm for normally distributed demands. [Missing x-axis

labels. Later figures too.] They are basically the algorithm names, which to save space I move them

to the legend. Do you suggest remove the numbers, or have the algorithm names instead?[I would

remove the numbers and leave the x-axis blank.]

the uniform distribution with 100 clusters). In general these errors will change with the probability

distributions and their parameters, but it is clear that it is important to consider clusters when faced

with featured data, and costly to ignore them.

4.4 Numerical Results: Summary

Our recommendations for which method to use are as follows. If the data set is noisy, like most

real-world data sets, our experiments show that DNN is the most reliable algorithm, with the caveat

that careful hyperparameter tuning is required. If the data are non-noisy (they come from a single

probability distribution) and the number of historical samples is small (say, fewer than 10 records per

combination of features), DNN tends to outperform the other methods. As the number of historical

records begin to increase, either EQ, SEO, DNN, KR, RF, or KNN is a reasonable choice. Finally, if

there are a large number of non-noisy historical demand records for each combination of features

27

0 2 4 6 8 10 12
1

1.0177

1.0353

1.0530

1.0706

1.0883

1.1060

1.1236

1.1413

co
st

 r
at

io

(a) 1 cluster

0 2 4 6 8 10 12
1

1.0207

1.0414

1.0620

1.0827

1.1034

1.1241

1.1447

1.1654

co
st

 r
at

io

(b) 10 clusters

0 2 4 6 8 10 12
1

1.0221

1.0443

1.0664

1.0886

1.1107

1.1328

1.1550

1.1771

co
st

 r
at

io

(c) 100 clusters

0 2 4 6 8 10 12
1

1.0204

1.0409

1.0613

1.0818

1.1022

co
st

 r
at

io

(d) 200 clusters

Figure 8: Confidence intervals for each algorithm for uniformly distributed demands.

normal exponential beta lognormal uniform
distribution

0

1

2

3

4

5

6

7

er
ro

r
ra

tio

10 clusters
100 clusters
200 clusters

Figure 9: Error ratio from ignoring clusters when solving MFNV.

28

(say, at least 10,000), then the algorithms all work roughly equally well, and it may be best to choose

EQ or SEO, since they do not need any hyperparameter tuning.

5 Extension to (r,Q) Policies

5.1 Model

In this section, we extend our DNN approach to optimize the parameters of an (r,Q) inventory policy,

in order to demonstrate that the method can be adapted to other inventory problems, and especially

to problems that cannot be solved simply by estimating the quantile of a probability distribution.

Consider a continuous-review inventory optimization problem with stochastic demand, such that the

mean of demand per unit time is λ. Placing an order incurs a fixed cost K, and the order arrives after

a deterministic lead time of L ≥ 0 time units. Unmet demand is backordered. We assume the firm

follows an (r,Q) inventory policy: Whenever the inventory position falls to r, an order of size Q is

placed. The aim of the optimization problem is to determine r and Q.

If we know the true demand distribution, the optimal r and Q can be obtained by solving a convex

optimization problem; see Hadley and Whitin (1963) or Zheng (1992). However, heuristic approaches

are commonly used to obtain approximate values for r andQ; for a discussion of these, see Snyder and

Shen (2019). We use the so-called expected-inventory level (EIL) approximation, which is arguably

the most common approximation for the (r,Q) optimization problem. The EIL approximates the

expected cost function as

g(r,Q) = ch

(
r − λL+

Q

2

)
+
Kλ

Q
+
cpλn(r)

Q
, (16)

where

n(r) =

∫ ∞
r

(d− r)f(d)dd

and f(d) is the demand distribution. The cost function (16) can be optimized through an iterative

algorithm proposed by Hadley and Whitin (1963) (we will refer to this as the EIL algorithm), again

assuming that the demand distribution is known.

Of course, in practice, the demand distribution is often not known, which is where DNN becomes a

useful approach. In order to use DNN to obtain the policy parameters, we propose a DNN network

similar to that used for the newsvendor problem, except that it has two outputs, r and Q. We use

the cost function (16) as the loss function for the DNN, and in place of n(r) we use the unbiased

29

estimator 1
m

∑m
i=1(di − ri)+. In addition, in order to avoid negative values for r and Q, we use r+

and Q+ in the DNN loss function, and also add a penalty for negative values of r and Q into the

DNN loss function:

l(r,Q) = ch

(
r+ − λL+

Q+

2

)
+
Kλ

Q+
+
cpλn (r

+)

Q+
+ ηQQ

− + ηrr
−,

where ηr and ηQ are the penalty coefficients for negative r and Q, respectively.

The idea is as follows: We have a reliable estimate of the mean annual demand (λ). However, over

the course of a year, the demand distribution changes, along with the features. Each time we need to

place an order, we use the current features (without the actual demand value, since it is not observed

yet) to determine r and Q; we compare the current inventory position with r and place an order of

size Q, if required. The EIL cost function essentially tells us the rate at which costs are accruing

when we are placing the current order.

Note that, when we say that we use the current features to determine r and Q, we do not mean that

r and Q are chosen as though the entire future would look like the current features. Rather, the model

learns that when the features look like x, then the optimal action to take is y, anticipating the futures

that might evolve from the state x. For example, if demands are usually small on Mondays and large

on Tuesdays, then the model will learn that an order placed on Monday should be sufficiently large

to handle the demand spike on Tuesday, even though Monday’s features by themselves suggest the

demand will be small.

This interpretation implicitly assumes that the demand distribution changes relatively slowly

relative to the lead time; in other words, if we place an order at time t, the demand distribution will

be relatively stable until at least time t+ L.

Additionally, we use a KNN approach as a machine-learning–based benchmark. For a given feature

value x, we use SAA for approximating n(r), i.e.,

n(r) =
1

k

∑
i∈Nx

(di − ri)+, (17)

where Nx is the set of k-neighbors for point x. Then, to obtain (r,Q) for a given feature x, we modify

the EIL algorithm by replacing the rule for updating Q in the EIL algorithm with

Q =

√
2λ
[
K + 1

kp
∑

i∈Nx
(di − ri)+

]
h

.

The rest of the algorithm remains the same.

30

5.2 Numerical Experiments

In order to test the effectiveness of our proposed DNN algorithm when it is applied to the (r,Q)

optimization problem, we tested our algorithm as well as the KNN algorithm on a problem with

K = 20, λ = 1200, cp = 10, ch = 1, and L = µ/λ where µ is the annual demand of the product.

As a benchmark against which to compare both approaches, we used the iterative EIL algorithm by

Hadley and Whitin (1963) to obtain the r and Q that minimize the approximate cost function (16).

Since the algorithm needs the demand distribution, similar to the approach in Section 4.3, we fit a

normal distribution to each cluster and use it to obtain (r,Q) for that corresponding cluster. We refer

to this approach as the EIL algorithm.

The (r,Q) inventory policy is applied over an infinite time horizon, and to measure the performance

of each approach, one needs to run a long-run analysis. To this end, in addition to reporting

the expected cost from the approximate (steady-state) cost function (16), we run a discrete-time

simulation to obtain a cost estimate that accounts for the changes to the system features over time. In

the simulation, for a given item, in each time period, the (r,Q) values for each of the three approaches

(DNN, KNN, and EIL) are obtained according to the current feature values, i.e., item-department, day,

and month, an order is made (if necessary), the demand and arriving shipment are observed, and the

inventory statistics and costs are updated accordingly. Then, time is incremented by one unit, which

determines the new set of features, and accordingly the new (r,Q) values. For each item, we run this

simulation for 10000 periods and report the sum of the holding, shortage, and fixed ordering costs.

This simulation is executed for each of the five demand distributions. For each distribution, in each

period of the simulation, the demand is randomly selected from the dataset that was generated and

used in Section 4.3. In each period, once the feature values are observed and the corresponding cluster

is determined, a demand is randomly selected from the cluster in the test dataset, one period of the

simulation is executed, and then the demand observation is deleted from the test dataset. Pseudocode

for the simulation is shown in Algorithm 1. In the algorithm, ILi,t is the inventory level of item i in

period t, and AOi,t is the arriving order, i.e., the number of units of item i that will arrive at time t.

When testing the DNN algorithm on this problem, we performed the same level of hyper-parameter

tuning that we did on the newsvendor problem. All of the neural networks use the Relu activation

function, where Relu(x) = x+. We used the Adam optimizer (Kingma and Ba 2014) to optimize the

31

Algorithm 1 (r,Q) Policy Simulator

1: procedure SIMULATE AN (r,Q) SYSTEM
2: Initialize ILi,t, AOi,t for all i, t; set horizon T and cluster C
3: for i ≤ C do
4: for t ≤ T do
5: Generate di,t randomly
6: ILi,t = ILi,t − di,t.
7: Get (ri,t, Qi,t) for the current feature values.
8: if IPi,t < ri,t then
9: AOi,t+li = AOi,t+li +Qi,t

10: end if
11: cost = cost + chIL

+
i,t + cpIL

−
i,t +K

12: ILi,t+1 = ILi,t +AOi,t

13: end for
14: end for
15: end procedure

weights of the network with random learning rate, β1 = 0.9, β2 = 0.999, ε = 1e− 8, a batch size of

128, and exponential decay with rate 0.96.

In what follows, we demonstrate the results of the three algorithms on two datasets that we used

when testing the newsvendor problem: the basket data set, which is presented in Section 5.2.1, and

the five randomly generated datasets, presented in Section 5.2.2.

5.2.1 Basket Dataset

We obtained (r,Q) values using all three algorithms, and used the expected cost function (16) to

evaluate the policies. The solution found by the EIL algorithm incurs a cost of 1,650,214; KNN

results in 1,392,643; and DNN has a cost of 1,322,568, 19.9% and 5.0% better (respectively) than

EIL and KNN. At first this may seem surprising, since the EIL algorithm is an exact algorithm to

optimize the cost function (16) (though of course (16) is itself an approximation of the exact cost

function). However, recall that the basket dataset is noisy and contains few historical observations

(between 1 and 9) per cluster, but the EIL algorithm assumes the demands are normally distributed.

This assumption is inaccurate for the basket dataset. KNN, too, works best when there is a large

number of neighbors for each sample, which is not true for this dataset. In contrast, DNN considers

the feature values and optimizes the weights of the network, and in doing so is able to learn the (r,Q)

values that obtains smaller cost than KNN and EIL algorithm. Note that the whole dataset included

13170 records with 1856 clusters (each cluster is a unique combination of item, day, month). The

test dataset includes 689 clusters out of 1856 total clusters, and on average there are six records per

32

cluster. So, there are not enough observations in the test dataset to run the simulation and evaluate

each policy.

5.2.2 Randomly Generated Data

In order to further explore the performance of the three algorithms, we tested their performance on the

randomly generated datasets in Section 4.3. Just as in the newsvendor problem, we assume we do not

know the demand distribution and instead approximate a normal distribution in each cluster to obtain

the solution using EIL. The results of all demand distributions are shown in Figure 10, in which the

results of each algorithm under the five demand distributions are presented. In the figure, the series

are labeled with the algorithm and demand distribution, e.g., KNN-uniform denotes the results of the

KNN algorithm with uniformly distributed demand. Figures 10a and 10b show the expected cost

calculated by (16) and the simulated cost, respectively. In both figures, the costs of KNN, DNN, and

EIL are normalized by dividing them by the corresponding cost of the EIL algorithm.

As shown in Figure 10a, when the measure is the EIL cost function, DNN and KNN obtain costs

that are quite close to that of the EIL algorithm; on average their costs are 1.6% and 3.8% smaller

than EIL, respectively. Note that KNN benefits from the fact that there are at least 37 neighbors for

each test record, which allows it to get a reasonable approximation for the demand. On the other

hand, with the simulation the costs are closer to that of the EIL algorithm, with DNN and KNN

costs that are 0.3% and 1.3% larger, on average, than EIL. When the data is generated from a normal

distribution, KNN obtains smaller expected cost than EIL, although the simulation results show that

EIL consistently finds smaller costs than DNN and KNN in this case. This result implies that when

the data distribution is known, EIL is able to get the best solution among the three algorithms, though

the DNN solution is close, with around a 2.3% gap, on average, for 1, 10, 100, and 200 clusters. For

other distributions, there is no consistent pattern; all algorithms work about as well as each other: on

average DNN, attains a 0.15% smaller cost than EIL, while KNN obtains a 0.69% larger cost that

that of EIL.

In addition, the costs obtained by the simulation and the expected cost function (16) are different.

Both DNN and KNN had better performance than the EIL algorithm under the expected cost function

(16). The reason is that the DNN, KNN, and EIL algorithms want to minimize the cost function (16),

not the actual (r,Q) cost function. In other words, they find the solution that minimizes the EIL cost

33

1 10 100 200
number of clusters

0.7

0.8

0.9

1

1.1

co
st

 r
at

io

(a) the expected cost.

1 10 100 200
number of clusters

0.6

0.8

1

1.2

co
st

 r
at

io

(b) the simulated cost.

Figure 10: The results for randomly generated datasets for the (r,Q) model.

Table 5: EIL and DNN values of (r,Q) for the normally distributed dataset with 10 clusters.
Cluster 1 2 3 4 5 6 7 8 9 10
EIL r 70.4 141.5 212.1 277.7 350.4 416.8 485.7 555.9 626.9 697.9
KNN r 70.5 141.7 207.5 278.7 352.1 419.2 488.8 560.2 632.0 704.9
DNN r 71.0 138.0 210.2 277.8 354.0 409.0 479.0 551.0 639.0 703.0
EIL Q 222.7 226.6 230.2 233.4 238.1 241.9 245.2 250.2 253.1 259.5
KNN Q 219.1 219.1 330.4 219.1 219.1 219.1 219.1 219.1 219.1 219.1
DNN Q 218.2 226.4 226.2 228.3 233.3 259.6 247.4 246.1 249.1 251.0

function, which is an approximation of the actual (r,Q) cost function. So, the optimal solution of

cost function (16) is not necessarily optimal for the actual (r,Q) cost function. As a result, there are

noticeable differences between Figures 10a and 10b.

Let us more closely examine one instance, the normally distributed dataset, for which the EIL

solution is optimal. When there is only one cluster, the optimal solution from EIL is (r,Q) =

(70.24, 222.70), and KNN gets (70.31, 219.09), whereas DNN obtains (70.00, 222.53), which is

quite close to EIL’s solution. Similarly, when there are 10 clusters, the DNN (r,Q) are quite close to

the optimal solutions, as shown in Table 5, though it is not case with KNN. As a result, the costs of

the solutions obtained by the DNN and EIL algorithms are almost equal. Similar results also emerge

from the instances with 100 and 200 clusters.

To summarize, if the true distribution is available, our DNN method, the KNN method, and the

classical EIL approach work almost equally well. However, EIL algorithm’s performance deteriorates

when the true demand distribution is not known, even if there is a relatively large amount of historical

data. Under this condition, KNN obtains a smaller cost than the EIL algorithm. In contrast, DNN

works well when the true demand distribution is unknown, even if the historical dataset is small and/or

noisy. Thus, DNN is very powerful at finding solutions even for this problem with two decision

34

variables; it works as well as EIL and KNN when the data are not noisy, and obtains smaller costs

than EIL and KNN when the data are noisy.

6 Conclusion

In this paper, we consider the multi-feature newsvendor (MFNV) problem. If the probability

distribution of the demands is known for every possible combination of the data features, there is

an exact solution for this problem. However, approximating a probability distribution is not easy

and produces errors; therefore, the solution of the newsvendor problem also may be not optimal.

Moreover, other approaches from the literature do not work well when the historical data are scant

and/or volatile.

To address this issue, we propose an algorithm based on deep learning to solve the MFNV. The

algorithm does not require knowledge of the demand probability distribution and uses only historical

data. Furthermore, it integrates parameter estimation and inventory optimization, rather than solving

them separately. Extensive numerical experiments on real-world and random data demonstrate the

conditions under which our algorithm works well compared to the algorithms in the literature. The

results suggest that when the volatility of the demand is high, which is common in real-world datasets,

deep learning works very well. When the data can be represented by a well-defined probability

distribution, in the presence of enough training data, a number of approaches, including DNN, have

roughly equivalent performance.

Furthermore, we extend our DNN approach to the (r,Q) inventory optimization problem, to

demonstrate that our approach is applicable in more general settings, especially those that cannot be

solved by estimating a quantile. Our computational results show that the DNN approach works well

when the historical data are noisy and/or sparse, and that it often outperforms the “exact” algorithm

when the true demand distribution is unknown (since the exact algorithm must make an assumption

about the distribution).

Motivated by the results of deep learning on both newsvendor and (r,Q) problems, we suggest

that this idea can be extended to other supply chain problems. For example, since general multi-

echelon inventory optimization problems are very difficult, deep learning may be a good candidate for

35

solving these problems. Another direction for future work could be applying other machine learning

algorithms to exploit the available data in the newsvendor problem.

References

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay

Ghemawat, Geoffrey Irving, Michael Isard, et al. TensorFlow: A system for large-scale machine learning.

In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI).

Savannah, Georgia, USA, 2016.

Özden Gür Ali and Kübra Yaman. Selecting rows and columns for training support vector regression models

with large retail datasets. European Journal of Operational Research, 226(3):471–480, 2013.

Gah-Yi Ban and Cynthia Rudin. The big data newsvendor : practical insights from machine learning analysis.

Forthcoming in Operations Research, 2018.

Gah-Yi Ban, Jérémie Gallien, and Adam Mersereau. Dynamic procurement of new products with covariate

information: The residual tree method. Technical report, London Business School, 2017.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of Machine

Learning Research, 13(Feb):281–305, 2012.

Dimitris Bertsimas and Nathan Kallus. From predictive to prescriptive analytics. arXiv preprint arXiv:1402.5481,

2014.

Dimitris Bertsimas and Aurélie Thiele. A data-driven approach to newsvendor problems. Technical report,

Massechusetts Institute of Technology, Cambridge, MA, 2005.

Omar Besbes and Alp Muharremoglu. On implications of demand censoring in the newsvendor problem.

Management Science, 59(6):1407–1424, 2013.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT’2010,

pages 177–186. Springer, 2010.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time Series Analysis: Forecasting

and Control. John Wiley & Sons, 2015.

Apostolos N Burnetas and Craig E Smith. Adaptive ordering and pricing for perishable products. Operations

Research, 48(3):436–443, 2000.

Alex J Cannon. Quantile regression neural networks: Implementation in R and application to precipitation

downscaling. Computers & Geosciences, 37(9):1277–1284, 2011.

36

Hoi-Ming Chi, Okan K Ersoy, Herbert Moskowitz, and Jim Ward. Modeling and optimizing a vendor managed

replenishment system using machine learning and genetic algorithms. European Journal of Operational

Research, 180(1):174–193, 2007.

Tsan-Ming Choi, editor. Handbook of Newsvendor Problems. Springer, New York, 2012.

Li Deng, Jinyu Li, Jui-Ting Huang, Kaisheng Yao, Dong Yu, Frank Seide, Mike Seltzer, Geoffrey Zweig,

Xiaodong He, Julia Williams, et al. Recent advances in deep learning for speech research at Microsoft.

In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pages

8604–8608. IEEE, 2013.

Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparameter optimization

of deep neural networks by extrapolation of learning curves. In IJCAI, pages 3460–3468, 2015.

F. Edgeworth. The mathematical theory of banking. Journal of Royal Statistical Society, 51:113–127, 1888.

Tuğba Efendigil, Semih Önüt, and Cengiz Kahraman. A decision support system for demand forecasting with

artificial neural networks and neuro-fuzzy models: A comparative analysis. Expert Systems with Applications,

36(3):6697–6707, 2009.

Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra, Jasper Snoek, Holger Hoos, and Kevin

Leyton-Brown. Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In

NIPS Workshop on Bayesian Optimization in Theory and Practice, volume 10, 2013.

Mohammed E El-Telbany. What quantile regression neural networks tell us about prediction of drug activities.

In Computer Engineering Conference (ICENCO), 2014 10th International, pages 76–80. IEEE, 2014.

Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger, and John P Cunningham. Bayesian

optimization with inequality constraints. In ICML, pages 937–945, 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.

deeplearningbook.org.

G. Hadley and T. M. Whitin. Analysis of Inventory Systems. Prentice-Hall, Englewood Cliffs, NJ, 1963.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

Martin Längkvist, Lars Karlsson, and Amy Loutfi. A review of unsupervised feature learning and deep learning

for time-series modeling. Pattern Recognition Letters, 42:11 – 24, 2014.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

37

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A novel

bandit-based approach to hyperparameter optimization. arXiv preprint arXiv:1603.06560, 2016.

Zachary C Lipton. The mythos of model interpretability. arXiv preprint arXiv:1606.03490, 2016.

Pentaho. Foodmart’s database tables. http://pentaho.dlpage.phi-integration.com/mondrian/

mysql-foodmart-database, 2008. Accessed: 2015-09-30.

Evan L. Porteus. Foundations of Stochastic Inventory Theory. Stanford University Press, Stanford, CA, 2002.

Evan L. Porteus. The newsvendor problem. In D. Chhajed and T. J. Lowe, editors, Building Intuition: Insights

From Basic Operations Management Models and Principles, chapter 7, pages 115–134. Springer, 2008.

X. Qiu, L. Zhang, Y. Ren, P. N. Suganthan, and G. Amaratunga. Ensemble deep learning for regression and time

series forecasting. In Computational Intelligence in Ensemble Learning (CIEL), 2014 IEEE Symposium on,

pages 1–6, Dec 2014a.

Xueheng Qiu, Le Zhang, Ye Ren, Ponnuthurai N Suganthan, and Gehan Amaratunga. Ensemble deep learning

for regression and time series forecasting. In CIEL, pages 21–26, 2014b.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating

errors. Cognitive Modeling, 5(3):1, 1988.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–117, 2015.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, and Wang-chun Woo. Convolutional

LSTM network: A machine learning approach for precipitation nowcasting. In C. Cortes, N. D. Lawrence,

D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems 28,

pages 802–810. Curran Associates, Inc., 2015.

Robert H Shumway and David S Stoffer. Time Series Analysis and Its Applications: With R Examples. Springer

Science & Business Media, 2010.

Alex J Smola and Bernhard Schölkopf. A tutorial on support vector regression. Statistics and Computing, 14(3):

199–222, 2004.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine learning

algorithms. In Advances in Neural Information Processing Systems, pages 2951–2959, 2012.

Lawrence V Snyder and Zuo-Jun Max Shen. Fundamentals of Supply Chain Theory. John Wiley & Sons, 2nd

edition, 2019. Forthcoming.

James W Taylor. A quantile regression neural network approach to estimating the conditional density of

multiperiod returns. Journal of Forecasting, 19(4):299–311, 2000.

38

http://pentaho.dlpage.phi-integration.com/mondrian/mysql-foodmart-database
http://pentaho.dlpage.phi-integration.com/mondrian/mysql-foodmart-database

Gerald Tesauro, Yu He, and Subutai Ahmad. Asymptotic convergence of backpropagation. Neural Computation,

1(3):382–391, 1989.

Nazli Turken, Yinliang Tan, Asoo J Vakharia, Lan Wang, Ruoxuan Wang, and Arda Yenipazarli. The multi-

product newsvendor problem: Review, extensions, and directions for future research. In Handbook of

Newsvendor Problems, pages 3–39. Springer, 2012.

Armando Vieira. Predicting online user behaviour using deep learning algorithms. Computing Research

Repository - arXiv.org, http://arxiv.org/abs/1511.06247, 2015.

Qifa Xu, Xi Liu, Cuixia Jiang, and Keming Yu. Quantile autoregression neural network model with applications

to evaluating value at risk. Applied Soft Computing, 49:1–12, 2016.

Xiaodan Yu, Zhiquan Qi, and Yuanmeng Zhao. Support vector regression for newspaper/magazine sales

forecasting. Procedia Computer Science, 17:1055–1062, 2013.

Yu-Sheng Zheng. On properties of stochastic inventory systems. Management Science, 38(1):87–103, 1992.

Paul H. Zipkin. Foundations of Inventory Management. Irwin/McGraw-Hill, New York, 2000.

39

A Proofs of Propositions 1 and 2

These proofs are based on the general idea of the back-propagation algorithm and the way it builds

the gradients of the network. For further details, see LeCun et al. (2015).

Proof of Proposition 1. To determine the gradient with respect to the weights of the network, we

first consider the last layer, L, which in our network contains only one node. Note that in layer L,

yqi = aL1 . So, we first obtain the gradient with respect to wj1, which connects node j in layer L− 1

to the single node in layer L, and then recursively calculate the gradient with respect to other nodes

in other layers.

First, consider the case of excess inventory (dqi ≤ yqi). Recall from (12) that δlj =
∂Eq

i

∂al
j

(glj)
′(zlj).

Then δL1 = ch(g
L
1)
′(zL1), since Eq

i = ch(a
L
1 − d

q
i). Then:

∂Eq
i

∂wj1
= ch

∂(yqi − d
q
i)

∂wj1

= ch
∂aL1
∂wj1

(since dqi is independent of wj1)

= ch
∂gL1 (z

L
1)

∂wj1

= ch
∂gL1 (z

L
1)

∂zL1

∂zL1
∂wj1

(by the chain rule)

= ch(g
L
1)
′(zL1)a

L−1
j (by (11))

= δL1 (h)a
L−1
j (by (13)).

(18)

Now, consider an arbitrary layer l and the weight wjk that connects node j in layer l and node k in

layer l + 1. Our goal is to derive δlj =
∂Eq

i

∂zl
j

, from which one can easily obtain ∂Eq
i

∂wjk
, since

∂Eq
i

∂wjk
=
∂Eq

i

∂zlj

∂zlj
∂wjk

= δlja
l
j (19)

using similar logic as in (18). To do so, we establish the relationship between δlj and δl+1
k .

δlj =
∂Eq

i

∂zlj

=
∑
k

∂Eq
i

∂zl+1
k

∂zl+1
k

∂zlj

=
∑
k

δl+1
k

∂zl+1
k

∂zlj

(20)

Also, from (6), we have

zl+1
k =

∑
j

wjka
l
j =

∑
j

wjkg
l
j(z

l
j)

40

Therefore,

∂zl+1
k

∂zlj
= wjk(g

l
j)
′(zlj). (21)

Plugging (21) into (20), results in (22).

δlj =
∑
k

wjkδ
l+1
k (glj)

′(zlj). (22)

We have now calculated δlj for all l = 1, . . . , L and j = 1, . . . , nnl. Then, substituting (22) in (19),

the gradient with respect to any weight of the network is:

∂Eq
i

∂wjk
= alj

∑
k

wjkδ
l+1
k g′lj (z

l
j). (23)

Similarly, for the shortage case in layer L, we have:

∂Eq
i

∂wj1
= −cp

∂(dqi − y
q
i)

∂wj1

= cp
∂(aL1)

∂wj1

= cp
∂(gL1 (z

L
1))

∂wj1

= cp
∂(gL1 (z

L
1))

∂zL1

∂(zL1)

∂wj1

= cpa
L−1
j (gL1)

′(zL1)

= δL1 (p)a
L−1
j .

(24)

Using the chain rule and following same procedure as in the case of excess inventory, the gradient

with respect to any weight of the network can be obtained. Summing up (18), (23) and (24), the

gradient with respect to the wjk is:

∂Eq
i

∂wjk
=


aljδ

l
j(p) if yqi < dqi ,

aljδ
l
j(h) if dqi ≤ y

q
i .

Proof of Proposition 2. Consider the proposed revised Euclidean loss function defined in (10).

Using similar logic as in the proof of Proposition 1, we get that the gradient of the loss function at the

single node in layer L is

∂Eq
i

∂wj1
= ch(y

q
i − d

q
i)
∂(yqi − d

q
i)

∂wj1

= (yqi − d
q
i)a

L−1
j δL1 (h).

(25)

41

in the case of excess inventory and

∂Eq
i

∂wj1
= −cp(dqi − y

q
i)
∂(dqi − y

q
i)

∂wj1

= (dqi − y
q
i)a

L−1
j δL1 (p).

(26)

in the shortage case. Again following the same logic as in the proof of Proposition 1, the gradient

with respect to any weight of the network can be obtained:

∂Eq
i

∂wjk
=

(dqi − y
q
i)a

l
jδ

l
1(p) if yqi < dqi

(yqi − d
q
i)a

l
jδ

l
1(h) if dqi ≤ y

q
i .

B Grid Search for Basket Dataset

In this appendix, we discuss our method for performing a more thorough tuning of the network for

DNN-`2, as discussed in Section 4.2. We used a large, two-layer network with 350 and 100 nodes in

the first and second layer, respectively. In order to find the best set of parameters for this model, a

grid search is used. We considered three parameters, lr, λ, and γ; λ is the regularization coefficient,

and lr and γ are parameters used to set the learning rate. In particular, we set lrt, the learning rate

used in iteration t, using the following formula:

lrt = lr × (1 + γ × t)−0.75.

We considered parameter values from the following sets:

γ ∈ {0.01, 0.005, 0.001, 0.0001, 0.0005, 0.00005}

λ ∈ {0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005}

lr ∈ {0.001, 0.005, 0.0005, 0.0001, 0.00005, 0.00003, 0.00001, 0.000009, 0.000008, 0.000005},

The best set of parameters among these 360 sets were γ = 0.00005, λ = 0.00005, and lr = 0.000009.

These parameters were used to test integer values of cp/ch ∈ {3, . . . , 9} in Figure 3, for the series

labeled DNN-`2-T.

C A Tuning-Free Neural Network to Solve the Newsvendor Problem

To tune the hyper-parameters of the DNN in Section 4, we used an extension of the random search

algorithm (Bergstra and Bengio 2012) called HyperBand (Li et al. 2016)—in particular, to determine

42

the network structure, learning rate, and regularization coefficient. However, a user of our model might

not have the time, resources, or expertise to follow a similar procedure. Even cheaper procedures like

Bayesian optimization (Snoek et al. 2012, Gardner et al. 2014) are still too time consuming and too

complex to implement. To address this issue, in this section we propose a computationally cheap

approach to set up a network structure without extensive tuning. Our approach provides quite good

results on a wide range of problem parameters.

The network structure should have a direct relation with the number of training samples n, the

number of features p, and the range ri that feature fi, i = 1, . . . , p, can take values from. For example,

a feature fi which represents the day of week takes values between 1 and 7, and the one-hot-encoded

version is a categorical feature with 7 categories; so, ri = 7. For a continuous feature like the sales

quantity, ri may be an interval such as [0,∞]. These characteristics—the number of features and the

range of values for each feature—affect both the number of layers in the network and the numbers of

nodes in each layer. For instance, if the number of features is small and the features take on only

a few values, a trained DNN returns a solution that minimizes the average loss value. In this case

a small network can provide quite good results. On the other hand, when the number of features is

relatively large and each feature can take values from a large range or set, the DNN must be able to

distinguish among a large number of cases. In this event, the DNN network must be relatively large.

Now, consider the newsvendor problem with p features. In the datasets that we considered, the

features are quite simple, e.g., receipt date and item category. However, we wish to propose a general

structure for prospective users of our model, so we assume one may use more complex features, either

categorical or continuous. (However, we assume the input cannot be an image, so we do not need a

convolutional Goodfellow et al. (2016) network.) Thus, we propose a three-layer network in which

the number of nodes in the first, second, and third hidden layers equal aq, bq, and cq, respectively,

where a, b, and c are constants (by default we use a = 1.5, b = 1, and c = 0.5), and where q is

defined as follows. Let qv be the number of continuous features, let Pc ⊆ {1, . . . , p} be the set of

categorical features, and let

qu = min

{∑
i∈Pc

ri,
∏
i∈Pc

ri

}
.

In words, qu is the smallest number that can represent all combinations of categories. Let q = qu+qv .

Finally, the number of input nodes also equals q, and the output layer includes a single node.

43

Using this approach, if the number of features is small, the number of DNN weights to optimize is

small, and if the number of features is large, the number of weights is large. Using the default values

of a, b, and c, the proposed network has m = 1
2q(7q + 1) weights, which should be smaller than

the number of training records. If m > n, there is a chance of over-fitting, and if m� n, the DNN

over-fits the training data with high probability, in which case the number of DNN variables must

be reduced. In this case one should select smaller values of the coefficients a, b, and c to reduce the

number of nodes in each layer. Finally, using the default coefficient values, the resulting network has

size [q, 1.5q, q, 0.5q, 1], so the number of nodes in the first hidden layer is larger than the number of

features, and with a high probability the DNN is able to capture the information of the features and

transfer them through the network. Setting the number of nodes in the first hidden layer smaller than

that in the input layer may result in losing some input information.

We continue training until we meet one of the following criteria:

• the point-wise improvement in loss function value is less than 0.01%, or

• the number of passes over the training data reaches MaxEpoch.

(We set MaxEpoch=100.)

Of course, we cannot guarantee that this approach will produce an optimal network structure, but

it eliminates the work of determining the structure, and our experiments suggest that it performs

well. We also note that one still must follow an approach to determine a suitable learning rate and

regularization parameter (see Snoek et al. (2012), Eggensperger et al. (2013), Domhan et al. (2015),

Bergstra and Bengio (2012)).

In order to see how well the fixed-size network works, we ran the same experiments as in Section

4.3. In these tests, we fixed the network structure to [q, 1.5q, q, 0.5q, 1] with learning rate = 0.001

and λ = 0.005 for all demand distributions. In all cases except normally distributed demand, the

network obtained near-optimal costs after at most 10 epochs (which, on average, took 10 minutes to

train), when improvement stopped. For normally distributed demands, the algorithm ran for at least

50 epochs to get a converged network. Table 6 shows the results of the test datasets for all demand

distributions, in which we provide the gap between the results of the fixed network and the results

from the HyperBand algorithm. As provided in the table, when we train for 100 epochs, the fixed

network obtains costs that are very close to those obtained using the HyperBand algorithm. For 1, 10,

44

Table 6: Results of 100 and 200 training epochs.
100 epochs 300 epochs

clusters 1 10 100 200 1 10 100 200
normal 0.000 0.004 2.006 3.083 0.000 0.004 0.005 3.083
lognormal 0.003 0.006 0.129 0.006 0.000 0.004 0.126 0.011
uniform 0.001 0.012 0.020 0.134 0.000 0.001 0.020 -0.004
beta 0.029 0.003 0.014 0.023 0.027 -0.006 0.007 0.021
exponential 0.000 0.071 0.008 0.019 0.000 0.001 0.006 0.018
average 0.0067 0.0192 0.4353 0.6531 0.0054 0.0008 0.0329 0.6260

100, and 200 clusters, it obtains average gaps of 0.67%, 1.9%, 43.5%, and 65.3% compared to the

results of networks obtained by HyperBand algorithm.

In order to see the effect of training length, we ran all experiments for 300 epochs to see whether

the solutions improve, which are provided in right side of Table 6. The average gaps decreased to

0.5%, 0.08%, 3.29%, and 62.6% for 1, 10, 100, and 200 clusters, respectively. Therefore, running

the DNN for longer training periods can help to get smaller cost values.

In sum, setting the network size using this approach is much cheaper than any extension of random

search or Bayesian optimization, and it can provide near-optimal results for the newsvendor problem

when there is a sufficiently large number of historical records. (In our experiment, this corresponds to

having fewer clusters.) When there is insufficient historical data available, additional tuning and/or

training is required in order to obtain good results.

45

	Introduction
	Literature Review
	Current State of the Art
	Deep Learning
	Our Contribution

	Deep Learning Algorithm for Newsvendor with Data Features
	Numerical Experiments
	Small Data Set
	Real-World Dataset
	Randomly Generated Data
	Numerical Results: Summary

	Extension to (r,Q) Policies
	Model
	Numerical Experiments
	Basket Dataset
	Randomly Generated Data

	Conclusion
	Proofs of Propositions 1 and 2
	Grid Search for Basket Dataset
	A Tuning-Free Neural Network to Solve the Newsvendor Problem

