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Abstract
We argue that the definition of close fitting models should embody the notion of substantially
ignorable misspecifications (SIM). A SIM model is a misspecified model that might be selected,
based on parsimony, over the true model should knowledge of the true model be available.
Because in applications the true model (i.e., the data generating mechanism) is unknown, we
investigate the relationship between the population Standardized Root Mean Square Residual
(SRMR) values and various model misspecifications in factor analysis models to better
understand the magnitudes of the SRMR. Summary effect sizes of misfit such as the SRMR are
necessarily insensitive to some non-ignorable localized misspecifications (i.e., the presence of a
few large residual correlations in large models). Localized misspecifications may be identified
by examining the largest standardized residual covariance. Based on the findings, our population
reference values for close fit are based on a two-index strategy: a) largest absolute value of
standardized residual covariance < .10, and b) SRMR < .05x R’ the average R’ of the manifest

variables; for acceptable fit our values are .15 and .10 x R?, respectively.

Keywords: Structural Equation Modeling (SEM); Standardized Root Mean Square Residual

(SRMR); Close Fit
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The Relationship between the Standardized Root Mean Square Residual and Model
Misspecification in Factor Analysis Models

In structural equation modeling (SEM), the assessment of model-data fit has long been an
important, but difficult, issue. The most common test of fit, the Likelihood Ratio (LR) based chi-
square test, is typically used to evaluate the discrepancy between a proposed model and the data.
The results of the test suggest if the model is an adequate representation of the data. However,
the LR chi-square is a test of exact fit, meaning it is testing that there is no discrepancy between
the hypothesized model and the data. In most empirical situations, the model under consideration
is to some degree incorrect i.e., misspecified (Box, 1979; MacCallum, 2003). Thus, in large
samples, the use of the LR chi-square test will often suggest an unacceptable fit, even when the
model misspecification is relatively minor.

In applications, tests of exact fit often reject the fitted model and researchers are keenly
interested in determining whether their misfitting model is actionable (i.e., it could be retained
and substantive inferences could be drawn from it), or should be rejected and a better model
should be sought. Current practices involving the decision of whether a mispecified model is
actionable (whether it fits ‘closely’) or not are often based on goodness of fit indices (e.g. the
Comparative Fit Index, CFI; Bentler, 1990). Sample values of these goodness of fit indices are
compared to a fixed cutoff value that have been proposed in the literature (e.g., Hu & Bentler,
1999). If a sample estimate meets the recommended cutoff value (e.g. CFI > 0.95), the model is
retained as a “close fitting” model. Otherwise, the model is rejected.

Researchers have pointed out several problems with the practice of using goodness of fit
indices with this “hypothesis testing” approach. One source of problems involves the use of

goodness of fit indices (Barrett, 2007; Maydeu-Olivares, 2017; Yuan, 2005). Another source of
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problems involves the definition (or lack thereof) of ‘close fitting” model. We describe each of
these topics in turn.
Goodness of fit indices vs. effect sizes of model misfit

One main concern involving goodness of fit indices is that the procedures are largely
heuristic, and are not grounded in statistical theory. A decision is made solely by evaluating the
estimated value (i.e., sample statistic), which may be a biased estimator of the population
parameter of interest. In addition, the sampling variability of the statistic is blatantly ignored.
Thus, researchers may not know how widely estimates vary across samples.

A better alternative for assessing close fit is to use effect size measures of misfit. Effect
sizes of model misfit are population parameters that capture the discrepancy between the fitted
model and the data generating process. For effect sizes of model mistfit, statistical theory is
available, which enables the construction of confidence intervals, and if of interest, statistical
tests (Maydeu-Olivares, 2017). Various forms of effect sizes exist in the SEM literature,
including measures which are unstandardized (e.g. the Root Mean Squared Error of
Approximation, or RMSEA; Browne & Cudeck, 1993; Steiger, 1989, 1990), standardized (e.g.
the Standardized Root Mean Squared Error, or SRMR; Bentler, 1995; Joreskog & Sorbom,
1988), or relative (e.g. the Goodness of Fit Index, or GFI; Joreskog & Sorbom, 1988; Maiti &
Mukherjee, 1990; Steiger, 1989).

Currently, the most widely used effect size of model misfit is the RMSEA (Browne &
Cudeck, 1993; Steiger, 1990). The RMSEA measures the unstandardized discrepancy between
the population and the fitted model, adjusted by the degrees of freedom (df) of the model. Formal
statistical inferences can be made by testing the hypothesis that RMSEA < ¢, where c is the

reference cut-off in the population suggesting close fit. The most commonly used cut-off value is
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based on the recommendation from Browne and Cudeck (1993, p. 144), where the authors stated
that “practical experience has made us feel that a value of the RMSEA of about 0.05 or less
would indicate a close fit of the model in relation to the degrees of freedom”. However, the
population RMSEA is impossible to interpret because it is in an unstandardized metric. As
Edwards (2013, p. 213) puts it “We do not know what a 0.01 difference in RMSEA values
means. We do not know that a model with an RMSEA of 0.12 is incapable of telling us
something useful about the world. We do not know that a model with an RMSEA of 0.01 is
telling us anything useful about the world.” Besides the level of model misspecification, the
population RMSEA is dependent on other characteristics of the population model (i.e.,
“incidental parameters”, Saris, Satorra, & van der Veld, 2009). For example, the same population
RMSEA (say 0.05) may hold a different meaning in terms of the model misspecification when
models differ in terms of the magnitude of factor loadings and model size (Chen, Curran, Bollen,
Kirby, & Paxton, 2008; Savalei, 2012; Shi, Lee & Maydeu-Olivares, 2018).

Standardized effect sizes are preferable to unstandardized measures as they facilitate the
interpretation of the magnitude of misfit. The most popular standardized effect size of misfit is
the Standardized Root Mean Squared Residual (SRMR), which can be crudely interpreted as the
average standardized residual covariance. Recently, Maydeu-Olivares (2017) derived an
unbiased estimator of the population SRMR, its asymptotic standard error, and suggested using a
standard normal reference distribution to approximate its asymptotic distribution. As a result, the
SRMR can be used to provide a statistical test of close fit (i.e. SRMR < c) and it is an attractive
alternative to the use of the RMSEA. A major advantage of using SRMR over RMSEA is that its
value can be substantively interpreted. Also, in finite samples, Maydeu-Olivares, Shi & Rosseel

(2017) showed that compared to RMSEA, SRMR yielded more accurate empirical rejection rates
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and better coverage to its population value, especially when the number of observed variables
was larger than 30.

A few studies have examined the behavior of the sample SRMR under various types of
model misspecifications (Beauducel & Wittmann, 2005; Fan & Sivo, 2005, 2007; Garrido, Abad,
& Ponsoda, 2016; Hu & Bentler, 1998, 1999), including the most influential simulation study
conducted by Hu and Bentler (1999). In trying to find balance between minimizing Type I errors
(i.e., rejecting a correctly specified model) and maximizing power (i.e., rejecting a misspecified
model), Hu and Bentler (1999) suggested that models with sample SRMR values less than .08
generally indicated adequate fit. These previous studies have focused on simulating data through
use of finite samples, which inherently include sampling error. In addition, the formula used is a
biased estimate of the population SRMR, and the resultant estimate may be noticeably different
from its population counterpart in small samples (Maydeu-Olivares, 2017). Given that previous
studies have focused on the sample SRMR, researchers would benefit from greater
understanding of how population SRMR is affected by model misspecifications.

SEM misfit may best be characterized as a multivariate problem, and it requires
examining all statistically significant standardized residual covariances, especially the ones with
largest absolute value (Maydeu-Olivares & Shi, 2017; McDonald & Ho, 2002b; Raykov, 2000) 2.
An examination of the full matrix of residual covariances, or at least the most extreme value
within that matrix, is seldom performed in practice. However, being (crudely) the average
standardized residual covariance, researchers have suggested that it is only meaningful to
interpret the SRMR when there is little variability among the standardized residual covariances
and there are no clear outliers (i.e., some standardized residual covariances much larger than the

rest: McDonald & Ho, 2002; Raykov, 2000). Also, the SRMR may not be sensitive to model
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misspecifications which cause only a small proportion of residuals to be large in a residual
covariance matrix that may include many zeros or small values. However, these aspects have not
been thoroughly explored, and as of yet, the relationship between the largest standardized
residual covariance and model misspecification has not been fully explored, and therefore no
clear criteria are available to assess close fit.

A definition of close fit: Substantively ignorable misfit (SIM)

Although the population SRMR is easy to interpret in a standardized metric, it is not
intuitive to researchers what a specific value of SRMR (for example, .05) implies in terms of
misspecification(s) in the fitted model. Therefore, it is necessary to investigate the relationship
between the magnitudes of effect size (i.e., the population SRMR) and some common types of
model misspecification to gain greater understanding of the meaning of the population
parameter. Thus, we aim at addressing Edwards’s concern (using the SRMR) and help applied
researchers to make a more informed decision on whether to retain or reject a misspecified
model.

We recognize that whether to retain or reject a misspecified model depends on the
purpose of the application, and therefore it is necessarily subjective. Yet, in many instances an
application may serve several purposes, or the study be purely exploratory. In these instances,
researchers may find helpful that some reference cut-off values be provided. Choosing a
reference cut-off value (c) is a difficult but unavoidable issue, because a decision needs to be
made regarding the model’s use. A direct analogy involves p-values and significance levels.
Statistics has often been described as the quantification of uncertainty. From this view point,

statistics finishes once a p-value (or a confidence interval) is obtained. However, if a decision
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must be made, the use of an agreed upon significance level (a cut-off value) greatly facilitates
scientific communication.

Putting forth suggested cut-off values to distinguish between close and non-close fitting
models is made more difficult by the absence of any definition of close fitting model in the
literature. For instance, based on their practical experience, Browne and Cudeck (1993) simply
defined a model as fitting closely when RMSEA is less than or equal to 0.05. To overcome this
shortcoming we define a model to provide a close fit to the data generating mechanism if its
misspecification is substantively ignorable. More specifically, we define a model with
substantively ignorable misspecifications (SIM) as a mispecified model that might be selected,
based on parsimony, over the true model should knowledge of the true model be available. To
the best of our knowledge, the first research that used the notion of SIM (without explicitly
defining it) to specify criteria for close fit is Maydeu-Olivares and Joe (2014) who used SIM to
establish cut-off values for the use of the RMSEA in IRT models. Also, our use of SIM is
consistent with some of the most influential writings in goodness-of-fit assessment in SEM (e.g.,
Saris et al., 2009).

Because in applications the data generating mechanism (or in short, the true model,
although the expression is an oxymoron) is unknown, it is necessary to probe different
combinations of true and fitted models and consider for each combination which
misspecifications are substantively ignorable. In this article we focus on factor analysis models
and we consider three classes of misspecifications: 1) misspecified dimensionality (e.g., fitting a
one-factor model when the true model is a two-factor model); 2) fitting an factor model with
independent clusters when the true model contains small cross-loadings; 3) fitting a model with

uncorrelated errors when the true model contains correlated errors.
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Consider the following specific example of the first scenario: choosing between a one
factor model and a two factor model with independent clusters (i.e, every item loads on a single
factor) whose factors correlate p. What magnitude of p is substantively ignorable? Certainly, not
0, but neither it is .3. We believe that most researchers confronted with a choice between a one
factor model and a two factor model with p =.99 would choose a one factor model.
Consequently, the misspecification obtained when fitting a one factor model in this case is
substantively ignorable. We also believe that the misfit corresponding to p = .90 is substantively
ignorable, but we do not wish to go further. We prefer to err on the safe side (the same spirit was
used to establish cut-off values — significance levels— for p-values). Therefore we define a one
factor model fitted to a two factor model with p > .90 as fitting closely, and not fitting closely
otherwise. We use similar criteria for other combinations of true and fitted models. For instance,
we consider (standardized) cross-loadings less than or equal to .10 as substantively ignorable
(provided they do not follow a substantively meaningful pattern). We believe most researchers
would prefer to fix cross-loadings to zero when their standardized magnitude is < .10, but again
we prefer to err on the safe side, and we do not wish to go further. Similarly, we consider
correlations among the residuals less than or equal to .10 as substantively ignorable (provided the
correlations are not patterned).

To summarize, to help researchers to make a more informed decision on whether to retain
or reject a misspecified model, we investigate the relationship between the population SRMR
and model misspecifications in the context of the factor analysis models. In addition to the
SRMR, the behavior of the largest standardized residual covariance (i.e., defined in terms of

absolute values) is inspected. In particular, we are interested in examining whether models with
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substantively ignorable misfit (SIM, our definition of close fit) can be distinguished from non-
SIM models using these two parameters.

The remainder of this paper is organized as follows. We first review statistical theory and
clarify the formula for unbiased estimation of the population SRMR. Next, using population
covariance matrices, we explore the behaviors of the population SRMR and the largest
standardized residual covariance under different types and degrees of model misspecification.
That is, for an array of true and fitted models we specify which ones we consider close fitting or
acceptable (i.e., actionable) and we report the corresponding values of the SRMR (and the largest
standardized residual covariance). We conclude this discussion by offering practical guidance for
empirical research when using the SRMR to assess goodness of fit.

Statistical Theory for the SRMR

Let oj denote the unknown population covariance between variables i and j (or the

variance if i =) and Gg. denote the population covariance (or variance) under the fitted model.

Then, the population SRMR (P.SRMR) is defined as (Maydeu-Olivares, 2017):

_ e, |1 (sz_c’?f)z
PSRMR = |== = t;—rﬁ% : (1)

Here, ¢, is the vector of the population standardized residual covariances, ¢ = p(p +1)/2

signifies the number of unique elements in the (residual) covariance matrix, where p denotes the
number of observed variables being modeled. Thus, Eq. 1 approximates the average population
standardized residual covariance.

In finite samples, let s;; be the sample covariance, &, denote the model implied

covariance, e, be the ¢ vector of the standardized residual covariances with elements
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¢, =220 @)

and 2 represent the asymptotic covariance matrix of e . Maydeu-Olivares (2017) showed that

regardless of the discrepancy function and distributional assumptions used, an asymptotically

unbiased estimate of the population SRMR of Eq. 1 can be expressed as:

X max(es'es—tr(és),O) X (B2 4 20’
SRMR, —kj\/ , where £ =1- TE)T2eEe, 3)
t 4(ele,)

However, the asymptotic covariance matrix, E_, depends on the discrepancy function used to
estimate the model, and on whether normality or asymptotically distribution free (ADF: Browne,
1982) assumptions are used.

In typical applications, SEM software programs compute a sample counterpart of the

population SRMR in Eq. 1 as:

A

SRMR, = | &% = 1ZM (4)

t t i< SiiS jj

!

where the elements in the equation are defined earlier. It is noted that the sample SRMR shown
in Equation 4 is a biased estimate of the population SRMR. Following Maydeu-Olivares (2017),

we derived the expected value of the biased estimate SRMR, . This can be approximated in large

E[SRMR,] = \/tr(E)—Jrga §[tr(E,) +ele, I —2tr(E,) - 46,8 ¢, )
’ t [tr(E,) +¢€'e, T’ '

In appendix 1, we support the accuracy of this approximation by demonstrating the biases

samples using

of the SRMR» and SRMR. in estimating the population SRMR using a small simulation example.

It is noted that the SRMR» (Eq. 4) generally reported in software packages is upwardly biased,
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meaning the index typically suggests worse model fit than is actually present. The amount of bias

is compounded when sample size is small and low standardized factor loadings are present.
Confidence intervals for the SRMR and tests of close fit can be obtained using its

unbiased estimate and a reference normal distribution. Specifically, with large samples, a (100 —

a)% confidence interval for the SRMR can be obtained using
Pr(SRMR, - z,,,SE(SRMR,) < SRMR < SRMR, + z,,,SE(SRMR,)) =1-o., (6)

where SE () denotes asymptotic standard error, which is given as (Maydeu-Olivares, 2017):

Lt(E)+2e'E e
2 ( s) sZsTs (7)

2tele,

A

SE(SRMR, ) = \/k

In addition, statistical test for model close fit can be conducted with hypotheses such that

H,:SRMR<cvs.H, :SRMR >c,
where ¢ > 0 is a reference cut-off value for close fit, p-values are obtained using p =1-®(z),

SRMR, —c
SE(SRMR,)’

where ®() denotes a standard normal distribution function and z =
Population SRMR and Model Misspecification
The relationship between the population SRMR and misspecification in factor analysis
models is explored in this section. In addition to the population SRMR, the behavior of the
largest standardized residual covariance (i.e., defined in terms of absolute value) was inspected
across different model misspecifications. The performance of these two parameters was

evaluated through a simulation study in which we generated population covariance matrices as

the purpose of this study is to better understand the behavior of the population SRMR.
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The population model used was a confirmatory factor analysis (CFA) model with two correlated
factors. The following three types of misspecification, that are often observed in practice when
fitting CFA models, were considered.

a) Misspecified dimensionality. The population model was as two factor, independent clusters
model with correlated factors. A one factor model was fit to the two-dimensional structure.

b) Omitting cross-loadings. Items related to each factor via an independent clusters structure;
however, one or multiple indicators cross-loaded on both factors. The fitted model assumed an
independent clusters structure for both factors, where the cross-loading value(s) was incorrectly
fixed to zero.

¢) Omitting residual correlations. In the population model, one or multiple residual correlations
(covariances) were present. A simple structure model with no correlated error was fit.

To produce these population covariance matrices, factor variances were fixed to one. The error
variances were set such that all factor loadings (including cross-loadings) are on a standardized
scale. Other characteristics that were manipulated are as follows:

Magnitude of Factor Loadings. The population factor loadings (1) included low (.40), medium
(.60), and high (.80). The primary factor loadings are the same for all items across factors.
Model size. The model size is indicated by the number of observed variables (p; Moshagen,
2012; Shi, Lee, & Terry, 2015, 2018)*. Model size ranged from small to very large, including p =
12, 36, 72, or 144. Equal number of items loaded on each factor.

Magnitude of Model Misspecification. In the scenario in which multidimensionality was ignored,
the level of misspecification was manipulated by changing the degree of correlation between the
factors in the true model. The true correlation coefficients ranged from .60 to .90, in increments

of .10. Given that the estimated model collapsed across two factors in the population model, a
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smaller inter-factor correlation indicated a greater level of misspecification. When the
misspecification included omitted cross-loadings or residual correlations, the inter-factor
correlation was fixed to .30 and the level of misspecification was determined by the population
value of the omitted parameters. The omitted cross-loadings or residual correlations ranged from
.10 to .40, in increments of .10. Here, larger values indicated a higher level of model
misspecification.

Number of Omitted Parameters. When the misspecifications were introduced by omitting cross-
loadings or residual correlations, we manipulated the number of omitted cross-loadings/ residual
correlations. The number of omitted parameters ranged from one to four, in increments of one.
In summary, the number of conditions examined were 48 = 3 (factor loading levels) x 4 (model
size levels) x 4 (factor inter-correlation levels) for misspecified dimensionality. When
investigating situations with cross-loadings or residual correlations, the number of conditions
examined were 192 = 3 (factor loading levels) x 4 (model size levels) x 4 (magnitudes of omitted
parameters) X 4 (number of omitted parameters).

For each condition, a population covariance matrix was computed. Then, the population
values of SRMR were calculated by fitting the misspecified model to the population covariance
matrices with maximum likelihood (ML) estimation, using the lavaan package in R (Rosseel,
2012; R Core Team, 2015). In addition to the SRMR values, every standardized residual
covariance was obtained, and the largest absolute value for the standardized residual covariance
was used as an alternative index for evaluating model fit. Analyses of variance (ANOVAs) were
conducted to identify conditions which affected the outcome of interest. An eta squared (n?)
value above 10% was used to identify conditions that contributed to sizeable amounts of

variability in the outcome. To better demonstrate the behaviors of the population SRMR and the
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largest standardized residual covariance, all results were presented in the form of figures; tables
that include complete simulation results are provided as supplementary materials.
Behavior of the population SRMR and largest standardized residual covariance in models
with mispecified dimensionality

The behavior of SRMR and the behavior of the largest absolute value of the standardized
residual covariance under the misspecification of disregarding multidimensionality are shown in
Figure 1 (panel A and B, respectively). In these figures, different markers were used to indicate
different values of inter-factor correlations (i.e., degree of model misspecification) and for each
level of inter-factor correlation, the population SRMR and the largest (absolute value of)
standardized residual covariance were plotted against the magnitudes of the factor loadings.
Given a fixed level of factor loading and inter-factor correlation, cases with different model sizes
were labeled separately. By comparing Figures 1A and 1B, we can see that when dimensionality
is mispecified, the SRMR value and largest standardized residual covariance provide almost the
same information. A linear regression model predicting the SRMR from the largest standardized
covariance showed that the two parameters are almost perfectly correlated (R? =.988). Therefore,
only results for the SRMR are discussed to avoid redundancy.

The results from the ANOVA showed that the most important sources of population
SRMR variance were the magnitude of factor loadings (n?>= .50) and inter-factor correlations (1>
=.39). Specifically, Figure 1A demonstrates SRMR’s sensitivity to factor's structural
misspecification; as the inter-factor correlation decreased (indicating a more severe
misspecification), the population SRMR increased accordingly. In addition, at any fixed level of
model misspecification (e.g., p = .8), the population SRMR depends on the values of the

standardized factor loadings according to a curvilinear relationship. The higher the factor
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loadings, the higher the population SRMR. Moreover, the effects of model misspecification and
factor loading are multiplicative, meaning that the higher the level of model misspecification, the
higher the effect of the factor loading. Finally, model size did not have a great impact on the
results. For a fixed level of factor loading and inter-factor correlation, variability displayed in
Figure 1A due to differences in model size was ignorable (n>< .01).

As seen in Figure 1A, the commonly used cutoff of SRMR = .08 (the solid horizontal
line) appears to be too liberal a criterion for identifying misspecification in the factor structure.
For example, when factor loadings are .6 or less, fitting a one-factor model to a two-factor
structure with a low inter-factor correlation (e.g. p =.6), the reference of SRMR < .08 would
always suggest acceptable model fit. This finding holds regardless of model size. In fact, because
the population SRMR heavily depends on the size of factor loadings, it is difficult to find a single
reference to separate practically well-fitting models (e.g. p > .9) from non-closely fitting models
that should be rejected (e.g. p = .6).

A curvilinear relationship was observed between SRMR and the magnitude of the
standardized factor loading (see Figure 1A). Therefore, we considered to use and evaluate the
SRMR in light of the communality (i.e., the squared standardized loading, or A?)*. Using the ratio
of SRMR to the communality (SRMR / A?) as the outcome variable, the results from the
ANOVA indicated that the inter-factor correlation explained a very large amount of the variance
(M?>=.99). Figure 1C depicts the relationship between SRMR / A? and the standardized factor
loadings across levels of inter-factor correlation (p) and model size. As shown, population
SRMR / A? only depended on the level of model misspecification (p), regardless of the magnitude

of the factor loadings and model size. Thus, if close fit is defined as fitting a one-factor model to
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two-factor data when inter-factor correlations are greater than or equal to .90, such models

imply that SRMR / A? < .05 (the solid line in Figure 1C).

Insert Figure 1 around here

Behavior of the population SRMR and largest standardized residual covariance in models
with omitted cross-loadings

When the models were misspecified by omitting cross-loadings, ANOV A results showed
that the most important sources of population SRMR variance were the size of cross-loading (1’
= .28), magnitude of the factor loadings (n?>= .18), and model size (n>=.16). In Figure 2, we
plotted the behavior of SRMR in the presence of one to four omitted cross-loadings in four
separate panels (i.e. panel A-D). These figures show that population SRMR increased as the
magnitude of the omitted cross-loading(s) increased. However, the commonly used cutoff is not
sensitive to detect misspecification caused by omitting cross-loading(s). Almost all misspecified
models would be retained using the guideline of .08 for close fit (the solid horizontal line), even
when the size of the omitted cross-loading(s) reached .40. In addition, by comparing the four
panels in Figure 2, the population SRMR slightly increased as the number of omitted cross-
loadings increased. However, the effect of number of omitted cross-loadings on SRMR was quite
small (n?=.06).

The population SRMR was also influenced by the magnitude of the factor loadings;
higher factor loadings were associated with a larger population SRMR, especially when the

omitted cross-loading value was large. For example, when the number of observed variables was
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12 and one cross-loading of .40 magnitude was omitted, the population SRMR increased from
.029 to .085 as the magnitude of the (primary) loading values increased from .40 to .80.

For a fixed level of primary factor loading and cross-loading(s), the variability of the population
SRMR was still noticeable, indicating a substantial effect of model size. Specifically, holding
other conditions constant, larger model size was associated with smaller SRMR values.
Moreover, the effect of model size was more noticeable as the level of model misspecification
and the magnitude of the factor loading increased. For example, when the factor loadings were
set to .80 and one cross-loading of .40 was omitted, the population SRMR decreased from .085
(p =12) t0 .024 (p = 144). With a smaller factor loading (i.e., .40) and lower level of model
misspecification (i.e., cross-loading = .20), model size had a smaller effect on the SRMR,

yielding values which ranged from .016 (p = 12) to .006 (p = 144).

Insert Figure 2 around here

The behavior of SRMR / A? in the presence of omitted cross-loadings is shown in Figure
3. ANOVA results indicated that the most important sources of variance in SRMR / A? were the
size of cross-loading (s) (n?= .46) and model size (1> = .24). It is noted that the effect of model
size on SRMR / A? was less noticeable as the level of model misspecification decreased. For
example, when the factor loading was .40 and one cross-loading with size of .40 was omitted, the
SRMR to communality ratio (SRMR / A?) decreased from .183 (p = 12) to .074 (p = 144). When
the model misspecification was less severe (i.e. cross-loading = .10), the range of SRMR / A? was

smaller across model sizes, with values from .053 (p = 12) to .019 (p = 144). Generally speaking,
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if researchers would accept models that omit minor cross-loadings (i.e. cross-loading < .10),

SRMR / A?< .05 (the solid line in Figure 3) could be used as a reference.

Insert Figure 3 around here

Using the largest absolute value of the standardized residual covariance as the outcome
variable, ANOVA results indicated that the level of cross-loadings (n>= .37), the magnitude of
factor loadings (n>= .17), model size (n*= .15), and number of omitted cross-loadings (> =.14)
were the major sources that explained the majority of the variance. Each panel in Figure 4
illustrates the behavior of the largest absolute value of the standardized residual covariance in
terms of the magnitudes of factor loadings, levels of cross-loadings and model size across
various number of cross-loadings. We can see that the largest absolute value of the standardized
residual covariance increased when the magnitude of factor loadings and level of cross-loadings
increased.

In addition, the largest standardized residual covariance generally increased as the
number of omitted cross-loading increased. However, as more cross-loadings were omitted, the
amount of increase in the largest standardized residual covariance “leveled off” (i.e., smaller
increases were observed). For example, when p= 144, and the magnitude of factor loading was
0.6, if omitting one cross-loading of .20, the largest standardized residual covariance was .107;
the largest standardized residual covariance increased to .224 as two cross-loadings were
omitted. Nevertheless, as the number of omitted cross-loadings kept increasing, the largest
standardized residual covariance tended to remain stable, yielding SRMR= .222 (omitting three

cross-loadings) and .219 (omitting four cross-loadings).
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Given a fixed level of factor loading and cross-loading, it can be that the variability of the
points displayed in Figure 4 is much smaller than those in Figure 2. This implies that the effect
of model size on the largest absolute value of the standardized residual covariance was much
smaller than the effect on the SRMR. Moreover, the effects of model size on SRMR and the
largest standardized residual covariance were in opposite directions. That is, as p increased, the
largest standardized residual covariance tended to slightly decrease. As shown in Figure 4, if
close fit is defined as omitting cross-loadings less than or equal to .10, such models can usually
be identified by applying the cut-off with the largest absolute value of the standardized residual

covariance <.10 (the solid horizontal line).

Insert Figure 4 around here

Behavior of the population SRMR and largest standardized residual covariance in models
with omitted correlations among the residuals

In the presence of omitted residual correlations, ANOVA results showed that the most
important sources of population SRMR variance were model size (1> = .53) and the size of
residual correlations (n?=.13). In Figure 5, we present the behavior of population SRMR across
the study conditions. Panels A-D represent conditions where one to four residual correlations
were omitted. For each panel from Figure 5 (i.e., same number of omitted residual correlations),
given a fixed level of factor loadings and residual correlations, the variability of the population
SRMR was very large. This indicates that model size was the dominant factor for the values of
population SRMR. Specifically, models with more observed variables yielded noticeably smaller

population SRMR values. For example, when the factor loadings were .40, and four residual
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correlations of .40 were ignored, the population SRMR decreased from .070 (p = 12) to .007 (p =
144). In addition, for a fixed number and level of residual correlations, the population SRMR
slightly decreased as the magnitude of factor loadings increased; yet, the effect size of the
magnitude of factor loadings was quite small (n>=.07). For example, when p = 12, and four
residuals correlations of .10 were ignored, the population SRMR dropped marginally, from .018
(A=.40) to .008 (A=.80).

The figures also show that population SRMR increased as the number and magnitude of
the omitted residual correlations increased. However, the value of population SRMR was still
rather small, even when four residual correlations with size of .40 were ignored. The commonly
used cutoff for SRMR failed to detect the misspecification caused by omitting residual
correlations. That is, all misspecified models considered would be retained using the guideline
of .08 for close fit (i.e., denoted by solid horizontal line). Based on the results, when the
magnitude of model misspecifications increased, the related change in the population SRMR
could be small. Moreover, the population SRMR was greatly impacted by model size. Therefore,
it is problematic to use SRMR (or SRMR / A?) as the criteria to detect model misspecifications

from omitting residual correlations.

Insert Figure 5 around here

On the other hand, for the largest absolute value of the standardized residual covariance,
the ANOVA results indicated that the level of model misspecification (residual correlations)
could explain the majority of the variance (n?>= .62). The magnitude of the factor loading was an

important source of variance (1> = .31); however, the main effect of the model size was
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negligible (n* < .01). Figure 6 illustrates the behavior of the largest absolute value of the
standardized residual covariance when omitted residual correlations were present. We can see
that the largest absolute value of the standardized residual covariance was more sensitive than
the SRMR to identify misspecified models with omitted residual correlations. The largest
absolute value of the standardized residual covariance increased as the size of the residual
correlations increased, indicating a more severe misspecification. In addition, the value of the
largest standardized residual covariance was much larger than the SRMR obtained from the same
misspecified model. The largest absolute value of the standardized residual covariance was
negatively associated with the magnitude of the factor loading. In addition, as the magnitude of
factor loading increased, the decrease in the largest standardized residual covariance tended to be
more gradual when the level of model misspecification was smaller. For example, for a fixed
model size (i.e., p = 12), when the model was misspecified by omitting one residual correlation =
40, the largest absolute value of the standardized residual covariance decreased from .313 (A =
40) to .139 (A = .80). If the omitted residual correlation = .10, the largest absolute value of the
standardized residual covariance dropped more gradually from .080 (A = .40) to .035 (A = .80).
Therefore, when the misspecifications occurred by omitting residual correlations, the largest
absolute value of the standardized residual covariance was a more suitable index than the SRMR
for assessing model fit. As shown in Figure 6, close fitting models can be identified by the
largest absolute value of the standardized residual covariance < .10 (the solid horizontal line),

which approximately corresponds to omitting correlated residuals with correlations of .10.

Insert Figure 6 around here
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A numerical example: Fitting a five factor model to the SPRI-R

We provide a numerical example to illustrate our discussion. The Social Problem Solving
Inventory-Revised (SPSI-R: D’Zurilla, Nezu, & Maydeu-Olivares, 2002) is a 52 item
questionnaire that according to its authors measures five attributes. Each item is scored using
five ordered categories. Maydeu-Olivares and D’Zurilla (1996) report confirmatory (CFA) and
exploratory (EFA) factor analyses fitted to a sample of N =601 individuals. These data will be
reanalyzed here. We do not report parameter estimates as these are available in the original
sources. Rather, we wish to focus on answering the question ‘do these models fit closely
enough?’. If the answer is negative, a better model should be sought for these data.

The data is quite normal, the excess kurtosis for all items is well below one; only one
item has skewness larger than |1|. Consequently, we simply provide fit results under normality
assumptions to simplify our presentation. First we fitted the independent clusters CFA model of
Maydeu-Olivares and D’Zurilla (1996): every item is loaded only by its factor. The CFA yields
i (i.e., the likelihood ratio statistic) = 3,209.87 on 1264 df, p <.001. A 90% confidence interval
(CI) for the RMSEA is (.048; .053), and the unbiased SRMR is .053. The model does not fit the
data exactly, but by current standards of ‘close’ fit, we would conclude based on this information
that the model provides a close fit to the data. In so doing, all that we have done is to apply some
cutoff values recommended in the literature; the definition of ‘close’ is based on those cutoffs. A
model fits closely if the estimated values are below the cutoffs, and it does not fit closely
otherwise (Barrett, 2007).

In this paper, we have put forth a definition of close fit. We deem a model to provide a
close fit to the data generating process if we would choose the fitted model over the data

generating process based on parsimony, i.e., if the fitted model showed substantively irrelevant
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misfit. We estimate a 90% CI for the SRMR as (.048; .057), we obtained the average R? of the

items, R* = .42, and we inspected the largest (in absolute value) standardized residual
covariances. There are two residuals > |.2| and over 30 residuals > |.1|, all statistically significant
at the 5% level after applying a Bonferroni correction for the (53%52)/2 = 1,378 residuals
inspected. We cannot ignore such large residuals and we conclude that the model does not fit
closely the unknown data generating process. In fact, we conclude that the fit is not even
acceptable, in spite of the estimated RMSEA. Therefore, a better model must be sought. Our
conclusion is supported by an inspection of the modification indices. Five of the modification
indices involving the factor loadings involved expected standardized cross-loadings larger than
|.3| and as high as |.45|; the modification indices for these five loadings ranged from 44 to 58 (on
1 df).

To obtain a better fitting model we estimated an EFA model using a target rotation
(Browne, 1972) instead of adding cross-loadings (or correlated residuals) based on the
modification indices results. An examination of the estimated loadings reveals that the structure
conforms to that put forth by Maydeu-Olivares and D’Zurilla (1996): all secondary loadings are
smaller than the primary loadings. Regarding the fit of this model, we obtained X? = 2,233.67 on
1076 df, p <.001. A 90% CI for the RMSEA is (.040; .045), and the unbiased SRMR is .021.
The average communality is R* = .45, a 90% CI for the SRMR is (.020, .023). There are only
four standardized residual covariances larger than |.1|, a 90% confidence interval for the largest is
(-.18, -.14). Now, SRMR/ R? =.051, an inspection of Figure 1C reveals that for this R?, the
estimated SRMR is only slightly above what we would have obtained if we had fitted a one
factor model to a two-factor independent clusters model with correlation .9. As we would rather

use a one factor model than a two factor model with correlation .9, this lead us to believe that
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this EFA model fits rather closely the unknown data generating process. Also, we inspected
Figures 4 and 6 involving the relationship between the largest standardized residual and the size

of localized misfit. To properly interpret these figures it is convenient to estimate the average

factor loading. To do so, we simply took A = \/E_z =.67 . Inspection of Figures 4 to 6 gives us
pause to conclude that the EFA model fits closely. Rather, the estimated value of the largest
residual suggests that there is some localized misfit in the model that exceeds our standards.
Taking together the estimated values of the SRMR and largest standardized residual, we
conclude that the model provides an acceptable fit to the data generating model: on average, the
model provides a good overall fit to the data, but the model does not capture well enough every
association among these 52 items. The conclusion is not surprising: with 52 items, finding a
model with substantively ignorable misspecifications requires a lot of work.
Discussion

This research investigated the relationship between the population SRMR (and largest
standardized residual covariance) and different types and degrees of misspecification in factor
analysis models. Population covariance matrices were used to determine the impact of study
conditions on the population SRMR without the impact of sampling error. Conditions of factor
loading size and model size were manipulated. Findings showed that the population SRMR was
sensitive to model misspecification due to fitting a one-factor model to two-factor data or
ignoring cross-loadings, but less sensitive to misspecifications introduced by omitting residual
correlations. These findings are consistent with previous studies (Fan & Sivo, 2005; Hu &
Bentler, 1998;1999) using sample estimates of the SRMR.

The SRMR can be approximately interpreted as the average standardized residual

covariance. As such, it is sensitive to model misspecifications that cause a substantial proportion
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of large elements (in absolute value) in the standardized residual covariance matrix. When the
nature of the model misspecification results in only a small proportion of large residuals, and/or
many structural zeros appear in the residual covariance matrix, the average residual covariance
cannot provide an accurate representation of the misspecification. Therefore, the SRMR was not
sensitive to model misspecifications caused by omitting a few residual correlations, especially
when the number of observed variables (and thus, the number of residual covariances) is large.
In such situations, examining the largest (in absolute value) standardized residual covariance is
more useful. In fact, our findings revealed that both global fit and local fit are important concepts
to consider when evaluating models (DiStefano, 2016; West, Taylor, & Wu, 2012; McDonald &
Ho, 2002b; Raykov, 2000). That is, good global fit implies that even in the presence of some
local misspecifications, the overall model holds up well, and should not be completely discarded.
On the other hand, the information about local misfit can help researchers identify the sources of
poor global fit and thereby improve the model.

We also explored the effects of two possible “incidental parameters” (i.e., model size and
the magnitude of the factor loading). In general, larger standardized factor loadings were
associated with higher population SRMR values when the model misspecifications occurred by
ignoring the multidimensionality or omitting cross-loadings. However, when the model was
misspecified by ignoring correlated residuals, for a fixed level of residual correlations, the
population SRMR tended to slightly decrease as factor loading increased. The findings of the
current study are consistent with previous methodological research regarding the influence of
measurement quality (i.e., standardized factor loadings) on fit indices. Methodologists have
shown that for a given level of model misspecification, poor measurement quality is associated

with better model fit (i.e., the reliability paradox; see Hancock & Mueller, 2011; Heene, Hilbert,
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Draxler, & Ziegler, 2011; McNeish, An, & Hancock, 2018). This result can be somewhat
counter-intuitive. In particular, researchers would judge the value of an ignorable secondary
factor loadings against the values of the primary loadings. For a given size of the secondary
loading, it should be more ignorable when the primary loadings are larger; however, the
population SRMR tends to increase as the values of the primary loadings increase, suggesting
worse fit.

In addition, when omitting cross-loadings or residual correlations, the population SRMR
decreased as the number of observed variables increased. However, when misspecifying
dimensionality (i.e., fitting a one-factor model to two-factor data), the effect of the model size on
the population SRMR is quite small. The patterns described above are slightly different to the
behavior of the population RMSEA (Savalei, 2012). In Savalei’s (2012) study, she noted that the
population RMSEA generally decreased as the magnitude of the factor loading decreased and the
number of observed variables increased, despite the type of model misspecification. According
to its definition, the RMSEA penalizes model complexity by incorporating a degree of freedom
in the formulation, and it measures the discrepancy due to approximation per df. Therefore, for
models with a fixed level of misspecification, the population RMSEA generally decreases as p
increases because a higher p is typically associated with larger degrees of freedom (df). The
SRMR, on the other hand, is (approximately) the average standardized residual covariance.
When misspecifying dimensionality (e.g., fitting a one-factor model to two-factor data), the
majority of the residual covariances are impacted by the misspecifications. Therefore, their
average values are less sensitive to the size of the residual covariance matrix (as a function of p).

We showed that the population SRMR is not only determined by the size of the model

misspecification, but may be influenced by other factors, including the type of model
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misspecification, the magnitude of the factor loading, and model size. As a result, the practice of
using the SRMR with a single cut-off for testing model close fit may be misleading. For
example, using the existing criterion of sample SRMR < .08, would lead us to retain as a close
fitting model a one factor model fitted to data generated according to two-factor model with an
inter-factor correlation of p = .6 if the standardized factor loadings were lower than or equal than
.60 (e.g., A <.60). Moreover, in spite of the magnitude of the factor loading or the model size, the
currently accepted close fit criteria cannot detect misspecifications caused by omitting correlated
residuals, even if the number and size of the omitted residual correlations are fairly large (e.g.,
four residual correlations of size .40).

In order to better distinguish close fitting models from models with substantially non-
ignorable misspecification, we recommend examining both the largest standardized residual
covariance (in absolute value) and the SRMR in light of the average estimated communality, that
is R%. Using this two-index strategy will capture different types of model misspecifications. In
addition, for each index, to identify closely fitting models, a reference that is relatively robust to
the magnitude of the factor loading and model size can be proposed. In this study, we considered
three instances of misspecified models with substantively ignorable misspecification (i.e.,
providing a close fit to the true model): 1) fitting a one-factor model to two-factor data when
inter-factor correlations larger than or equal to .90; 2) omitting cross-loadings with standardized
values less than or equal to .10; or 3) ignoring correlated residuals with correlations less than or
equal to .10. At the population level, such closely fitting models can be identified when: a) the
largest absolute value of the standardized residual covariance <.10, and b) an SRMR to average

communality (i.e., R?) ratio, SRMR / R*> <.05 (or SRMR <.05x R?).
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In Appendix 2, we further evaluate the generalizability of the proposed reference values
in more complex situations (i.e. the population model has three correlated factors with different
magnitudes of factor loadings). The two-index strategy also performed reasonably well under the
complex study conditions.

Researchers may differ in what they consider a SIM, and we acknowledge that our own
personal criteria for SIM, and hence, close fit are quite stringent. We believe many researchers
would also consider a) fitting a one-factor model to two-factor data with an inter-factor
correlation of p > .80, b) setting cross-loadings < .20, or c) setting residual correlations < .20 to
zero to be substantively ignorable misspecifications. As a result, we believe models with these
levels of misspecification are acceptable. Our results indicate that models with acceptable misfit
can be distinguished using our two-index strategy using the following criteria: a) largest absolute
value of the standardized residual covariance < .15, and b) SRMR <.10x R*>. For convenience,
we provide in Table 1 the values of SRMR corresponding to our definitions of close and
acceptable fit for various levels of average communality (R? of the observed indicators). We are

unable to provide values of the biased SRMR corresponding to our definitions of close and
acceptable fit because the expected value of the biased SRMR is a function of l/ JN (see

Appendix 1).

Insert Table 1 around here

It is worth noting that these reference values for close and adequate fit do not have to
serve as fixed criteria. The recommendations are based on our personal cutoff for deciding

whether to retain or reject a misspecified model. We acknowledge that the definition of closely
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fitting model is subjective; in practice, researchers may differ in what they consider a closely or
acceptably fitting model, and they need not agree with our classification for “close” and
“acceptable” fit models. However, we provide enough information for them to make an informed
decision on what cutoff to use given their qualitative decision on which models are close enough
to be actionable given the true models. That is, different reference values can be obtained from
the figures®, or easily generated by following the paradigm from the current study, which allow
researchers to employ a criterion that meets the unique needs of their proposed research.

In the current study, we focus on population parameters. Of course, in applications only
sample estimates are available. It is noted that with sampling errors, the reference values we
provided are not sample cutoffs. That is, it may not be proper to compare the sample SRMR (or
the largest standardized residual covariance) with the population cutoffs, unless the sample size
is very large. To account for the sampling variability, we recommend applying the population
criteria with the confidence intervals (or statistical tests for model close fit; e.g., SRMR < ¢),
which allows researchers to make population inference using sample data. Specifically, for both
SRMR and an individual standardized residual covariance term, statistical theory is available to
obtain their asymptotic standard errors, and, in turn, to compute the confidence interval
(Maydeu-Olivares & Shi, & Rosseel, 2017; Maydeu-Olivares & Shi, 2017; Maydeu-Olivares,
2017; Ogasawara, 2001). Simulation studies have also shown that in finite samples, the point
estimations and the confidence intervals are quite accurate for both SRMR and the individual
standardized residual covariance even in samples of size 100 and very large models (Maydeu-
Olivares & Shi & Rosseel, 2018; Maydeu-Olivares & Shi, 2017). Of course, when considering
the statistical significance (or confidence intervals) for individual standardized residual it is

important to adjust for multiple testing. In our experience (Maydeu-Olivares & Shi, 2017), the
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Bonferroni method suffices for this purpose although more complex procedures (e.g., Benjamini
& Hochberg, 1995) may be employed. Additional works are need to further explore the usage of
individual standardized residual to assess the overall fit of the model. We hope that this paper

enlightens SEM researchers and provides additional information to assist them when conducting

the difficult task of assessing model-data fit.
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Appendix 1:
Computation of the Population SRMR and Bias of Its Unbiased and Biased Estimates

To illustrate the biases of the biased and unbiased estimates of the population SRMR we
have provided a simulation example. The population model was an independent cluster
confirmatory factor model with two correlated factors (correlation coefficient p = .80). Each
factor had five normally distributed indicators. The population factor loadings were set to be
either .80 (error variance = .36) or .40 (error variance = .84). Misspecification was introduced by
ignoring the multidimensional structure and fitting a common factor model to the two-factor
data. Table 2 provides the mean across 1,000 replications of the biased and unbiased SRMRs
obtained across a number of sample sizes (ranging from 50 to 10,000 observations). Maximum
likelihood estimation was used. All computations were performed using the lavaan package in R
(R Development Core Team, 2015; Rosseel, 2012).

Following Maydeu-Olivares (2017), the population SRMR was computed as follows: The
population covariance matrix was input into /avaan as if it were the sample covariance matrix,
along with the target sample size. The estimated standardized residuals were then used to
compute the population SRMR. As a side product, we also computed the expected value of the
biased sample SRMR given in Eq. 4. The results are summarized in Table 2. In this Table, we
see how the behavior of the sample SRMRs depended on the factor loading. More accurate
SRMR values were obtained with higher factor loadings, undoubtedly because they were more
accurately estimated (Gerbing & Anderson, 1985; Hoogland & Boomsma, 1998). When the
factor loading was .4, the unbiased SRMR provided estimates with a relative bias of less than

10% in samples of 100 observations and higher, but a sample size of 1,000 was needed to obtain
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a relative bias less than 1%. In contrast, the relative bias of the unbiased SRMR estimate did not
exceed 1%, even when sample size was 50.

The results of Table 2 also reveal that the biased SRMR overestimated the population
SRMR. This suggests that under such conditions, model fits may appear poorer than they
actually are. The bias was not exceptionally large when the factor loading was high (.8) and
sample size was at least 200. For a population value of .058, the average of the biased SRMR
was .063 at a sample size of 200 (the unbiased average was .058). However, when the factor
loading was low (.4), the bias of the biased SRMR was unacceptable, even with a sample size of
10,000. Thus, for a population value of .014, the average of the biased SRMR was .069 at a
sample size of 200 (the unbiased average was .016).

We also see in Table 2 that the asymptotic approximation of the average behavior of the
biased SRMR was rather accurate. At low factor loadings, our approximation was accurate to
three digits, even with a sample size of 50. At high factor loadings, three-digit accuracy was
obtained as soon as the sample size reached 300. Even in the worst case (50 observations), the

approximation was fairly accurate (an expected mean of .074 vs. a .076 actual mean).

Insert Table 2 and Figure 7 around here

Although it is not apparent in Equation (5) —as N is embedded in E_— the expected value

of the biased sample SRMR can be well approximated by a function of 1/ JN for each value of

the population SRMR. This is illustrated graphically in Figure 7.



SRMR and Model Misspecification 34

Appendix 2:
Using the Standardized Root Mean Square Residual and the Largest Standardized
Residual Covariance to Identify Close Fitting Models

This appendix evaluates the performance of the two-index strategy and examines the
generalizability of the proposed reference values under more complex modeling situations. The
population model used was a confirmatory factor analysis (CFA) model with three correlated
factors. The total number of observed variables (p) included 36, 72, or 144, resulting in 12, 24, or
48 variables per factor. The population variances for all three factors were set to one. The error
variances were set such that all factor loadings were on a standardized scale. To reflect a more
realistic situation, items loading on the same factor were of different magnitudes. . The size of
the factor loadings included low (.40), medium (.60), or high (.80) on the same factor. For a
given factor, the number of items with each of the three levels of factor loadings was the same
(e.g., p = 12, three items of each loading size). Three types of model misspecifications were
manipulated:
Misspecified dimensionality. The population model consists of three correlated factors. The fitted
models were either a one factor model or a two factor model, collapsing the correlation between
factors one and two. The level of misspecification was manipulated by changing the degree of
correlation among the factors in the population. When the unidimensional structure was fitted,
smaller inter-factor correlation(s) in the population model were indicative of a greater level of
misspecification. Seven patterns of inter-factor correlations were included and summarized in
Table 3. In total, 42 cases (3 model sizes x 7 inter-factor correlation patterns x 2 fitted models)

were considered. Following the definition in this study, closely fitting models imply that a
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unidimensional structure was fit when the inter-factor correlations were larger than or equal to
.90.
Omitting cross-loadings. The population model consists of three correlated factors; however,
three indicators loaded on two different factors®. The fitted model ignored cross loadings, with
values incorrectly fixed to zero. The inter-factor correlations were set to .30, and the level of
misspecification was determined by the population value of the omitted cross-loadings. The
magnitudes of (standardized) cross-loadings included .10, .20, or .30. We also manipulated the
locations of cross-loadings, where the cross-loadings occurred on items with low (.40), medium
(.60), or high (.80) primary factor loadings. The number of conditions considered was 27 =3
(model size levels) x 3 (magnitudes of omitted cross-loadings) x 3 (locations of cross-loadings).
Closely fitting models were defined as omitting cross-loadings with standardized values less than
or equal to .10.
Omitting residual correlations. In the population model, three correlated residuals were present’.
A simple structure three-factor CFA model with no correlated residuals was fit. The correlated
residuals were introduced between items with either low (.40), medium (.60), or high (.80) factor
loadings. The level of model misspecification was indicated by the values of residual correlations
(i.e. .10, .20, or .30); larger values implied a higher level of model misspecification. Under
omitting residual correlations, the total number of conditions was 27 = 3 (model size levels) x 3
(magnitudes of omitted residual correlations) x 3 (locations of correlated residuals). If correlated
residuals with correlations less than or equal to .10 were ignored, the (misspecified) model is
considered closely fitting.

Following the same procedure discussed in the earlier section, for each simulated

condition, we computed the population SRMR and the single standardized residual covariance.
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The ratio of SRMR to average communality (i.e., the squared standardized factor loading) and
the largest absolute value of standardized residual covariance were calculated and used as the
two indices for examining model close fit. In Figure 7, for each type of model misspecification,
we presented the relationship between the SRMR/A? and the largest standardized residual
covariance, along with the recommended reference values for model close fit (i.e. indicated by
the solid horizontal line and the dashed vertical line, respectively). In addition, markers were
used to differentiate cases that would be denoted as a close fitting model, and those that are not
(based on the definitions discussed above). As shown in the figures, the proposed reference
values performed well in terms of identifying close fitting models. All close fitting models
yielded the largest absolute value of standardized residual covariance less than or equal to .10,
and SRMR/A? less than or equal to .05 (i.e. fall in the left lower quadrant created by the two
reference lines). On the other hand, by using the two-index cutoffs, almost all models with more

severe misspecifications could be successfully identified.

Insert Table 3 and Figure 8 around here
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Footnotes
In this paper, we distinguish between effect sizes of model misfit and goodness of fit indices.
The term goodness of fit indices is reserved for sample statistics used to adjudge model fit
disregarding their sampling variability and without referencing the population parameter.
When interpreting the standardized residual covariances, we ignore the signs and refer the

“largest standardized residual covariances” as the one with the largest absolute value.

. The size of an SEM model has been indicated by different indices, including the number of

observed variables (p), the number of parameters to be estimated (q), the degrees of freedom
(df=p (p + 1)/2 — q), and the ratio of the observed variables to latent factors (p/f). Recent
studies have suggested that the number of observed variables (p) is the most important
determinant of model size effects (Moshagen 2012; Shi, Lee & Terry, 2015, 2017).
Therefore, in the current study, we define large models as SEM models with many observed
variables.

To compute the ratio of SRMR to communality, we used the average (standardized) factor
loadings estimated by fitting the misspecified models to the population covariance matrices.
Also see the supplemental tables.

The three indicators loaded on factors 1 & 2, factors 1 & 3, and factors 2 & 3, respectively.
The three correlated residuals were introduced between items from factors 1 & 2, factors 1 &

3, and factors 2 & 3, respectively.
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Table 1: SRMR reference values that meet the criteria for close (SRMR <.05x R?) and adequate

fit (.05x R> < SRMR < .10 x R*) for selected values of average communality ( R?)

RZ

SRMR reference value
for close fit

SRMR reference value
for adequate fit

0.010

0.040

0.090

0.160

0.250

0.360

0.490

0.640

0.001

0.002

0.005

0.008

0.013

0.018

0.025

0.032

0.001

0.004

0.009

0.016

0.025

0.036

0.049

0.064
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Table 2: Population SRMR and average sample Estimates

N Factor Loading = 0.8 Factor Loading = 0.4
P.SRMSR E[SRMSRb] SRMSR, SRMSR, | P.SRMSR E[SRMSRb] SRMSR, SRMSR,
50 058 074 .076 057 014 .097 .097 021
100 058 .066 .067 058 014 .069 .069 .016
200 058 062 .063 058 014 .050 .050 .014
300 058 061 .061 058 014 .042 .042 .013
400 058 .060 .060 058 014 .037 .037 .013
500 058 .059 .060 058 014 .034 .034 .013
600 058 .059 .059 058 014 .031 .031 .013
700 058 .059 .059 058 014 .029 .030 .013
800 058 .059 .059 058 014 .028 .028 .013
900 058 .059 .059 058 014 .027 027 .014
1000 058 058 .059 058 014 .026 026 .014
2000 058 058 .058 058 014 .021 021 .014
5000 058 058 .058 058 014 .017 017 .014
10000  .058 058 .058 058 014 .016 016 .014
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Table 3: Patterns of inter-factor correlations considered in appendix 2.

Inter-factor Correlations Close Fit?
P12 P23 p13 1F CFA 2F CFA
0.9 0.9 0.9 Yes Yes
0.9 0.9 0.8 No Yes
0.9 0.9 0.7 No Yes
0.9 0.8 0.8 No Yes
0.9 0.8 0.7 No Yes
0.8 0.8 0.8 No No
0.7 0.7 0.7 No No
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Figure 1: Behavior of (A) the population SRMR, (B) largest standardized residual covariance, and (C) SRMR/communality in models with

misspecified dimensionality
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Figure 2: Behavior of the population SRMR in models with one (A) to four (D) omitted cross-loadings
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Figure 3: Behavior of SRMR/communality in models with one (A) to four (D) omitted cross-loadings

A

-300

SRMR/Communality

SRMR/Communality

250

2001

150

100

000

Cross-loading

| »xoo
Bwh

g

terpolation Line

=

Factor Loading

300

250

2001

150

100

000

Cross-loading

rwh

o
a
X
A

=3

terpolation Line

T
B

Factor Loading

B

300

250~

.200-

150

SRMR/Communality

100~

+ Opx

O

]

;ope

050

.000—]

Factor Loading

P

300

250

.200-

150

SRMR/Communality

100

050

.000—]

SRMR and Model Misspecification 49

Cross-Loading
A

Bx00

2
3
4

— Interpolation Line

Cross-loading

Ex0O0
Bwh=

— Interpolation Line

Factor Loading

P



SRMR and Model Misspecification 50

Figure 4: Behavior of the largest standardized residual covariance in models with one (A) to four (D) omitted cross-loadings
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Figure 5: Behavior of the population SRMR in models with one (A) to four (D) omitted residual correlations
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Figure 6: Behavior of the largest standardized residual covariance in models with one (A) to four (D) omitted residual correlations
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Figure 7: Relationship between the expected value of the biased sample SRMR, population SRMR, and sample

size (N)
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Figure 8: Using the two-index strategy for identifying close fitting models
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