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Abstract 

We argue that the definition of close fitting models should embody the notion of substantially 

ignorable misspecifications (SIM). A SIM model is a misspecified model that might be selected, 

based on parsimony, over the true model should knowledge of the true model be available. 

Because in applications the true model (i.e., the data generating mechanism) is unknown, we 

investigate the relationship between the population Standardized Root Mean Square Residual 

(SRMR) values and various model misspecifications in factor analysis models to better 

understand the magnitudes of the SRMR. Summary effect sizes of misfit such as the SRMR are 

necessarily insensitive to some non-ignorable localized misspecifications (i.e., the presence of a 

few large residual correlations in large models). Localized misspecifications may be identified 

by examining the largest standardized residual covariance. Based on the findings, our population 

reference values for close fit are based on a two-index strategy: a) largest absolute value of 

standardized residual covariance ≤ .10, and b) SRMR ≤ .05× 2R  the average R2 of the manifest 

variables; for acceptable fit our values are .15 and .10 × 2R , respectively. 

 

Keywords: Structural Equation Modeling (SEM); Standardized Root Mean Square Residual 

(SRMR); Close Fit 
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The Relationship between the Standardized Root Mean Square Residual and Model 

Misspecification in Factor Analysis Models 

In structural equation modeling (SEM), the assessment of model-data fit has long been an 

important, but difficult, issue. The most common test of fit, the Likelihood Ratio (LR) based chi-

square test, is typically used to evaluate the discrepancy between a proposed model and the data. 

The results of the test suggest if the model is an adequate representation of the data. However, 

the LR chi-square is a test of exact fit, meaning it is testing that there is no discrepancy between 

the hypothesized model and the data. In most empirical situations, the model under consideration 

is to some degree incorrect i.e., misspecified (Box, 1979; MacCallum, 2003). Thus, in large 

samples, the use of the LR chi-square test will often suggest an unacceptable fit, even when the 

model misspecification is relatively minor.  

In applications, tests of exact fit often reject the fitted model and researchers are keenly 

interested in determining whether their misfitting model is actionable (i.e., it could be retained 

and substantive inferences could be drawn from it), or should be rejected and a better model 

should be sought. Current practices involving the decision of whether a mispecified model is 

actionable (whether it fits ‘closely’) or not are often based on goodness of fit indices (e.g. the 

Comparative Fit Index, CFI; Bentler, 1990). Sample values of these goodness of fit indices are 

compared to a fixed cutoff value that have been proposed in the literature (e.g., Hu & Bentler, 

1999). If a sample estimate meets the recommended cutoff value (e.g. CFI ≥ 0.95), the model is 

retained as a “close fitting” model. Otherwise, the model is rejected.  

Researchers have pointed out several problems with the practice of using goodness of fit 

indices with this “hypothesis testing” approach. One source of problems involves the use of 

goodness of fit indices (Barrett, 2007; Maydeu-Olivares, 2017; Yuan, 2005). Another source of 
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problems involves the definition (or lack thereof) of ‘close fitting’ model. We describe each of 

these topics in turn.  

Goodness of fit indices vs. effect sizes of model misfit 

One main concern involving goodness of fit indices is that the procedures are largely 

heuristic, and are not grounded in statistical theory. A decision is made solely by evaluating the 

estimated value (i.e., sample statistic), which may be a biased estimator of the population 

parameter of interest. In addition, the sampling variability of the statistic is blatantly ignored. 

Thus, researchers may not know how widely estimates vary across samples. 

A better alternative for assessing close fit is to use effect size measures of misfit. Effect 

sizes of model misfit are population parameters that capture the discrepancy between the fitted 

model and the data generating process. For effect sizes of model misfit, statistical theory is 

available, which enables the construction of confidence intervals, and if of interest, statistical 

tests (Maydeu-Olivares, 2017)1. Various forms of effect sizes exist in the SEM literature, 

including measures which are unstandardized (e.g. the Root Mean Squared Error of 

Approximation, or RMSEA; Browne & Cudeck, 1993; Steiger, 1989, 1990), standardized (e.g. 

the Standardized Root Mean Squared Error, or SRMR; Bentler, 1995; Joreskog & Sorbom, 

1988), or relative (e.g. the Goodness of Fit Index, or GFI; Jöreskog & Sörbom, 1988; Maiti & 

Mukherjee, 1990; Steiger, 1989).  

Currently, the most widely used effect size of model misfit is the RMSEA (Browne & 

Cudeck, 1993; Steiger, 1990). The RMSEA measures the unstandardized discrepancy between 

the population and the fitted model, adjusted by the degrees of freedom (df) of the model. Formal 

statistical inferences can be made by testing the hypothesis that RMSEA c , where c is the 

reference cut-off in the population suggesting close fit. The most commonly used cut-off value is 
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based on the recommendation from Browne and Cudeck (1993, p. 144), where the authors stated 

that “practical experience has made us feel that a value of the RMSEA of about 0.05 or less 

would indicate a close fit of the model in relation to the degrees of freedom”. However, the 

population RMSEA is impossible to interpret because it is in an unstandardized metric. As 

Edwards (2013, p. 213) puts it “We do not know what a 0.01 difference in RMSEA values 

means. We do not know that a model with an RMSEA of 0.12 is incapable of telling us 

something useful about the world. We do not know that a model with an RMSEA of 0.01 is 

telling us anything useful about the world.” Besides the level of model misspecification, the 

population RMSEA is dependent on other characteristics of the population model (i.e., 

“incidental parameters”, Saris, Satorra, & van der Veld, 2009). For example, the same population 

RMSEA (say 0.05) may hold a different meaning in terms of the model misspecification when 

models differ in terms of the magnitude of factor loadings and model size (Chen, Curran, Bollen, 

Kirby, & Paxton, 2008; Savalei, 2012; Shi, Lee & Maydeu-Olivares, 2018).  

Standardized effect sizes are preferable to unstandardized measures as they facilitate the 

interpretation of the magnitude of misfit. The most popular standardized effect size of misfit is 

the Standardized Root Mean Squared Residual (SRMR), which can be crudely interpreted as the 

average standardized residual covariance. Recently, Maydeu-Olivares (2017) derived an 

unbiased estimator of the population SRMR, its asymptotic standard error, and suggested using a 

standard normal reference distribution to approximate its asymptotic distribution. As a result, the 

SRMR can be used to provide a statistical test of close fit (i.e. SRMR c ) and it is an attractive 

alternative to the use of the RMSEA. A major advantage of using SRMR over RMSEA is that its 

value can be substantively interpreted. Also, in finite samples, Maydeu-Olivares, Shi & Rosseel 

(2017) showed that compared to RMSEA, SRMR yielded more accurate empirical rejection rates 
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and better coverage to its population value, especially when the number of observed variables 

was larger than 30.   

A few studies have examined the behavior of the sample SRMR under various types of 

model misspecifications (Beauducel & Wittmann, 2005; Fan & Sivo, 2005, 2007; Garrido, Abad, 

& Ponsoda, 2016; Hu & Bentler, 1998, 1999), including the most influential simulation study 

conducted by Hu and Bentler (1999). In trying to find balance between minimizing Type I errors 

(i.e., rejecting a correctly specified model) and maximizing power (i.e., rejecting a misspecified 

model), Hu and Bentler (1999) suggested that models with sample SRMR values less than .08 

generally indicated adequate fit. These previous studies have focused on simulating data through 

use of finite samples, which inherently include sampling error. In addition, the formula used is a 

biased estimate of the population SRMR, and the resultant estimate may be noticeably different 

from its population counterpart in small samples (Maydeu-Olivares, 2017). Given that previous 

studies have focused on the sample SRMR, researchers would benefit from greater 

understanding of how population SRMR is affected by model misspecifications. 

SEM misfit may best be characterized as a multivariate problem, and it requires 

examining all statistically significant standardized residual covariances, especially the ones with 

largest absolute value (Maydeu-Olivares & Shi, 2017; McDonald & Ho, 2002b; Raykov, 2000) 2. 

An examination of the full matrix of residual covariances, or at least the most extreme value 

within that matrix, is seldom performed in practice. However, being (crudely) the average 

standardized residual covariance, researchers have suggested that it is only meaningful to 

interpret the SRMR when there is little variability among the standardized residual covariances 

and there are no clear outliers (i.e., some standardized residual covariances much larger than the 

rest: McDonald & Ho, 2002; Raykov, 2000). Also, the SRMR may not be sensitive to model 
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misspecifications which cause only a small proportion of residuals to be large in a residual 

covariance matrix that may include many zeros or small values. However, these aspects have not 

been thoroughly explored, and as of yet, the relationship between the largest standardized 

residual covariance and model misspecification has not been fully explored, and therefore no 

clear criteria are available to assess close fit.  

A definition of close fit: Substantively ignorable misfit (SIM) 

Although the population SRMR is easy to interpret in a standardized metric, it is not 

intuitive to researchers what a specific value of SRMR (for example, .05) implies in terms of 

misspecification(s) in the fitted model. Therefore, it is necessary to investigate the relationship 

between the magnitudes of effect size (i.e., the population SRMR) and some common types of 

model misspecification to gain greater understanding of the meaning of the population 

parameter. Thus, we aim at addressing Edwards’s concern (using the SRMR) and help applied 

researchers to make a more informed decision on whether to retain or reject a misspecified 

model.  

We recognize that whether to retain or reject a misspecified model depends on the 

purpose of the application, and therefore it is necessarily subjective. Yet, in many instances an 

application may serve several purposes, or the study be purely exploratory. In these instances, 

researchers may find helpful that some reference cut-off values be provided. Choosing a 

reference cut-off value (c) is a difficult but unavoidable issue, because a decision needs to be 

made regarding the model’s use. A direct analogy involves p-values and significance levels. 

Statistics has often been described as the quantification of uncertainty. From this view point, 

statistics finishes once a p-value (or a confidence interval) is obtained. However, if a decision 
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must be made, the use of an agreed upon significance level (a cut-off value) greatly facilitates 

scientific communication.  

Putting forth suggested cut-off values to distinguish between close and non-close fitting 

models is made more difficult by the absence of any definition of close fitting model in the 

literature. For instance, based on their practical experience, Browne and Cudeck (1993) simply 

defined a model as fitting closely when RMSEA is less than or equal to 0.05. To overcome this 

shortcoming we define a model to provide a close fit to the data generating mechanism if its 

misspecification is substantively ignorable. More specifically, we define a model with 

substantively ignorable misspecifications (SIM) as a mispecified model that might be selected, 

based on parsimony, over the true model should knowledge of the true model be available. To 

the best of our knowledge, the first research that used the notion of SIM (without explicitly 

defining it) to specify criteria for close fit is Maydeu-Olivares and Joe (2014) who used SIM to 

establish cut-off values for the use of the RMSEA in IRT models. Also, our use of SIM is 

consistent with some of the most influential writings in goodness-of-fit assessment in SEM (e.g., 

Saris et al., 2009). 

Because in applications the data generating mechanism (or in short, the true model, 

although the expression is an oxymoron) is unknown, it is necessary to probe different 

combinations of true and fitted models and consider for each combination which 

misspecifications are substantively ignorable. In this article we focus on factor analysis models 

and we consider three classes of misspecifications: 1) misspecified dimensionality (e.g., fitting a 

one-factor model when the true model is a two-factor model); 2) fitting an factor model with 

independent clusters when the true model contains small cross-loadings; 3) fitting a model with 

uncorrelated errors when the true model contains correlated errors.  
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Consider the following specific example of the first scenario: choosing between a one 

factor model and a two factor model with independent clusters (i.e, every item loads on a single 

factor) whose factors correlate . What magnitude of  is substantively ignorable? Certainly, not 

0, but neither it is .3. We believe that most researchers confronted with a choice between a one 

factor model and a two factor model with  = .99 would choose a one factor model. 

Consequently, the misspecification obtained when fitting a one factor model in this case is 

substantively ignorable. We also believe that the misfit corresponding to  = .90 is substantively 

ignorable, but we do not wish to go further. We prefer to err on the safe side (the same spirit was 

used to establish cut-off values – significance levels– for p-values). Therefore we define a one 

factor model fitted to a two factor model with   .90 as fitting closely, and not fitting closely 

otherwise. We use similar criteria for other combinations of true and fitted models. For instance, 

we consider (standardized) cross-loadings less than or equal to .10 as substantively ignorable 

(provided they do not follow a substantively meaningful pattern). We believe most researchers 

would prefer to fix cross-loadings to zero when their standardized magnitude is  .10, but again 

we prefer to err on the safe side, and we do not wish to go further. Similarly, we consider 

correlations among the residuals less than or equal to .10 as substantively ignorable (provided the 

correlations are not patterned).  

To summarize, to help researchers to make a more informed decision on whether to retain 

or reject a misspecified model, we investigate the relationship between the population SRMR 

and model misspecifications in the context of the factor analysis models. In addition to the 

SRMR, the behavior of the largest standardized residual covariance (i.e., defined in terms of 

absolute values) is inspected. In particular, we are interested in examining whether models with 
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substantively ignorable misfit (SIM, our definition of close fit) can be distinguished from non-

SIM models using these two parameters. 

The remainder of this paper is organized as follows. We first review statistical theory and 

clarify the formula for unbiased estimation of the population SRMR. Next, using population 

covariance matrices, we explore the behaviors of the population SRMR and the largest 

standardized residual covariance under different types and degrees of model misspecification. 

That is, for an array of true and fitted models we specify which ones we consider close fitting or 

acceptable (i.e., actionable) and we report the corresponding values of the SRMR (and the largest 

standardized residual covariance). We conclude this discussion by offering practical guidance for 

empirical research when using the SRMR to assess goodness of fit. 

Statistical Theory for the SRMR 

 Let  ij denote the unknown population covariance between variables i and j (or the 

variance if i = j) and 0

ij  denote the population covariance (or variance) under the fitted model. 

Then, the population SRMR (P.SRMR) is defined as (Maydeu-Olivares, 2017):  

 
 

2
0

1
.

ij ijs s

i j ii jj

P SRMR
t t

 



  
 

 
 .                                             (1) 

Here, s  is the vector of the population standardized residual covariances, ( 1) / 2t p p   

signifies the number of unique elements in the (residual) covariance matrix, where p denotes the 

number of observed variables being modeled. Thus, Eq. 1 approximates the average population 

standardized residual covariance. 

 In finite samples, let sij be the sample covariance, ˆ
ij  denote the model implied 

covariance, se  be the t vector of the standardized residual covariances with elements 
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ˆ


ij ij

ij

ii jj

s
e

s s
,  (2) 

and s  represent the asymptotic covariance matrix of se . Maydeu-Olivares (2017) showed that 

regardless of the discrepancy function and distributional assumptions used, an asymptotically 

unbiased estimate of the population SRMR of Eq. 1 can be expressed as:  

 
 

1

ˆmax tr( ),0
ˆ




 


s s s

u sSRMR k
t

e e
,   where 

 

2

2

ˆ ˆtr( ) 2ˆ 1
4

s s s s
s

s s

k


 


e e

e e

 
. (3) 

However, the asymptotic covariance matrix,  s , depends on the discrepancy function used to 

estimate the model, and on whether normality or asymptotically distribution free (ADF: Browne, 

1982) assumptions are used.  

 In typical applications, SEM software programs compute a sample counterpart of the 

population SRMR in Eq. 1 as: 

 
 

2

ˆ1



 
  

ij ijs s
b

i j ii jj

s
SRMR

t t s s

e e
, (4) 

where the elements in the equation are defined earlier. It is noted that the sample SRMR shown 

in Equation 4 is a biased estimate of the population SRMR. Following Maydeu-Olivares (2017), 

we derived the expected value of the biased estimate bSRMR . This can be approximated in large 

samples using  

 
2

2

tr( ) 8[tr( ) ] 2 tr( ) 4
[ ]

8[tr( ) ]

         

  

     




s s s s s s s s s s
b

s s s

E SRMR
t

.               (5) 

 In appendix 1, we support the accuracy of this approximation by demonstrating the biases 

of the SRMRb and SRMRu in estimating the population SRMR using a small simulation example. 

It is noted that the SRMRb (Eq. 4) generally reported in software packages is upwardly biased, 
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meaning the index typically suggests worse model fit than is actually present. The amount of bias 

is compounded when sample size is small and low standardized factor loadings are present. 

Confidence intervals for the SRMR and tests of close fit can be obtained using its 

unbiased estimate and a reference normal distribution. Specifically, with large samples, a (100 – 

)% confidence interval for the SRMR can be obtained using  

  Pr ( ) ( ) 1      u u u uSRMRSRMR z SE SRMR SRMR z SE SRMR , (6) 

where SE () denotes asymptotic standard error, which is given as (Maydeu-Olivares, 2017):  

 

2
2 tr( ) 2

SE( )
2

 




e e

e e

s s s s
u s

s s

SRMR k
t

 
.  (7)   

 In addition, statistical test for model close fit can be conducted with hypotheses such that 

 0 1:  vs. : SRMR c SRMR cH H ,  

where 0c  is a reference cut-off value for close fit, p-values are obtained using 1 ( ) p z , 

where ()  denotes a standard normal distribution function and 
( )


 u

u

SRMR c
z

SE SRMR
.    

Population SRMR and Model Misspecification 

  The relationship between the population SRMR and misspecification in factor analysis 

models is explored in this section. In addition to the population SRMR, the behavior of the 

largest standardized residual covariance (i.e., defined in terms of absolute value) was inspected 

across different model misspecifications. The performance of these two parameters was 

evaluated through a simulation study in which we generated population covariance matrices as 

the purpose of this study is to better understand the behavior of the population SRMR. 
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The population model used was a confirmatory factor analysis (CFA) model with two correlated 

factors. The following three types of misspecification, that are often observed in practice when 

fitting CFA models, were considered.     

a) Misspecified dimensionality. The population model was as two factor, independent clusters 

model with correlated factors. A one factor model was fit to the two-dimensional structure.  

b) Omitting cross-loadings. Items related to each factor via an independent clusters structure; 

however, one or multiple indicators cross-loaded on both factors. The fitted model assumed an 

independent clusters structure for both factors, where the cross-loading value(s) was incorrectly 

fixed to zero.  

c) Omitting residual correlations. In the population model, one or multiple residual correlations 

(covariances) were present. A simple structure model with no correlated error was fit.  

To produce these population covariance matrices, factor variances were fixed to one. The error 

variances were set such that all factor loadings (including cross-loadings) are on a standardized 

scale. Other characteristics that were manipulated are as follows:  

Magnitude of Factor Loadings. The population factor loadings (λ) included low (.40), medium 

(.60), and high (.80). The primary factor loadings are the same for all items across factors.  

Model size. The model size is indicated by the number of observed variables (p; Moshagen, 

2012; Shi, Lee, & Terry, 2015, 2018)3. Model size ranged from small to very large, including p = 

12, 36, 72, or 144. Equal number of items loaded on each factor.  

Magnitude of Model Misspecification. In the scenario in which multidimensionality was ignored, 

the level of misspecification was manipulated by changing the degree of correlation between the 

factors in the true model. The true correlation coefficients ranged from .60 to .90, in increments 

of .10. Given that the estimated model collapsed across two factors in the population model, a 
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smaller inter-factor correlation indicated a greater level of misspecification. When the 

misspecification included omitted cross-loadings or residual correlations, the inter-factor 

correlation was fixed to .30 and the level of misspecification was determined by the population 

value of the omitted parameters. The omitted cross-loadings or residual correlations ranged from 

.10 to .40, in increments of .10. Here, larger values indicated a higher level of model 

misspecification. 

Number of Omitted Parameters. When the misspecifications were introduced by omitting cross-

loadings or residual correlations, we manipulated the number of omitted cross-loadings/ residual 

correlations. The number of omitted parameters ranged from one to four, in increments of one.  

In summary, the number of conditions examined were 48 = 3 (factor loading levels) × 4 (model 

size levels) × 4 (factor inter-correlation levels) for misspecified dimensionality. When 

investigating situations with cross-loadings or residual correlations, the number of conditions 

examined were 192 = 3 (factor loading levels) × 4 (model size levels) × 4 (magnitudes of omitted 

parameters) × 4 (number of omitted parameters).  

For each condition, a population covariance matrix was computed. Then, the population 

values of SRMR were calculated by fitting the misspecified model to the population covariance 

matrices with maximum likelihood (ML) estimation, using the lavaan package in R (Rosseel, 

2012; R Core Team, 2015). In addition to the SRMR values, every standardized residual 

covariance was obtained, and the largest absolute value for the standardized residual covariance 

was used as an alternative index for evaluating model fit. Analyses of variance (ANOVAs) were 

conducted to identify conditions which affected the outcome of interest. An eta squared (η2) 

value above 10% was used to identify conditions that contributed to sizeable amounts of 

variability in the outcome. To better demonstrate the behaviors of the population SRMR and the 
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largest standardized residual covariance, all results were presented in the form of figures; tables 

that include complete simulation results are provided as supplementary materials.   

Behavior of the population SRMR and largest standardized residual covariance in models 

with mispecified dimensionality 

The behavior of SRMR and the behavior of the largest absolute value of the standardized 

residual covariance under the misspecification of disregarding multidimensionality are shown in 

Figure 1 (panel A and B, respectively). In these figures, different markers were used to indicate 

different values of inter-factor correlations (i.e., degree of model misspecification) and for each 

level of inter-factor correlation, the population SRMR and the largest (absolute value of) 

standardized residual covariance were plotted against the magnitudes of the factor loadings. 

Given a fixed level of factor loading and inter-factor correlation, cases with different model sizes 

were labeled separately. By comparing Figures 1A and 1B, we can see that when dimensionality 

is mispecified, the SRMR value and largest standardized residual covariance provide almost the 

same information. A linear regression model predicting the SRMR from the largest standardized 

covariance showed that the two parameters are almost perfectly correlated (R2 =.988). Therefore, 

only results for the SRMR are discussed to avoid redundancy. 

The results from the ANOVA showed that the most important sources of population 

SRMR variance were the magnitude of factor loadings (η2 = .50) and inter-factor correlations (η2 

= .39). Specifically, Figure 1A demonstrates SRMR’s sensitivity to factor's structural 

misspecification; as the inter-factor correlation decreased (indicating a more severe 

misspecification), the population SRMR increased accordingly. In addition, at any fixed level of 

model misspecification (e.g.,  = .8), the population SRMR depends on the values of the 

standardized factor loadings according to a curvilinear relationship. The higher the factor 
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loadings, the higher the population SRMR. Moreover, the effects of model misspecification and 

factor loading are multiplicative, meaning that the higher the level of model misspecification, the 

higher the effect of the factor loading. Finally, model size did not have a great impact on the 

results. For a fixed level of factor loading and inter-factor correlation, variability displayed in 

Figure 1A due to differences in model size was ignorable (η2 < .01). 

As seen in Figure 1A, the commonly used cutoff of SRMR = .08 (the solid horizontal 

line) appears to be too liberal a criterion for identifying misspecification in the factor structure. 

For example, when factor loadings are .6 or less, fitting a one-factor model to a two-factor 

structure with a low inter-factor correlation (e.g. ρ =.6), the reference of SRMR ≤ .08 would 

always suggest acceptable model fit. This finding holds regardless of model size. In fact, because 

the population SRMR heavily depends on the size of factor loadings, it is difficult to find a single 

reference to separate practically well-fitting models (e.g.  > .9) from non-closely fitting models 

that should be rejected (e.g.  = .6).  

A curvilinear relationship was observed between SRMR and the magnitude of the 

standardized factor loading (see Figure 1A). Therefore, we considered to use and evaluate the 

SRMR in light of the communality (i.e., the squared standardized loading, or λ2)4. Using the ratio 

of SRMR to the communality (SRMR / λ2) as the outcome variable, the results from the 

ANOVA indicated that the inter-factor correlation explained a very large amount of the variance 

(η2 = .99).  Figure 1C depicts the relationship between SRMR / λ2 and the standardized factor 

loadings across levels of inter-factor correlation () and model size. As shown, population 

SRMR / λ2 only depended on the level of model misspecification (), regardless of the magnitude 

of the factor loadings and model size. Thus, if close fit is defined as fitting a one-factor model to 
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two-factor data when inter-factor correlations are greater than or equal to  .90, such models 

imply that SRMR / λ2 ≤ .05 (the solid line in Figure 1C). 

----------------------------------- 

Insert Figure 1 around here 

----------------------------------- 

Behavior of the population SRMR and largest standardized residual covariance in models 

with omitted cross-loadings 

When the models were misspecified by omitting cross-loadings, ANOVA results showed 

that the most important sources of population SRMR variance were the size of cross-loading (η2 

= .28), magnitude of the factor loadings (η2 = .18), and model size (η2 = .16).  In Figure 2, we 

plotted the behavior of SRMR in the presence of one to four omitted cross-loadings in four 

separate panels (i.e. panel A-D). These figures show that population SRMR increased as the 

magnitude of the omitted cross-loading(s) increased. However, the commonly used cutoff is not 

sensitive to detect misspecification caused by omitting cross-loading(s). Almost all misspecified 

models would be retained using the guideline of .08 for close fit (the solid horizontal line), even 

when the size of the omitted cross-loading(s) reached .40. In addition, by comparing the four 

panels in Figure 2, the population SRMR slightly increased as the number of omitted cross-

loadings increased. However, the effect of number of omitted cross-loadings on SRMR was quite 

small (η2 = .06).  

The population SRMR was also influenced by the magnitude of the factor loadings; 

higher factor loadings were associated with a larger population SRMR, especially when the 

omitted cross-loading value was large. For example, when the number of observed variables was 
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12 and one cross-loading of .40 magnitude was omitted, the population SRMR increased from 

.029 to .085 as the magnitude of the (primary) loading values increased from .40 to .80. 

For a fixed level of primary factor loading and cross-loading(s), the variability of the population 

SRMR was still noticeable, indicating a substantial effect of model size. Specifically, holding 

other conditions constant, larger model size was associated with smaller SRMR values. 

Moreover, the effect of model size was more noticeable as the level of model misspecification 

and the magnitude of the factor loading increased. For example, when the factor loadings were 

set to .80 and one cross-loading of .40 was omitted, the population SRMR decreased from .085 

(p = 12) to .024 (p = 144). With a smaller factor loading (i.e., .40) and lower level of model 

misspecification (i.e., cross-loading = .20), model size had a smaller effect on the SRMR, 

yielding values which ranged from .016 (p = 12) to .006 (p = 144). 

----------------------------------- 

Insert Figure 2 around here 

----------------------------------- 

The behavior of SRMR / λ2 in the presence of omitted cross-loadings is shown in Figure 

3. ANOVA results indicated that the most important sources of variance in SRMR / λ2 were the 

size of cross-loading (s) (η2 = .46) and model size (η2 = .24). It is noted that the effect of model 

size on SRMR / λ2 was less noticeable as the level of model misspecification decreased. For 

example, when the factor loading was .40 and one cross-loading with size of .40 was omitted, the 

SRMR to communality ratio (SRMR / λ2) decreased from .183 (p = 12) to .074 (p = 144). When 

the model misspecification was less severe (i.e. cross-loading = .10), the range of SRMR / λ2 was 

smaller across model sizes, with values from .053 (p = 12) to .019 (p = 144). Generally speaking, 
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if researchers would accept models that omit minor cross-loadings (i.e. cross-loading ≤ .10), 

SRMR / λ2 ≤ .05 (the solid line in Figure 3) could be used as a reference.  

----------------------------------- 

Insert Figure 3 around here 

----------------------------------- 

Using the largest absolute value of the standardized residual covariance as the outcome 

variable, ANOVA results indicated that the level of cross-loadings (η2 = .37), the magnitude of 

factor loadings (η2 = .17), model size (η2 = .15), and number of omitted cross-loadings (η2 = .14) 

were the major sources that explained the majority of the variance. Each panel in Figure 4 

illustrates the behavior of the largest absolute value of the standardized residual covariance in 

terms of the magnitudes of factor loadings, levels of cross-loadings and model size across 

various number of cross-loadings. We can see that the largest absolute value of the standardized 

residual covariance increased when the magnitude of factor loadings and level of cross-loadings 

increased.  

In addition, the largest standardized residual covariance generally increased as the 

number of omitted cross-loading increased. However, as more cross-loadings were omitted, the 

amount of increase in the largest standardized residual covariance “leveled off” (i.e., smaller 

increases were observed). For example, when p= 144, and the magnitude of factor loading was 

0.6, if omitting one cross-loading of .20, the largest standardized residual covariance was .107; 

the largest standardized residual covariance increased to .224 as two cross-loadings were 

omitted. Nevertheless, as the number of omitted cross-loadings kept increasing, the largest 

standardized residual covariance tended to remain stable, yielding SRMR= .222 (omitting three 

cross-loadings) and .219 (omitting four cross-loadings).   
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Given a fixed level of factor loading and cross-loading, it can be that the variability of the 

points displayed in Figure 4 is much smaller than those in Figure 2. This implies that the effect 

of model size on the largest absolute value of the standardized residual covariance was much 

smaller than the effect on the SRMR. Moreover, the effects of model size on SRMR and the 

largest standardized residual covariance were in opposite directions. That is, as p increased, the 

largest standardized residual covariance tended to slightly decrease. As shown in Figure 4, if 

close fit is defined as omitting cross-loadings less than or equal to .10, such models can usually 

be identified by applying the cut-off with the largest absolute value of the standardized residual 

covariance ≤.10 (the solid horizontal line). 

----------------------------------- 

Insert Figure 4 around here 

----------------------------------- 

Behavior of the population SRMR and largest standardized residual covariance in models 

with omitted correlations among the residuals 

In the presence of omitted residual correlations, ANOVA results showed that the most 

important sources of population SRMR variance were model size (η2 = .53) and the size of 

residual correlations (η2 = .13). In Figure 5, we present the behavior of population SRMR across 

the study conditions. Panels A-D represent conditions where one to four residual correlations 

were omitted. For each panel from Figure 5 (i.e., same number of omitted residual correlations), 

given a fixed level of factor loadings and residual correlations, the variability of the population 

SRMR was very large. This indicates that model size was the dominant factor for the values of 

population SRMR. Specifically, models with more observed variables yielded noticeably smaller 

population SRMR values. For example, when the factor loadings were .40, and four residual 
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correlations of .40 were ignored, the population SRMR decreased from .070 (p = 12) to .007 (p = 

144). In addition, for a fixed number and level of residual correlations, the population SRMR 

slightly decreased as the magnitude of factor loadings increased; yet, the effect size of the 

magnitude of factor loadings was quite small (η2 = .07). For example, when p = 12, and four 

residuals correlations of .10 were ignored, the population SRMR dropped marginally, from .018 

(λ=.40) to .008 (λ=.80).  

The figures also show that population SRMR increased as the number and magnitude of 

the omitted residual correlations increased. However, the value of population SRMR was still 

rather small, even when four residual correlations with size of .40 were ignored. The commonly 

used cutoff for SRMR failed to detect the misspecification caused by omitting residual 

correlations.  That is, all misspecified models considered would be retained using the guideline 

of .08 for close fit (i.e., denoted by solid horizontal line). Based on the results, when the 

magnitude of model misspecifications increased, the related change in the population SRMR 

could be small. Moreover, the population SRMR was greatly impacted by model size. Therefore, 

it is problematic to use SRMR (or SRMR / λ2) as the criteria to detect model misspecifications 

from omitting residual correlations.   

----------------------------------- 

Insert Figure 5 around here 

----------------------------------- 

On the other hand, for the largest absolute value of the standardized residual covariance, 

the ANOVA results indicated that the level of model misspecification (residual correlations) 

could explain the majority of the variance (η2 = .62). The magnitude of the factor loading was an 

important source of variance (η2 = .31); however, the main effect of the model size was 
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negligible (η2 < .01). Figure 6 illustrates the behavior of the largest absolute value of the 

standardized residual covariance when omitted residual correlations were present. We can see 

that the largest absolute value of the standardized residual covariance was more sensitive than 

the SRMR to identify misspecified models with omitted residual correlations. The largest 

absolute value of the standardized residual covariance increased as the size of the residual 

correlations increased, indicating a more severe misspecification. In addition, the value of the 

largest standardized residual covariance was much larger than the SRMR obtained from the same 

misspecified model. The largest absolute value of the standardized residual covariance was 

negatively associated with the magnitude of the factor loading. In addition, as the magnitude of 

factor loading increased, the decrease in the largest standardized residual covariance tended to be 

more gradual when the level of model misspecification was smaller. For example, for a fixed 

model size (i.e., p = 12), when the model was misspecified by omitting one residual correlation = 

.40, the largest absolute value of the standardized residual covariance decreased from .313 (λ = 

.40) to .139 (λ = .80). If the omitted residual correlation = .10, the largest absolute value of the 

standardized residual covariance dropped more gradually from .080 (λ = .40) to .035 (λ = .80). 

Therefore, when the misspecifications occurred by omitting residual correlations, the largest 

absolute value of the standardized residual covariance was a more suitable index than the SRMR 

for assessing model fit. As shown in Figure 6, close fitting models can be identified by the 

largest absolute value of the standardized residual covariance ≤ .10 (the solid horizontal line), 

which approximately corresponds to omitting correlated residuals with correlations of .10.  

----------------------------------- 

Insert Figure 6 around here 

----------------------------------- 
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A numerical example: Fitting a five factor model to the SPRI-R 

 We provide a numerical example to illustrate our discussion. The Social Problem Solving 

Inventory-Revised (SPSI-R: D’Zurilla, Nezu, & Maydeu-Olivares, 2002) is a 52 item 

questionnaire that according to its authors measures five attributes. Each item is scored using 

five ordered categories. Maydeu-Olivares and D’Zurilla (1996) report confirmatory (CFA) and 

exploratory (EFA) factor analyses fitted to a sample of N = 601 individuals. These data will be 

reanalyzed here. We do not report parameter estimates as these are available in the original 

sources. Rather, we wish to focus on answering the question ‘do these models fit closely 

enough?’. If the answer is negative, a better model should be sought for these data.  

 The data is quite normal, the excess kurtosis for all items is well below one; only one 

item has skewness larger than |1|. Consequently, we simply provide fit results under normality 

assumptions to simplify our presentation. First we fitted the independent clusters CFA model of 

Maydeu-Olivares and D’Zurilla (1996): every item is loaded only by its factor. The CFA yields 

χ2 (i.e., the likelihood ratio statistic) = 3,209.87 on 1264 df, p < .001. A 90% confidence interval 

(CI) for the RMSEA is (.048; .053), and the unbiased SRMR is .053. The model does not fit the 

data exactly, but by current standards of ‘close’ fit, we would conclude based on this information 

that the model provides a close fit to the data. In so doing, all that we have done is to apply some 

cutoff values recommended in the literature; the definition of ‘close’ is based on those cutoffs. A 

model fits closely if the estimated values are below the cutoffs, and it does not fit closely 

otherwise (Barrett, 2007).  

In this paper, we have put forth a definition of close fit. We deem a model to provide a 

close fit to the data generating process if we would choose the fitted model over the data 

generating process based on parsimony, i.e., if the fitted model showed substantively irrelevant 
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misfit. We estimate a 90% CI for the SRMR as (.048; .057), we obtained the average R2 of the 

items, 2R  = .42, and we inspected the largest (in absolute value) standardized residual 

covariances. There are two residuals > |.2| and over 30 residuals > |.1|, all statistically significant 

at the 5% level after applying a Bonferroni correction for the (53×52)/2 = 1,378 residuals 

inspected. We cannot ignore such large residuals and we conclude that the model does not fit 

closely the unknown data generating process. In fact, we conclude that the fit is not even 

acceptable, in spite of the estimated RMSEA. Therefore, a better model must be sought. Our 

conclusion is supported by an inspection of the modification indices. Five of the modification 

indices involving the factor loadings involved expected standardized cross-loadings larger than 

|.3| and as high as |.45|; the modification indices for these five loadings ranged from 44 to 58 (on 

1 df).  

To obtain a better fitting model we estimated an EFA model using a target rotation 

(Browne, 1972) instead of adding cross-loadings (or correlated residuals) based on the 

modification indices results. An examination of the estimated loadings reveals that the structure 

conforms to that put forth by Maydeu-Olivares and D’Zurilla (1996): all secondary loadings are 

smaller than the primary loadings. Regarding the fit of this model, we obtained X2 = 2,233.67 on 

1076 df, p < .001. A 90% CI for the RMSEA is (.040; .045), and the unbiased SRMR is .021. 

The average communality is 2R  = .45, a 90% CI for the SRMR is (.020, .023). There are only 

four standardized residual covariances larger than |.1|, a 90% confidence interval for the largest is 

(-.18, -.14). Now, SRMR/ 2R  = .051,  an inspection of Figure 1C reveals that for this 2R , the 

estimated SRMR is only slightly above what we would have obtained if we had fitted a one 

factor model to a two-factor independent clusters model with correlation .9. As we would rather 

use a one factor model than a two factor model with correlation .9, this lead us to believe that 



 SRMR and Model Misspecification   25 

 

this EFA model fits rather closely the unknown data generating process. Also, we inspected 

Figures 4 and 6 involving the relationship between the largest standardized residual and the size 

of localized misfit. To properly interpret these figures it is convenient to estimate the average 

factor loading. To do so, we simply took
2 .67R   . Inspection of Figures 4 to 6 gives us 

pause to conclude that the EFA model fits closely. Rather, the estimated value of the largest 

residual suggests that there is some localized misfit in the model that exceeds our standards. 

Taking together the estimated values of the SRMR and largest standardized residual, we 

conclude that the model provides an acceptable fit to the data generating model: on average, the 

model provides a good overall fit to the data, but the model does not capture well enough every 

association among these 52 items. The conclusion is not surprising: with 52 items, finding a 

model with substantively ignorable misspecifications requires a lot of work.  

Discussion 

This research investigated the relationship between the population SRMR (and largest 

standardized residual covariance) and different types and degrees of misspecification in factor 

analysis models. Population covariance matrices were used to determine the impact of study 

conditions on the population SRMR without the impact of sampling error. Conditions of factor 

loading size and model size were manipulated. Findings showed that the population SRMR was 

sensitive to model misspecification due to fitting a one-factor model to two-factor data or 

ignoring cross-loadings, but less sensitive to misspecifications introduced by omitting residual 

correlations. These findings are consistent with previous studies (Fan & Sivo, 2005; Hu & 

Bentler, 1998;1999) using sample estimates of the SRMR.   

The SRMR can be approximately interpreted as the average standardized residual 

covariance. As such, it is sensitive to model misspecifications that cause a substantial proportion 
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of large elements (in absolute value) in the standardized residual covariance matrix. When the 

nature of the model misspecification results in only a small proportion of large residuals, and/or 

many structural zeros appear in the residual covariance matrix, the average residual covariance 

cannot provide an accurate representation of the misspecification. Therefore, the SRMR was not 

sensitive to model misspecifications caused by omitting a few residual correlations, especially 

when the number of observed variables (and thus, the number of residual covariances) is large. 

In such situations, examining the largest (in absolute value) standardized residual covariance is 

more useful. In fact, our findings revealed that both global fit and local fit are important concepts 

to consider when evaluating models (DiStefano, 2016; West, Taylor, & Wu, 2012; McDonald & 

Ho, 2002b; Raykov, 2000). That is, good global fit implies that even in the presence of some 

local misspecifications, the overall model holds up well, and should not be completely discarded. 

On the other hand, the information about local misfit can help researchers identify the sources of 

poor global fit and thereby improve the model.  

We also explored the effects of two possible “incidental parameters” (i.e., model size and 

the magnitude of the factor loading). In general, larger standardized factor loadings were 

associated with higher population SRMR values when the model misspecifications occurred by 

ignoring the multidimensionality or omitting cross-loadings. However, when the model was 

misspecified by ignoring correlated residuals, for a fixed level of residual correlations, the 

population SRMR tended to slightly decrease as factor loading increased. The findings of the 

current study are consistent with previous methodological research regarding the influence of 

measurement quality (i.e., standardized factor loadings) on fit indices. Methodologists have 

shown that for a given level of model misspecification, poor measurement quality is associated 

with better model fit (i.e., the reliability paradox; see Hancock & Mueller, 2011; Heene, Hilbert, 
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Draxler, & Ziegler, 2011; McNeish, An, & Hancock, 2018). This result can be somewhat 

counter-intuitive. In particular, researchers would judge the value of an ignorable secondary 

factor loadings against the values of the primary loadings. For a given size of the secondary 

loading, it should be more ignorable when the primary loadings are larger; however, the 

population SRMR tends to increase as the values of the primary loadings increase, suggesting 

worse fit.  

In addition, when omitting cross-loadings or residual correlations, the population SRMR 

decreased as the number of observed variables increased. However, when misspecifying 

dimensionality (i.e., fitting a one-factor model to two-factor data), the effect of the model size on 

the population SRMR is quite small. The patterns described above are slightly different to the 

behavior of the population RMSEA (Savalei, 2012). In Savalei’s (2012) study, she noted that the 

population RMSEA generally decreased as the magnitude of the factor loading decreased and the 

number of observed variables increased, despite the type of model misspecification. According 

to its definition, the RMSEA penalizes model complexity by incorporating a degree of freedom 

in the formulation, and it measures the discrepancy due to approximation per df. Therefore, for 

models with a fixed level of misspecification, the population RMSEA generally decreases as p 

increases because a higher p is typically associated with larger degrees of freedom (df). The 

SRMR, on the other hand, is (approximately) the average standardized residual covariance. 

When misspecifying dimensionality (e.g., fitting a one-factor model to two-factor data), the 

majority of the residual covariances are impacted by the misspecifications. Therefore, their 

average values are less sensitive to the size of the residual covariance matrix (as a function of p).  

We showed that the population SRMR is not only determined by the size of the model 

misspecification, but may be influenced by other factors, including the type of model 
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misspecification, the magnitude of the factor loading, and model size. As a result, the practice of 

using the SRMR with a single cut-off for testing model close fit may be misleading. For 

example, using the existing criterion of sample SRMR ≤ .08, would lead us to retain as a close 

fitting model a one factor model fitted to data generated according to two-factor model with an 

inter-factor correlation of ρ = .6 if the standardized factor loadings were lower than or equal than 

.60 (e.g., λ ≤ .60). Moreover, in spite of the magnitude of the factor loading or the model size, the 

currently accepted close fit criteria cannot detect misspecifications caused by omitting correlated 

residuals, even if the number and size of the omitted residual correlations are fairly large (e.g., 

four residual correlations of size .40). 

In order to better distinguish close fitting models from models with substantially non-

ignorable misspecification, we recommend examining both the largest standardized residual 

covariance (in absolute value) and the SRMR in light of the average estimated communality, that 

is R2. Using this two-index strategy will capture different types of model misspecifications. In 

addition, for each index, to identify closely fitting models, a reference that is relatively robust to 

the magnitude of the factor loading and model size can be proposed. In this study, we considered 

three instances of misspecified models with substantively ignorable misspecification (i.e., 

providing a close fit to the true model): 1) fitting a one-factor model to two-factor data when 

inter-factor correlations larger than or equal to .90; 2) omitting cross-loadings with standardized 

values less than or equal to .10; or 3) ignoring correlated residuals with correlations less than or 

equal to .10. At the population level, such closely fitting models can be identified when: a) the 

largest absolute value of the standardized residual covariance ≤ .10, and b) an SRMR to average 

communality (i.e., R2) ratio, 2SRMR / .05R (or 2SRMR .05 R ).   
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In Appendix 2, we further evaluate the generalizability of the proposed reference values 

in more complex situations (i.e. the population model has three correlated factors with different 

magnitudes of factor loadings). The two-index strategy also performed reasonably well under the 

complex study conditions.  

Researchers may differ in what they consider a SIM, and we acknowledge that our own 

personal criteria for SIM, and hence, close fit are quite stringent. We believe many researchers 

would also consider a) fitting a one-factor model to two-factor data with an inter-factor 

correlation of ρ ≥ .80, b) setting cross-loadings  .20, or c) setting residual correlations  .20 to 

zero to be substantively ignorable misspecifications. As a result, we believe models with these 

levels of misspecification are acceptable. Our results indicate that models with acceptable misfit 

can be distinguished using our two-index strategy using the following criteria: a) largest absolute 

value of the standardized residual covariance ≤ .15, and b) 2SRMR .10 R  .  For convenience, 

we provide in Table 1 the values of SRMR corresponding to our definitions of close and 

acceptable fit for various levels of average communality (R2 of the observed indicators). We are 

unable to provide values of the biased SRMR corresponding to our definitions of close and 

acceptable fit because the expected value of the biased SRMR is a function of 1 N   (see 

Appendix 1). 

 ----------------------------------- 

Insert Table 1 around here 

----------------------------------- 

It is worth noting that these reference values for close and adequate fit do not have to 

serve as fixed criteria. The recommendations are based on our personal cutoff for deciding 

whether to retain or reject a misspecified model. We acknowledge that the definition of closely 
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fitting model is subjective; in practice, researchers may differ in what they consider a closely or 

acceptably fitting model, and they need not agree with our classification for “close” and 

“acceptable” fit models. However, we provide enough information for them to make an informed 

decision on what cutoff to use given their qualitative decision on which models are close enough 

to be actionable given the true models. That is, different reference values can be obtained from 

the figures5, or easily generated by following the paradigm from the current study, which allow 

researchers to employ a criterion that meets the unique needs of their proposed research. 

In the current study, we focus on population parameters. Of course, in applications only 

sample estimates are available. It is noted that with sampling errors, the reference values we 

provided are not sample cutoffs. That is, it may not be proper to compare the sample SRMR (or 

the largest standardized residual covariance) with the population cutoffs, unless the sample size 

is very large. To account for the sampling variability, we recommend applying the population 

criteria with the confidence intervals (or statistical tests for model close fit; e.g., SRMR ≤ c), 

which allows researchers to make population inference using sample data. Specifically, for both 

SRMR and an individual standardized residual covariance term, statistical theory is available to 

obtain their asymptotic standard errors, and, in turn, to compute the confidence interval 

(Maydeu-Olivares & Shi, & Rosseel, 2017; Maydeu-Olivares & Shi, 2017; Maydeu-Olivares, 

2017; Ogasawara, 2001). Simulation studies have also shown that in finite samples, the point 

estimations and the confidence intervals are quite accurate for both SRMR and the individual 

standardized residual covariance even in samples of size 100 and very large models (Maydeu-

Olivares & Shi & Rosseel, 2018; Maydeu-Olivares & Shi, 2017). Of course, when considering 

the statistical significance (or confidence intervals) for individual standardized residual it is 

important to adjust for multiple testing. In our experience (Maydeu-Olivares & Shi, 2017), the 
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Bonferroni method suffices for this purpose although more complex procedures (e.g., Benjamini 

& Hochberg, 1995) may be employed. Additional works are need to further explore the usage of 

individual standardized residual to assess the overall fit of the model. We hope that this paper 

enlightens SEM researchers and provides additional information to assist them when conducting 

the difficult task of assessing model-data fit. 
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Appendix 1:  

Computation of the Population SRMR and Bias of Its Unbiased and Biased Estimates 

To illustrate the biases of the biased and unbiased estimates of the population SRMR we 

have provided a simulation example. The population model was an independent cluster 

confirmatory factor model with two correlated factors (correlation coefficient ρ = .80). Each 

factor had five normally distributed indicators. The population factor loadings were set to be 

either .80 (error variance = .36) or .40 (error variance = .84). Misspecification was introduced by 

ignoring the multidimensional structure and fitting a common factor model to the two-factor 

data. Table 2 provides the mean across 1,000 replications of the biased and unbiased SRMRs 

obtained across a number of sample sizes (ranging from 50 to 10,000 observations). Maximum 

likelihood estimation was used. All computations were performed using the lavaan package in R 

(R Development Core Team, 2015; Rosseel, 2012).  

Following Maydeu-Olivares (2017), the population SRMR was computed as follows: The 

population covariance matrix was input into lavaan as if it were the sample covariance matrix, 

along with the target sample size. The estimated standardized residuals were then used to 

compute the population SRMR. As a side product, we also computed the expected value of the 

biased sample SRMR given in Eq. 4. The results are summarized in Table 2. In this Table, we 

see how the behavior of the sample SRMRs depended on the factor loading. More accurate 

SRMR values were obtained with higher factor loadings, undoubtedly because they were more 

accurately estimated (Gerbing & Anderson, 1985; Hoogland & Boomsma, 1998). When the 

factor loading was .4, the unbiased SRMR provided estimates with a relative bias of less than 

10% in samples of 100 observations and higher, but a sample size of 1,000 was needed to obtain 
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a relative bias less than 1%. In contrast, the relative bias of the unbiased SRMR estimate did not 

exceed 1%, even when sample size was 50. 

The results of Table 2 also reveal that the biased SRMR overestimated the population 

SRMR. This suggests that under such conditions, model fits may appear poorer than they 

actually are. The bias was not exceptionally large when the factor loading was high (.8) and 

sample size was at least 200. For a population value of .058, the average of the biased SRMR 

was .063 at a sample size of 200 (the unbiased average was .058). However, when the factor 

loading was low (.4), the bias of the biased SRMR was unacceptable, even with a sample size of 

10,000. Thus, for a population value of .014, the average of the biased SRMR was .069 at a 

sample size of 200 (the unbiased average was .016).  

We also see in Table 2 that the asymptotic approximation of the average behavior of the 

biased SRMR was rather accurate. At low factor loadings, our approximation was accurate to 

three digits, even with a sample size of 50. At high factor loadings, three-digit accuracy was 

obtained as soon as the sample size reached 300. Even in the worst case (50 observations), the 

approximation was fairly accurate (an expected mean of .074 vs. a .076 actual mean).  

----------------------------------- 

Insert Table 2 and Figure 7 around here 

----------------------------------- 

 Although it is not apparent in Equation (5) –as N is embedded in s – the expected value 

of the biased sample SRMR can be well approximated by a function of 1 N  for each value of 

the population SRMR. This is illustrated graphically in Figure 7.  
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Appendix 2:  

Using the Standardized Root Mean Square Residual and the Largest Standardized 

Residual Covariance to Identify Close Fitting Models 

 This appendix evaluates the performance of the two-index strategy and examines the 

generalizability of the proposed reference values under more complex modeling situations. The 

population model used was a confirmatory factor analysis (CFA) model with three correlated 

factors. The total number of observed variables (p) included 36, 72, or 144, resulting in 12, 24, or 

48 variables per factor. The population variances for all three factors were set to one. The error 

variances were set such that all factor loadings were on a standardized scale. To reflect a more 

realistic situation, items loading on the same factor were of different magnitudes. . The size of 

the factor loadings included low (.40), medium (.60), or high (.80) on the same factor. For a 

given factor, the number of items with each of the three levels of factor loadings was the same 

(e.g., p = 12, three items of each loading size). Three types of model misspecifications were 

manipulated:  

Misspecified dimensionality. The population model consists of three correlated factors. The fitted 

models were either a one factor model or a two factor model, collapsing the correlation between 

factors one and two. The level of misspecification was manipulated by changing the degree of 

correlation among the factors in the population. When the unidimensional structure was fitted, 

smaller inter-factor correlation(s) in the population model were indicative of a greater level of 

misspecification. Seven patterns of inter-factor correlations were included and summarized in 

Table 3. In total, 42 cases (3 model sizes × 7 inter-factor correlation patterns × 2 fitted models) 

were considered. Following the definition in this study, closely fitting models imply that a 
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unidimensional structure was fit when the inter-factor correlations were larger than or equal to 

.90.  

Omitting cross-loadings. The population model consists of three correlated factors; however, 

three indicators loaded on two different factors6. The fitted model ignored cross loadings, with 

values incorrectly fixed to zero. The inter-factor correlations were set to .30, and the level of 

misspecification was determined by the population value of the omitted cross-loadings. The 

magnitudes of (standardized) cross-loadings included .10, .20, or .30. We also manipulated the 

locations of cross-loadings, where the cross-loadings occurred on items with low (.40), medium 

(.60), or high (.80) primary factor loadings. The number of conditions considered was 27 = 3 

(model size levels) × 3 (magnitudes of omitted cross-loadings) × 3 (locations of cross-loadings). 

Closely fitting models were defined as omitting cross-loadings with standardized values less than 

or equal to .10.  

Omitting residual correlations. In the population model, three correlated residuals were present7. 

A simple structure three-factor CFA model with no correlated residuals was fit. The correlated 

residuals were introduced between items with either low (.40), medium (.60), or high (.80) factor 

loadings. The level of model misspecification was indicated by the values of residual correlations 

(i.e. .10, .20, or .30); larger values implied a higher level of model misspecification. Under 

omitting residual correlations, the total number of conditions was 27 = 3 (model size levels) × 3 

(magnitudes of omitted residual correlations) × 3 (locations of correlated residuals). If correlated 

residuals with correlations less than or equal to .10 were ignored, the (misspecified) model is 

considered closely fitting.  

Following the same procedure discussed in the earlier section, for each simulated 

condition, we computed the population SRMR and the single standardized residual covariance. 
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The ratio of SRMR to average communality (i.e., the squared standardized factor loading) and 

the largest absolute value of standardized residual covariance were calculated and used as the 

two indices for examining model close fit. In Figure 7, for each type of model misspecification, 

we presented the relationship between the SRMR/λ2 and the largest standardized residual 

covariance, along with the recommended reference values for model close fit (i.e. indicated by 

the solid horizontal line and the dashed vertical line, respectively). In addition, markers were 

used to differentiate cases that would be denoted as a close fitting model, and those that are not 

(based on the definitions discussed above). As shown in the figures, the proposed reference 

values performed well in terms of identifying close fitting models. All close fitting models 

yielded the largest absolute value of standardized residual covariance less than or equal to .10, 

and SRMR/λ2 less than or equal to .05 (i.e. fall in the left lower quadrant created by the two 

reference lines). On the other hand, by using the two-index cutoffs, almost all models with more 

severe misspecifications could be successfully identified.  

----------------------------------- 

Insert Table 3 and Figure 8 around here 

----------------------------------- 
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Footnotes 

1. In this paper, we distinguish between effect sizes of model misfit and goodness of fit indices. 

The term goodness of fit indices is reserved for sample statistics used to adjudge model fit 

disregarding their sampling variability and without referencing the population parameter.  

2. When interpreting the standardized residual covariances, we ignore the signs and refer the 

“largest standardized residual covariances” as the one with the largest absolute value. 

3. The size of an SEM model has been indicated by different indices, including the number of 

observed variables (p), the number of parameters to be estimated (q), the degrees of freedom 

(df = p (p + 1)/2 − q), and the ratio of the observed variables to latent factors (p/f). Recent 

studies have suggested that the number of observed variables (p) is the most important 

determinant of model size effects (Moshagen 2012; Shi, Lee & Terry, 2015, 2017). 

Therefore, in the current study, we define large models as SEM models with many observed 

variables.  

4. To compute the ratio of SRMR to communality, we used the average (standardized) factor 

loadings estimated by fitting the misspecified models to the population covariance matrices. 

5. Also see the supplemental tables.  

6. The three indicators loaded on factors 1 & 2, factors 1 & 3, and factors 2 & 3, respectively.  

7. The three correlated residuals were introduced between items from factors 1 & 2, factors 1 & 

3, and factors 2 & 3, respectively.  
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Table 1: SRMR reference values that meet the criteria for close ( 2.05SRMR R  ) and adequate 

fit ( 2 2.05 .10R SRMR R    ) for selected values of average communality ( 2R )  

2R  SRMR reference value 

for close fit 

SRMR reference value 

for adequate fit 

0.010 0.001 0.001 

0.040 0.002 0.004 

0.090 0.005 0.009 

0.160 0.008 0.016 

0.250 0.013 0.025 

0.360 0.018 0.036 

0.490 0.025 0.049 

0.640 0.032 0.064 
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Table 2: Population SRMR and average sample Estimates   

N Factor Loading = 0.8 Factor Loading = 0.4 

P.SRMSR E[SRMSRb] SRMSRb SRMSRu P.SRMSR E[SRMSRb] SRMSRb SRMSRu 

50 .058 .074 .076 .057 .014 .097 .097 .021 

100 .058 .066 .067 .058 .014 .069 .069 .016 

200 .058 .062 .063 .058 .014 .050 .050 .014 

300 .058 .061 .061 .058 .014 .042 .042 .013 

400 .058 .060 .060 .058 .014 .037 .037 .013 

500 .058 .059 .060 .058 .014 .034 .034 .013 

600 .058 .059 .059 .058 .014 .031 .031 .013 

700 .058 .059 .059 .058 .014 .029 .030 .013 

800 .058 .059 .059 .058 .014 .028 .028 .013 

900 .058 .059 .059 .058 .014 .027 .027 .014 

1000 .058 .058 .059 .058 .014 .026 .026 .014 

2000 .058 .058 .058 .058 .014 .021 .021 .014 

5000 .058 .058 .058 .058 .014 .017 .017 .014 

10000 .058 .058 .058 .058 .014 .016 .016 .014 

 

  



 SRMR and Model Misspecification   46 

 

Table 3: Patterns of inter-factor correlations considered in appendix 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Inter-factor Correlations Close Fit? 

ρ12 ρ23 ρ13 1F CFA 2F CFA 

0.9 0.9 0.9 Yes Yes 

0.9 0.9 0.8 No Yes 

0.9 0.9 0.7 No Yes 

0.9 0.8 0.8 No Yes 

0.9 0.8 0.7 No Yes 

0.8 0.8 0.8 No No 

0.7 0.7 0.7 No No 
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Figure 1: Behavior of (A) the population SRMR, (B) largest standardized residual covariance, and (C) SRMR/communality in models with 

misspecified dimensionality 
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Figure 2: Behavior of the population SRMR in models with one (A) to four (D) omitted cross-loadings 
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Figure 3: Behavior of SRMR/communality in models with one (A) to four (D) omitted cross-loadings 
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Figure 4: Behavior of the largest standardized residual covariance in models with one (A) to four (D) omitted cross-loadings 



 SRMR and Model Misspecification   51 

 

Figure 5: Behavior of the population SRMR in models with one (A) to four (D) omitted residual correlations 
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Figure 6: Behavior of the largest standardized residual covariance in models with one (A) to four (D) omitted residual correlations  
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Figure 7: Relationship between the expected value of the biased sample SRMR, population SRMR, and sample 

size (N) 
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Figure 8: Using the two-index strategy for identifying close fitting models 

 


