A CR Embedding Problem )
for an Algebraic Levi Non-degenerate et i
Hypersurface into a Hyperquadric

Xiaojun Huang and Ming Xiao

Abstract We give a survey on the current developments of the embeddability prob-
lem of a Levi non-degenerate hypersurface into its model, i.e., hyerquadrics. We also
formulate and study a local sums-of-squares problem, and make connections with
the embeddability problem.
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1 Introduction

Let M be a smooth real hypersurface. We say that M is a Levi non-degenerate
hypersurfacein C**! at p € M with signature £ < n/2 if there is a local holomorphic
change of coordinates, that maps p to the origin, such that in the new coordinates,
M is defined near O by an equation of the form:

r=v—|zlj +o(lz]* + |zul) = 0 (1)
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Here, we write u = Re(w), v =Im(w) and |z|% =<2Zz,7 >y=— ng lz;1* +
Z'}ZHI |z;|*. When ¢ = 0, we regard ngg |z;]> = 0 and p is a strongly pseudo-
convex point of M.

The compact model of Levi non-degenerate hypersurfaces with signature ¢ is the
boundary of the generalized ¢-ball:

l n+1
1, 1. 2 2
By = {lz0, ..., 2us1] € P'T -—E lz;1” + E 1zl <0
=0 j=t+1

The boundary 818%2’“ is locally holomorphically equivalent to the hyperquadric
HIth € €'+ of signature ¢ defined by 3z, = — Zﬁzl 1217+ e 1217
where (z1, ..., Zu41) is the coordinates of C"*!,

When ¢ = 0, it reduces to the standard sphere (compact model) or the Heisenberg
hypersurface (non-compact model).

A long-standing question in Complex Analysis is to understand when a (com-
pact) Levi non-degenerate hypersurface of signature £ > 0 can be holomorphically
embedded into its model, namely, the generalized ball with the same signature. Along
these lines, there have been much work done in the past 40 years and we refer to a
recent paper of Huang-Xiao [11] for a detailed discussion on history and references.
In this article, we summarize some of the work done in Huang-Zaitsev [13], Huang-
Li-Xiao [10] and Huang-Xiao [11] and also connect this study with others such as
writing a positive real algebraic functions as the sum of norm square of holomorphic
functions.

This article is based on the talk given at the 12th Korean Conference on Several
Complex Variables—in honor of Kang-Tae Kim’s 60th birthday.

We start by mentioning a famous theorem of Fornass obtained in 1976, which
states as follows:

Theorem (Fornaess [6]) Any compact strongly pseudoconvex hypersurface M can
be smoothly embedded into a certain compact strongly convex hypersurface of a
larger dimension.

It is not clear from any known proof of the Fornass embedding Theorem whether,
when M is real analytic (or real algebraic), we can embed M into a compact real
analytic (or real algebraic) strongly convex hypersurface of larger dimension or not.
It indicates, however, that some type of embedding theorem into manifolds of a more
special class is possible.

On the other hand, Forstneric [7] proved in 1986 (See also [5]) the following
theorem:

Theorem (Forstneric [7]) A generic real analytic strongly pseudoconvex hypersur-
face can not be locally (transversally) holomorphicaly embedded into a hyperquadric
(or a generalized sphere) of any dimension.
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A more recent result by Forstneric [ 8] states even more: Most real-analytic hypersur-
faces do not admit a transversal holomorphic embedding even into a merely algebraic
hypersurface of higher dimension. Forstneric’s argument is based on a Baire category
theory, which roughly says that the set of real analytic strongly pseudoconvex hyper-
surfaces is much larger than the set of holomorphic maps sending them into spheres.
It cannot, however, be used to produce any specific examples. In 2006, Zaistev [21]
constructed explicitly for the first time a germ of a real analytic strongly pseudocon-
vex hypersurface which can not be holomorphically embedded into a sphere of any
dimension.

The situation in the algebraic category is very different. Webster proved in 1970’s
the following well-known theorem, which is in sharp contrast with the above men-
tioned result of Forstneric.

Theorem (Webster [19]) Every real-algebraic Levi-nondegenerate hypersurface
M c C" admits a transversal holomorphic embedding into a non-degenerate hyper-
quadric (likely with a much bigger signature) in complex space CN of sufficietly
large dimension N.

In Webster’s theorem, the embedding dimension N depends on both the source
dimension n and the degree of the defining function of M. Indeed, in a recent paper
of Kossovskiy-Xiao [15], the following non-embeddability result has been estab-
lished: For any integers N > n > 1, there exists p = u(n, N) such that a Zariski
generic real-algebraic hypersurface M C C"*! of any degree k > j is not transver-
sally holomorphically embeddable into a hyperquadric in CV.

Moreover, in Webster’s theorem, it is crucial that the signature of the target hyper-
quadric is allowed to be bigger than that of the source manifold. Webster observed
in the degree two case, one can always embed a real ellipsoid into the sphere in a
complex space of one dimension higher.

Example of Webster [18-20]: Let M C C"*!' be a non-spherical ellipsoid, i.e.,

X2 2

defined in real coordinates z; = x; +iy;, j = 1,...,n+1,by Z;’:}(a—’z + Z—é) =1
J J

After a simple scaling (if necessary), the ellipsoid M can be described by the equation

of the form:

n+l1 n+1
YA +AD+D P =1, 0<A < < Ay < L.
j=1 j=1

LetG : C"*!' — C"*?begivenby G = (zl, s Zng (1 — 22;’:} Aﬂ?)). Then

it holomorphically embeds M into the Heisenberg hypersurface Hg’“ c Cr+2,

With all these said, the following had been remained to be a long-standing folklore
open question in the field:

Question Isevery compact real-algebraic strongly pseudoconvex real hypersuraface
in C" holomorphically embeddable into a sphere of sufficiently large dimension?
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The question is closely related to write a positive polynomial in a certain sense to
a sum of squares of the absolute values of holomorphic functions. (See the end of
Sect. 2.)

2 Algebraic Perturbation of Kohn-Nirenberg
Hypersurfaces

The above open problem has been answered in the negative through the work in
Huang-Zaitsev [13], Huang-Li-Xiao [10] (See also [4, 14], etc) and finally in Huang-
Xiao [11]. Indeed, we constructed a very concrete example based on small pertur-
bations of the famous Kohn-Nirenberg hypersurfaces (see [16]), which we describe
below.

Consider the following family of compact real-algebraic strongly pseudoconvex
real hypersurfaces:

M, = {(z, w) € C* : go(|z|® + cRe|z|*2®) + |w* + 2] + €|z = 1 = 0}.  (2)

Here,0 <e <1, 2 <c < %, and ¢p > 0 is a sufficiently small number such that
M. is smooth forall 0 < e < 1.

One can compute to verify that, forany 0 < € < 1, M, is strongly pseudoconvex.
M. is a small algebraic deformation of the famous Kohn-Nirenberg domain:

The Kohn-Nirenberg Domain:

Mgy = {(z, w) € C*: go(|z[* + cRelz|*2°) + |w]* + |z]'° — 1 = 0},

with2 < ¢ < %.

Itis acompactreal algebraic pseudo-convex hypersurface with exactly one weakly
pseudo-convex point at p* = (z, w) = (0, 1). The significant nature of My is that
any local complex analytic curve in a neighborhood of p* must stay in both sides of
Mgy near p*.

The theorem we proved in [11], based on the work in [10, 13], is as follows:

Main Theorem (Huang-Xiao [11]) Let M. be defined as above with €, ey > 0 suffi-
ciently small. For any N € N, a smooth CR map from an open piece of M- into the
standard sphere S*N~' = OBY C CN must be a constant. Hence, there is no smooth
CR embedding from any open piece of M. into S*N~!.

The theorem answers, in the negative, the above mentioned question.

As observed in [10], M, can be holomorphically transversally embedded into the
generalized sphere in C® with one negative Levi eigenvalue as follows:

Observe that Re(|z|*z®) = (27 +z|* — |27 — z|?). Thus the map
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1 1
F(z, w) = (o2, 5«/_500(27 +2),w,2°, Vez, 5«/_600(27 —2))

holomorphically embeds M. into the generalized sphere in C°® defined by
S ={(Z,,...,Z¢) € C°: Zj.zl |Z;|* — | Zs|* = 1}. Indeed, M, can be holomor-
phically embedded into S° = {(Z;,...,Z5) € C: Z‘;:l |Zj|2 — |Zs|> = 1}. See
Remark 2.4.

To end this section, we make connections of the embeddability problem with a
Hermitian version of Hilbert’s 17th problem. The problem we introduce here, which
is more of local nature, differs from the one studied in [2, 3], etc.

Let p € C" and U a simply connected open set containing p. Let r(z, 7) be areal
analytic (real-valued) function in z € U. Then there exist holomorphic functions
fiso-os frog1, ..., gs and h defined in U with each f;(0) = 0 and g;(0) = 0 such
that the decomposition holds:

r@ 2 =Imh) + Y _1A* =D gl 3)

i=1 j=1

Moreover, fi,..., fs,91,...,g; are C—linearly independent. See [17] for more
details and also [2] which emphasizes more on the real polynomial setting.

In general, s,  may be infinite. When s, ¢ are finite, then we say r(z, 7) has finite
rank and signature (s, ¢) at p. Moreover, in the decomposition (3), / is uniquely deter-
mined up to aconstantterm. And ( f1, ..., fs, 91, - - ., gr) is also uniquely determined
up to a complex linear transformation in U (s, ¢). Thus, the pair (s, ¢) is uniquely
determined at p and does not depend on the choice of the decomposition in (3). See
[17] for more details and the proof.

Lemma 2.1 Let U be simply connected and r(z,7) be finite rank as above. Let
P, q € U. Then the signatures of r(z,z) at p and at q are identical. In particular,
when r(z,7) is a real polynomial, then it has the same signature at every point in

C".

Proof This fact is contained in [17]. For self-containedness, we will sketch a proof
based on the setup above. Assume the signature of r(z,7) is (s, t) at p. Then there
exist holomorphic functions f1, ..., fs, g1, ..., g; and & such that (3) holds, where
all f;(0) =0and g;(0) = 0. Moreover, fi,..., fs, g1, ..., g, are C—linearly inde-
pendent. Note for a holomorphic function f in U, we have

f@QP =1f@ = f@)+ f@F =
@ = f@P +1m (2V/=Tf @ 7@ - V=11 f @P).

We apply this equation to each | f;(z)|*> and |g;(z)|* and then (3) can be rewritten as,

rz 2 =Imb@) + Y _1£@) = L@F =) 19, — g;@

i=1 j=1
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for some holomorphic function ¢(z) in U. Note f;(z) — fi(g) and g;(z) — g;(g) van-
ish at g. Moreover, the linear independence of { f1, ..., fs, g1, ..., g:} is equivalent
to that of { f1(z) — f1(q), ..., fs(2) — f5(@), 91(2) — 91(q), ..., :(2) — g:(q)}. By
the definition of signature, r(z, 7) is also of signature (s, t) at ¢ and we thus have
proved the first assertion in the lemma. The second part of the lemma also follows
easily. O

Let A(U) be the set of real analytic functions of finite rank in U. Note A(U) forms a
ring. We pass this notion to the germ level at p. Let R(z, 7) be a germ of real analytic
function at p. We say R(z, 7) is of finite rank at p if there is a neighborhood V of
p such that R(z,7) € A(V). Note the signature (s, ¢) of R(z,z) does not depend on
the choice of V. We will simply say R(z, 7) is finite rank and of signature (s, ¢) at
p. Write A(p) for the set of germs of real-analytic functions with finite rank at p.
Note A(p) is also a ring.

Recall in a simply connected domain, the signature of R(z,7z) does not depend
on the choice of the base point. Assume R(z, 7) is real analytic over a connected
domain U, and p, g € U, p # g. We can choose a path v € U connecting p, g and
a small tube neighborhood V of ~y that is simply connected. Then the signature of
R(z,7) is identical at p, g. This yields the following remark (one can also see [17]).

Remark 2.2 Let U be a connected open set in C" and R(z, 7) real analytic in U with
finite rank at some p € U. Then R(z, 7) has finite rank and the same signature at
every point in U.

Remark 2.3 Assume r(z,7) = 0 defines a real hypersurface M in U. If r(z, 7) is of
finite rank (s, #) with the decomposition in (3), then M admits a transversal holo-
morphic mapping into H™*! given by @ := (g1, ..., gs, fi,---, fr, —h). Recall
in Webster’s ellipsoid example, the defining function of an ellipsoid is given by

n+1

ImQ2vV—14;25 = V=1) + Z 121> = 0.
j=1

Clearly it is of signature (n + 1, 0).

Remark 2.4 Let 0 < ey < € < 1. Let p = eo(|z|® + cRe|z|?z%) + |w|* + |20 +
€|z|> — 1. Recall it is the defining function of the non-embeddable hypersurfaces
in our main theorem. Note

1
€+ €pcC

2.2
€C

9T 7Py
4(e + €oc)

eocRe(|z*2°) + elz|* =

€oC 2
%(z7+z)+ez .

We have p is of rank (4, 1). Note also p is strongly plurisubharmonic.

When R(z, 7) is of signature (s, 0) at p with s > 0 and finite, we say R(z,7) is a
(finite) sum of squares (modulo pure terms) at p. We will write P(p) C A(p) for
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the set of (germs of) nonzero functions that are (finite) sums of sqaures (modulo pure
terms) at p.

The following fact is a consequence of Remark 2.2.

Remark 2.5 Let U be a connected open setin C" and R(z, 7) real analyticin U. Then
R(z,7) € P(p) for some p € U if and only if R(z,Z) € P(q) forevery g € U.

Let r(z, 7) be a germ of real analytic function at p with finite rank. Let Z(r, p) be the
ideal in A(p) generated by r(z, 7). Assume r(z, 7) is strongly plurisubharmonic and
r(p, p) = 0. Then the local non-embeddality problem into spheres can be reduced
to a real-algebraic geometry problem as follows.

Question Characterize the class of (strongly plurisubharmonic) real analytic func-
tions r(z,7) at p such that Z(r, p) N P(p) = .

Our main theorem yields the following result.
Corollary 2.6 Let p be in Remark 2.4 and p(p, p) = 0. Then Z(p, p) N P(p) = @.

Proof We will prove by contradiction. Suppose Z(p, p) N P(p) # . Then there
exist some neighborhood V of p and a real analytic function H(z, 7) defined in V
such that H(z, 7)p(z, ) is a sum of sqaures (modulo pure terms). That is, there exists
C—Ilinearly independent holomorphic functions fi, ..., f; and & such that

H(z.2)p(z.2) =Im(h) + Y _ | fil*,
i=1

Consequently, @ := (f1, ..., fs, —h) gives a map in V that sends the hypersur-
face M := {z € V : p(z, 7) = 0} into the Heisenberg surface H‘B“, which is locally
biholomorphic to the unit sphere in C**!. By our main theorem, @ is a constant map.
Thus H(z,Z)p(z, 7) isconstantin V. Since p(p, p) = 0, wehave H(z,7)p(z,7) = 0.
This is a contradiction. Thus Z(p, p) N 'P(p) = @. This establishes the corollary. []

The following signature stability result follows easily from Corollary 2.6.

Corollary 2.7 (1) Let U be a connected open set in C* with nonempty intersection
with M. Let H(z,7Z) be a non-zero real analytic function over U. Assume the
signature of H(z,7)p(z,2) is (s, t) with s, t integers, thens > 0,t > 0 (at every
point in U ).

(2) Let H(z,7) be a non-zero real polynomial over C?. Then the signature (s, t) of
H(z,2)p(z, 2) satisfies s > 0,t > 0 (at every point in C?).

Proof Suppose t = 0. Then H(z,7)p(z, 7) is a sum of sqaures (modulo pure terms)
at every point in U (See Remark 2.5). In particular, H(z,z)r(z,7z) € P(p) for p €
U N M.. 1t contradicts with the non-embeddability of any open piece of M, into the
sphere (See the proof of Corollary 2.6). Thus we must have ¢t > 0. We can similarly
consider the signature of —H (z, 7)p(z, 7) to conclude s > 0. This establishes part
(1). Part (2) follows easily from part (1). ]
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Remark 2.8 The assumption that U N M, # ¢ in Corollary 2.7 cannot be dropped.

Indeed, when U N M, = ), we can take H(z,7) = ;'é”;, then the conclusion in
Corollary 2.7 fails.

The above discussion motivates the following question: Let r(z,7) be a strongly
plurisubharmonic real polynomial in C"(n > 2), and assume {r(z, z7) = 0} defines a
real hypersurface passing through p € C". Assume r(z, 7) has signature (s, ) with
s > 0,t > 0. Is it true that Z(r, p) N P(p) = #?

Our result also has applications to the study of the holomorphic isometric embed-
ding problems. Let U be a connected open subset in C? and w a (1,1)-form defined
in V C U as follows:

w = +/—100log(1 + R(z,2)), z €V, (4)

where R(z, 7) is a (non-constant) real analytic function in U.

Corollary 2.9 Letw be as above which takes the form in (4). Let (CPY, wps) be the
complex projective space equipped with the Fubini-Study metric. Assume there is a
holomorphic map F : (V,w) — (C]P’N , Wrs) satisfying

F*(wFs) = Ww.

Then R(z,7) € P(q) foreveryq € U.

Proof We will first prove 1 + R(z,Zz) € P(p) forsome p € V. Write in the homoge-
neous coordinates F' = [Fy, ..., Fy]. Fix p € V. Composing F with a self-isometry
of CPV if necessary, we can assume F(p) =[1,0, ..., 0]. Then by shrinking V if
necessary, in the affine coordinates of CP", we can write F as F= (ﬁl, e F V),
where F; = % In particular, F;(p) =0. By the metric-preserving assumption, we
have

9dlog(1 + R(z,7)) = ddlog(l + || F|]*). (5)

Assume in V that
1+ R(z,2) = c(1 +Re@h) + || fII* — 1191 (6)
Here cis a positive constant, f = (f1, ..., fs), 9 = (g1, - .., g:), and h are holomor-

phic maps satisfying f(0) =0, g(0) =0, h(0) =0. Moreover, fi,..., [,
g1, - .., g, are C—linearly independent. Then (5) yields

d9log(1 4+ Re(2h) + || 11> = |1g]*) = ddlog(1 + || F||) (7)

By shrinking V if necessary, we assume |h(z)| < 1 for every z € V. We will prove
by contradiction that in the signature (s, ) we must have t = 0. Suppose ¢ > 0.
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We next write

1 +Re@h) + 11> = lglI> = (1 + h(2)(1 + k() (1 + T (2, 2))

for some real analytic function 7'(z,z) in V. Then it is easy to see that 7' (z, z7) has
only mixed terms (in z — p, z — p) in its Taylor expansion at (p, p).

Note 0dlog(1 + h(z))(1 + h(z)) = 0. It follows from (7) that

ddlog(1 + T (z,7)) = ddlog(1 + || F|?).

Since both T'(z, Z) and ||1:" > have only mixed terms in their Taylor expansions. It

follows that A
14+T(2)=1+]F|*

That is,
1+Re2h) + 1 f11* — llgll? 1 2
> =1+|F]"
1+ A
This yields
f g h A
=1 = [|—=—I* = |[—— > + | FI*.
1+h 1+h 1+h
Note the functions {lfﬁ, i Vi<i<s.1<j< are still C—linearly independent. The left

hand side of the above equation thus has signature (s, t) with ¢ > 0, while the right
hand side is a sum of squares. This is a contradiction. Hencet = 0.So 1 + R(z,7) €
P(p) and thus R(z,7) € P(p). By Remark 2.5, we have R(z,7) € P(q) for every
qgeU. U

Let p be as in Remark 2.4. Assume w be a Kihler metric defined in V C C? of the
form:

w = +/—19dlog(1 + H(z,2)p(z,2)). (8)

where H(z, 7) is a (non-zero) global real analytic function (of finite rank) in C2. See
the following example.

Example 2.10 Let H(z,7) = % then

w = v/—100log(2 + p(z,7))

defines an algebraic (1, 1)-form in C? and in particular defines a (positive definite)
metric in a sufficiently small neighborhood V' of 0. Similarly, let H(z,7) = % +
P(z,7), where P(z,7) is a homogeneous real polynomial of degree at least 3, then
w in (8) defines a (positive definite) metric in a sufficiently small neighborhood V
of 0.

We have the following consequences of Corollary 2.7 and 2.9.
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Corollary 2.11 Let (V,w) beasin(8)with H(z, Z) a (non-zero) global real analytic
function (with finite rank) in C?. Then (V,w) cannot be locally holomorphically
isometrically embedded into (PN, wrs) for any N.

Example 2.12 Define w = i90log(2 + p) over C2. Then (C?, w) can not be locally
holomorphically isometrically embedded into (PV, wrg) for any N.

3 Ideas of the Proof of the Main Theorem

Let F be a non-constant smooth CR map from an open piece of M, into S?N~!. By
an algbebraicity theorem due to the first author in [9], it follows that F is Nash-
algebraic. A main step is to prove that F is rational— making use of a monodromy
argument based on the invariant property of Segre foliations.

Let M C U(c C") be a closed real-analytic subset defined by a family of real-
valued real analytic functions {p,(Z, Z)}, where Z is the coordinates of C”. Assume
that the complexification p,(Z, W) of p,(Z, Z)is holomorphic over U x conj(U)
with

conj(U) :=={W: W e U}

for each . Then the complexification M of M is the complex-analytic subset in
U x conj(U) defined by p,(Z, W) = 0 for each «. Then for W € C", the Segre
variety of M associated with the point W is defined by Qy = {Z : (Z, W) e M}.

Write M, for the complexification of M, and write M’ for the complexification
of OBV,

Write Qf, for the Segre variety of M, associated with the point p, and write O
for the Segre variety of OBY associated with the point g. For any p € C?, write
p= (Zp’ wp) or p= (gpa 77p)-

The following lemma from [13] can be proved by using the Thom transversality:

Let U C C" be a simply connected open subset and S C U be a closed complex analytic
subset of codimension one. Then for p € U \ S, the fundamental group 71 (U \ S, p) is
generated by loops obtained by concatenating (Jordan) paths 1, v2, 3, where | connects
p with a point arbitrary close to a smooth point gg € S, 72 is aloop around S near go and
v3 1s 1 reversed.

Making use of the above lemma, we have the following:

Lemma (Huang-Zaitsev [13]) Let M, be defined as before and let py € M,. Let S
be a complex analytic hyper-variety in C* not containing py. Let v € m(C*\' S, po)
be obtained by concatenation of i, Y2, V3 as described in the Lemma, where vy,
is a small loop around S near a smooth point qo € S with wy, # 0. Then vy can
be slightly and homopotically perturbed to a loop ¥ € m (C*\' S, po) such that
there exists a null-homotopic loop \ € 7 (C*\' S, po) with (\,5) contained in the
complexification M. of M,. Also, for an element 4 € 7 (C*>\ S, po) with a similar
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property described above, after a small perturbation to j if needed, we can find a

null-homotopic loop in = T(C*\'S, po) such that (¥, 3\) C M..

Notice that F is complex algebraic (possibly multi-valued). In particular, any branch
of F can be holomorphically continued along a path not cutting a certain proper
complex algebraic subset S C C2. We need only to prove the single-valued property
for F assuming that S is a hyper-complex analytic variety. Seeking a contradiction,
suppose not. Then we can find a point pyg € U C M., po = (20, wo) with wy # 0,
a loop 7 € m(C*\'S, py) obtained by concatenation of v;, 7,, v3 as in Lemma,
where 7y, is a small loop around S near a smooth point gp € S, such that when we
holomorphically continue F from a neighborhood of py along v one round, we will
obtain another branch F,(s# F) of F near py. Obviously, we can assume ¢ is a
smooth point of some branching hypervariety S C S of F. We next proceed in two
steps:

Case I: (See [10] for more details here): If we can find a loop ~ as above such
that the corresponding §” # {w = 0}, by perturbing ~ if necessary, we can make
wy, # 0. By the Lemma, after slightly perturbing -y if necessary, there exists a null-
homotopic loop X in 7 (C?\ S, po) with (v, X) contained in the complexification
M., of M, We know that (F, F) := (F(-), F_(T)) sends a neighborhood of (pg, po)
in M, into M’. Applying the analytic continuation along the loop (7, \) in M, for
Z?’: {(F(j»F(jy()) — 1, one concludes by the uniqueness of analytic functions that

(F>, F) also sends a neighborhood of (py, po) in M, into M'. Consequently, we get
F(Q,) C Q’F(p) for p € M, near py. In particular, we have the following:

Fy(p) € QF,), VP € M., p~ py.

Now applying the holomorphic continuation along the loop (A,7%) in M, for
(F,, F), we get by uniqueness of analytic functions that (F5, F,) sends a neighbor-
hood of (pg, po) in M, into M’. Hence, we also have

F(p) € Qs VP €M, p = po.

In particular, > (p) € OB".Combining this, and noting that forany ¢ € OB", 9B" N
Q’q =q, we get F,(p) = F(p) for any p € M, near py. Thus F, = F in a neigh-
borhood of pg in C2, which is a contradiction.

Case II: Now, suppose W := {w = 0} is the only branching locus of the alge-
braic extension of F. Since W is smooth and 7 (C?\ W) = Z, we get the cyclic
branching property for F'. Now, we notice that W cuts M, transversally at a certain
point p* =: (z0, 0). When we will continue along loops inside Tlgi O'M, near p*, we

recover all branches of F(z, w). Since any loop inside T,ﬁl O M, near p* can be easily
homotopically deformed into loops in M, near p*, we conclude that we recover all
branches of F near p* by continuing any branch of F near p* along loops inside
M.\ W near p*. Hence, we are now reduced to the local situation first encountered in
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Huang-Zaitsev [13]. Hence, with an argument using the invariant property of Segre
varieties, for Z(#) &~ p* and two branches F; and F, of F near Z € M \ W, we
have F(Z), F»,(Z) € Q’FI(Z) N Q’FZ(Z). As above, we see that F|(Z) = F>(Z). We
thus conclude that F is single-valued.

Since F is algebraic, it is rational. Once we know that F' is a rational map from
M. into the sphere, by a theorem of Chiappari [1], we know that F' extends to a
holomorphic map from a neighborhood of D, and properly maps D, into the ball.

The next step is the application of the Kohn-Nirenberg condition:

Lemma Ler pg = (0, 1) € M,. There exists € > 0 such that for each 0 < ¢ <,
0 p, N M, is a real subvariety of dimension one.

It suffices to show that there exists ¢ € Q,, such that g € D.. Note that Q,, =
{(z, w) : w = 1}. Set

U(z, €) = eo(lz|® + cRelz|*2®) + 12" +€lz]?, 0 <e < 1.

Noteg = (o, 1) € D.ifand onlyif1(ug, €) < 0.Now Set p(\, €) = eoA¥(1 —¢) +
MO+ €A%, 0 < e < 1. First we note there exists small \' > 0, such that ¢()\', 0)
< 0. Consequently, we can find € > 0 such that for each 0 < € <€, ¢(N, €) < 0.
Write 1o = Ne's. It is easy to see that ¢ (g, €) < 0if 0 < € <©.

The next simple lemma we need is the following.

Lemma Let M :={Z € C": p(Z,?) =0},n>2, be a compact, connected,
strongly pseudo-convex real-algebraic hypersurface. Assume that there exists p € M
such that the associated Segre variety Q, is irreducible and Q, intersects M at
infinitely many points. Let F be a holomorphic rational map sending M into the unit
sphere SN~ in some CN. Then F is a constant map.

Write S as the singular set of F', then it does not pass through M. Write Q; for
the Segre variety of S?¥~! at ¢. For any p ~ M, F(Q,\ S) C Q}(p). Note that
S N Q, is either empty or a Zariski closed subset of Q ,. Notice that O, is connected
as it is irreducible. We conclude by unique continuation that if p € Q, and F is
holomorphic at p, then F(p) € Q/F(p). In particular, if p € Q, N M, then F(p) €
Oripy N SNl = (F(p)}. Thatis, F(p) = F(p).

Notice that Q, N M is a compact set and contains infinitely many points. Let p
be an accumulation point of Q, N M. Clearly, by what we argued above, F is not
one-to-one in any neighborhood of p. This shows that F is constant. Indeed, suppose
F is not a constant map. We then conclude that F' is a holomorphic embedding near
p by a standard Hopf lemma type argument for both M, and S*M~! are strongly
pseudo-convex.

Now, let ¢, g9 be sufficient small such that all these lemmas hold. Let F be a
holomorphic map defined in a small neighborhood U of p € M, that sends an open
piece of M, into S*M~!. Then F is a rational map. Pick py = (0, 1) € M,. Notice
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that the associated Segre variety Q,, = {(z, 1) : z € C} is an irreducible complex
variety in C2. Then it follows that F is a constant. We have thus sketched the proof
of the main Theorem.

4 Non-embeddable Examples in the Positive Signature Case

Let n, £ be two integers with 1 < £ < n/2. For any e, define

M. = {[ZO, cees Zn—i—l] € ]P)n_H :
L n+1
2 2 2 4 4
Nzl =D 1z + D 1zl | +e(lzl* = lzagal®) = 0}
j=0 j=t+1

Here ||z]|? = Z;’Zé |z;1? as usual. For € = 0, M, reduces to the generalized sphere
with signature ¢, which is the boundary of the generalized ball.

For 0 < € << 1, M, is a compact smooth real-algebraic hypersurface with Levi
form non-degenerate of the same signature .

Theorem (Huang-Zaitsev [13]) There is an €y > 0 such that for 0 < € < €, the
following holds: M, is a smooth real-algebraic hypersurface in P! with non-
degenerate Levi form of signature ¢ at every point. There does not exist any holo-
morphic embedding from any open piece of M, into Hév 1

When 0 < € << 1, since M, is a small algebraic deformation, we see that M, must
also be a compact real-algebraic Levi non-degenerate hypersurface in P**! with
signature ¢ diffeomorphic to the generalized ball IB%Z’H c prtl,
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