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ABSTRACT: Using the production of a Higgs boson in association with a W boson as a
test case, we assess the impact of dimension-8 operators within the context of the Standard
Model Effective Field Theory. Dimension-8-SM-interference and dimension-6-squared terms
appear at the same order in an expansion in 1/A, hence dimension-8 effects can be treated as a
systematic uncertainty on the new physics inferred from analyses using dimension-6 operators
alone. To study the phenomenological consequences of dimension-8 operators, one must first
determine the complete set of operators that can contribute to a given process. We accomplish
this through a combination of Hilbert series methods, which yield the number of invariants
and their field content, and a step-by-step recipe to convert the Hilbert series output into a
phenomenologically useful format. The recipe we provide is general and applies to any other
process within the dimension < 8 Standard Model Effective Theory. We quantify the effects
of dimension-8 by turning on one dimension-6 operator at a time and setting all dimension-8
operator coefficients to the same magnitude. Under this procedure and given the current
accuracy on o(pp — h W), we find the effect of dimension-8 operators on the inferred new
physics scale to be small, O(few %), with some variation depending on the relative signs of
the dimension-8 coefficients and on which dimension-6 operator is considered. The impact
of the dimension-8 terms grows as o(pp — hW™) is measured more accurately or (more
significantly) in high-mass kinematic regions. We provide a FeynRules implementation of our
operator set to be used for further more detailed analyses.
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1 Introduction and motivation

The particle physicist’s dream—direct detection of high-scale physics beyond the Standard
Model (BSM)—has yet to be realised. As we transition into an era of precision Higgs mea-
surements, an appropriate framework for testing the Standard Model (SM) is to treat it as
an Effective Field Theory (EFT). From an EFT perspective, the SM Lagrangian is merely
the first few terms in the (infinite) series:

o)
L= Zd: 23

_o, (1.1)




where A is the cutoff of the effective theory, c((;) are the Wilson coefficients, and (9((;) are all
the gauge-invariant operators at mass-dimension d involving the Standard Model fields.

The direct observation of new physics might be beyond the reach of the LHC, but it could
still manifest indirectly as contributions to the Wilson coefficients of the effective theory.
Constraining these coefficients is a powerful and general way to probe BSM models, since
any weakly-coupled high-mass state can be integrated out to give a particular pattern of
coefficient values.

The current state of the art is the classification and study of dimension-6 operators [1-4].
Several different non-redundant bases have been constructed [5-9], as have dictionaries that
allow translation between them [10, 11]. Via detailed phenomenological studies and global
fits, many of the Wilson coefficients of these operators have been constrained [12-39]. Some
progress has also be made at dimension-8, particularly in the gauge sector [40-42].

Representing the scale at which the new physics appears as A, one can schematically
write the amplitude for a given process as

Adim-
_AN<ASM+ 1264—...), (12)

where Agn stands for the Standard Model amplitude, and Agim.¢ is the correction coming
from the dimension-6 EFT. The leading-order correction to the cross-section, at O(1/A?), is
therefore an interference term of the form Agy X Agim.g. We also have an |Agim.¢|? correc-
tion at order O(1/A%), which can be readily computed with current dimension-6 technology.
However, consistent power-counting would require that, alongside | Agim-g|? terms, we include
Agym X Agim-g interference effects, where now:

Adim-6 . Adim-8
AN(ASM+ A2 + Al +..0 . (1.3)

In other words, Agy X Agim.g interference and | Agim.¢|? terms both appear at O(1/A%), and
so naively should be given equal consideration. Given that so much progress has already
been made at dimension-6, it is natural to ask whether complementing our analyses with
dimension-8 operators can have any effect on current constraints.

The are two distinct scenarios one might consider:

1. The new physics is dominated by Agn X Adim-¢, i-€. interference terms between dimension-
6 contributions and the Standard Model. This is what one would naively expect when-
ever the scale of new physics is high in comparison with the electroweak scale.

2 potentially of the same order

2. The leading effect of new physics is instead |Agim.6
as the Agy X Agim-g interference terms. This situation could arise due an accidental
suppression, or indicate an underlying structure in the BSM context. For example,
the interference could be suppressed by ratios of the weak scale to the cutoff A to
some power. One way this can occur is if there is a helicity mismatch between the



SM and dimension-6 operators [43]. Another possibility is if the dimension-6 operators
are purely CP-odd and the observable is a CP-even quantity. Or, when focusing on
specific kinematic regimes, the SM content could be small and lead to the dominance
of |Agim-g|? effects on a particular experimental bin.

In each of these cases, we would like to know whether including dimension-8 operators can
significantly alter the bounds we put on the dimension-6 Wilson coefficients. It may prove
that an analysis purely at the dimension-6 level is inadequate, or that dimension-8 effects
should be accounted for as a systematic uncertainty.

Constructing a complete set of effective operators at any given order is not a trivial task.
It is well known that including every operator allowed by the symmetries of the theory re-
sults in an over-complete set: operators will be related to others via the equations of motion
(EOM) and/or integration by parts (IBP). As discussed and illustrated in Refs. [44, 45], the
task is facilitated by a mathematical tool known as the Hilbert series. Given a set of ob-
jects transforming in representations of the symmetry group, the Hilbert series generates all
polynomials of the objects—incorporating the symmetry (or antisymmetry) under the inter-
change of identical objects—and projects out all invariants using character orthonormality.
Hilbert series techniques have found use in a number of theoretical [46-62] and phenomenolog-
ical [4, 44, 45, 63—67] contexts. Applied to the SMEFT, the relevant symmetry group for the
Hilbert series is the Lorentz symmetry group plus the SU(3) ® SU(2) ® U(1) gauge groups,
and the objects entering the Hilbert series are the SM fields {Q,u¢, d° L,e°, H} plus the
gauge field strengths. As character orthonormality only strictly applies to compact groups,
we work with the Euclideanized Lorentz symmetry SO(4) = SU(2), ® SU(2)g. Furthermore,
to correctly incorporate IBP redundancies we place all objects into representations of the con-
formal SO(4,2) group instead of the Lorentz group. The conformal representations package
a field and all of its derivatives into a single object!, and we remove the IBP redundancy from
any product of objects by projecting out the highest weight component (again via character
orthonormality, with some minor modifications due to the non-compact nature of SO(4,2)).

In the SMEFT it is natural to order the invariants by their mass dimension. The output of
the Hilbert series is the number of invariants at each mass dimension, and the field content of
the invariants. For example, applying the Hilbert series to the SMEFT, one of the dimension-6
invariants is

2D%(HTH)?, (1.4)

indicating that there are two operators containing two derivatives and four Higgs fields. What
the Hilbert series does not tell us is how the various indices carried by each of the fields should
be contracted. We must manually translate the output of the Hilbert series into a format

that is useful for calculating Feynman rules, or for inputting into computational tools such as

!By placing scalars, fermions, and field strengths into short representations of SO(4,2) we can remove
equation of motion (EOM) redundancies.



FeynRules [68-70]. In the case of the operator in Eq. (1.4), we need to work out which fields
the derivatives act on and how the Lorentz and SU(2),, indices are contracted.

Converting the Hilbert series output into a more familiar form is one of the goals of this
paper. The full set of 993 dimension-8 SMEFT operators? is listed in Ref. [4] and available
in Mathematica format. While the recipe we outline in the following will work for all opera-
tors of any mass dimension, in this paper we explicitly work out the conversion from Hilbert
series output to operators for only a subset of dimension-8 operators. It is our hope that the
recipe and examples provided will facilitate the extraction of the remaining operators for the
purposes of more general and in-depth analyses. Looking to phenomenology for guidance, we
have chosen to illustrate the procedure for operators which contribute to pp — hW. This
process is a good choice for several reasons. First, it is a relatively clean process that can be
measured at high Q?, where higher dimensional operators become important [71, 72]. Second,
it severely restricts the number of relevant dimension-8 operators. After translating the set
of required operators, we investigate pp — h W, exploring how constraints on dimension-6
Wilson coefficients are affected by the inclusion of dimension-8 effects. Our analysis focusses
on one specific example but in principle one can use this technology to study many other pro-
cesses, for example a Higgs boson produced in association with top quarks, or through vector
boson fusion. To this end we also make publicly available the FeynRules implementation of
this set of operators, so that future work can extend our analysis.

2 Dimension-8 operator set

The SMEFT inputs to the Hilbert series are the matter fields {Q, u¢, d, L, e, H}, their her-
mitian conjugates, and the field strength tensors. We take all fermions to be left-handed
and work with combinations of the field strengths and their duals X ‘L“'R = %(X woE XY,
where X = B, W, G for hypercharge, SU(2),, and SU(3). respectively, since they have sim-
pler Lorentz transformation properties (X ~ (1,0), Xg ~ (0,1) under SU(2)r, ® SU(2)R).
We list the full set of SMEFT representations in Table 1 using the convention (SU(2)p,
SU(2)r; SU(3)¢, SU(2)w, U(1)y). The fields are dressed with characters corresponding to
their gauge and conformal representations, and plugged into the Hilbert series generating
function. Details of the characters, and of the reduction of the polynomial produced by the
generating function to gauge and Lorentz singlets, can be found in Refs. [4, 44, 45]. Weighting
each operator in the output by its mass dimension, we can easily filter out the dimension-8
operators.

As mentioned in the introduction, we have chosen to illustrate the procedure for operators
that can contribute to pp — AW processes. Following the power-counting argument in
Eq. (1.3), we are interested in the subset of dimension-8 operators that can interfere with
the SM contributions to pp — h W. If we take all first and second generation fermions to be

2The value of 993 holds for Ny = 1, where Ny is the number of generations, counting operators and
their hermitian conjugates as separate operators. For three generations the number of dimension-8 SMEFT
operators jumps to 44807 [4]. See Sec. 2.1 for more information.



Q| 20331 B 0001
uw | (3,0:3,0,-2) B | (1,0:0,0,0)
e | (1,0;3,0,) W | (1,0;0,1,0)
L] (3,004 -4y G| (1,0;8,0,0)
e (%, 0;0,0,1)

Table 1. Representations used in the Hilbert series construction. Hermitian conjugate representations
have SU(2), +» SU(2)g and all gauge representations replaced by their conjugates (when applicable).

massless?, the leading-order SM pp — h W amplitudes all proceed through a single topology:
the process is initiated by a left-handed quark and an antiquark that annihilate into a W
boson, which then emits a Higgs boson. The requirement that dimension-8 operators interfere
with this amplitude limits us to three types of operator®: 1.) operators that modify the hWW W
vertex, 2.) operators that modify the ggW vertex, and 3.) four-point contact operators. The
relevant Feynman diagrams are shown in Figure 1. Operators of the first type are purely
bosonic and involve Higgs fields, derivatives, and field strengths, while operators of the latter
two types must involve a like-chirality fermion-antifermion pair, at most one field strength,
Higgs fields and derivatives. All three operator types must be included in order to have a
basis-independent result. We will not consider modifications to the W-boson couplings to
leptons; in doing so we are assuming that the W boson is an on-shell final-state particle.

We now extract from the Hilbert series the relevant pieces for the operators we wish to
consider. Due to the way EOM are handled in the Hilbert series machinery, its output is
always in the so-called Warsaw basis [5], where higher derivative terms are removed in favor
of operators with more fields whenever possible. Therefore, when combining dimension-8
and dimension-6 effects in later sections, we use the Warsaw basis for dimension-6. For other
advantages of the Warsaw basis, see Refs. [43, 73, 74]. Focusing first on the bosonic operators,
we can group the dimension-8 operators according to the number of derivatives. At O(D°),
we find:

(HTH)*, (H'H)*(Br)?, (H'H)> ByWy, 2(HVH)? (Wp)?,

(H'H)*(G1)%, (H'H)BL(Wp)?, (H'H)(WL)*, (H'H)(GL)*, 2

where for all operators except (HTH)?* there is a corresponding hermitian conjugate operator
with Br,, Wr,Gr — Br, Wr,Gr. At O(D?) the operators are:

2D*(H'H)3, D*(H'H BrBr), D*(H'H GLGRr), 2D*(H'H W Wg)
D*(H'H)?By,, D*(H'H (B)?), D*(H'H (G1)?), 2D*(H'H (W)?), (2.2)
2D*(H'H B,W;), D*(H'H BrW;), 2D*((H'H)*W).

3 Also ignoring bottom and top quark components of the proton.

“Here we are referring to new vertices. Dimension-8 operators can also indirectly enter pp — h W7 through
field redefinitions or through the relations between couplings and experimental inputs. We will study these
effects in more detail in Sec. 4 and Appendix D.
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Figure 1. Diagrams contributing to pp — hW¥*. The shaded circles represent integrated-out new
physics, and mark the vertices modified by the HDOs we have included in our analysis. Left: Asso-
ciated production via an s-channel W boson. In this case the purely bosonic operators modify the
hWW coupling, and the contact operators modify the quark-W vertex. Right: The four-point contact
interaction that can also mediate pp — h W=,

The first row of operators are self-hermitian, while hermitian conjugates must be added for
the operators in the second and third rows. Finally, at O(D?) there is one operator set:

3D*(H? H?), (2.3)

which is self-hermitian. Moving on to the contact operators and operators that modify the
qq W vertices, the Hilbert series output for left-handed quarks is:

AD(Q'Q (H'H)?),6 D(Q'Q H' H W),

AD}Q'QH'H), 24)

with additional hermitian conjugates for the Wy, terms. The operators with no field strengths
will impact the ggW couplings, and all sets will generate GgW h contact terms. We could have
written the fermionic operators with a generation index, leading to a different operator for each
possible generation combination, QJ{Q;),, Qng, etc. In some circumstances, adding generation
indices would disrupt the antisymmetrization we must perform when an operator contains
multiple identical fermionic fields. For these operators, there are no repeated fields, so adding
generation indices would just multiply the number of operators by N]%. Throughout this paper
we will ignore this complication and assume the couplings are universal among generations.

As we can see, the Hilbert series tells us exactly how many independent invariants we can
construct from each combination of fields, but it does not tell us how the indices should be
contracted. In the next two subsections we detail how to convert this output into canonical
phenomenological form. Readers more interested in the applications of dimension-8 operators
can skip to Sec. 3.



2.1 Operators with zero or one derivative

For operators with zero or one derivative, the process of converting the Hilbert series output
into useful phenomenological form is fairly straightforward and can be broken down into six
steps:

1. if the operator contains multiple instances of the same field (H, @, etc.), work out the
group products that are allowed given the Bose or Fermi symmetry;

2. from the properly symmetrized blocks, determine the contractions that lead to an overall
invariant for the entire operator;

3. express the contractions using the available group-theory objects, e.g. €4, for SU(2)
and 04 or fapc for SU(3);

4. translate Lorentz contractions from SU(2); ® SU(2)g to SO(3,1);

5. translate from the L and R field-strength combinations to the field strength X, and
its dual X s

6. impose hermiticity.

Steps 1 and 2 require picking out singlets from products of representations, thereby
dictating how the various indices need to be contracted, while steps 3 through 5 take us from
the formalism convenient for group theory to canonical operator conventions. We emphasize
that the six steps give us the form of the operators corresponding to the Hilbert series and not
the coefficient accompanying the operator, i.e. the factor CS) in Eq. (1.1). The coefficients can
only be set knowing the UV theory. Because of this ignorance of the operator coefficient, we
will completely ignore all overall numerical (and sign) factors that appear when translating
operators, subsuming them into the cg).

The conversion steps are best illustrated with an example. We will work out the steps
for this example by hand, though steps 1 and 2 can also be performed using programs such as
susyno [75]. While it is often obvious to see how the indices on an operator must be contracted
without plodding through every step, we will go through this example in full detail so that
the process can be applied in cases where inspection fails. Other examples can be found in

Appendix C.

2.1.1 Example: (H'H)?B?

Before moving on to the operator conversion, let us define our index conventions. Most of
the index manipulations will involve SU(2). We will use undotted Greek letters for SU(2),
indices, dotted Greek letters for SU(2)r indices, and Latin letters for SU(2),. When we
convert from Lorentz SU(2),®SU(2) g to SO(3, 1) we will also use Greek indices for SO(3,1),
though drawn from the middle of the alphabet (which should be clear from the context).
Symmetrized groups of indices will be indicated by curly braces {af} and antisymmetric



ones by brackets, [ab]. Occasionally we will find it convenient to convert products of SU(2)
doublets into triplets using Pauli matrices, which will be indicated by upper-case Latin letters
(i.e. 71). While SU(2) doublet indices can only be contracted by ¢;;°, triplet indices may be
contracted by ¢/ or the antisymmetric e;yx. As an example, the singlet contraction of the
SU(2) doublets H' and H is given by €% H;r H;. The form €% HJ H; may seem a bit strange
at first glance. It occurs because we are working with HT (and LT, Q1) as a 2 of SU(2) rather
than a 2, as this makes the group manipulation simpler. One can easily convert between the
2 and 2 forms via e: H;r = EH; Throughout this paper we will perform all intermediate steps

using H. T, then convert to the more familiar H% form at the end.

Now we turn to our first example: (HTH)2B2. As the coefficient of this Hilbert series
output is 1, there is one invariant to find. The operator involves three different fields, each
of which occurs twice. As HT # H and By, are all bosonic, each block of (field)? must be
symmetric. Starting with the Higgs field and dropping the SU(3). and U(1)y entries for
brevity,

1
H? = (0,05 5)2ymm = (0,0:0® 1)symm = (0,0;1). (2:5)

symm

This is telling us nothing more than H; H; contracted with € gives zero (where i,j are
SU(2)y indices). Only the symmetric combination Hy; Hjy, or H{Qij}, is nonzero. (H')? is
the same as H?, so we can proceed to B%:

B} = (1,0;0)%m = (001 ®2,0;0) symm = (0 2,0;0). (2.6)

This decomposition is also straightforward: the symmetric product of two spin-1 fields must
be spin-0 or spin-28. Multiplying the three blocks together gives:

H?(H)?B? = (0,0;1) ® (0,0;1) @ (00 2,0;0) = (0©2,0;05 13 2). (2.7)

Choosing the 0 from the SU(2)r and SU(2), products we get the one invariant promised
by the Hilbert series. Notice we have 0 & 1 ¢ 2 in the SU(2),, portion since there is no
(anti)symmetrization left to eliminate a piece.

The above procedure takes us through step 2. For step 3, we can focus on the Higgs
portion since that contains all the SU(2),, dependence. For SU(2), the only object available
to contract indices is €. The contraction that does not vanish is:

H%ij}(HT)%km}eikejm. (2.8)

"We define €'? = —€*! = €31 = —e12 = 1, following the conventions in [76].

5The reader may wonder why we are using Lorentz representations in this section after alluding to conformal
representations in Sec. 1. Conformal representations package an object and all its derivatives together and
are useful for automatically incorporating IBP and EOM redundancies. To explicitly construct operators for
given field (and derivative) content, working with Lorentz representations is sufficient.



The contraction of ¢ with m and j with k is equivalent since ¢ <+ j, k <> m is symmetric, and
contracting ¢ with j gives zero. Written in a more familiar way, we have

(eHTH)? (2.9)

where we have ignored any overall factors of 2 or -1. Moving on to SU(2)r, By, sits in the
triplet representation, so in terms of fundamental SU(2); indices it is a symmetric tensor
Br{apy- Taking the product of two By, fields, the SU(2),, invariant comes from contracting
the indices with e:

(BE)(0,0) = Briagy Brirsye7e™. (2.10)

To convert from this format to the more familiar SO(3,1) language (step 4), our starting
point is the decomposition of antisymmetric tensors [77]:

X = U“adUVBB(GdBA{QB} + eaﬁB{o}B})’ (2.11)

where p,v are the usual SO(3,1) indices and undotted (dotted) «a, 8 are SU(2)r (SU(2)R)
indices. We can see that A sits in the (1,0) representation of SU(2);, ® SU(2)g while B sits
in (0,1). Manipulating Eq. (2.11) using the properties of € and the o matrices [76], we find

A{aﬁ} =21 (O-'L“/)QBXL,UJM B{aﬂ} =21 (5“”)d5 XR/“,, (212)

where o#” and o"¥ are antisymmetric in SO(3,1) indices but symmetric in either SU(2), or
SU(2)g indices. Applying Eq. (2.12) to Eq. (2.10) gives:

BLiagy BLissye €’ = =4 (0")ap(0°7 )45 €7€” X Bru Bryo
=—4 Tr(o.ul/o.pa) BL,uZ/BLpo
=2 (gupguo - g,uagzzp - Z.ew/po) BL;U/BLpU

= —4(Bp,,BY —iBp,,BY). (2.13)
Next, we can convert’ from By, to B and B , and H;[ to H%, with the net result:
Onzpz = (H'H)? (B, B — i B, B"), (2.14)

again dropping overall numerical factors and subscripts.

Finally, we must impose hermiticity. Repeating the conversion steps on the hermitian
conjugate output (HTH )2B%, we get (unsurprisingly) the hermitian conjugate of Eq. (2.14).
Including both Ogopoe and OLQ po into the Lagrangian, hermiticity demands that their coef-

"When converting between the Xr.r and X, X forms, the relations eMPIXL po = 21 X1, PP XR po =
—2¢ X" are particularly handy.



ficients are complex conjugates of each other,

L D cy2p2 Onap2 + Chaps (9}{232, (2.15)

corresponding to two real coefficients instead of four. We can regroup these terms into two
separate operators involving Higgs fields and hypercharge field strengths:

Oy = (H'H)?B,,B", 0y=(H'H)>B,,B". (2.16)

Either in the form of Eq. (2.15) or Eq. (2.16), we see that the result of steps 1 —6 is a number of
operators matching the Hilbert series output. In Eq. (2.16) the two operators corresponding
to the outputs (HTH )23%7  are obvious, while in Eq. (2.15) they are combined into a complex,
non-hermitian operator with a complex coefficient®. In cases where there is more than one
operator with a given field content, there are more options for the operators (and their
combinations) to use. This can be seen with 2 (HTH)2W2, which also has non-trivial SU(2),,
contractions and is presented in Appendix C. These choices are inevitable and represent a
choice of basis. Note the dimension-8 CPV terms will not affect cross sections at O(1/A%)
since they have no SM piece to interfere with. We include them purely for completeness and
to show how the operator counting works at different stages of the translation process.

The steps above carry over to operators with a single derivative. The new ingredient is the
derivative D, which transforms as (%, %; 0,0,0) under the symmetry groups and is otherwise
treated like any other bosonic object in an operator. When converting an operator of the
form D(ABC), where A, B,C are SMEFT fields, the first conversion step is to partition
the derivative among the fields. This is not as automatic as it seems, since i.) we are
only interested in products of derivatives and fields that do not reduce by the equations of
motion, and ii.) it is often the case that we cannot apply the derivative to all fields present,
e.g. for D ABC' there may be no way to make an invariant with AB D(C'). The procedure
for removing EOM-reducible terms in Hilbert series output was put forth in Ref. [44]. In
short, we treat Dy (1 a left-handed fermion) as a Lorentz (1, 3) in all products. Similarly,
Dyt ~ (3,1), DX ~ (3,3) and DXg ~ (3,3)%. In terms of SU(2)1, x SU(2)g indices:

D ~ (D) apy,a DYl ~ (D¢T)a7{d5} DXy~ (DXp){aprr.a  DXr~ (DXR), (54
and we can convert between SU(2)r, x SU(2)r and SO(3,1) using

Doa = Dy(0M) - (2.17)

8Said differently, the Hilbert series output dictates the number of real operator coefficients for a given field
content. Customarily, bosonic operators are written in the form of Eq. (2.16), with real coefficients, while
fermionic operators are written in the form of Eq. (2.15), with complex coefficients and an implicit addition
of the hermitian conjugate.
29There is no EOM reduction for scalars at O(D), where D¢ ~ (4, 3). There is reduction at O(D?), where
D¢ ~ (1,1).

,10,



In the manipulations above we have only shown the Lorentz part of the representations.
Once partitioned onto a field, the derivative should be thought of as a covariant derivative,
so Dy, DXy, etc. will carry the gauge representations appropriate to ¢, Xy, etc.

Once we know which derivative partitions are allowed, we are free to pick which one
to use since they are easily related to each other by integration by parts. For example, if
D(ABC) = D(A)BC + AD(B)C then we may pick whichever we like as our operator. Once
we have chosen how to partition the derivative, we proceed with steps 1 — 6 of Sec. 2.1 to
convert them into operators. There are no purely bosonic operators in the SMEFT containing
a single derivative, therefore we defer an example of an O(D) operator (involving fermions)
to Appendix C.

2.2 Operators with two or more derivatives

Operators containing two or more derivatives are trickier. The presence of derivatives implies
that we have redundancies due to integration by parts, which can shift the covariant derivative
from one field to another, and the equations of motion. We must be careful to ensure that
our final result does not contain any redundancies, but has enough flexibility to generate (via
IBP) any operator with the same fields and number of derivatives. As before, these issues are
best demonstrated with an example.

2.2.1 Example: 2 D>(H'HB W)

Let us look at one of the classes of operators from Eq. (2.2): 2 D?(HTHByWp). The Hilbert
series tells us that there are only two independent invariants for this combination of fields
and derivatives, but which two operators do we pick? At first glance there are multiple ways
of placing the derivatives,

(DuHT) (DMH)WL,poBL,pm (DMHT) (DVH)WL:MPBLWV’

y (2.18)
HTH(D;LWLw) (DMBLp)v (D#HT)H(D#WL,W)BL,VP’

If all operators were equal, we could just pick any two. However, this is not the case.
After picking one operator from Eq. (2.18) there are some choices for the second operator
which—combined with the original operator—can transform via IBP into any of the other
D?*(H'HB[W7p) operators, while there are other operators that will only transform into a sub-
set. Said another way, we need to pick two operators that any of the possible D?(H tHB tWr)
operators can be reduced to by successive IBP. In order to make the right choice in this ex-
ample and in similar cases, we need to know how IBP relates all operators with a given field
and derivative content.

To systematically understand the IBP relations and their use in reducing the number of
operators, we will follow the approach described in Ref. [45]. Our first step is to enumerate
the ways to partition the derivatives, as partially illustrated in Eq. (2.18). Given our previous
experience with adding indices, we can immediately recognize that i.) D?HT and D?H will
never admit a Lorentz singlet since all other fields only transform under Lorentz SU(2)r,, and

— 11 —



1 (DH >aa(DH),3ﬁBL{’Y§}WL{§77} &8 caB YE (O
x| (DH)aa(DH) 35BL17syWigeny I G )
x3 (DHT) g H (DBL) g5, 5WLien) € 6 caB € eon
4 (DH")ag H Bregy (DWL) 5,5y 5 € & ¢aB € ebn
5 HT(DH)ug (DBL){BWS},BWL{&} €GB B YE O
T HT (DH)ag Brgeq (DWL) (Br61p &8 g A€ b1
7 H'H (DBL){apy}.a(DWL) (gpay 5 €7 %1610

Table 2. Operators of the type D?(HTH B W) where we have ignored IBP relations between terms.
We have neglected all SU(2),, indices since there is only one possible contraction.

ii.) the SU(2),, part of the index contraction is trivial, as H, ,:r H; must form a triplet to contract
with Wp. Partitioning the derivatives all possible ways, there are seven different operators in
D?(HTHBLWTp). The operators are listed in Table 2 with SU(2),, indices suppressed.

The first two operators correspond to the two ways we can pair (DHT DH) > (0©1,0®
1;0,0®1,0) with B, W, D (00162,0;0,1,0)!°. We will stick to the SU(2),®SU(2) g form of
Lorentz symmetry throughout to avoid translating derivatives of field strengths into SO(3, 1)
language. When contracting indices we have made a choice of the overall sign. Nothing will
depend on this choice, but we do need to be careful to stick with this convention.

Next, we need the set of operators with one less derivative, D(H 'HB 1 W1,) that sits in the
four-vector Lorentz representation. The group theory here follows exactly as before, except
that we are picking products in the (%, %) representation rather than Lorentz singlets. The
single derivative can act on each of the four fields, DH'--.  H'DH--. , H'H(DB), etc., and
for the DH', DH options there are two ways to form (%, %) Working this out generates the

six D(H'HBL W) terms in Table 3.

The relation between the y,—gauge invariant operators with one fewer derivative and
sitting in the four-vector Lorentz representation—and IBP is now easy to see. Contracting any
of the ; with a final derivative results in a linear combination of D?(HTH B W) operators
making up a total derivative. Therefore, each D(y;) equation provides an IBP relation among

1011 the first operator the Lorentz indices of DHTDH are stitched together to form a singlet, as are the
indices of By Wr. In the second operator, we pick out the (1,0) part of BpWr by contracting one index on
each field strength together, then combine that object with the (1,0) piece of DH'DH. The two operators
represent the two different ways to tie the indices of DHYDH to the indices of BrWr; we could collapse the
two operators to one (plus a piece looking like z1) via the Schouten identity, but the current form makes the
algebra easier.
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Y (DH")ag H By W fen) €€
vo | (DHY)ag H Brsy Wi en) 36¢(e7 + €)
v HY (DH)aa Brigm Wiien €€
ya | HN(DH)aa Brisyy Wi en 367(e2” + )
vs HTH (DBL){ag).6 Wiien €€
vs H' H Briey;(DWL) (agn},a €€

Table 3. Operators of the type D(HTHB; W) that are gauge-invariant but sit in the Lorentz four-
vector representation. The number of operators in this class can be generated automatically via the

same procedure that projects out the number of total invariants. As in Table 2, we have suppressed
SU(2),, indices.

the higher-derivative terms. For example:
Dys(y1) = total deriv. = D&;((DHT)ad H BrignWrien eﬂ%w> €89 00

= ((DHaa (DH) 55 By Wiggy + (DHag H (DBL) (55, 5 Wigen +

(DH"ag H Brigy, (DWL) 50y, 5) (66 ab BE

=1 + X3 + 24, (2.19)

where we will usually have to do some index juggling to get the contractions in D(y;) to
match those of the x;. Notice that in addition to adding the derivative, we have to specify
(and stick to) a convention on how to stitch up the remaining indices. The net result of D(y;)
is that z1,z3 and x4 are not all independent, i.e. given two we can generate the third.

Following this logic, each of the other D(y;) provides a relation, or constraint, among
the z;. If each of the D(y;) were independent, this would tell us that the true number of
independent operators—including IBP relations—is #D? operators—#D operators, #x; —
#y;, or more generally (# operators at O(D™)) — (# operators at O(D™~!)). However, in
practice, the constraint equations are often redundant, making the number of independent
constraints < #y;.

To get at the number of independent constraints, we can write the constraint equations
as a matrix with each D(y;) as a row acting on a vector of x;, and then determine its rank.
For the example here, carrying out the same manipulations as in Eq. (2.19) for the rest of
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the y;, we find:

I
10 11000
11 T2
0-1-2212 000
x3
10 00110
x4 | =Mipp-Z=0 (2.20)
01 00-330
L5
00 10101
L6
00 01011
L7

The constraint matrix M;gp has rank 5, indicating only five of the six IBP relations
are actually independent. Applying five constraints to seven operators leaves us with two
independent operators, in agreement with the Hilbert series counting. While tedious, this
constraint procedure can be applied to any operator type (fermion or bosons, D > 1), in-
cluding those with multiple electroweak contractions. After this treatment of IBP relations
was put forward in [45] and applied to the SMEFT, later work [4] showed it had missed some
operators by overcounting IBP relations. Revisiting the constraint procedure here, we find
that the error in Ref. [45] did not lie in the method, but was due to mathematical mistakes
made when applying the method!'. When applied correctly, the number of independent op-
erators (after IBP) found using the constraint method agrees with the Hilbert series counting
(at least at dimension < 8). The payoff of the constraint method is that it gives us the actual
form of the operators and tells us which operators are related by IBP and which are not. For
the example at hand, after row-reducing M;gp we find it can be distilled to the following
relations:

T
371—337:0,$2+x6+?7=0,$3—.%'6=0,

T4+ w6+ a7 =0, 25+ 26 +27=0.

From these relations, we see that z1 and xo are sufficient to generate all seven operators.
Thus, given a combination c¢;z;, we can IBP repeatedly (throwing away surface terms) and
collapse the sum into ¢y eff @1 + 2y T2, With c.r¢ some linear combination of the initial c;.
We could collapse the sum into other pairs of operators, such as {x1,z3} or {x¢, z7}, however
there are also other pairs, such as {x4, x5}, that we could not reduce to. Choosing {z1,z2} to
span the set, reintroducing the SU(2),, indices, and performing steps 4 and 6 from Sec. 2.1,

"1n particular, some of the error in Ref. [45] can be traced to a faulty shortcut the authors used to determine
when a full matrix/rank treatment of the constraints was necessary, while in other circumstances it was just
algebraic error. Clearly this method would benefit from automation, possibly along the lines of Ref. [78].
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we are left with:
Ospmapwi = Te(DuH' 71 DFH) (B WE ,, — iBY WY )
Oaptrzpwa = Te(DyH' ' D, H)(BE" WL — Bi"Wi + %Bwvfﬁ - %anwzﬁ
FOBPWE - LBIRWE), (221)

where, as in Eq. (2.14), we have converted to H% format.

One remaining question is the origin of the IBP relation redundancies. Combining several
of the y; and manipulating indices, we see that some combinations of the constraint operators
can be expressed as a total derivative:

1 1
Y2 + Ya + i(yf) - 3/6) — Dad (I‘pL HB{,B'y}W{fn} 567§(EQB + 60477)) (2.22)

When we apply a final derivative, Eq. (2.22) connects the constraints from D(y2), D(ya4),
D(ys), and D(yg) so they are no longer independent. For the case here, we have a single
relation among the y;, so the number of independent constraints is reduced by one, from six
to five. To better understand why this occurs, notice that the operator in the parentheses of
Eq. (2.22) transforms as a (0, 1) Lorentz representation. Applying D? to this combination will
always give zero, since D? has Lorentz irreducible representations (0,0) @ (1, 1), which cannot
form a singlet with (0,1). Enforcing this fact—that D? ® (0,1) = 0—results in relations
among the O(D) operators!?.

3 Dimension-8 operators relevant for pp — h W

Having worked through a few examples, we now present the results of the operator extraction
for the full set of terms listed in Eqgs. (2.1) — (2.4).

e For the bosonic terms there are a total of 17 operators with no derivatives, correspond-
ing to the eight terms in Eq. (2.1) and their hermitian conjugates, along with the single
self-hermitian term. The set is listed in Table 4. As explained in Sec. 2.1, we have made
some choices about how to display indices (e.g. triplets vs. doublets) and what linear
combinations to take to form operators with simple properties under CP transforma-
tions. These choices constitute a choice of basis.

e Table 5 contains the bosonic operators with two derivatives. There are 26 operators,
corresponding to ten terms in Eq. (2.2) plus their hermitian conjugates, and the six
self-hermitian terms. Because there are derivatives, there is even more choice than in

2 Technically, we are only interested in (0,1) or (1,0) operators that are not themselves a total derivative.
The Hilbert series iteratively removes total derivative terms, as explained in [4]. In the constraint method
shown here, D™~2 D™~2 ... total derivatives all show up as relations among rows of Mrpp.
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Os,i (HTH)* Osw | ersr (HTHYWHIW,] Wik
Os.ip (H'H)2By,, B" Ogyir | erarc (HUH)YWHTW W™
Os u5 (H'H)?B,, B" Osnc | dap (HTH)?GA,GHB

Os,uwB 6ry (HYH)(H'TTH) B, WH7 Os 1a SAB (HTH)ZGZXV@W,B
Og 1 B 01y (HTH)(H7!H) By, W) Osc | fasc (HTH)G“”’AGEPG,@’C
Os.aw S17(HVH)? Wf Whd O | fapo (HUH)GAGE GH©

Og 5IJ(HTH)2 Wt
Os w2 5IK5JM(HTTIH)(HT H)W M
Og s (SIK(SJM(HTTIH)(HTTJH)WjZ(/W#V’M

Os. 1w B2 ersx (H'T H)BYW, Wweek
O pwis | €K (Hir'H) (E”VWzZJszTK + Bﬂwapw;f’K)

Table 4. The 17 derivative-free operators after conversion to the standard X,)N( notation for the
field-strength tensors and with HT in the 2 representation.

Os,up (HTH)Q(DNHT D"H) Os,DHWSb C€IJK (DMHTTIDUH)(W;LJPWIC)’K +WLLJPW£’K)
Og,HD2 Sy (HYHY(H'r'H)(D*H'r' D, H) Os,puw B 615 (D*H' 7' D, H)B* W,
Os,puB (D"H' D" H)By, B Os, o s o1y (DMH' TID#H)BPUWPJU
Os.puB2 (D*H'D, H)B*° B,s Os,pHW B2 idry (D*H'T' DVH)(B,,, W, — Bu,W[7)
Os prso (D“HTD#H)BP"EM Os,pHW B3 Org (D“HTTIDVH)(BupWIf’J +B,,,JW5"7)
Os,pHG daB (D#HTDDH)G:?/)G&B Os,DHWBQ ors (D“HTTIDV )(Bp WJ - Np WJ )
Os,pHG2 0AB (D“HTDHH)GPJ’AGEU OS,DHWB3 ors (D“HTTIDVH)(BP WV}P + B W )
Og pHE2 dAB (D“HTDHH)G’"T’AC:':?Cr Os,HpHEB i(H'H)(D,H' D, H)B""
Os,paw 61 (D*H' DY H)YW, W’ Os upus i(H'H)(D,H' D, H)B"
Os,paHW? o1 (D“HTDMH)WM’IW;;IG Og,HpHW 1017 (HTH)(DMHTTIDVH)W;{V
Os,DHWz o1y (DHHTDMH)WM’IW;{U Os,HDHW i1y (HTH)(DMHTTIDVH)W@]V
Os,pEwW3 crax (D*HIT' DY H)WL,Wh K Os, HpHW? iersx (H'T'H)(D*H't/ D" H)W,3,
Os pwsa | c1sx (D*HT DY H)W, W = Wi, W) | O ypuvies ieryic (H'r H)(D" HI 7! D" H)Wi,

Table 5. The 26 two-derivative operators after conversion to the standard X, X notation (plus

linear combinations).

self-hermitian with real coefficients.

Factors of ¢ are included where necessary so that the operators are explicitly

Table 4. When possible, we have opted to put the derivatives on the Higgs fields as this

makes implementing the operators into FeynRules easier.

e Table 6 contains the three bosonic operators at O(D*). When forming these operators
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(and all others in this section) we have ignored overall signs or numerical factors.

Osap1 | (D,H'D,H)(D"H'D*H)
Osap2 | (D,H'D,H)(D*HTD"H)
Osaps | (D*H'D,H)(DVH'D, H)

Table 6. The explicit forms of the three bosonic dimension-8 operators containing at least one Higgs
field and four derivatives. These three operators have three independent real coefficients.

Os.ow1
OS,QWl

Os ow2
OS,QW2
Os ows

Os,@Ws

Og.ow4

OS,QW4
Os.ows

Os,@Ws

Os.owe
o

8,QW6

017 (Q6”Q) DH(HI T H) W,
017 (Q16"Q) D*(HT T H) W,

1615 (Qla* Q) DrrlH) W,
1615 (Qla*Q)H DrrH) W,
617 (Q¥r! Q) DH(HTH) W},
517 (QWTI Q) DHM(HTH) W,
i615(Q5 )HTD“H)W[L
P61 (QTUVT Q)(H D)W,
eapc (QTa"T4 Q) DM(HITBH) W,

eapc (QTaVT4 Q) DH(H'rBH) WHCV

Q)
ieapc (QfaVr Q)(HTﬁMTBH) WMCV
Q)H! DB H) WS,

1 €EABC (QTO' 4

Os.01 i(QehQ)(HT D rH)(HH)

Osqs | 101 (Q1a"! Q)((D HIr/ H)(H H)+
(D' H)(HI7 1))

Os,qs | iersx(QTorr! Q)(HTﬁ“TJH)(HTTK H)

Oso1 | erx(QTa*r! Q) HIwH) D, (H'r% H)

Os 301 ] (CTL(?“D”Q)(D(2 )HTH) + h.c.

Og3qe | i 51J(QT0’“TID”Q)(D2 HTTJH) + h.c.

08303 (QTU“D”Q)(HTD(2 wH) + hec.

Os3qa | 101,(Qa*r' D" Q)(HIT/ D}, H) + h.c.

Table 7. The 20 operators involving quark, W-boson and Higgs fields that are relevant for the
phenomenological study of pp — h W*.

e Finally, Table 7 contains the fermionic operators that contribute to pp — h W, either

by contributing to the ggW vertices or through direct four-point contact terms. There

are no terms with even numbers of derivatives, as operators of that sort always con-

tain a mixed chlrahty fermion pair and therefore do not interfere with SM pp — h W

amplitudes. Here, H D DFH =

(DrHYYH — HY (D H).

The left-hand column of Table 7 shows the 12 operators derived from D(QTQ HT H WrL.R),s
grouped into CP-even/odd pairs. These operators are each accompanied by a real coefficient

in the Lagrangian, however one could also combine each pair, e.g. Og w1 and Og oW1

into a complex operator with complex coefficient. The 8 operators on the right-hand side
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correspond to D(QTQ H?(H')?) and D3(QTQHTH). These operators are accompanied by
real coefficients. Throughout this list we have chosen to put derivatives on the Higgs fields
whenever possible. However, while it is possible to form an invariant with three deriva-
tives on Higgs fields, QTQ D?HTDH and QT'Q DH'D?H (each with two electroweak index
contraction possibilities), the two are not independent under IBP so we cannot span the
full set of D3(QTQHTH) operators with them. Rather than choose one, Q'Q D*H'DH or
Q'Q DH'D?H, we have opted for a more symmetric choice involving two derivatives on Higgs
fields and one on a fermion field.

Using Table 7 one can easily write down similar operators involving right-handed fermions.
For left-handed leptons we just need to replace Q — L since the SU(3). structure played no
role; similarly, trading in @ for uc,d. or e., only the SU(2),-singlet fermion combinations

O&Ql, O8,3Q17 O8,3Q3 and O8,QW17 OS,QVVI’ O&QWQ, OS,QVV2 are allowed.

4 Application: pp - h W=

To investigate the effect of dimension-8 operators we focus on one process: Higgs boson
production in association with a W boson at the LHC. See Refs. [79, 80, 827 —84] for relevant
experimental results.

Combining the operators in Tables 4-7 with dimension-6 operators (enumerated in Ap-
pendix B), higher-dimensional terms manifest in a number of ways. Bosonic operators di-
rectly enter into pp — hW¥* by modifying the hW W vertex, while fermionic operators (e.g.
Table 7) either modify the ggW™* vertex or enter as gghW* contact terms. Additionally,
higher-dimensional operators introduce corrections to the SM field kinetic terms. For in-
stance, Og yp leads to a correction to the U(1) kinetic term, 08,HB(1)4/A4)BWBW, and
similarly Og p leads to a correction to the Higgs kinetic term. To ensure that all fields are
canonically normalized we must make a set of field redefinitions. These redefinitions lead to
shifts in electroweak parameters like couplings and mass terms. One needs to make a choice
of experimental input parameters and shift others as derived parameters. For a discussion of
this procedure in the case of dimension-6 operators, see Refs. [85, 86]. Dimension-8 operators
introduce a dependence of the electroweak parameters on the shifts at order 1/A* and need
to be handled with care. Details of this procedure are presented in Appendix D.

After carrying out the normalization and EW input procedure, we next sketch the Feyn-
man rules for the ggW, hW W and gghW vertices. We take all momenta to be ingoing and
enforce on-shell conditions on the Higgs and fermion fields, but not on the gauge bosons.
While it is possible to remove the dependence on one field momentum in each vertex by
imposing momentum conservation, we choose not to do so. To be more compact and make

the different Lorentz structures clearer, we first express the Feynman rules in terms of form

13.
factors cfpvi, chwwi, Crpwni

13For simplicity, we neglect CP-odd operators throughout this discussion.
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2

_ p
W,f(p?,) = 0(p2)y" (quvo + Cqqv1 ;)PL u(p1) (4.1)
u(p1)
W;(m)
h(p1) --- = (ChVVO " + cpvva (2 - p3)n™ — 5 p5) + chvva((p1 - p3)n™ — piph)
— chyva((p1 - p2)n®™ — p‘fpg)) (4.2)
W, (ps)
d(p2) W (ps)
=(p2) (’Y” (Cqqwno + cgqwna (03 - Pa) + Cgqwns (P1 - (P3 + pa)) + cqqwna (P2 - (P3 + pa))
Y
h + 15(Cqqwn1 D5 + Coqwh3 Py + Caqwna D) (4.3)
u(p1) h(p3)

+ Ph(—Coqwha P + Cqqwn3 P + Cqqwna Ph ))) Pru(p2)

The full expressions for the form factors are provided in Appendix E.

Using these vertices to calculate 6(pp — hW™) in terms of the dimension-6 or -8 co-
efficients, the full expression is not particularly illuminating. However, a quick way to see
how dimension-8 effects enter and what are the most important operators is to take the limit
of large §, as that will expose differences in the high energy behavior of dimension-6 vs.
dimension-8. We find:
é2

2 3

&(pp — Wth) ~ ( (62 (c8,3Q1 — €8,3Q2 + 8,303 + €8.3Q4)

0

in? A) m2, A*
A0S 07y + 8 sin20 <cg5;;>2) +0(5%  (4.4)
The largest growth is linear in §, as expected from simple power-counting arguments, and
the operators that enter are a dimension-6 contact term (squared), and a combination of
D3(QTQHTH) dimension-8 terms. The fact that D3(QTQHTH) terms are the only dimension-
8 terms to appear is not surprising. Fermionic operators with fewer derivatives contain
additional Higgs fields and can only contribute to pp — h W™ if multiple Higgs fields are
set to their vevs (more vevs in the amplitude lead to weaker energy dependence). The only
dimension-6 term that contributes in Eq. (4.4) is OS’BI =i(Qa*r! Q) (ﬁHT ' H). However,
this operator also modifies fermion couplings to W and Z bosons (through the form factor

WWhile we have presented off-shell vertices, it would be interesting to explore these results using on-shell
amplitude techniques along the lines of [43].
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ctrvo in Eq. (4.1)). Strong constraints on deviations of W and Z couplings to fermions implies
that these operators must have small coefficients, see e.g. Ref. [8]. Examining Eq. (4.1), we
see that the D3(QTQHTH) contact terms are not tied to gqV modifications. Thus, if we take
cgé — 0 to avoid gqV constraints, the part of 6(pp — hW™) that grows with energy is

controlled by dimension-8 operators alone. In this case, the cross section contributions from

| Adim-6|? are o X—i, while those from Agy X Adim-g are o< f—f — so there are energy regimes
where dimension-8 effects are dominant at 1/A* To quantitatively evaluate the effects we

can expect at the proton level, we turn to numerics.

As a rough estimate of the impact of dimension-8 operators, we study the rate of pp —
hWT in a scenario with a single dimension-6 operator and all dimension-8 operators. We
choose O as the representative dimension-6 operator and for simplicity define cgw = 1/ Ag
and set all other dimension-6 coefficients to zero. We take all dimension-8 operator coefficients
to have the same magnitude, |cs;| = 1/A4 but leave the signs to float since there can be
cancellations among different operators (see Eq. (4.4)). For a fixed cgw (Ag), the limit
Ag — o0 corresponds to no dimension-8 effects. Decreasing Ag, we add in the dimension-8
effects. For each Ag, Ag, and sign choice for the coefficients!'®, we fold the parton-level results
with parton distribution functions'®, then calculate the shift in the pp — h W7 rate relative to
the SM, [Ap(pp — hWH)| = |(a(pp = AW )agas — o (pp = AW )snr) /o (pp = hW ) sl
If we pick the signs of all dimension-8 coefficients to be positive, the result is shown in the
top panels Fig. 2. In the bottom panels of Fig. 2 we show the result if we instead choose signs
of the dimension-8 coefficients that enhance their contributions at large /s'".

The blue line in Fig. 2 shows the relative deviation in o(pp — hW™) from the SM
value as a function of ¢y, neglecting dimension-8 effects (Ag — o0). The impact of the
dimension-8 operators can be seen by tracing either vertical or horizontal lines through Fig. 2.
Picking a value of ¢y and tracing vertically upwards from the blue line intercepts two lines
with different dimension-8 scenarios. The black dashed line corresponds to the case where
dimension-6 and dimension-8 operators have the same coefficient, cgw = cg; or Ag = Asg.
The red line denotes where Ag has been reduced to the point that the EFT breaks down,
and thus represents the maximum potential dimension-8 contribution to o(pp — hWT).
This breakdown point occurs when one of the following validity conditions is broken: i) the
Asm X Agim.g contribution to the cross section of O(1/A}) is greater than the quadratic
dimension-8 contribution, |Agim.g|> ~ O(1/A§); or ii.) the SM interference with dimension-6
at O(1/A2) is larger than SM interference with dimension-8 at O(1/A3). The first condition
is independent of the dimension-6 effect, while the latter ties the two terms together. As cpw
decreases (Ag increases), the second condition becomes the stronger of the two, causing the

15 As demonstrated in Refs. [92, 93], it is possible that analyticity and unitarity requirements forbid certain
signs for higher dimensional operator coefficients. We ignore this possibility here and assume the coefficients
can have either sign.

16We use MSTW2008nnlo [87] parton distribution functions with factorization scale set to v/3.

'"The sign assignment is the following: cs,mp2,cs,HDHW, Cs,QW3, C8,QW5, C8,3Q1, C8,3Q3, C8,3Q4 POsitive (=
Jr/Tlg); and cg,HD, C8, HW B, C8, HW , C8, HW 2, C8,Q2, C8,Q3, C8,Q4, C8, HDHW 2, C8,3Q2 nhegative.
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Figure 2. Relative deviation in the inclusive cross section o(pp — h W) from its SM value including
dimension-6 and dimension-8 effects. The blue line shows the result of including Ogw as the only
dimension-6 operator and without considering dimension-8 operators. The red line indicates the
deviation as a function of cyy including the maximum possible dimension-8 effect consistent with
the EFT expansion. The black dashed line shows the result if dimension-6 and dimension-8 operator
coefficients are equal, cyw = cg; (i.e. Ag = Ag). In the top two panels the dimension-8 coefficients
are all equal, while in the bottom two panels we take their magnitudes to be equal but assign their
signs to maximize their effects at high \/s. The left panels shows values of \/cgw out to the current
95% CL limit, which following the global analysis in Ref. [88] is 0.631 TeV~!. In the right panels we
have zoomed in to smaller values of ¢y to make the dimension-8 effects more visible.

tapering in the band of dimension-8 effects. We also require the condition Agy X Adim-g >
| Adim-6|? in all calculations, which sets the maximum cgyy value (the right-hand edge of the
plot).

Comparing the top and bottom panels of Fig. 2, the band of dimension-8 effects is sig-
nificantly smaller when we choose all dimension-8 coefficients to have the same sign. The
origin of this difference is an accidental cancellation among the dimension-8 terms when they
have the same sign and magnitude. Specifically, the cg 301, 3303, and cg3g4 terms posi-
tively interfere with the SM amplitude, while the cg 302, cg,ow3, and cg gws terms interfere
negatively. The latter do not appear in Eq. (4.4) as they enter the cross section at O(3°),
proportional to 9%/(m#, A*). Cancellations between the O(3) and O(3°) pieces are possible
since the inclusive production of W h is dominantly near threshold, where § ~ v? and thus the
two terms are similarly sized. One may think that an accidental cancellation in Agjn.g can be
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compensated by lowering Ag. However, the |Adim_8|2 contribution has no such cancellation,
so it overwhelms the Agas X Agim-s piece even at relatively high Ag. Thus, the net result of
the cancellation in Agijm.g and our EFT consistency conditions is that the dimension-8 effects
for the positive sign choice are reduced to a sliver. The cancellation in Agj,.g is broken if we
relax the assumption of equal size coefficients or fixed signs. Turning on various combinations
of dimension-8 couplings and adjusting their signs, we find that results similar in size and
shape to the bottom panels in Fig. 2 are far more common; therefore we will use these signs
when quantifying the dimension-8 effects. The net effect of the interference is positive for
this choice but negative interference is also possible, in which case the yellow band would lie
beneath the blue line.

To get an estimate of how much dimension-8 operators affect the extraction of the
dimension-6 coefficients, we return to Fig. 2 and trace horizontally through a fixed value
of |Au(pp — hWT)|. Let us take |Au(pp — hWT)| = 0.2 as an example. Extending
a horizontal line through that point in the bottom panels, we intersect the red line cor-
responding to the maximum considered dimension-8 effects at /cgw = 1/(2.19TeV) and
the blue line corresponding to no considered dimension-8 effects at /cgw = 1/(2.27TeV).
At this level of |Au(pp — hW )], the relative difference is quite small, < 4%. However, for
Ap(pp — hWT) = 0.05, the relative size of the dimension-8 effects in our treatment is ~ 18%,
roughly spanning \/cgw = 1/(4.28 TeV) for no dimension-8 effects to \/cgw = 1/(5.08 TeV)
including maximal dimension-8 effects. To see the impact of Ag = Ag, rather than the max-
imal allowed dimension-8 effect, we repeat the above procedure but look for where a line
of constant |Au(pp — hWT)| intersects the dashed black line. For |Au(pp — Wh)| =
0.2, the intersection lies outside of the yellow band, meaning that the Ag = Ag point lies
outside our definition of EFT validity. For |Au(pp — hWT)| = 0.05, the intersection is at
Verw = 1/(4.36 TeV), a 2% shift from the dimension-6 value. For reference, ATLAS projects
a Wh(— bb) precision at the HL-LHC of |Au| ~ 0.14 [89], and a global precision including all
channels of < 10% [90]. We emphasize that our results use a single (but representative) sign
assignment and equal-magnitude dimension-8 coefficients, and are therefore only indicative.

To see how the dimension-8 operators affect high-scale kinematic regions, we repeat the
o(pp — hWT) calculation focussing on a region of high invariant mass, mpw = V5 >
500 GeV. The results are shown in Fig. 3, both for the case where all dimension-8 coefficients
are positive and for the sign assignment in Fig. 2. Compared to the inclusive case, the effects
of adding dimension-8 operators are significantly larger and the EFT wvalidity conditions
(which must be recalculated for this kinematic region) carve out a different shape. The
increased § also disrupts the cancellation in Agjn.g for the inclusive cross section when all
dimension-8 coefficients are taken to have the same sign. Quantifying the effect, in the
mixed-sign case a measurement of |Au(pp — hW)|,, aw>500Gev = 0.2 can be interpreted as
Vveaw = 1/(2.32 TeV) neglecting dimension-8 operators and /cgw = 1/(3.59 TeV) including
maximal dimension-8 effects (a ~ 55% difference). For Ag = Ag, the effect shrinks to 27%
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Figure 3. Relative deviation in the high-mass cross section o(pp — h W mgw > 500 GeV) from its
SM value including dimension-6 and dimension-8 effects. In the left panel, all dimension-8 coefficients
are taken to be positive, while in the right panel the signs of the coefficients enhance the impact of
dimension-8 operators on this cross section. The blue, red, and dashed black lines correspond to the
same scenarios as in Fig. 2.

(Vemw = 1/(2.95 TeV))'s.

The impact of dimension-8 would be significantly smaller had we neglected the contact
terms, illustrating the importance of including all operators that can contribute to a process.
This statement is not intended to give the impression that contact terms are special, as the
fact that they are the operators with contributions that grow with § is an artifact of our use
of the Warsaw basis. In other bases, such as the SILH [91] basis, contributions growing with
$ would still be present though not necessarily originating from contact terms. The relative
importance of the different operators would also be different in a scenario with unequal
coefficients.

The trends exhibited in Figs. 2 and 3 are not surprising: the more precisely a quantity is
measured, the more sensitive it is to higher order corrections; and direct probes of high scales
are more sensitive to higher-dimension operators. However, this is the first time dimension-
8 effects have been quantified in an LHC process using the complete set of dimension-8
operators.

Our analysis has assumed that only ¢y is non-zero. This operator enters o(pp — h W ™)
at O(8"), whereas other dimension-6 contributions carry different energy dependence. We
have seen that CS)Q enters at O(8), while other operators—in particular, operators that only
contribute to pp — h W via normalization or electroweak inputs—enter at O(37!). As the
current bounds on cgw, cgg, etc. are not radically disparate, it is interesting to investigate
the dimension-8 effects in scenarios with different dimension-6 energy dependence. The results

of repeating the analysis in this section for ng;) or cyn variations can be found in Appendix F.

8For the common-sign case, /caw = 1/(3.08 TeV) including maximum dimension-8 effects, and /capw =
1/(2.54 TeV) for Ag = As.
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5 Conclusions

In this paper we have evaluated the effect of dimension-8 operators on two Higgs observables,
in the context of the Standard Model EFT. For this purpose we have compiled a complete
and non-redundant set of dimension-8 operators involving gauge bosons and at least one
Higgs boson, along with the fermionic contact operators necessary to study h W production
at the LHC. A vital tool aiding in this construction was the Hilbert series, which tells us
how many independent operators exist for each combination of fields, accounting for possible
redundancies due to the equations of motion and integration by parts. Applied to the SMEFT,
we find 17 independent operators with zero derivatives, 26 with two derivatives, 3 with four
derivatives, and 20 operators involving h, W and left-handed quarks.

Through a series of examples, we outlined the steps required to convert between Hilbert
series output—the number of invariants and their field and derivative content—to a canon-
ical, phenomenology-ready form including Lorentz and gauge indices. This set of steps is
completely general to relativistic EFTs with fields in linear representations of the defining
symmetry groups, and is based on a method first proposed in Ref. [45]. The most involved step
in the translation is the imposition of IBP redundancies, which is performed by constructing
a matrix of IBP relations between the operators with all possible derivative partitions and
the operators with the same field content but fewer derivatives, and then taking the matrix
to row-reduced form. The translation procedure would clearly benefit from automation, es-
pecially if one would like to extend it to other sets of observables (see Ref. [78] for recent
progress in that direction). We have made available the complete set of operators affecting
pp — h W in FeynRules format in the hope that it will prove useful for future analyses.

We used this framework to study the impact of dimension-8 operators on the production
of a Higgs boson in association with a W boson. This channel provides a good handle on
higher dimensional operators due to the kinematic reach of this topology. Higher dimensional
operators contribute to the ggW vertex, hWW vertex, and ggqWh contact terms. These
contributions accompany different energy dependencies in the cross section. In particular,
several contact operators lead to o(pp — h W) contributions that grow with 8. Unlike their
counterparts at dimension-6, the dimension-8 operators that impact ggWh do not modify the
trilinear gqV' coupling.

To estimate of the effects of dimension-8 operators, we studied scenarios where only one
dimension-6 operator coefficient is nonzero and all dimension-8 operator coefficients have equal
magnitude but different sign. We quantified the uncertainty on the extracted dimension-6 co-
efficient value by drawing contours of constant deviation in o(pp — h W) and seeing where
they intersected the predictions for additional dimension-6 terms and additional dimensions
6 and 8 terms. Taking cyw # 0 as the representative dimension-6 operator and varying the
signs of the dimension-8 operator coefficients, we find the effects of dimension-8 are typically
at the percent level for the inclusive cross section at its currently measured accuracy, growing
to O(10%) once we reach |Ap(pp — h W)| = 0.05. The exact percentage varies depending on
whether the dimension-8 effects act coherently or if there is some cancellation among different
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operators. We define the maximum size of the dimension-8 contribution by demanding EFT
consistency, including the requirement that the contribution to the cross section linear in the
dimension-8 coefficients makes a larger contribution to the cross section than the quadratic
dimension-8 terms. If we focus on high-mass kinematic regions, the effects of dimension-8
operators become much larger. For example, for the coefficient set we use, dimension-8 opera-
tors shift the dimension-6 coefficient implied by |Au(pp = h W) >500 Gev| = 0.2 by 55%.
In order to carry out these phenomenological studies, we performed canonical normalization
and electroweak input procedures including dimension-8 effects (see Appendix D).

This study and its companion implementation in FeynRules (see Appendix A) open the
possibility for experimental collaborations and theoretical analyses to assign a systematic
uncertainty to the effect of dimension-8 operators. Within the context of pp — hW™, it
would be interesting to carry out uncertainty estimates for dimension-6 operators other than
cHW,cg)Q, or cyg, or to more thoroughly explore the effects of correlations and cancella-
tions among different operators. This work also allows theoretical studies of the interplay of
dimension-8 operators with specific types of new physics, for example CP-odd Higgs couplings
at dimension-6.

Moving beyond pp — h W™, the logical next step is to extend the current FeynRules
implementation to more operators and study the impact of dimension-8 effects on Higgs pro-
duction in association with a Z boson or with top quarks. It would also be interesting to
add pure gauge dimension-8 operators (such as those in [40]) which would affect di-boson and
tri-boson production, and to relate these to the anomalous trilinear and quadrilinear gauge
couplings (aTGC and aQGC), see for example references [94, 95].

Note added: As this paper was being completed, Ref. [78] appeared demonstrating a
similar method for explicitly constructing non-redundant sets of higher dimensional operators
in the SMEFT and beyond. That reference includes a software package automatizing the
required steps.

Acknowledgements

The work of VS is supported by the Science Technology and Facilities Council (STFC) under
grant number ST/P000819/1. The work of AM was partially supported by the National
Science Foundation under Grant No. PHY-1520966. We would like to thank Andrea Banfi
for discussions on the jet-veto effects in Wh production. AM would like to thank Landon
Lehman for his input during the initial stages of the project.

A Implementation in FeynRules

In this section we briefly discuss the implementation in FeynRules. Two .fr files are in-
cluded along with the source code of this paper, and will be available shortly in the model
database in their webpage (http://feynrules.irmp.ucl.ac.be). Both files contain the operators
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in Appendix B for dimension 6 and Tables 4-7 for dimension 8. The operator coefficients
in the .fr files have the same name convention we have used in the text, e.g. c8HD as the
coefficient of Og yp. Within the files, the operators are grouped according to whether they
influence pp — h W™, and the contact operators have been split into individual modules to
speed up the code. The difference between the two files is whether or not the canonical nor-
malization and electroweak input procedures described in Appendix D have been carried out.
The procedures are needed to consistently include dimension-8 effects but they significantly
slow down the running of the current incarnation of the .fr files, so we have provided a
version omitting that step. We have made three other simplifications: 1.) we have omitted
any four-fermion contributions to G, 2.) as our focus here is on h W production we have
neglected the O(A™*) difference between sin? € and sin?6fz in the coupling of Z bosons to
fermions, and 3.) we have omitted all CP-violating dimension-8 fermionic operators. We will
address these shortcuts in future versions of the .fr and plan to extend the set of translated
operators to explore pp — Zh and pp — V'V. To ensure that events with these .fr include
dimension-8 interference effects but not |Agim-g|?, one should generate events with the suffix
NP 2 <=2,

B Dimension-6 operators

On (H'H)? Ouw 51J(HTH)W;{VW@]V
Opo | (H'H)D*(H'H) Ous (H'H)B,, B,
Oup | (D,HH)(HID,H) | Opp (H'H) By B,

Onc | da(H'H)G4,GE, | Onws 517 (H' 7' HYW), By,
Oue | Sap(HTH)GLGE, | Oyip Sty (H' T HYW, By,
Omw | s/ (HEWLW, | 04) | i(Qle"Q)HT D H)
0%, | i(Qterr! Q! Drr! H)

Table 8. The thirteen dimension-6 operators included for comparison with dimension-8 effects. As
described in the text, we work with the Warsaw basis.

C Other examples

In this appendix we give two further examples to illustrate the conversion from the Hilbert
series output to EFT operators in their canonical form.

C.1 Example: 2(HTH)?2W?

In this example we will demonstrate the procedures for handling multiple operators and
non-trivial SU(2),, contractions. The coefficient of the Hilbert series output for the opera-
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tor 2 (HTH)? W2 indicates that we need to find two invariants. The Higgs field portion of
(HTH)? WE is identical to the example in Sec. 2.1.1, so the Higgs group-theory decomposition
is identical to Eq. 2.5. The remaining object, W, is bosonic, so (Wr)? must be symmetric.
However, Wy, transforms under both SU(2); and SU(2), so there are more ways to form a
symmetrized product. Specifically, Wg can be overall symmetric if it is either symmetric in
both (SU(2)r, SU(2),) indices or antisymmetric in both!?:

Wi =(1,0;1)2n = 0®1©2,0;08 16 2)symm = (0652,0; 02) + (1,0; 1)
- ((0,0;0) +(2,0:0) + (0,0;2) + (2,0;2)) +(1,0; 1). (C.1)

We know the Higgs part of the operators is a Lorentz singlet, so only Lorentz-singlet Wf
options can make potential invariants: (0,0;0) and (0, 0;2). Adding in the Higgs fields,

H2(HDY(W?) = ((0, 0:1) ® (0, 0; 1)) ® (0,0;0 @ 2)
= (0,0:02) @ (0,0;0® 2),

we can pick out the two invariants. One invariant comes from the product of the SU(2),,
singlet element of (H'H)? with the SU(2),, singlet piece of W2, while the other comes from
the SU(2),, spin-2 (symmetric tensor) piece of (HTH)? with the corresponding piece of W2,

For the product of SU(2),, singlets, the H? and (HT)? terms are contracted together?’,
as are the two Wy, fields,

(eH'H)2 W], Wik (C.2)

Similarly, to form the invariant from SU(2),, 2®2, we want to contract the symmetric product
of the H?, (HT)? triplets with the symmetric product of Wy, triplets

(Te(H 2 eH) Te(H r8eH") + A & B) (W, WP + A & B), (C.3)

where the € in the H? product appears (as in Eq. (C.2)) because H' is a 2 of SU(2),. The
two terms are identical, so the operator collapses to

Te(H m4eH) Te(H' r8eH) W{,, WP (C.4)

Technically, to form a true spin-2 representation from the product of spin-1 (triplet) repre-
sentations, we should have subtracted a piece proportional to d 4g. However, as a d 45 would

19Symmetrizing will depend on the representation we are working with; for SU(2) triplets the symmetric
combinations of X4 Y5 (spin-0) are with 67 or the two-index symmetric tensor X{4Yp} (spin-2), while the
antisymmetric case is the antisymmetric tensor X<AYB> = vector, EABCXAYB (spin-1). However if we deal
with SU(2) doublets, spin-0 is the antisymmetric combination € x;y; while spin-1 (vector) is the symmetric
case T{;Y;y}-

20Which we can form either by inspection, or by taking the singlet product of the H? triplet and (HT)?
triplet, then simplifying via the identity T{?T[?n = 20im0j1 — i 0im.
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reduce the operator in Eq. (C.3) to the form Eq. (C.2), we can just absorb that contribution
into the coefficient of Eq. (C.2). Repeating these steps for the hermitian conjugate term
(HTH)?> W3 gets us terms analogous to Egs. (C.2) and (C.3) but with W, — Wg. Finally,
as with the example in Sec. 2.1.1, we can separate the real and imaginary pieces into inde-
pendent operators by considering linear combinations of the Wy, and W forms. Written in
terms of W, W and with HT as a 2, the four operators are:

Osw = (HYHPWLW! O o = (HTHPW] W (C.5)
Os o = (Y P H)(H w7 H) WA WY, Oy = (P H) (BT H) WV
(C.6)

C.2 Example: 4 D(Q'Q(H'H)?)

The goal of this example is to show how to manipulate operators with fermions and operators
with a single derivative. As discussed in Sec. 2.1, the first step is to enumerate the ways
we can partition the derivative. The derivative cannot act on Q or Q' since DQ, DQ' will
transform under both Lorentz SU(2), and SU(2)g, while the other object in a non-trivial
Lorentz representation only transforms under one of the two. The derivative can therefore
either act on H or HT, so let us begin with DH. There are no repeated fermion fields so we
do not need to worry about anytisymmetrization, and we can ignore SU(3) since it is clear
that we only want the color-singlet portion of QQ'. Sticking with just Lorentz and SU(2).,
indices and grouping terms conveniently:

(QIQ)H DH)(H'? = (3, 308 1) x (3, 7:02 1) x (0,0;1)
~(0,0;00081®1®1®2) x (0,0;1). (C.7)

This gives three terms, roughly: i.) the triplet of QfQ contracted with the HT triplet, ii.) the
triplet of H DH contracted with the H' triplet, or iii.) contracting all three triplets with an
el 'K. Using SU(2),, indices the terms are:

i) (Q"Q)apy (H DH)(H')} gy e*e* = Tr(Q'r! € Q)(H DH) Te(H' r7 ¢ H') 61,
ii.) (Q'Q)(H DH) qpy (H") ]y e*“e"’ = (Q'Q) Tx(H 7" e DH) Tx(H' v/ e H') 615
iti.) (Q'Q) (apy (H DH ) 15y (HN) ]y '™ = Tr(Qr" € Q) Tr(H v/ e DH) Tr(H' 7% e HV)er ¢

Replacing DH — DHT we have three more terms (iv., v., iv.), so a total of six. However, if
we IBP on term ii.) above, we get

(QTQ)(H DH) (apy (H')] gy ™" —
(total deriv.) — (QTQ)(DH H)qapy (H")}ogye®e™ — 2(QTQ) (H?) apy (DH HT) (aye*e™,
(C.8)
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where we have ignored any terms with the derivative on the Q, Q' since we know they cannot
yield invariants. Since the SU(2),, indices are all symmetric, the second term is the same as
the original operator and the factor of 2 arises since differentiating either of the H gives the
same result. Ignoring the total derivative and rearranging, we find IBP gives:

(QTQ)(H DH) py (HN gy €*e" = (QTQ) (H?) (apy (HT DHT) eqpee™. (C.9)

This tells us that operators ii.) and v.) are not independent since we can always IBP on one
to generate the other. The same manipulations work for operators iii.) and vi.), reducing
the number of independent invariants to 4. The same trick cannot be applied to operators i.)
and iv.), since if we remove the derivative from (H DH) Bose symmetrization eliminates the
operator?!. The only surviving term in the IBP is when we shift the derivative from one H
to the other, getting us back operator i.). The 4 independent invariants are then

i.) Tr(Q'6" 71 e Q)(H D, H) Te(H' 77 ¢ H') 675

i) Tr(QVa" ' eQ)(H' D, HY) Tr(H 7 ¢ H) 615

i4.) (QT6" Q) Tr(H ' e D,H) Tr(H' 77 ¢ HT) 675 or DH — DH'

v.) Tr(Q'a" 1 e Q) Tr(H 7/ ¢ D,H) Tr(H' 7% ¢ H') erjx  or DH — DH'

We can utilize Fierz rearrangement identities [96] to convert these into the forms shown in
Table 7.

D Electroweak inputs and field redefinitions

Expanded out to dimension-8, the electroweak sector of the SMEFT is a function of the
gauge couplings, the Higgs quartic and vev, and the coefficients of the dimension-6 and -8
operators. In this appendix, we relate combinations of these inputs to precisely measured
quantities. The relationships are well known in the SM, and have been worked out previously
for the dimension-6 SMEFT [34, 73, 74]. The same methods are applied here, extended to
include dimension-6-squared terms and linear dimension-8 terms as they are the same order
in 1/A. As explained in the text, we work in the Warsaw basis throughout.

Only a subset of our operators are important for setting the EW inputs. From dimension 6
they are Og, Ogo, Oup, Ous, Ogw, Ogw B, while those from dimension-8 are 087[{, OngB,
Os.uwB, Oz uw, Og. w2, O Hp, Os ip2- In total, the EW sector at this order is a function

21That is, we go from €Y H; DH; to ¢ H;H; = 0.
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of 17 inputs (13 operator coefficients, 2 gauge couplings, 1 quartic and 1 vev):

1 1 1)2 2
Lewsy == W, W — 2B B + (D, H')(D"H) — A(HTH _ ?0) ,

C Cc Cc
Lrwe = g (HH)? + = (HUH)O(HH) + =3 (D, H')H)(H' D"H)

C c ¢

+ ng (H HYW], Wi %(HT H)B,, B" + % (H 7T H) By W,
C I c

Lows = S (H Y + SR (H )2 B, e 4 D

e (H'H)(H' 7' H) B, W

C8.HW C8,HW?2
+ A4 (HTH>4W/{VWIMV + T(HTTI H)(HTTJ H) W/{VWJHV

C8,HD C8,HD?2
+ =51 (HTH)Q(DHHTD“H)—l—T(HTH)(HTTIH)(DMHT rIDFH). (D)

We set the EW inputs using the {aew, M%, Gr} scheme, i.e. we solve for the gauge
couplings and Higgs vev in terms of these observables and the coefficients of dimensions 6
and 8. To determine the Higgs quartic coupling we supplement our inputs with the measured
Higgs mass, MIQJ However, before we can relate the EW (and Higgs) inputs to observables
calculated in the SMEFT theory, we need to bring Eq. (D.1) into canonical form.

The first step is to expand the Higgs field about its vacuum expectation value. In the
presence of higher dimensional operators, the minimum of the Higgs potential is no longer at
vp but instead at

Jeg v v§(63¢% +32cs.m N)
h) = 1 : = D.2
() ”°< TN 128 A2 A4 ) vr (D-2)
where A is the SM quartic. In unitary gauge the Higgs field is expanded as
1 0
H=— (D.3)

V2 (1 + cH pin)h +vr

where ¢ ki, is the correction to canonically normalize the Higgs field, carried out to O(1/ A4):

CH kin = %(46}[[} - CHD) + 3;%(3(CHD — 4CH|])2 — 408,HD - 4CS,HD2)‘ Notice that the
1/A* pieces of CH kin and vy contain dimension-8 effects and effects from (dimension 6)2.
The next step is to canonically normalize the gauge fields: B, — (1 + cBJﬁ-n)BH, Wi —
(1 + cfypin)W, (barred fields are canonical). We can simultaneously redefine the gauge
couplings to compensate for these changes, g1 — g1/(1 + ¢B kin), 92 = G2/(1 + ¢w kin), Which
has the effect that g1 B, = §1B,, etc., so that renormalizable gauge interactions in the
dimension-8 SMEFT have the same form as the SM, but with barred couplings and fields.
There is one subtlety here compared to dimension 6: the factor CW kin 18 DO longer universal
for all W* as a consequence of Og gw2. We can only rescale go once, so we must choose
whether to absorb cyy+ 1, O cyys i, Choosing go — g2/(1+cpy+ k), the neutral current at
dimension-8 will no longer have the same form (in barred couplings and fields) as the SM [97].
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Explicitly:

2

v v 2
CW* kin = xkcuw + s (3 iy + csHw)
Cw ki = Sbemw + ok (Bchw + ¢ +c ) (D.4)
W3 kin — A2CHW 2AZ HW 8,HW 8, HW?2 .
CB,kin = A2CHB T 3p2\9Cyp T C8 HB)-

Next, we must diagonalize the kinetic and mass terms for the neutral gauge fields. This
can be done following Refs. [73, 97],

_3 X111 Xq9 cosf sinf Zy
Bu X192 X1 —sinf cosf flu
ol
Xy =1+ 8—[@(3&,%)

2 1
__ YT bt
X2 = —gpgenws = ;g (2 cawg(cup + caw) + s HWB);

where sinf and cosf are defined in terms of vy, the barred couplings gi,g> and other
dimension-6 and dimension-8 coefficients:

cosé:i( _i_ﬁCHWB@g%—g% vr g1 "
VE+gy A2 gl 8AGa(g3 +97)?
(2 s mwn(Gi — G3) + 4 cs w2 §ogn (95 + G7) + demw(caw + cap) (G — 93)—
g2 ,_ _o_ _
C%IWBE(Q% ~ 69795 + 591‘)) (D.5)
siné:#( VP cawB 320 — G5 |, Ur 92 o
JE+RN A2 g@+g SAMu(G+3)

(2 cs rwB (G2 — 1) — 4 ¢ p192(Fi + 55) + 4 caws(caw + cup) (G2 — G1)—
g1, _o_ _
ciwp (91— 69195 + 533)). (D.6)

From the diagonal form, we can read off the gauge-boson masses:

=22 -2 .6

ga v ga v
e S T AL LI (D7)

2 (=2 =2 2

v + v _ _ _
m% = T(gl4 9) + 8/:(2 (CHD(gf +33) +4caws 9291)+ (D.8)

6

v i}
167;\4 ((g% +3)(cs.up + cs.mp2 + 4 ciwg) + 49192 (cs mw + caw (2 cup + 2 caw + cip))

+ 475 CS,HW2>-
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Expanding the covariant derivative and going to diagonal form, we can extract the couplings
to the photon, Z and W bosons:

D=8, +i %(VV;# + W, T7) +iQeA, +igs(rs —sin?07 Q) Z, (D.9)
where:

1+ : . -

€= 0o (M) (cosf X9 +sin60X1;) (D.10)
1+ CW3,kin

_ _ 1 + CWi,kin det(X)

9z = 92 ( ) = P

1+ cws pin / cos 6 Xog + sin 6 Xop

(cos X1 + sin 6 X11)(cos X1 — sin f Xoo)
det(X)

sin? 0; = —

The expanded couplings are:

V3. G
2A2

€=0> sinf — cHwWR CosO—
4 —

v _ .
92 (2 (cs,awB +2cawp(caw + caB)) cos O — (dcg pwa + BC%IWB) sin 9)

SA4
9y = 92 V% Go _
27 Cos " 2A2 cos?h

U0 (5 GinGeosd 25 (g + 4
1 37(2sinfcos (s, uwB + 2cuwB(caw + cuB) + cos” 0 (Cgwp + 4 ¢, HW?2)
8 A% cos3 6
4

sin? 0z = sin® § + 41)% G p(sin® 0 — cos? 0). (D.11)

The (1 + cyy+ gin)/(1 4 cws gipn) factor in Eq. (D.10) is due to the different normalizations
of W+ and W? and is cg,gw2- As a result, sin? 0, # sin®#, meaning that the angle that

rotates the gauge fields to mass eigenstates differs from the angle in the covariant derivative
by O(1/A%).22

Lastly, we express the Higgs boson mass as:

'U2 'U4
MIZ{ = 2)\1)% (1 — ﬁ(i%chr + )\(CHD — QCHD)) — ﬁ%(ch(QCHD — CHD)

+6cg 5+ A(cg,ap + cs.up2 — (cap — 2 CHD)Q)))- (D.12)

We are now ready to set the EW inputs. Following [73], it is convenient to write hatted
quantities to represent those that are measured. Using {&em, M%, G F, M%I}, we can form the

22The usual technique for coding kinetic terms into FeynRules assumes sin® 0y = sin?@. One quick fix
to compensate for the mismatch at dimension-8 is to include new operators, e.g. f~"fZ, with coefficient
o (sin® 6z — sin? ).
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combinations:

1 o1 Aé
6= \/Arbgy, 8 =—, sin20:7<1— 1—A7e”i>, D.13
em NoTeR 2 V2Gp M2 (D-13)
e e . Mz
=—, go=—, A=A
¢ Sj 20

The task is now to solve for the barred input variables in terms of the hatted measured
quantities, e.g. gl(dem,M%,GF), or gi(é,0,0), with g1 — ¢1 in the limit that all higher
dimension coefficients vanish.

The Fermi constant G is set by muon decay and determines v through Eq. (D.13). In
the SM, muon decay comes from W-boson exchange, so G is the ratio of the charged-current
(coupling)? divided by the W boson mass. The effects of higher dimensional operators are:
i.) universal shifts to the charged-current coupling or W-boson mass, ii.) flavor-specific shifts
in the charged current (e.g. shifts in W boson coupling to ev, or pv,), and iii.) 4-fermion
contact terms. Calculated within the dimension-8 SMEFT, we find:

Q dim-8 75 + 6Gp1  v30G s
V2 o 8mi, A2 A4
1 ’U% \/i(gGFl \/5’1)% (5GF2
_ _ D.14
202 4+/2A4 <C&HD C&Hm) L VR VR (D-14)

where we use 0Gp1,0Gpy to parametrize the non-universal contributions from fermionic
dimension-6 and dimension-8 operators, such as ng (in the notation of Ref. [5]), and the
analog of Table 7 operators with @ — L. Inverting Eq. (D.14) defines v (0, ¢;):

R 02 Ok
v = U(l + PéGFl + W(_C&H +cg,Hp2 + 12 (5G%~1 + 8(5GF2)). (D.15)

Throughout the text, we have neglected leptonic operators that would contribute to §G g1, dG 2.
Sticking strictly to the operators of our focus, one should set 0Gg1,0Gr2 — 0, though we
will maintain the dependence on 6G g1, 0G o in the following expressions.

Having solved for vy, we can set Egs. (D.10), (D.7) equal to the measured values é, M 2,
and then invert them to solve for gi,gs (or some combination of them, such as sin, cos ).
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Employing shorthand sinf = 45 cosf = ¢4, ete:

A 2 4
_ 2 V7 sy (4CHWB69+(CHD+45GF1)89) v 9 9
91:*<1+ — X(—SC&HDQSACA
ch 4A%c,, 32 A4 cgé 0720
s,
—8c8. HWB 82écgé — 4CHWB<CHW + CHB) (;%9 — 46%{WB(6 Cop T 3C4é + 7) 8?)
20
+8 CHWRB CHD(CQé - 2) Sécg - C%ID(E) 62é + 2)83 — 25GF1 CHWB(ll SQé + 28467 + 386é)
~26G 128G p1 + cup)(6yy + 34+ T) 52 — 326Gk sgcgé)) (D.16)
~ ~2 ~4
_ é 0°cs(4cawpsy + (cup +46GF1) ) 0
=S5 6 o _ x (8 22,416 5
92 Sé( 1N%c,, 39 AL ng c8,HD2 C3C,5 + 10 cs Hw2 €

2
sS4
+8cg.HwB 529039 +4cgwp (cup + CHw))ﬂ + 40125”/1/3(—6 Cog — BCy5 + 7) Cz

S20
+8 CHWBCHD(CQé + 2) SSCé — C%{D(5 Cop — 2) C;% + 260G CHWB(ll Sog — 2849 + 3869)
+20G 1 (206G + cip) (=6 ¢y — Beyg +7) ¢ + 320G 2y ) ) (D.17)

Lastly, we can set Eq. (D.12) equal to the measured Higgs mass Mz%[ and invert to solve
for the quartic coupling.

MIQJ 1 “r2 ~2 b2 “r2
A= 502 + W(MH(CHD —dcyo — 4(5GF1) +6cyg v ) + W(MH (087HD — 4(5GF2)
+6 (cs.r +2cn 5GF1)®2) (D.18)

With g1, g2, vr set, we can derive all other (EW) phenomenologically necessary parame-
ters such as myy and sin® 6.

E Explicit form for qqW, hWW and gqWh form factors

The form factors for the ggW, hWW and ggW h vertices are listed below. In the following
we have performed the field and coupling redefinitions following Appendix D, but we have
not re-expressed the couplings and vev in terms of measured EW inputs since that makes the
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expressions unwieldy.

CqqV0 = Z\;];(I+A2 g)Q 4;4(208@4-68@4—108@3))
CgqV1 = ;\gjﬁi\i (cs,3Q2 — €8,3Q4) (E.1)
chvvo = z’givT (1 + 41}/%2 (4cpo —cup) + 81];4 (5¢cs,up — Tesup2 + i (cup — 4CHEI)2))
chvvi =i ( - %CHW - X%(‘l cs aw — 8 Ciw — caw (4o — CHD)))
Chvve = W(CS,HDHW — i c8 HDHW?2) (E.2)
cg) v2
CFIWhO = iV2govp (TQQ — 4—14(4087@ +2cg04 —2ic30Q3 — CS)Q(ZL cyo — cHD))>

c = —1 921 (c +c >
ffWhl = V2 A 8,3Q1 8,3Q3

\[92 ur

Crfwh2 = —i—— 73— (cs.ows +ics.Qws)

crpwns = 1750 (esa02)
ffWh3 fA4 €8,32

. Qavr
CffWha = fA4< €8,3Q4) (E.3)

F Dimension-8 effects on other operators: cgg and cpyp

In this appendix we repeat the analysis of Sec. 4 in two other scenarios, one where the
only non-zero dimension-6 operator is Ogg, and one with Oy only. In both cases, we set
the dimension-8 operator coefficients using the mixed-sign configuration of Sec. 4 (i.e. all
coefficients with equal magnitude, sign chosen to maximize effects at large /s). Expanding
the partonic cross section 6(pp — h W) for large 3, these dimension-6 operators contribute
to different powers of § than Ogy, so we expect the relative dimension-8 effects to differ from
Onw.

First we show the results for OS)Q, whose coefficient cgg modifies 6(pp — hWT) at

O(8). Comparing the domains of Fig. 4 with those of Figs. 2 and 3 we see that C(;)Q has a

larger impact on o(pp — h W) than cyy . This is not a surprise given that cf}g produces
stronger § dependence. The dimension-8 effects are still present. For example, at |Au(pp —
R W)| = 0.2, the variation between the scales inferred by the dimension-6 only interpretation
and the dimension-6 plus maximum dimension-8 interpretation is 3% (Ayp = 3.39 TeV to
Anp = 3.51TeV), while for |Au(pp = AW ™) |mywss00cev = 0.2 the difference in scales

increases to 37% (Axp = 7.12TeV to Ag = 9.79TeV). In both panels, the tapering effect
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Figure 4. Deviation in the inclusive (left panel) and high-mass (right panel) o(pp — hW™) cross
section assuming the only non-zero dimension-6 operator is (’)g’é) and adding in all dimension-8 oper-
ators with equal magnitude coefficients and mixed signs as in the bottom panel of Fig. 2. The blue,
red, and dashed black lines correspond to the same scenarios as in Fig. 2. The current limit on cg’g
at 95% CL is 0.66 TeV ™" [88]; we have zoomed in to make the dimension-8 contribution more visible.
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Figure 5. Deviation in the inclusive (left panel) and high-mass (right panel) o(pp — hW™) cross
section assuming the only non-zero dimension-6 operator is Oy and adding in all dimension-8 op-
erators with equal magnitude coefficients and the mixed signs as in the bottom panel of Fig. 2. The
blue, red, and dashed black lines correspond to the same scenarios as in Fig. 2. Current constraints
on cyp are weak, so we have zoomed in to make the dimension-8 contribution more visible.

at low values of the dimension-6 coupling is less pronounced than it was in Figs . 2 and 3.
This is due to the fact that a larger dimension-6 contribution to the cross section means Ag
can be lower before the Agys X Agim-g > Asym X Agim-g EFT validity criteria is violated. The
Ag = Ag line in this scenario is difficult to see because it hugs the blue line.

Next, we repeat the exercise assuming the only dimension-6 operator is Oy, with co-
efficient cyn. As cyp only modifies terms in the cross section at O(371), its impact on
the cross section is very small. One might expect that a suppressed dimension-6 piece
could receive large relative dimension-8 corrections. However, our EFT validity requirement
Agsyr X Adim-g > Agnr X Adim-g prevents this from happening. Notice that the majority of the
Ag = Ag line lies outside of the region where we trust the EFT. In terms of new physics scales
inferred by measurements of |Au|, |Au(pp — hW™T)| = 0.1, the new physics scale ranges
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from 1.15TeV (no dim-8) to 1.24 TeV (max dim-8), a 7% shift.
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