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Abstract: Using the production of a Higgs boson in association with a W boson as a

test case, we assess the impact of dimension-8 operators within the context of the Standard

Model Effective Field Theory. Dimension-8–SM-interference and dimension-6-squared terms

appear at the same order in an expansion in 1/Λ, hence dimension-8 effects can be treated as a

systematic uncertainty on the new physics inferred from analyses using dimension-6 operators

alone. To study the phenomenological consequences of dimension-8 operators, one must first

determine the complete set of operators that can contribute to a given process. We accomplish

this through a combination of Hilbert series methods, which yield the number of invariants

and their field content, and a step-by-step recipe to convert the Hilbert series output into a

phenomenologically useful format. The recipe we provide is general and applies to any other

process within the dimension ≤ 8 Standard Model Effective Theory. We quantify the effects

of dimension-8 by turning on one dimension-6 operator at a time and setting all dimension-8

operator coefficients to the same magnitude. Under this procedure and given the current

accuracy on σ(pp → hW+), we find the effect of dimension-8 operators on the inferred new

physics scale to be small, O(few %), with some variation depending on the relative signs of

the dimension-8 coefficients and on which dimension-6 operator is considered. The impact

of the dimension-8 terms grows as σ(pp → hW+) is measured more accurately or (more

significantly) in high-mass kinematic regions. We provide a FeynRules implementation of our

operator set to be used for further more detailed analyses.
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1 Introduction and motivation

The particle physicist’s dream—direct detection of high-scale physics beyond the Standard

Model (BSM)—has yet to be realised. As we transition into an era of precision Higgs mea-

surements, an appropriate framework for testing the Standard Model (SM) is to treat it as

an Effective Field Theory (EFT). From an EFT perspective, the SM Lagrangian is merely

the first few terms in the (infinite) series:

L =
∑
d

∑
i

c
(i)
d

Λ4−d O
(i)
d , (1.1)
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where Λ is the cutoff of the effective theory, c
(i)
d are the Wilson coefficients, and O(i)

d are all

the gauge-invariant operators at mass-dimension d involving the Standard Model fields.

The direct observation of new physics might be beyond the reach of the LHC, but it could

still manifest indirectly as contributions to the Wilson coefficients of the effective theory.

Constraining these coefficients is a powerful and general way to probe BSM models, since

any weakly-coupled high-mass state can be integrated out to give a particular pattern of

coefficient values.

The current state of the art is the classification and study of dimension-6 operators [1–4].

Several different non-redundant bases have been constructed [5–9], as have dictionaries that

allow translation between them [10, 11]. Via detailed phenomenological studies and global

fits, many of the Wilson coefficients of these operators have been constrained [12–39]. Some

progress has also be made at dimension-8, particularly in the gauge sector [40–42].

Representing the scale at which the new physics appears as Λ, one can schematically

write the amplitude for a given process as

A ∼
(
ASM +

Adim-6

Λ2
+ . . .

)
, (1.2)

where ASM stands for the Standard Model amplitude, and Adim-6 is the correction coming

from the dimension-6 EFT. The leading-order correction to the cross-section, at O(1/Λ2), is

therefore an interference term of the form ASM × Adim-6. We also have an |Adim-6|2 correc-

tion at order O(1/Λ4), which can be readily computed with current dimension-6 technology.

However, consistent power-counting would require that, alongside |Adim-6|2 terms, we include

ASM ×Adim-8 interference effects, where now:

A ∼
(
ASM +

Adim-6

Λ2
+
Adim-8

Λ4
+ . . .

)
. (1.3)

In other words, ASM × Adim-8 interference and |Adim-6|2 terms both appear at O(1/Λ4), and

so naively should be given equal consideration. Given that so much progress has already

been made at dimension-6, it is natural to ask whether complementing our analyses with

dimension-8 operators can have any effect on current constraints.

The are two distinct scenarios one might consider:

1. The new physics is dominated by ASM×Adim-6, i.e. interference terms between dimension-

6 contributions and the Standard Model. This is what one would naively expect when-

ever the scale of new physics is high in comparison with the electroweak scale.

2. The leading effect of new physics is instead |Adim-6|2, potentially of the same order

as the ASM × Adim-8 interference terms. This situation could arise due an accidental

suppression, or indicate an underlying structure in the BSM context. For example,

the interference could be suppressed by ratios of the weak scale to the cutoff Λ to

some power. One way this can occur is if there is a helicity mismatch between the
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SM and dimension-6 operators [43]. Another possibility is if the dimension-6 operators

are purely CP-odd and the observable is a CP-even quantity. Or, when focusing on

specific kinematic regimes, the SM content could be small and lead to the dominance

of |Adim-6|2 effects on a particular experimental bin.

In each of these cases, we would like to know whether including dimension-8 operators can

significantly alter the bounds we put on the dimension-6 Wilson coefficients. It may prove

that an analysis purely at the dimension-6 level is inadequate, or that dimension-8 effects

should be accounted for as a systematic uncertainty.

Constructing a complete set of effective operators at any given order is not a trivial task.

It is well known that including every operator allowed by the symmetries of the theory re-

sults in an over-complete set: operators will be related to others via the equations of motion

(EOM) and/or integration by parts (IBP). As discussed and illustrated in Refs. [44, 45], the

task is facilitated by a mathematical tool known as the Hilbert series. Given a set of ob-

jects transforming in representations of the symmetry group, the Hilbert series generates all

polynomials of the objects—incorporating the symmetry (or antisymmetry) under the inter-

change of identical objects—and projects out all invariants using character orthonormality.

Hilbert series techniques have found use in a number of theoretical [46–62] and phenomenolog-

ical [4, 44, 45, 63–67] contexts. Applied to the SMEFT, the relevant symmetry group for the

Hilbert series is the Lorentz symmetry group plus the SU(3) ⊗ SU(2) ⊗ U(1) gauge groups,

and the objects entering the Hilbert series are the SM fields {Q, uc, dc, L, ec, H} plus the

gauge field strengths. As character orthonormality only strictly applies to compact groups,

we work with the Euclideanized Lorentz symmetry SO(4) ∼= SU(2)L⊗SU(2)R. Furthermore,

to correctly incorporate IBP redundancies we place all objects into representations of the con-

formal SO(4, 2) group instead of the Lorentz group. The conformal representations package

a field and all of its derivatives into a single object1, and we remove the IBP redundancy from

any product of objects by projecting out the highest weight component (again via character

orthonormality, with some minor modifications due to the non-compact nature of SO(4, 2)).

In the SMEFT it is natural to order the invariants by their mass dimension. The output of

the Hilbert series is the number of invariants at each mass dimension, and the field content of

the invariants. For example, applying the Hilbert series to the SMEFT, one of the dimension-6

invariants is

2D2(H†H)2, (1.4)

indicating that there are two operators containing two derivatives and four Higgs fields. What

the Hilbert series does not tell us is how the various indices carried by each of the fields should

be contracted. We must manually translate the output of the Hilbert series into a format

that is useful for calculating Feynman rules, or for inputting into computational tools such as

1By placing scalars, fermions, and field strengths into short representations of SO(4, 2) we can remove
equation of motion (EOM) redundancies.
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FeynRules [68–70]. In the case of the operator in Eq. (1.4), we need to work out which fields

the derivatives act on and how the Lorentz and SU(2)w indices are contracted.

Converting the Hilbert series output into a more familiar form is one of the goals of this

paper. The full set of 993 dimension-8 SMEFT operators2 is listed in Ref. [4] and available

in Mathematica format. While the recipe we outline in the following will work for all opera-

tors of any mass dimension, in this paper we explicitly work out the conversion from Hilbert

series output to operators for only a subset of dimension-8 operators. It is our hope that the

recipe and examples provided will facilitate the extraction of the remaining operators for the

purposes of more general and in-depth analyses. Looking to phenomenology for guidance, we

have chosen to illustrate the procedure for operators which contribute to pp → hW . This

process is a good choice for several reasons. First, it is a relatively clean process that can be

measured at high Q2, where higher dimensional operators become important [71, 72]. Second,

it severely restricts the number of relevant dimension-8 operators. After translating the set

of required operators, we investigate pp → hW , exploring how constraints on dimension-6

Wilson coefficients are affected by the inclusion of dimension-8 effects. Our analysis focusses

on one specific example but in principle one can use this technology to study many other pro-

cesses, for example a Higgs boson produced in association with top quarks, or through vector

boson fusion. To this end we also make publicly available the FeynRules implementation of

this set of operators, so that future work can extend our analysis.

2 Dimension-8 operator set

The SMEFT inputs to the Hilbert series are the matter fields {Q, uc, dc, L, ec, H}, their her-

mitian conjugates, and the field strength tensors. We take all fermions to be left-handed

and work with combinations of the field strengths and their duals Xµν
L,R = 1

2(Xµν ∓ iX̃µν),

where X = B,W,G for hypercharge, SU(2)w and SU(3)c respectively, since they have sim-

pler Lorentz transformation properties (XL ∼ (1, 0), XR ∼ (0, 1) under SU(2)L ⊗ SU(2)R).

We list the full set of SMEFT representations in Table 1 using the convention (SU (2)L,

SU(2)R; SU(3)c, SU(2)w, U(1)Y ). The fields are dressed with characters corresponding to

their gauge and conformal representations, and plugged into the Hilbert series generating

function. Details of the characters, and of the reduction of the polynomial produced by the

generating function to gauge and Lorentz singlets, can be found in Refs. [4, 44, 45]. Weighting

each operator in the output by its mass dimension, we can easily filter out the dimension-8

operators.

As mentioned in the introduction, we have chosen to illustrate the procedure for operators

that can contribute to pp → hW processes. Following the power-counting argument in

Eq. (1.3), we are interested in the subset of dimension-8 operators that can interfere with

the SM contributions to pp→ hW . If we take all first and second generation fermions to be

2The value of 993 holds for Nf = 1, where Nf is the number of generations, counting operators and
their hermitian conjugates as separate operators. For three generations the number of dimension-8 SMEFT
operators jumps to 44807 [4]. See Sec. 2.1 for more information.
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Q (1
2 , 0; 3, 1

2 ,
1
6) H (0, 0; 0, 1

2 ,
1
2)

uc (1
2 , 0; 3̄, 0,−2

3) BL (1, 0; 0, 0, 0)

dc (1
2 , 0; 3̄, 0, 1

3) WL (1, 0; 0, 1, 0)

L (1
2 , 0; 0, 1

2 ,−
1
2) GL (1, 0; 8, 0, 0)

ec (1
2 , 0; 0, 0, 1)

Table 1. Representations used in the Hilbert series construction. Hermitian conjugate representations
have SU(2)L ↔ SU(2)R and all gauge representations replaced by their conjugates (when applicable).

massless3, the leading-order SM pp→ hW amplitudes all proceed through a single topology:

the process is initiated by a left-handed quark and an antiquark that annihilate into a W

boson, which then emits a Higgs boson. The requirement that dimension-8 operators interfere

with this amplitude limits us to three types of operator4: 1.) operators that modify the hWW

vertex, 2.) operators that modify the q̄qW vertex, and 3.) four-point contact operators. The

relevant Feynman diagrams are shown in Figure 1. Operators of the first type are purely

bosonic and involve Higgs fields, derivatives, and field strengths, while operators of the latter

two types must involve a like-chirality fermion-antifermion pair, at most one field strength,

Higgs fields and derivatives. All three operator types must be included in order to have a

basis-independent result. We will not consider modifications to the W -boson couplings to

leptons; in doing so we are assuming that the W boson is an on-shell final-state particle.

We now extract from the Hilbert series the relevant pieces for the operators we wish to

consider. Due to the way EOM are handled in the Hilbert series machinery, its output is

always in the so-called Warsaw basis [5], where higher derivative terms are removed in favor

of operators with more fields whenever possible. Therefore, when combining dimension-8

and dimension-6 effects in later sections, we use the Warsaw basis for dimension-6. For other

advantages of the Warsaw basis, see Refs. [43, 73, 74]. Focusing first on the bosonic operators,

we can group the dimension-8 operators according to the number of derivatives. At O(D0),

we find:
(H†H)4, (H†H)2(BL)2, (H†H)2BLWL, 2 (H†H)2 (WL)2,

(H†H)2(GL)2, (H†H)BL(WL)2, (H†H)(WL)3, (H†H)(GL)3,
(2.1)

where for all operators except (H†H)4 there is a corresponding hermitian conjugate operator

with BL,WL, GL → BR,WR, GR. At O(D2) the operators are:

2D2(H†H)3, D2(H†H BLBR), D2(H†H GLGR), 2D2(H†HWLWR)

D2(H†H)2BL, D
2(H†H (BL)2), D2(H†H (GL)2), 2D2(H†H (WL)2),

2D2(H†H BLWL), D2(H†H BRWL), 2D2((H†H)2WL).

(2.2)

3Also ignoring bottom and top quark components of the proton.
4Here we are referring to new vertices. Dimension-8 operators can also indirectly enter pp→ hW+ through

field redefinitions or through the relations between couplings and experimental inputs. We will study these
effects in more detail in Sec. 4 and Appendix D.
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W±

h

W±

h

Figure 1. Diagrams contributing to pp → hW±. The shaded circles represent integrated-out new
physics, and mark the vertices modified by the HDOs we have included in our analysis. Left : Asso-
ciated production via an s-channel W boson. In this case the purely bosonic operators modify the
hWW coupling, and the contact operators modify the quark-W vertex. Right : The four-point contact
interaction that can also mediate pp→ hW±.

The first row of operators are self-hermitian, while hermitian conjugates must be added for

the operators in the second and third rows. Finally, at O(D4) there is one operator set:

3D4(H2H†2), (2.3)

which is self-hermitian. Moving on to the contact operators and operators that modify the

q̄q W vertices, the Hilbert series output for left-handed quarks is:

4D(Q†Q (H†H)2), 6D(Q†QH†HWL),

4D3(Q†QH†H),
(2.4)

with additional hermitian conjugates for the WL terms. The operators with no field strengths

will impact the q̄qW couplings, and all sets will generate q̄qWh contact terms. We could have

written the fermionic operators with a generation index, leading to a different operator for each

possible generation combination, Q†1Q3, Q
†
2Q1, etc. In some circumstances, adding generation

indices would disrupt the antisymmetrization we must perform when an operator contains

multiple identical fermionic fields. For these operators, there are no repeated fields, so adding

generation indices would just multiply the number of operators by N2
f . Throughout this paper

we will ignore this complication and assume the couplings are universal among generations.

As we can see, the Hilbert series tells us exactly how many independent invariants we can

construct from each combination of fields, but it does not tell us how the indices should be

contracted. In the next two subsections we detail how to convert this output into canonical

phenomenological form. Readers more interested in the applications of dimension-8 operators

can skip to Sec. 3.
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2.1 Operators with zero or one derivative

For operators with zero or one derivative, the process of converting the Hilbert series output

into useful phenomenological form is fairly straightforward and can be broken down into six

steps:

1. if the operator contains multiple instances of the same field (H , Q, etc.), work out the

group products that are allowed given the Bose or Fermi symmetry;

2. from the properly symmetrized blocks, determine the contractions that lead to an overall

invariant for the entire operator;

3. express the contractions using the available group-theory objects, e.g. εab for SU(2)

and δAB or fABC for SU(3);

4. translate Lorentz contractions from SU(2)L ⊗ SU(2)R to SO(3, 1);

5. translate from the L and R field-strength combinations to the field strength Xµν and

its dual X̃µν ;

6. impose hermiticity.

Steps 1 and 2 require picking out singlets from products of representations, thereby

dictating how the various indices need to be contracted, while steps 3 through 5 take us from

the formalism convenient for group theory to canonical operator conventions. We emphasize

that the six steps give us the form of the operators corresponding to the Hilbert series and not

the coefficient accompanying the operator, i.e. the factor c
(i)
d in Eq. (1.1). The coefficients can

only be set knowing the UV theory. Because of this ignorance of the operator coefficient, we

will completely ignore all overall numerical (and sign) factors that appear when translating

operators, subsuming them into the c
(i)
d .

The conversion steps are best illustrated with an example. We will work out the steps

for this example by hand, though steps 1 and 2 can also be performed using programs such as

susyno [75]. While it is often obvious to see how the indices on an operator must be contracted

without plodding through every step, we will go through this example in full detail so that

the process can be applied in cases where inspection fails. Other examples can be found in

Appendix C.

2.1.1 Example: (H†H)2B2
L

Before moving on to the operator conversion, let us define our index conventions. Most of

the index manipulations will involve SU(2). We will use undotted Greek letters for SU(2)L
indices, dotted Greek letters for SU(2)R indices, and Latin letters for SU(2)w. When we

convert from Lorentz SU(2)L⊗SU(2)R to SO(3, 1) we will also use Greek indices for SO(3, 1),

though drawn from the middle of the alphabet (which should be clear from the context).

Symmetrized groups of indices will be indicated by curly braces {αβ} and antisymmetric
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ones by brackets, [ab]. Occasionally we will find it convenient to convert products of SU(2)

doublets into triplets using Pauli matrices, which will be indicated by upper-case Latin letters

(i.e. τ I). While SU(2) doublet indices can only be contracted by εij
5, triplet indices may be

contracted by δIJ or the antisymmetric εIJK . As an example, the singlet contraction of the

SU(2) doublets H† and H is given by εijH†iHj . The form εijH†iHj may seem a bit strange

at first glance. It occurs because we are working with H† (and L†, Q†) as a 2 of SU(2) rather

than a 2̄, as this makes the group manipulation simpler. One can easily convert between the

2 and 2̄ forms via ε: H†
2̄

= εH†2 . Throughout this paper we will perform all intermediate steps

using H†2 , then convert to the more familiar H†
2̄

form at the end.

Now we turn to our first example: (H†H)2B2
L. As the coefficient of this Hilbert series

output is 1, there is one invariant to find. The operator involves three different fields, each

of which occurs twice. As H† 6= H and BL are all bosonic, each block of (field)2 must be

symmetric. Starting with the Higgs field and dropping the SU(3)c and U(1)Y entries for

brevity,

H2 = (0, 0;
1

2
)2
symm = (0, 0; 0⊕ 1)symm = (0, 0; 1). (2.5)

This is telling us nothing more than HiHj contracted with εij gives zero (where i, j are

SU(2)w indices). Only the symmetric combination H{i,Hj}, or H2
{ij}, is nonzero. (H†)2 is

the same as H2, so we can proceed to B2
L:

B2
L = (1, 0; 0)2

symm = (0⊕ 1⊕ 2, 0; 0)symm = (0⊕ 2, 0; 0). (2.6)

This decomposition is also straightforward: the symmetric product of two spin-1 fields must

be spin-0 or spin-26. Multiplying the three blocks together gives:

H2(H†)2B2
L = (0, 0; 1)⊗ (0, 0; 1)⊗ (0⊕ 2, 0; 0) = (0⊕ 2, 0; 0⊕ 1⊕ 2). (2.7)

Choosing the 0 from the SU(2)L and SU(2)w products we get the one invariant promised

by the Hilbert series. Notice we have 0 ⊕ 1 ⊕ 2 in the SU(2)w portion since there is no

(anti)symmetrization left to eliminate a piece.

The above procedure takes us through step 2. For step 3, we can focus on the Higgs

portion since that contains all the SU(2)w dependence. For SU(2), the only object available

to contract indices is εij . The contraction that does not vanish is:

H2
{ij}(H

†)2
{km}ε

ikεjm. (2.8)

5We define ε12 = −ε21 = ε21 = −ε12 = 1, following the conventions in [76].
6The reader may wonder why we are using Lorentz representations in this section after alluding to conformal

representations in Sec. 1. Conformal representations package an object and all its derivatives together and
are useful for automatically incorporating IBP and EOM redundancies. To explicitly construct operators for
given field (and derivative) content, working with Lorentz representations is sufficient.
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The contraction of i with m and j with k is equivalent since i↔ j, k ↔ m is symmetric, and

contracting i with j gives zero. Written in a more familiar way, we have

(εH†H)2 (2.9)

where we have ignored any overall factors of 2 or -1. Moving on to SU(2)L, BL sits in the

triplet representation, so in terms of fundamental SU(2)L indices it is a symmetric tensor

BL{αβ}. Taking the product of two BL fields, the SU(2)L invariant comes from contracting

the indices with ε:

(B2
L)(0,0) = BL{αβ}BL{γδ}ε

αγεβδ. (2.10)

To convert from this format to the more familiar SO(3, 1) language (step 4), our starting

point is the decomposition of antisymmetric tensors [77]:

Xµν = σµαα̇σνββ̇(εα̇β̇A{αβ} + εαβB{α̇β̇}), (2.11)

where µ, ν are the usual SO(3, 1) indices and undotted (dotted) α, β are SU(2)L (SU(2)R)

indices. We can see that A sits in the (1, 0) representation of SU(2)L ⊗ SU(2)R while B sits

in (0, 1). Manipulating Eq. (2.11) using the properties of ε and the σ matrices [76], we find

A{αβ} = 2 i (σµν)αβXLµν , B{α̇β̇} = 2 i (σ̄µν)α̇β̇ XRµν , (2.12)

where σµν and σ̄µν are antisymmetric in SO(3, 1) indices but symmetric in either SU(2)L or

SU(2)R indices. Applying Eq. (2.12) to Eq. (2.10) gives:

BL{αβ}BL{γδ}ε
αβεγδ = −4 (σµν)αβ(σρσ)γδ ε

αγεβδ ×BLµνBLρσ
= −4 Tr(σµνσρσ)BLµνBLρσ

= −2 ( gµρgνσ − gµσgνρ − i εµνρσ)BLµνBLρσ

= −4 (BLµνB
µν
L − i BLµνB̃

µν
L ). (2.13)

Next, we can convert7 from BL to B and B̃, and H†2 to H†
2̄
, with the net result:

OH2B2 = (H†H)2 (BµνB
µν − i BµνB̃µν), (2.14)

again dropping overall numerical factors and subscripts.

Finally, we must impose hermiticity. Repeating the conversion steps on the hermitian

conjugate output (H†H)2B2
R, we get (unsurprisingly) the hermitian conjugate of Eq. (2.14).

Including both OH2B2 and O†H2B2 into the Lagrangian, hermiticity demands that their coef-

7When converting between the XL,R and X, X̃ forms, the relations εµνρσXL,ρσ = 2 iXµν
L , εµνρσXR,ρσ =

−2 iXµν
R are particularly handy.
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ficients are complex conjugates of each other,

L ⊃ cH2B2OH2B2 + c∗H2B2O
†
H2B2, (2.15)

corresponding to two real coefficients instead of four. We can regroup these terms into two

separate operators involving Higgs fields and hypercharge field strengths:

O1 = (H†H)2BµνB
µν , O2 = (H†H)2BµνB̃

µν . (2.16)

Either in the form of Eq. (2.15) or Eq. (2.16), we see that the result of steps 1−6 is a number of

operators matching the Hilbert series output. In Eq. (2.16) the two operators corresponding

to the outputs (H†H)2B2
L,R are obvious, while in Eq. (2.15) they are combined into a complex,

non-hermitian operator with a complex coefficient8. In cases where there is more than one

operator with a given field content, there are more options for the operators (and their

combinations) to use. This can be seen with 2 (H†H)2W 2
L, which also has non-trivial SU(2)w

contractions and is presented in Appendix C. These choices are inevitable and represent a

choice of basis. Note the dimension-8 CPV terms will not affect cross sections at O(1/Λ4)

since they have no SM piece to interfere with. We include them purely for completeness and

to show how the operator counting works at different stages of the translation process.

The steps above carry over to operators with a single derivative. The new ingredient is the

derivative D, which transforms as ( 1
2 ,

1
2 ; 0, 0, 0) under the symmetry groups and is otherwise

treated like any other bosonic object in an operator. When converting an operator of the

form D(ABC), where A,B,C are SMEFT fields, the first conversion step is to partition

the derivative among the fields. This is not as automatic as it seems, since i.) we are

only interested in products of derivatives and fields that do not reduce by the equations of

motion, and ii.) it is often the case that we cannot apply the derivative to all fields present,

e.g. for DABC there may be no way to make an invariant with ABD(C). The procedure

for removing EOM-reducible terms in Hilbert series output was put forth in Ref. [44]. In

short, we treat Dψ (ψ a left-handed fermion) as a Lorentz (1, 1
2) in all products. Similarly,

Dψ† ∼ (1
2 , 1), DXL ∼ (3

2 ,
1
2) and DXR ∼ (1

2 ,
3
2)9. In terms of SU(2)L × SU(2)R indices:

Dψ ∼ (Dψ){αβ},α̇ Dψ† ∼ (Dψ†)α,{α̇β̇} DXL ∼ (DXL){αβγ},α̇ DXR ∼ (DXR)α,{α̇β̇γ̇}

and we can convert between SU(2)L × SU(2)R and SO(3, 1) using

Dαα̇ = Dµ(σµ)αα̇. (2.17)

8Said differently, the Hilbert series output dictates the number of real operator coefficients for a given field
content. Customarily, bosonic operators are written in the form of Eq. (2.16), with real coefficients, while
fermionic operators are written in the form of Eq. (2.15), with complex coefficients and an implicit addition
of the hermitian conjugate.

9There is no EOM reduction for scalars at O(D), where Dφ ∼ ( 1
2
, 1

2
). There is reduction at O(D2), where

D2φ ∼ (1, 1).
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In the manipulations above we have only shown the Lorentz part of the representations.

Once partitioned onto a field, the derivative should be thought of as a covariant derivative,

so Dψ, DXL, etc. will carry the gauge representations appropriate to ψ, XL, etc.

Once we know which derivative partitions are allowed, we are free to pick which one

to use since they are easily related to each other by integration by parts. For example, if

D(ABC) = D(A)BC +AD(B)C then we may pick whichever we like as our operator. Once

we have chosen how to partition the derivative, we proceed with steps 1 − 6 of Sec. 2.1 to

convert them into operators. There are no purely bosonic operators in the SMEFT containing

a single derivative, therefore we defer an example of an O(D) operator (involving fermions)

to Appendix C.

2.2 Operators with two or more derivatives

Operators containing two or more derivatives are trickier. The presence of derivatives implies

that we have redundancies due to integration by parts, which can shift the covariant derivative

from one field to another, and the equations of motion. We must be careful to ensure that

our final result does not contain any redundancies, but has enough flexibility to generate (via

IBP) any operator with the same fields and number of derivatives. As before, these issues are

best demonstrated with an example.

2.2.1 Example: 2D2(H†HBLWL)

Let us look at one of the classes of operators from Eq. (2.2): 2D2(H†HBLWL). The Hilbert

series tells us that there are only two independent invariants for this combination of fields

and derivatives, but which two operators do we pick? At first glance there are multiple ways

of placing the derivatives,

(DµH
†)(DµH)WL,ρσBL,ρσ, (DµH

†)(DνH)WL,µρBL,ρν ,

H†H(DµWL,νρ)(D
µBνρ

L ), (DµH
†)H(DµWL,νρ)BL,νρ, . . .

(2.18)

If all operators were equal, we could just pick any two. However, this is not the case.

After picking one operator from Eq. (2.18) there are some choices for the second operator

which—combined with the original operator—can transform via IBP into any of the other

D2(H†HBLWL) operators, while there are other operators that will only transform into a sub-

set. Said another way, we need to pick two operators that any of the possible D2(H†HBLWL)

operators can be reduced to by successive IBP. In order to make the right choice in this ex-

ample and in similar cases, we need to know how IBP relates all operators with a given field

and derivative content.

To systematically understand the IBP relations and their use in reducing the number of

operators, we will follow the approach described in Ref. [45]. Our first step is to enumerate

the ways to partition the derivatives, as partially illustrated in Eq. (2.18). Given our previous

experience with adding indices, we can immediately recognize that i.) D2H† and D2H will

never admit a Lorentz singlet since all other fields only transform under Lorentz SU(2)L, and
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x1 (DH†)αα̇(DH)ββ̇BL{γδ}WL{ξη} ε
α̇β̇εαβεγξεδη

x2 (DH†)αα̇(DH)ββ̇BL{γδ}WL{ξη}
1
2ε
α̇β̇εδξ(εαγεβη + εβγεαη)

x3 (DH†)αα̇H (DBL){βγδ},β̇WL{ξη} ε
α̇β̇εαβεγξεδη

x4 (DH†)αα̇H BL{ξη}(DWL){βγδ},β̇ ε
α̇β̇εαβεγξεδη

x5 H† (DH)αα̇ (DBL){βγδ},β̇WL{ξη} ε
α̇β̇εαβεγξεδη

x6 H† (DH)αα̇BL{ξη}(DWL){βγδ},β̇ ε
α̇β̇εαβεγξεδη

x7 H†H (DBL){αβγ},α̇(DWL){ξηδ},β̇ ε
α̇β̇εαξεβηεγδ

Table 2. Operators of the type D2(H†HBLWL) where we have ignored IBP relations between terms.
We have neglected all SU(2)w indices since there is only one possible contraction.

ii.) the SU(2)w part of the index contraction is trivial, as H†iHj must form a triplet to contract

with WL. Partitioning the derivatives all possible ways, there are seven different operators in

D2(H†HBLWL). The operators are listed in Table 2 with SU(2)w indices suppressed.

The first two operators correspond to the two ways we can pair (DH†DH) ⊃ (0⊕ 1, 0⊕
1; 0, 0⊕1, 0) with BLWL ⊃ (0⊕1⊕2, 0; 0, 1, 0)10. We will stick to the SU(2)L⊗SU(2)R form of

Lorentz symmetry throughout to avoid translating derivatives of field strengths into SO(3, 1)

language. When contracting indices we have made a choice of the overall sign. Nothing will

depend on this choice, but we do need to be careful to stick with this convention.

Next, we need the set of operators with one less derivative, D(H†HBLWL) that sits in the

four-vector Lorentz representation. The group theory here follows exactly as before, except

that we are picking products in the ( 1
2 ,

1
2) representation rather than Lorentz singlets. The

single derivative can act on each of the four fields, DH† · · · , H†DH · · · , H†H(DB), etc., and

for the DH†, DH options there are two ways to form ( 1
2 ,

1
2). Working this out generates the

six D(H†HBLWL) terms in Table 3.

The relation between the yi—gauge invariant operators with one fewer derivative and

sitting in the four-vector Lorentz representation—and IBP is now easy to see. Contracting any

of the yi with a final derivative results in a linear combination of D2(H†HBLWL) operators

making up a total derivative. Therefore, each D(yi) equation provides an IBP relation among

10In the first operator the Lorentz indices of DH†DH are stitched together to form a singlet, as are the
indices of BLWL. In the second operator, we pick out the (1, 0) part of BLWL by contracting one index on
each field strength together, then combine that object with the (1, 0) piece of DH†DH. The two operators
represent the two different ways to tie the indices of DH†DH to the indices of BLWL; we could collapse the
two operators to one (plus a piece looking like x1) via the Schouten identity, but the current form makes the
algebra easier.
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y1 (DH†)αα̇H BL{βγ}WL{ξη} ε
βξεγη

y2 (DH†)αα̇H BL{βγ}WL{ξη}
1
2ε
γξ(εαβ + εαη)

y3 H† (DH)αα̇BL{βγ}WL{ξη} ε
βξεγη

y4 H† (DH)αα̇BL{βγ}WL{ξη}
1
2ε
γξ(εαβ + εαη)

y5 H†H (DBL){αβγ},α̇WL{ξη} ε
βξεγη

y6 H†H BL{ξη}(DWL){αβγ},α̇ ε
βξεγη

Table 3. Operators of the type D(H†HBLWL) that are gauge-invariant but sit in the Lorentz four-
vector representation. The number of operators in this class can be generated automatically via the
same procedure that projects out the number of total invariants. As in Table 2, we have suppressed
SU(2)w indices.

the higher-derivative terms. For example:

Dδδ̇(y1) = total deriv. = Dδδ̇

(
(DH†)αα̇H BL{βγ}WL{ξη} ε

βxεγy
)
εα̇δ̇εαδ

=
(

(DH†)αα̇ (DH)δδ̇ B{βγ}W{ξη} + (DH†)αα̇H (DBL){δβγ},δ̇WL{ξη}+

(DH†)αα̇H BL{βγ} (DWL){δξη},δ̇

)
εα̇δ̇εαδεβξεγη

= x1 + x3 + x4, (2.19)

where we will usually have to do some index juggling to get the contractions in D(y1) to

match those of the xi. Notice that in addition to adding the derivative, we have to specify

(and stick to) a convention on how to stitch up the remaining indices. The net result of D(y1)

is that x1, x3 and x4 are not all independent, i.e. given two we can generate the third.

Following this logic, each of the other D(yi) provides a relation, or constraint, among

the xi. If each of the D(yi) were independent, this would tell us that the true number of

independent operators—including IBP relations—is #D2 operators−#D operators, #xi −
#yi, or more generally (# operators at O(Dm)) − (# operators at O(Dm−1)). However, in

practice, the constraint equations are often redundant, making the number of independent

constraints < #yi.

To get at the number of independent constraints, we can write the constraint equations

as a matrix with each D(yi) as a row acting on a vector of xi, and then determine its rank.

For the example here, carrying out the same manipulations as in Eq. (2.19) for the rest of
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the yi, we find:



1 0 1 1 0 0 0

0 −1 −1
2

1
2 0 0 0

1 0 0 0 1 1 0

0 1 0 0 −1
2

1
2 0

0 0 1 0 1 0 1

0 0 0 1 0 1 1





x1

x2

x3

x4

x5

x6

x7


= MIBP · ~x = 0 (2.20)

The constraint matrix MIBP has rank 5, indicating only five of the six IBP relations

are actually independent. Applying five constraints to seven operators leaves us with two

independent operators, in agreement with the Hilbert series counting. While tedious, this

constraint procedure can be applied to any operator type (fermion or bosons, D > 1), in-

cluding those with multiple electroweak contractions. After this treatment of IBP relations

was put forward in [45] and applied to the SMEFT, later work [4] showed it had missed some

operators by overcounting IBP relations. Revisiting the constraint procedure here, we find

that the error in Ref. [45] did not lie in the method, but was due to mathematical mistakes

made when applying the method11. When applied correctly, the number of independent op-

erators (after IBP) found using the constraint method agrees with the Hilbert series counting

(at least at dimension ≤ 8). The payoff of the constraint method is that it gives us the actual

form of the operators and tells us which operators are related by IBP and which are not. For

the example at hand, after row-reducing MIBP we find it can be distilled to the following

relations:

x1 − x7 = 0, x2 + x6 +
x7

2
= 0, x3 − x6 = 0,

x4 + x6 + x7 = 0, x5 + x6 + x7 = 0.

From these relations, we see that x1 and x2 are sufficient to generate all seven operators.

Thus, given a combination cixi, we can IBP repeatedly (throwing away surface terms) and

collapse the sum into c1,eff x1 + c2,eff x2, with ceff some linear combination of the initial ci.

We could collapse the sum into other pairs of operators, such as {x1, x3} or {x6, x7}, however

there are also other pairs, such as {x4, x5}, that we could not reduce to. Choosing {x1, x2} to

span the set, reintroducing the SU(2)w indices, and performing steps 4 and 6 from Sec. 2.1,

11In particular, some of the error in Ref. [45] can be traced to a faulty shortcut the authors used to determine
when a full matrix/rank treatment of the constraints was necessary, while in other circumstances it was just
algebraic error. Clearly this method would benefit from automation, possibly along the lines of Ref. [78].
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we are left with:

O2DH2BW1 = Tr(DµH
† τ I DµH)(Bρσ

L W I
L,ρσ − iB

ρσ
L W̃ I

L,ρσ)

O2DH2BW2 = Tr(DµH
† τ I DνH)(Bµκ

L W I ν
L,κ −Bνκ

L W I µ
L,κ +

i

2
Bνκ
L W̃µ

L,κ −
i

2
Bµκ
L W̃ ν

L,κ

+
i

2
B̃νκ
L Wµ

L,κ −
i

2
B̃µκ
L W ν

L,κ), (2.21)

where, as in Eq. (2.14), we have converted to H†
2̄

format.

One remaining question is the origin of the IBP relation redundancies. Combining several

of the yi and manipulating indices, we see that some combinations of the constraint operators

can be expressed as a total derivative:

y2 + y4 +
1

2
(y5 − y6) = Dαα̇

(
H†H B{βγ}W{ξη}

1

2
εγξ(εαβ + εαη)

)
(2.22)

When we apply a final derivative, Eq. (2.22) connects the constraints from D(y2), D(y4),

D(y5), and D(y6) so they are no longer independent. For the case here, we have a single

relation among the yi, so the number of independent constraints is reduced by one, from six

to five. To better understand why this occurs, notice that the operator in the parentheses of

Eq. (2.22) transforms as a (0, 1) Lorentz representation. Applying D2 to this combination will

always give zero, since D2 has Lorentz irreducible representations (0, 0)⊕ (1, 1), which cannot

form a singlet with (0, 1). Enforcing this fact—that D2 ⊗ (0, 1) = 0—results in relations

among the O(D) operators12.

3 Dimension-8 operators relevant for pp→ hW

Having worked through a few examples, we now present the results of the operator extraction

for the full set of terms listed in Eqs. (2.1) − (2.4).

• For the bosonic terms there are a total of 17 operators with no derivatives, correspond-

ing to the eight terms in Eq. (2.1) and their hermitian conjugates, along with the single

self-hermitian term. The set is listed in Table 4. As explained in Sec. 2.1, we have made

some choices about how to display indices (e.g. triplets vs. doublets) and what linear

combinations to take to form operators with simple properties under CP transforma-

tions. These choices constitute a choice of basis.

• Table 5 contains the bosonic operators with two derivatives. There are 26 operators,

corresponding to ten terms in Eq. (2.2) plus their hermitian conjugates, and the six

self-hermitian terms. Because there are derivatives, there is even more choice than in

12Technically, we are only interested in (0, 1) or (1, 0) operators that are not themselves a total derivative.
The Hilbert series iteratively removes total derivative terms, as explained in [4]. In the constraint method
shown here, Dm−2, Dm−3 · · · total derivatives all show up as relations among rows of MIBP .
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O8,H (H†H)4 O8,W εIJK (H†H)W µν,IW J
νρW

ρ,K
µ

O8,HB (H†H)2BµνB
µν O8,W̃ εIJK (H†H)W µν,IW̃ J

νρW
ρ,K
µ

O8,HB̃ (H†H)2BµνB̃
µν O8,HG δAB (H†H)2GAµνG

µν,B

O8,HWB δIJ (H†H)(H†τ IH)BµνW
µν,J O8,HG̃ δAB (H†H)2GAµνG̃

µν,B

O8,HW̃B δIJ (H†H)(H†τ IH)BµνW̃
µν,J O8,G fABC (H†H)Gµν,AGBνρG

ρ,C
µ

O8,HW δIJ(H†H)2W I
µνW

µν,J O8,G̃ fABC (H†H)Gµν,AG̃BνρG
ρ,C
µ

O8,HW̃ δIJ(H†H)2W I
µνW̃

µν,J

O8,HW2 δIKδJM (H†τ IH)(H†τJH)WK
µνW

µν,M

O8,HW̃2 δIKδJM (H†τ IH)(H†τJH)WK
µνW̃

µν,M

O8,HWB2 εIJK (H†τ IH)Bν
µW

J
νρW

µρ,K

O8,HWB̃2 εIJK (H†τ IH)
(
B̃µνW J

νρW
ρ,K
µ +BµνW J

νρW̃
ρ,K
µ

)
Table 4. The 17 derivative-free operators after conversion to the standard X, X̃ notation for the
field-strength tensors and with H† in the 2̄ representation.

O8,HD (H†H)2(DµH
†DµH) O8,DHW̃3b εIJK (DµH†τ IDνH)(W J

µρW̃
ρ,K
ν + W̃ J

µρW
ρ,K
ν )

O8,HD2 δIJ (H†H)(H†τ IH)(DµH†τJDµH) O8,DHWB δIJ (DµH† τ IDµH)BρσW J
ρσ

O8,DHB (DµH†DνH)BµρB
ρ
ν O8,DHW̃B δIJ (DµH† τ IDµH)BρσW̃ J

ρσ

O8,DHB2 (DµH†DµH)BρσBρσ O8,DHWB2 i δIJ (DµH†τ IDνH)(BµρW
ρ,J
ν −BνρW ρ,J

µ )

O8,DHB̃2 (DµH†DµH)BρσB̃ρσ O8,DHWB3 δIJ (DµH†τ IDνH)(BµρW
ρ,J
ν +BνρW

ρ,J
µ )

O8,DHG δAB (DµH†DνH)GAµρG
ρ,B
ν O8,DHW̃B2 δIJ (DµH†τ IDνH)(Bρ[µW̃

J
ν]ρ − B̃

ρ
[µW

J
ν]ρ)

O8,DHG2 δAB (DµH†DµH)Gρσ,AGBρσ O8,DHW̃B3 δIJ (DµH†τ IDνH)(Bρ{µW̃
J
ν}ρ + B̃ρ{µW

J
ν}ρ)

O8,DHG̃2 δAB (DµH†DµH)Gρσ,AG̃Bρσ O8,HDHB i (H†H)(DµH
†DνH)Bµν

O8,DHW δIJ (DµH†DνH)W I
µρW

ρ,J
ν O8,HDHB̃ i (H†H)(DµH

†DνH)B̃µν

O8,DHW2 δIJ (DµH†DµH)W ρσ,IW J
ρσ O8,HDHW i δIJ (H†H)(DµH†τ IDνH)W J

µν

O8,DHW̃2 δIJ (DµH†DµH)W ρσ,IW̃ J
ρσ O8,HDHW̃ i δIJ (H†H)(DµH†τ IDνH)W̃ J

µν

O8,DHW3 εIJK (DµH†τ IDνH)W J
µρW

ρ,K
ν O8,HDHW2 i εIJK (H†τ IH)(DµH†τJDνH)WK

µν

O8,DHW̃3a εIJK (DµH†τ IDνH)(W J
µρW̃

ρ,K
ν − W̃ J

µρW
ρ,K
ν ) O8,HDHW̃2 i εIJK (H†τ IH)(DµH†τJDνH)W̃K

µν

Table 5. The 26 two-derivative operators after conversion to the standard X, X̃ notation (plus
linear combinations). Factors of i are included where necessary so that the operators are explicitly
self-hermitian with real coefficients.

Table 4. When possible, we have opted to put the derivatives on the Higgs fields as this

makes implementing the operators into FeynRules easier.

• Table 6 contains the three bosonic operators at O(D4). When forming these operators
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(and all others in this section) we have ignored overall signs or numerical factors.

O8,4D1 (DµH
†DνH)(DνH†DµH)

O8,4D2 (DµH
†DνH)(DµH†DνH)

O8,4D3 (DµH†DµH)(DνH†DνH)

Table 6. The explicit forms of the three bosonic dimension-8 operators containing at least one Higgs
field and four derivatives. These three operators have three independent real coefficients.

O8,QW1 δIJ (Q†σ̄νQ)Dµ(H†τ IH)W J
µν O8,Q1 i(Q†σ̄µQ)(H†

←→
D µH)(H†H)

O8,QW̃1 δIJ (Q†σ̄νQ)Dµ(H†τ IH) W̃ J
µν O8,Q2 i δIJ (Q†σ̄µτ I Q)

(
(
←→
D µH

†τJH)(H†H)+

(
←→
D µH

†H)(H†τJ H)
)

O8,QW2 i δIJ (Q†σ̄νQ)(H†
←→
D µτ IH)W J

µν O8,Q3 i εIJK(Q†σ̄µτ I Q)(H†
←→
D µτJH)(H†τK H)

O8,QW̃2 i δIJ (Q†σ̄νQ)(H†
←→
D µτ IH) W̃ J

µν O8,Q4 εIJK(Q†σ̄µτ I Q)(H†τJH)Dµ(H†τK H)

O8,QW3 δIJ (Q†σ̄ντ I Q)Dµ(H†H)W J
µν O8,3Q1 i (Q†σ̄µDνQ)(D2

(µν)H
†H) + h.c.

O8,QW̃3 δIJ (Q†σ̄ντ I Q)Dµ(H†H) W̃ J
µν O8,3Q2 i δIJ(Q†σ̄µτ IDνQ)(D2

(µν)H
†τJH) + h.c.

O8,QW4 i δIJ (Q†σ̄ντ I Q)(H†
←→
D µH)W J

µν O8,3Q3 i (Q†σ̄µDνQ)(H†D2
(µν)H) + h.c.

O8,QW̃4 i δIJ (Q†σ̄ντ I Q)(H†
←→
D µH) W̃ J

µν O8,3Q4 i δIJ(Q†σ̄µτ IDνQ)(H†τJD2
(µν)H) + h.c.

O8,QW5 εABC (Q†σ̄ντA Q)Dµ(H†τBH)WC
µν

O8,QW̃5 εABC (Q†σ̄ντAQ)Dµ(H†τBH) W̃C
µν

O8,QW6 i εABC (Q†σ̄ντAQ)(H†
←→
D µτBH)WC

µν

O8,QW̃6 i εABC (Q†σ̄ντAQ)(H†
←→
D µτBH) W̃C

µν

Table 7. The 20 operators involving quark, W -boson and Higgs fields that are relevant for the
phenomenological study of pp→ hW±.

• Finally, Table 7 contains the fermionic operators that contribute to pp → hW , either

by contributing to the q̄qW vertices or through direct four-point contact terms. There

are no terms with even numbers of derivatives, as operators of that sort always con-

tain a mixed chirality fermion pair and therefore do not interfere with SM pp → hW

amplitudes. Here, H†
←→
D µH = (DµH†)H −H†(DµH).

The left-hand column of Table 7 shows the 12 operators derived from D(Q†QH†HWL,R),

grouped into CP-even/odd pairs. These operators are each accompanied by a real coefficient

in the Lagrangian, however one could also combine each pair, e.g. O8,QW1 and O8,QW̃1,

into a complex operator with complex coefficient. The 8 operators on the right-hand side
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correspond to D(Q†Q H2(H†)2) and D3(Q†QH†H). These operators are accompanied by

real coefficients. Throughout this list we have chosen to put derivatives on the Higgs fields

whenever possible. However, while it is possible to form an invariant with three deriva-

tives on Higgs fields, Q†QD2H†DH and Q†QDH†D2H (each with two electroweak index

contraction possibilities), the two are not independent under IBP so we cannot span the

full set of D3(Q†QH†H) operators with them. Rather than choose one, Q†QD2H†DH or

Q†QDH†D2H, we have opted for a more symmetric choice involving two derivatives on Higgs

fields and one on a fermion field.

Using Table 7 one can easily write down similar operators involving right-handed fermions.

For left-handed leptons we just need to replace Q→ L since the SU(3)c structure played no

role; similarly, trading in Q for uc, dc or ec, only the SU(2)w-singlet fermion combinations

O8,Q1,O8,3Q1,O8,3Q3 and O8,QW1,O8,QW̃1,O8,QW2,O8,QW̃2 are allowed.

4 Application: pp→ hW±

To investigate the effect of dimension-8 operators we focus on one process: Higgs boson

production in association with a W boson at the LHC. See Refs. [79, 80, 82? –84] for relevant

experimental results.

Combining the operators in Tables 4-7 with dimension-6 operators (enumerated in Ap-

pendix B), higher-dimensional terms manifest in a number of ways. Bosonic operators di-

rectly enter into pp → hW± by modifying the hWW vertex, while fermionic operators (e.g.

Table 7) either modify the q̄qW± vertex or enter as q̄qhW± contact terms. Additionally,

higher-dimensional operators introduce corrections to the SM field kinetic terms. For in-

stance, O8,HB leads to a correction to the U(1) kinetic term, c8,HB(v4/Λ4)BµνB
µν , and

similarly O8,HD leads to a correction to the Higgs kinetic term. To ensure that all fields are

canonically normalized we must make a set of field redefinitions. These redefinitions lead to

shifts in electroweak parameters like couplings and mass terms. One needs to make a choice

of experimental input parameters and shift others as derived parameters. For a discussion of

this procedure in the case of dimension-6 operators, see Refs. [85, 86]. Dimension-8 operators

introduce a dependence of the electroweak parameters on the shifts at order 1/Λ4 and need

to be handled with care. Details of this procedure are presented in Appendix D.

After carrying out the normalization and EW input procedure, we next sketch the Feyn-

man rules for the q̄qW , hWW , and q̄qhW vertices. We take all momenta to be ingoing and

enforce on-shell conditions on the Higgs and fermion fields, but not on the gauge bosons.

While it is possible to remove the dependence on one field momentum in each vertex by

imposing momentum conservation, we choose not to do so. To be more compact and make

the different Lorentz structures clearer, we first express the Feynman rules in terms of form

factors cffV i, chWWi, cffWhi
13:

13For simplicity, we neglect CP-odd operators throughout this discussion.

– 18 –



u(p1)

d(p2)

W+
µ (p3) = v(p2)γµ

(
cqqV 0 + cqqV 1

p2
3

2

)
PL u(p1) (4.1)

h(p1)

W−ν (p3)

W+
µ (p2)

=
(
chV V 0 η

µν + chV V 1 ((p2 · p3)ηµν − pν2 p
µ
3 ) + chV V 2((p1 · p3)ηµν − pν1p

µ
3 )

− c∗hV V 2((p1 · p2)ηµν − pµ1 p
ν
2)
)

(4.2)

u(p1)

d(p2)

h(p3)

W+
µ (p4)

= v(p2)
(
γµ(cqqWh0 + cqqWh2 (p3 · p4) + cqqWh3 (p1 · (p3 + p4)) + cqqWh4 (p2 · (p3 + p4))

+ /p3(cqqWh1 p
µ
3 + cqqWh3 p

µ
1 + cqqWh4 p

µ
2 ) (4.3)

+ /p4(−cqqWh2 p
µ
3 + cqqWh3 p

µ
1 + cqqWh4 p

µ
2 ))
)
PL u(p2)

The full expressions for the form factors are provided in Appendix E14.

Using these vertices to calculate σ̂(pp → hW+) in terms of the dimension-6 or -8 co-

efficients, the full expression is not particularly illuminating. However, a quick way to see

how dimension-8 effects enter and what are the most important operators is to take the limit

of large ŝ, as that will expose differences in the high energy behavior of dimension-6 vs.

dimension-8. We find:

σ̂(pp→W+h) ∼
( ê2

4608π sin4 θ̂

) v̂2

m2
W

ŝ

Λ4

(
e2 (c8,3Q1 − c8,3Q2 + c8,3Q3 + c8,3Q4)

+ 8 sin2 θ (c
(3)
Hq)

2
)

+O(ŝ0) (4.4)

The largest growth is linear in ŝ, as expected from simple power-counting arguments, and

the operators that enter are a dimension-6 contact term (squared), and a combination of

D3(Q†QH†H) dimension-8 terms. The fact that D3(Q†QH†H) terms are the only dimension-

8 terms to appear is not surprising. Fermionic operators with fewer derivatives contain

additional Higgs fields and can only contribute to pp → hW+ if multiple Higgs fields are

set to their vevs (more vevs in the amplitude lead to weaker energy dependence). The only

dimension-6 term that contributes in Eq. (4.4) is O(3)
Hq = i (Q†σ̄µτ I Q) (

←→
DH† τ IH). However,

this operator also modifies fermion couplings to W and Z bosons (through the form factor

14While we have presented off-shell vertices, it would be interesting to explore these results using on-shell
amplitude techniques along the lines of [43].
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cffV 0 in Eq. (4.1)). Strong constraints on deviations of W and Z couplings to fermions implies

that these operators must have small coefficients, see e.g. Ref. [8]. Examining Eq. (4.1), we

see that the D3(Q†QH†H) contact terms are not tied to q̄qV modifications. Thus, if we take

c
(3)
Hq → 0 to avoid q̄qV constraints, the part of σ̂(pp → hW+) that grows with energy is

controlled by dimension-8 operators alone. In this case, the cross section contributions from

|Adim-6|2 are ∝ v4

Λ4 , while those from ASM × Adim-8 are ∝ v2ŝ
Λ4 – so there are energy regimes

where dimension-8 effects are dominant at 1/Λ4. To quantitatively evaluate the effects we

can expect at the proton level, we turn to numerics.

As a rough estimate of the impact of dimension-8 operators, we study the rate of pp →
hW+ in a scenario with a single dimension-6 operator and all dimension-8 operators. We

choose OHW as the representative dimension-6 operator and for simplicity define cHW ≡ 1/Λ2
6

and set all other dimension-6 coefficients to zero. We take all dimension-8 operator coefficients

to have the same magnitude, |c8,i| ≡ 1/Λ4
8 but leave the signs to float since there can be

cancellations among different operators (see Eq. (4.4)). For a fixed cHW (Λ6), the limit

Λ8 → ∞ corresponds to no dimension-8 effects. Decreasing Λ8, we add in the dimension-8

effects. For each Λ6,Λ8, and sign choice for the coefficients15, we fold the parton-level results

with parton distribution functions16, then calculate the shift in the pp→ hW+ rate relative to

the SM, |∆µ(pp→ hW+)| = |(σ(pp→ hW+)Λ6,Λ8 − σ(pp→ hW+)SM )/σ(pp→ hW+)SM |.
If we pick the signs of all dimension-8 coefficients to be positive, the result is shown in the

top panels Fig. 2. In the bottom panels of Fig. 2 we show the result if we instead choose signs

of the dimension-8 coefficients that enhance their contributions at large
√
s17.

The blue line in Fig. 2 shows the relative deviation in σ(pp → hW+) from the SM

value as a function of cHW , neglecting dimension-8 effects (Λ8 → ∞). The impact of the

dimension-8 operators can be seen by tracing either vertical or horizontal lines through Fig. 2.

Picking a value of cHW and tracing vertically upwards from the blue line intercepts two lines

with different dimension-8 scenarios. The black dashed line corresponds to the case where

dimension-6 and dimension-8 operators have the same coefficient, cHW = c8,i or Λ6 = Λ8.

The red line denotes where Λ8 has been reduced to the point that the EFT breaks down,

and thus represents the maximum potential dimension-8 contribution to σ(pp → hW+).

This breakdown point occurs when one of the following validity conditions is broken: i) the

ASM × Adim-8 contribution to the cross section of O(1/Λ4
8) is greater than the quadratic

dimension-8 contribution, |Adim-8|2 ∼ O(1/Λ8
8); or ii.) the SM interference with dimension-6

at O(1/Λ2
6) is larger than SM interference with dimension-8 at O(1/Λ4

8). The first condition

is independent of the dimension-6 effect, while the latter ties the two terms together. As cHW
decreases (Λ6 increases), the second condition becomes the stronger of the two, causing the

15As demonstrated in Refs. [92, 93], it is possible that analyticity and unitarity requirements forbid certain
signs for higher dimensional operator coefficients. We ignore this possibility here and assume the coefficients
can have either sign.

16We use MSTW2008nnlo [87] parton distribution functions with factorization scale set to
√
ŝ.

17The sign assignment is the following: c8,HD2, c8,HDHW , c8,QW3, c8,QW5, c8,3Q1, c8,3Q3, c8,3Q4 positive (=
+ 1

Λ4
8
); and c8,HD, c8,HWB , c8,HW , c8,HW2, c8,Q2, c8,Q3, c8,Q4, c8,HDHW2, c8,3Q2 negative.
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Figure 2. Relative deviation in the inclusive cross section σ(pp → hW+) from its SM value including
dimension-6 and dimension-8 effects. The blue line shows the result of including OHW as the only
dimension-6 operator and without considering dimension-8 operators. The red line indicates the
deviation as a function of cHW including the maximum possible dimension-8 effect consistent with
the EFT expansion. The black dashed line shows the result if dimension-6 and dimension-8 operator
coefficients are equal, cHW = c8,i (i.e. Λ8 = Λ6). In the top two panels the dimension-8 coefficients
are all equal, while in the bottom two panels we take their magnitudes to be equal but assign their
signs to maximize their effects at high

√
s. The left panels shows values of

√
cHW out to the current

95% CL limit, which following the global analysis in Ref. [88] is 0.631TeV−1. In the right panels we
have zoomed in to smaller values of cHW to make the dimension-8 effects more visible.

tapering in the band of dimension-8 effects. We also require the condition ASM × Adim-6 >

|Adim-6|2 in all calculations, which sets the maximum cHW value (the right-hand edge of the

plot).

Comparing the top and bottom panels of Fig. 2, the band of dimension-8 effects is sig-

nificantly smaller when we choose all dimension-8 coefficients to have the same sign. The

origin of this difference is an accidental cancellation among the dimension-8 terms when they

have the same sign and magnitude. Specifically, the c8,3Q1, c8,3Q3, and c8,3Q4 terms posi-

tively interfere with the SM amplitude, while the c8,3Q2, c8,QW3, and c8,QW5 terms interfere

negatively. The latter do not appear in Eq. (4.4) as they enter the cross section at O(ŝ0),

proportional to v̂4/(m2
W Λ4). Cancellations between the O(ŝ) and O(ŝ0) pieces are possible

since the inclusive production of W h is dominantly near threshold, where ŝ ∼ v2 and thus the

two terms are similarly sized. One may think that an accidental cancellation in Adim-8 can be
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compensated by lowering Λ8. However, the |Adim-8|2 contribution has no such cancellation,

so it overwhelms the ASM × Adim-8 piece even at relatively high Λ8. Thus, the net result of

the cancellation in Adim-8 and our EFT consistency conditions is that the dimension-8 effects

for the positive sign choice are reduced to a sliver. The cancellation in Adim-8 is broken if we

relax the assumption of equal size coefficients or fixed signs. Turning on various combinations

of dimension-8 couplings and adjusting their signs, we find that results similar in size and

shape to the bottom panels in Fig. 2 are far more common; therefore we will use these signs

when quantifying the dimension-8 effects. The net effect of the interference is positive for

this choice but negative interference is also possible, in which case the yellow band would lie

beneath the blue line.

To get an estimate of how much dimension-8 operators affect the extraction of the

dimension-6 coefficients, we return to Fig. 2 and trace horizontally through a fixed value

of |∆µ(pp → hW+)|. Let us take |∆µ(pp → hW+)| = 0.2 as an example. Extending

a horizontal line through that point in the bottom panels, we intersect the red line cor-

responding to the maximum considered dimension-8 effects at
√
cHW = 1/(2.19 TeV) and

the blue line corresponding to no considered dimension-8 effects at
√
cHW = 1/(2.27 TeV).

At this level of |∆µ(pp → hW+)|, the relative difference is quite small, ≤ 4%. However, for

∆µ(pp→ hW+) = 0.05, the relative size of the dimension-8 effects in our treatment is ≈ 18%,

roughly spanning
√
cHW = 1/(4.28 TeV) for no dimension-8 effects to

√
cHW = 1/(5.08 TeV)

including maximal dimension-8 effects. To see the impact of Λ8 = Λ6, rather than the max-

imal allowed dimension-8 effect, we repeat the above procedure but look for where a line

of constant |∆µ(pp → hW+)| intersects the dashed black line. For |∆µ(pp → Wh)| =

0.2, the intersection lies outside of the yellow band, meaning that the Λ8 = Λ6 point lies

outside our definition of EFT validity. For |∆µ(pp → hW+)| = 0.05, the intersection is at
√
cHW = 1/(4.36 TeV), a 2% shift from the dimension-6 value. For reference, ATLAS projects

a Wh(→ b̄b) precision at the HL-LHC of |∆µ| ∼ 0.14 [89], and a global precision including all

channels of < 10% [90]. We emphasize that our results use a single (but representative) sign

assignment and equal-magnitude dimension-8 coefficients, and are therefore only indicative.

To see how the dimension-8 operators affect high-scale kinematic regions, we repeat the

σ(pp → hW+) calculation focussing on a region of high invariant mass, mHW ≡
√
ŝ >

500 GeV. The results are shown in Fig. 3, both for the case where all dimension-8 coefficients

are positive and for the sign assignment in Fig. 2. Compared to the inclusive case, the effects

of adding dimension-8 operators are significantly larger and the EFT validity conditions

(which must be recalculated for this kinematic region) carve out a different shape. The

increased ŝ also disrupts the cancellation in Adim-8 for the inclusive cross section when all

dimension-8 coefficients are taken to have the same sign. Quantifying the effect, in the

mixed-sign case a measurement of |∆µ(pp→ hW+)|mHW>500 GeV = 0.2 can be interpreted as
√
cHW = 1/(2.32 TeV) neglecting dimension-8 operators and

√
cHW = 1/(3.59 TeV) including

maximal dimension-8 effects (a ∼ 55% difference). For Λ8 = Λ6, the effect shrinks to 27%
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Figure 3. Relative deviation in the high-mass cross section σ(pp → hW+,mHW > 500GeV) from its
SM value including dimension-6 and dimension-8 effects. In the left panel, all dimension-8 coefficients
are taken to be positive, while in the right panel the signs of the coefficients enhance the impact of
dimension-8 operators on this cross section. The blue, red, and dashed black lines correspond to the
same scenarios as in Fig. 2.

(
√
cHW = 1/(2.95TeV))18.

The impact of dimension-8 would be significantly smaller had we neglected the contact

terms, illustrating the importance of including all operators that can contribute to a process.

This statement is not intended to give the impression that contact terms are special, as the

fact that they are the operators with contributions that grow with ŝ is an artifact of our use

of the Warsaw basis. In other bases, such as the SILH [91] basis, contributions growing with

ŝ would still be present though not necessarily originating from contact terms. The relative

importance of the different operators would also be different in a scenario with unequal

coefficients.

The trends exhibited in Figs. 2 and 3 are not surprising: the more precisely a quantity is

measured, the more sensitive it is to higher order corrections; and direct probes of high scales

are more sensitive to higher-dimension operators. However, this is the first time dimension-

8 effects have been quantified in an LHC process using the complete set of dimension-8

operators.

Our analysis has assumed that only cHW is non-zero. This operator enters σ(pp → hW+)

at O(ŝ0), whereas other dimension-6 contributions carry different energy dependence. We

have seen that c
(3)
HQ enters at O(ŝ), while other operators—in particular, operators that only

contribute to pp → hW+ via normalization or electroweak inputs—enter at O(ŝ−1). As the

current bounds on cHW , c
(3)
HQ, etc. are not radically disparate, it is interesting to investigate

the dimension-8 effects in scenarios with different dimension-6 energy dependence. The results

of repeating the analysis in this section for c
(3)
HQ or cH� variations can be found in Appendix F.

18For the common-sign case,
√
cHW = 1/(3.08TeV) including maximum dimension-8 effects, and

√
cHW =

1/(2.54TeV) for Λ8 = Λ6.
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5 Conclusions

In this paper we have evaluated the effect of dimension-8 operators on two Higgs observables,

in the context of the Standard Model EFT. For this purpose we have compiled a complete

and non-redundant set of dimension-8 operators involving gauge bosons and at least one

Higgs boson, along with the fermionic contact operators necessary to study hW production

at the LHC. A vital tool aiding in this construction was the Hilbert series, which tells us

how many independent operators exist for each combination of fields, accounting for possible

redundancies due to the equations of motion and integration by parts. Applied to the SMEFT,

we find 17 independent operators with zero derivatives, 26 with two derivatives, 3 with four

derivatives, and 20 operators involving h, W and left-handed quarks.

Through a series of examples, we outlined the steps required to convert between Hilbert

series output—the number of invariants and their field and derivative content—to a canon-

ical, phenomenology-ready form including Lorentz and gauge indices. This set of steps is

completely general to relativistic EFTs with fields in linear representations of the defining

symmetry groups, and is based on a method first proposed in Ref. [45]. The most involved step

in the translation is the imposition of IBP redundancies, which is performed by constructing

a matrix of IBP relations between the operators with all possible derivative partitions and

the operators with the same field content but fewer derivatives, and then taking the matrix

to row-reduced form. The translation procedure would clearly benefit from automation, es-

pecially if one would like to extend it to other sets of observables (see Ref. [78] for recent

progress in that direction). We have made available the complete set of operators affecting

pp→ hW in FeynRules format in the hope that it will prove useful for future analyses.

We used this framework to study the impact of dimension-8 operators on the production

of a Higgs boson in association with a W+ boson. This channel provides a good handle on

higher dimensional operators due to the kinematic reach of this topology. Higher dimensional

operators contribute to the q̄qW vertex, hWW vertex, and q̄qWh contact terms. These

contributions accompany different energy dependencies in the cross section. In particular,

several contact operators lead to σ(pp→ hW+) contributions that grow with ŝ. Unlike their

counterparts at dimension-6, the dimension-8 operators that impact q̄qWh do not modify the

trilinear q̄qV coupling.

To estimate of the effects of dimension-8 operators, we studied scenarios where only one

dimension-6 operator coefficient is nonzero and all dimension-8 operator coefficients have equal

magnitude but different sign. We quantified the uncertainty on the extracted dimension-6 co-

efficient value by drawing contours of constant deviation in σ(pp→ hW+) and seeing where

they intersected the predictions for additional dimension-6 terms and additional dimensions

6 and 8 terms. Taking cHW 6= 0 as the representative dimension-6 operator and varying the

signs of the dimension-8 operator coefficients, we find the effects of dimension-8 are typically

at the percent level for the inclusive cross section at its currently measured accuracy, growing

toO(10%) once we reach |∆µ(pp→ hW+)| = 0.05. The exact percentage varies depending on

whether the dimension-8 effects act coherently or if there is some cancellation among different
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operators. We define the maximum size of the dimension-8 contribution by demanding EFT

consistency, including the requirement that the contribution to the cross section linear in the

dimension-8 coefficients makes a larger contribution to the cross section than the quadratic

dimension-8 terms. If we focus on high-mass kinematic regions, the effects of dimension-8

operators become much larger. For example, for the coefficient set we use, dimension-8 opera-

tors shift the dimension-6 coefficient implied by |∆µ(pp→ hW+)mHW>500 GeV| = 0.2 by 55%.

In order to carry out these phenomenological studies, we performed canonical normalization

and electroweak input procedures including dimension-8 effects (see Appendix D).

This study and its companion implementation in FeynRules (see Appendix A) open the

possibility for experimental collaborations and theoretical analyses to assign a systematic

uncertainty to the effect of dimension-8 operators. Within the context of pp → hW+, it

would be interesting to carry out uncertainty estimates for dimension-6 operators other than

cHW , c
(3)
HQ, or cH�, or to more thoroughly explore the effects of correlations and cancella-

tions among different operators. This work also allows theoretical studies of the interplay of

dimension-8 operators with specific types of new physics, for example CP-odd Higgs couplings

at dimension-6.

Moving beyond pp → hW+, the logical next step is to extend the current FeynRules

implementation to more operators and study the impact of dimension-8 effects on Higgs pro-

duction in association with a Z boson or with top quarks. It would also be interesting to

add pure gauge dimension-8 operators (such as those in [40]) which would affect di-boson and

tri-boson production, and to relate these to the anomalous trilinear and quadrilinear gauge

couplings (aTGC and aQGC), see for example references [94, 95].

Note added: As this paper was being completed, Ref. [78] appeared demonstrating a

similar method for explicitly constructing non-redundant sets of higher dimensional operators

in the SMEFT and beyond. That reference includes a software package automatizing the

required steps.
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A Implementation in FeynRules

In this section we briefly discuss the implementation in FeynRules. Two .fr files are in-

cluded along with the source code of this paper, and will be available shortly in the model

database in their webpage (http://feynrules.irmp.ucl.ac.be). Both files contain the operators
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in Appendix B for dimension 6 and Tables 4-7 for dimension 8. The operator coefficients

in the .fr files have the same name convention we have used in the text, e.g. c8HD as the

coefficient of O8,HD. Within the files, the operators are grouped according to whether they

influence pp → hW+, and the contact operators have been split into individual modules to

speed up the code. The difference between the two files is whether or not the canonical nor-

malization and electroweak input procedures described in Appendix D have been carried out.

The procedures are needed to consistently include dimension-8 effects but they significantly

slow down the running of the current incarnation of the .fr files, so we have provided a

version omitting that step. We have made three other simplifications: 1.) we have omitted

any four-fermion contributions to GF , 2.) as our focus here is on hW production we have

neglected the O(Λ−4) difference between sin2 θ̄ and sin2 θZ in the coupling of Z bosons to

fermions, and 3.) we have omitted all CP-violating dimension-8 fermionic operators. We will

address these shortcuts in future versions of the .fr and plan to extend the set of translated

operators to explore pp → Zh and pp → V V . To ensure that events with these .fr include

dimension-8 interference effects but not |Adim-8|2, one should generate events with the suffix

NPˆ2 <=2.

B Dimension-6 operators

OH (H†H)3 OHW̃ δIJ(H†H)W I
µνW̃

J
µν

OH� (H†H)D2(H†H) OHB (H†H)BµνBµν

OHD (DµH
†H)(H†DµH) OHB̃ (H†H)BµνB̃µν

OHG δAB(H†H)GAµνG
B
µν OHWB δIJ(H†τ IH)W J

µνBµν

OHG̃ δAB(H†H)GAµνG̃
B
µν OHW̃B δIJ(H†τ IH)W̃ J

µνBµν

OHW δIJ(H†H)W I
µνW

J
µν O(1)

HQ i (Q†σ̄µQ)(H†
←→
D µH)

O(3)
HQ i (Q†σ̄µτ I Q)(H†

←→
D µτ I H)

Table 8. The thirteen dimension-6 operators included for comparison with dimension-8 effects. As
described in the text, we work with the Warsaw basis.

C Other examples

In this appendix we give two further examples to illustrate the conversion from the Hilbert

series output to EFT operators in their canonical form.

C.1 Example: 2 (H†H)2W 2
L

In this example we will demonstrate the procedures for handling multiple operators and

non-trivial SU(2)w contractions. The coefficient of the Hilbert series output for the opera-
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tor 2 (H†H)2W 2
L indicates that we need to find two invariants. The Higgs field portion of

(H†H)2W 2
L is identical to the example in Sec. 2.1.1, so the Higgs group-theory decomposition

is identical to Eq. 2.5. The remaining object, WL, is bosonic, so (WL)2 must be symmetric.

However, WL transforms under both SU(2)L and SU(2)w so there are more ways to form a

symmetrized product. Specifically, W 2
L can be overall symmetric if it is either symmetric in

both (SU(2)L, SU(2)w) indices or antisymmetric in both19:

W 2
L = (1, 0; 1)2

symm = (0⊕ 1⊕ 2, 0; 0⊕ 1⊕ 2)symm = (0⊕ 2, 0; 0⊕ 2) + (1, 0; 1)

=
(

(0, 0; 0) + (2, 0; 0) + (0, 0; 2) + (2, 0; 2)
)

+ (1, 0; 1). (C.1)

We know the Higgs part of the operators is a Lorentz singlet, so only Lorentz-singlet W 2
L

options can make potential invariants: (0, 0; 0) and (0, 0; 2). Adding in the Higgs fields,

H2(H†)2(W 2
L) =

(
(0, 0; 1)⊗ (0, 0; 1)

)
⊗ (0, 0; 0⊕ 2)

= (0, 0; 0⊕ 2)⊗ (0, 0; 0⊕ 2),

we can pick out the two invariants. One invariant comes from the product of the SU(2)w
singlet element of (H†H)2 with the SU(2)w singlet piece of W 2

L, while the other comes from

the SU(2)w spin-2 (symmetric tensor) piece of (H†H)2 with the corresponding piece of W 2
L.

For the product of SU(2)w singlets, the H2 and (H†)2 terms are contracted together20,

as are the two WL fields,

(εH†H)2W I
L,µνW

I,µν
L . (C.2)

Similarly, to form the invariant from SU(2)w 2⊗2, we want to contract the symmetric product

of the H2, (H†)2 triplets with the symmetric product of WL triplets

(Tr(H τAεH) Tr(H† τBεH†) +A↔ B) (WA
L,µνW

B,µν
L +A↔ B), (C.3)

where the ε in the H2 product appears (as in Eq. (C.2)) because H† is a 2 of SU(2)w. The

two terms are identical, so the operator collapses to

Tr(H τAεH) Tr(H† τBεH†)WA
L,µνW

B,µν
L . (C.4)

Technically, to form a true spin-2 representation from the product of spin-1 (triplet) repre-

sentations, we should have subtracted a piece proportional to δAB. However, as a δAB would

19Symmetrizing will depend on the representation we are working with; for SU(2) triplets the symmetric
combinations of XA YB (spin-0) are with δAB or the two-index symmetric tensor X{AYB} (spin-2), while the
antisymmetric case is the antisymmetric tensor X(AYB) = vector, εABCXAYB (spin-1). However if we deal
with SU(2) doublets, spin-0 is the antisymmetric combination εijxiyj while spin-1 (vector) is the symmetric
case x{iyj}.

20Which we can form either by inspection, or by taking the singlet product of the H2 triplet and (H†)2

triplet, then simplifying via the identity τAij τ
A
lm = 2δimδjl − δijδlm.
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reduce the operator in Eq. (C.3) to the form Eq. (C.2), we can just absorb that contribution

into the coefficient of Eq. (C.2). Repeating these steps for the hermitian conjugate term

(H†H)2W 2
R gets us terms analogous to Eqs. (C.2) and (C.3) but with WL → WR. Finally,

as with the example in Sec. 2.1.1, we can separate the real and imaginary pieces into inde-

pendent operators by considering linear combinations of the WL and WR forms. Written in

terms of W, W̃ and with H† as a 2̄, the four operators are:

O8,HW = (H†H)2W I
µνW

I,µν , O8,HW̃ = (H†H)2W I
µνW̃

I,µν (C.5)

O8,HW2 = (H† τ IH)(H† τJ H)W I
µνW

J,µν , O8,HW̃2 = (H† τ IH)(H† τJ H)W I
µνW̃

J,µν .

(C.6)

C.2 Example: 4D(Q†Q(H†H)2)

The goal of this example is to show how to manipulate operators with fermions and operators

with a single derivative. As discussed in Sec. 2.1, the first step is to enumerate the ways

we can partition the derivative. The derivative cannot act on Q or Q† since DQ,DQ† will

transform under both Lorentz SU(2)L and SU(2)R, while the other object in a non-trivial

Lorentz representation only transforms under one of the two. The derivative can therefore

either act on H or H†, so let us begin with DH. There are no repeated fermion fields so we

do not need to worry about anytisymmetrization, and we can ignore SU(3) since it is clear

that we only want the color-singlet portion of QQ†. Sticking with just Lorentz and SU(2)w
indices and grouping terms conveniently:

(Q†Q)(HDH)(H†)2 = (
1

2
,

1

2
; 0⊕ 1)× (

1

2
,

1

2
; 0⊕ 1)× (0, 0; 1)

= (0, 0; 0⊕ 0⊕ 1⊕ 1⊕ 1⊕ 2)× (0, 0; 1). (C.7)

This gives three terms, roughly: i.) the triplet of Q†Q contracted with the H† triplet, ii.) the

triplet of HDH contracted with the H† triplet, or iii.) contracting all three triplets with an

εIJK . Using SU(2)w indices the terms are:

i.) (Q†Q){ab}(HDH)(H†)2
{cd}ε

acεbd = Tr(Q†τ I εQ)(HDH) Tr(H† τJ εH†) δIJ

ii.) (Q†Q)(HDH){ab}(H
†)2
{cd}ε

acεbd = (Q†Q) Tr(H τ I εDH) Tr(H† τJ εH†) δIJ

iii.) (Q†Q){ab}(HDH){ij}(H
†)2
{cd}ε

aiεbcεjd = Tr(Q†τ I εQ) Tr(H τJ εDH) Tr(H† τK εH†)εIJK .

Replacing DH → DH† we have three more terms (iv., v., iv.), so a total of six. However, if

we IBP on term ii.) above, we get

(Q†Q)(HDH){ab}(H
†)2
{cd}ε

acεbd →

(total deriv.)− (Q†Q)(DHH){ab}(H
†)2
{cd}ε

acεbd − 2(Q†Q)(H2){ab}(DH
†H†){cd}ε

acεbd,

(C.8)
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where we have ignored any terms with the derivative on the Q,Q† since we know they cannot

yield invariants. Since the SU(2)w indices are all symmetric, the second term is the same as

the original operator and the factor of 2 arises since differentiating either of the H† gives the

same result. Ignoring the total derivative and rearranging, we find IBP gives:

(Q†Q)(HDH){ab}(H
†)2
{cd}ε

acεbd → (Q†Q)(H2){ab}(H
†DH†){cd}ε

acεbd. (C.9)

This tells us that operators ii.) and v.) are not independent since we can always IBP on one

to generate the other. The same manipulations work for operators iii.) and vi.), reducing

the number of independent invariants to 4. The same trick cannot be applied to operators i.)

and iv.), since if we remove the derivative from (HDH) Bose symmetrization eliminates the

operator21. The only surviving term in the IBP is when we shift the derivative from one H

to the other, getting us back operator i.). The 4 independent invariants are then

i.) Tr(Q†σ̄µ τ I εQ)(HDµH) Tr(H† τJ εH†) δIJ

ii.) Tr(Q†σ̄µ τ I εQ)(H†DµH
†) Tr(H τJ εH) δIJ

iii.) (Q†σ̄µQ) Tr(H τ I εDµH) Tr(H† τJ εH†) δIJ or DH → DH†

iv.) Tr(Q†σ̄µ τ I εQ) Tr(H τJ εDµH) Tr(H† τK εH†) εIJK or DH → DH†

We can utilize Fierz rearrangement identities [96] to convert these into the forms shown in

Table 7.

D Electroweak inputs and field redefinitions

Expanded out to dimension-8, the electroweak sector of the SMEFT is a function of the

gauge couplings, the Higgs quartic and vev, and the coefficients of the dimension-6 and -8

operators. In this appendix, we relate combinations of these inputs to precisely measured

quantities. The relationships are well known in the SM, and have been worked out previously

for the dimension-6 SMEFT [34, 73, 74]. The same methods are applied here, extended to

include dimension-6-squared terms and linear dimension-8 terms as they are the same order

in 1/Λ. As explained in the text, we work in the Warsaw basis throughout.

Only a subset of our operators are important for setting the EW inputs. From dimension 6

they are OH ,OH�,OHD,OHB,OHW ,OHWB, while those from dimension-8 are O8,H , O8,HB,

O8,HWB, O8,HW , O8,HW2, O8,HD, O8,HD2. In total, the EW sector at this order is a function

21That is, we go from εijHiDHj to εijHiHj = 0.
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of 17 inputs (13 operator coefficients, 2 gauge couplings, 1 quartic and 1 vev):

LEW,SM = −1

4
W I
µνW

Iµν − 1

4
BµνB

µν + (DµH
†)(DµH)− λ

(
H†H − v2

0

2

)2
,

LEW,6 =
cH
Λ2

(H†H)3 +
cH�

Λ2
(H†H)�(H†H) +

cHD
Λ2

((DµH
†)H)(H†DµH)

+
cHW
Λ2

(H†H)W I
µνW

Iµν +
cHB
Λ2

(H†H)BµνB
µν +

cHWB

Λ2
(H† τ IH)BµνW

Iµν ,

LEW,8 =
c8,H

Λ4
(H†H)4 +

c8,HB

Λ4
(H†H)2BµνB

µν +
c8,HWB

Λ4
(H†H)(H† τ IH)BµνW

Iµν

+
c8,HW

Λ4
(H†H)4W I

µνW
Iµν +

c8,HW2

Λ4
(H†τ I H)(H†τJ H)W I

µνW
Jµν

+
c8,HD

Λ4
(H†H)2(DµH

†DµH) +
c8,HD2

Λ4
(H†H)(H†τ IH)(DµH

† τ IDµH). (D.1)

We set the EW inputs using the {αew,M2
Z , GF } scheme, i.e. we solve for the gauge

couplings and Higgs vev in terms of these observables and the coefficients of dimensions 6

and 8. To determine the Higgs quartic coupling we supplement our inputs with the measured

Higgs mass, M2
H . However, before we can relate the EW (and Higgs) inputs to observables

calculated in the SMEFT theory, we need to bring Eq. (D.1) into canonical form.

The first step is to expand the Higgs field about its vacuum expectation value. In the

presence of higher dimensional operators, the minimum of the Higgs potential is no longer at

v0 but instead at

〈h〉 = v0

(
1 +

3 cH v
2
0

8λΛ2
+
v4

0(63 c2
H + 32 c8,H λ)

128λ2 Λ4

)
≡ vT , (D.2)

where λ is the SM quartic. In unitary gauge the Higgs field is expanded as

H =
1√
2

 0

(1 + cH,kin)h+ vT

 (D.3)

where cH,kin is the correction to canonically normalize the Higgs field, carried out to O(1/Λ4):

cH,kin =
v2
T

4 Λ2 (4cH� − cHD) +
v4
T

32 Λ4 (3(cHD − 4 cH�)2 − 4 c8,HD − 4 c8,HD2). Notice that the

1/Λ4 pieces of cH,kin and vT contain dimension-8 effects and effects from (dimension 6)2.

The next step is to canonically normalize the gauge fields: Bµ → (1 + cB,kin)B̄µ,W
a
µ →

(1 + caW,kin)W̄ a
µ (barred fields are canonical). We can simultaneously redefine the gauge

couplings to compensate for these changes, g1 → ḡ1/(1 + cB,kin), g2 → ḡ2/(1 + cW,kin), which

has the effect that g1Bµ = ḡ1B̄µ, etc., so that renormalizable gauge interactions in the

dimension-8 SMEFT have the same form as the SM, but with barred couplings and fields.

There is one subtlety here compared to dimension 6: the factor caW,kin is no longer universal

for all W a as a consequence of O8,HW2. We can only rescale g2 once, so we must choose

whether to absorb cW±,kin or cW 3,kin. Choosing g2 → ḡ2/(1+cW±,kin), the neutral current at

dimension-8 will no longer have the same form (in barred couplings and fields) as the SM [97].

– 30 –



Explicitly:

cW±,kin =
v2
T

Λ2 cHW +
v4
T

2Λ4 (3 c2
HW + c8,HW )

cW 3,kin =
v2
T

Λ2 cHW +
v4
T

2Λ4 (3 c2
HW + c8,HW + c8,HW2) (D.4)

cB,kin =
v2
T

Λ2 cHB +
v4
T

2Λ4 (3 c2
HB + c8,HB).

Next, we must diagonalize the kinetic and mass terms for the neutral gauge fields. This

can be done following Refs. [73, 97], W̄ 3
µ

B̄µ

 =

X11 X12

X12 X11

 cos θ̄ sin θ̄

− sin θ̄ cos θ̄

 Z̄µ

Āµ


X11 = 1 +

v4
T

8 Λ4
(3 c2

HWB)

X12 = −
v2
T

2 Λ2
cHWB −

v4
T

4 Λ4
(2 cHWB(cHB + cHW ) + c8,HWB),

where sin θ̄ and cos θ̄ are defined in terms of vT , the barred couplings ḡ1, ḡ2 and other

dimension-6 and dimension-8 coefficients:

cos θ̄ =
ḡ2√
ḡ2

1 + ḡ2
2

(
1 +

v2
T

Λ2

cHWB

2

ḡ1

ḡ2

ḡ2
1 − ḡ2

2

ḡ2
1 + ḡ2

2

+
v4
T

8 Λ4

ḡ1

ḡ2(ḡ2
2 + ḡ2

1)2
×(

2 c8,HWB(ḡ4
1 − ḡ4

2) + 4 c8,HW2 ḡ2ḡ1 (ḡ2
2 + ḡ2

1) + 4 cHWB(cHW + cHB)(ḡ4
1 − ḡ2

2)−

c2
HWB

ḡ2

ḡ1
(ḡ4

2 − 6 ḡ2
1 ḡ

2
2 + 5 ḡ4

1)
)

(D.5)

sin θ̄ =
ḡ1√
ḡ2

1 + ḡ2
2

(
1−

v2
T

Λ2

cHWB

2

ḡ2

ḡ1

ḡ2
1 − ḡ2

2

ḡ2
1 + ḡ2

2

+
v4
T

8 Λ4

ḡ2

ḡ1(ḡ2
1 + ḡ2

2)2
×(

2 c8,HWB(ḡ4
2 − ḡ4

1)− 4 c8,HB̃ ḡ1ḡ2(ḡ2
1 + ḡ2

2) + 4 cHWB(cHW + cHB)(ḡ4
2 − ḡ4

1)−

c2
HWB

ḡ1

ḡ2
(ḡ4

1 − 6 ḡ2
1 ḡ

2
2 + 5 ḡ5

2)
)
. (D.6)

From the diagonal form, we can read off the gauge-boson masses:

m2
W =

ḡ2
2 v

2
T

4
+
ḡ2

2 v
6
T

16 Λ4
(c8,HD − c8,HD2) (D.7)

m2
Z =

v2
T (ḡ2

1 + ḡ2
2)

4
+

v2
T

8 Λ2

(
cHD(ḡ2

1 + ḡ2
2) + 4 cHWB ḡ2ḡ1

)
+ (D.8)

v6
T

16 Λ4

(
(ḡ2

1 + ḡ2
2)(c8,HD + c8,HD2 + 4 c2

HWB) + 4̄g1ḡ2 (c8,HWB + cHWB(2 cHB + 2 cHW + cHD))

+ 4 ḡ2
2 c8,HW2

)
.
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Expanding the covariant derivative and going to diagonal form, we can extract the couplings
to the photon, Z and W bosons:

Dµ = ∂µ + i
ḡ2√

2
(W̄+

µ τ
+ + W̄−µ τ

−) + iQ ē Āµ + i ḡZ(τ3 − sin2 θZ Q) Z̄µ, (D.9)

where:

ē = ḡ2

(1 + cW±,kin
1 + cW 3,kin

)
(cos θ̄ X12 + sin θ̄X11) (D.10)

ḡZ = ḡ2

(1 + cW±,kin
1 + cW 3,kin

) det(X)

cos θ̄ X22 + sin θ̄ X21

sin2 θZ = −(cos θ̄X12 + sin θ̄ X11)(cos θ̄X21 − sin θ̄ X22)

det(X)
.

The expanded couplings are:

ē = ḡ2 sin θ̄ −
v2
T ḡ2

2Λ2
cHWB cos θ̄−

v4
T ḡ2

8Λ4

(
2 (c8,HWB + 2 cHWB(cHW + cHB)) cos θ̄ − (4 c8,HW2 + 3 c2

HWB) sin θ̄
)

ḡZ =
ḡ2

cos θ̄
+

v2
T ḡ2

2 Λ2 cos2 θ̄
+

v4
T ḡ2

8 Λ4 cos3 θ̄

(
2 sin θ̄ cos θ̄(c8,HWB + 2 cHWB(cHW + cHB) + cos2 θ̄ (c2

HWB + 4 c8,HW2)
)

sin2 θZ = sin2 θ̄ +
v4
T

4 Λ4
c2
HWB(sin2 θ̄ − cos2 θ̄). (D.11)

The (1 + cW±,kin)/(1 + cW 3,kin) factor in Eq. (D.10) is due to the different normalizations

of W± and W 3 and is ∝ c8,HW2. As a result, sin2 θZ 6= sin2 θ̄, meaning that the angle that

rotates the gauge fields to mass eigenstates differs from the angle in the covariant derivative

by O(1/Λ4).22

Lastly, we express the Higgs boson mass as:

M2
H = 2λ v2

T

(
1−

v2
T

2λΛ2
(3 cH + λ(cHD − 2 cH�))−

v4
T

4λΛ4

(
3 cH(2 cH� − cHD)

+ 6 c8,H + λ (c8,HD + c8,HD2 − (cHD − 2 cH�)2)
))
. (D.12)

We are now ready to set the EW inputs. Following [73], it is convenient to write hatted

quantities to represent those that are measured. Using {α̂em, M̂2
Z , ĜF , M̂

2
H}, we can form the

22The usual technique for coding kinetic terms into FeynRules assumes sin2 θZ ≡ sin2 θ̄. One quick fix
to compensate for the mismatch at dimension-8 is to include new operators, e.g. f̄ γµfZµ with coefficient
∝ (sin2 θZ − sin2 θ̄).
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combinations:

ê =
√

4πα̂em, v̂2 =
1

√
2ĜF

, sin2 θ̂ =
1

2

(
1−

√
1− 4πα̂em√

2 ĜF M̂2
Z

)
, (D.13)

ĝ1 =
ê

cθ̂
, ĝ2 =

ê

sθ̂
, λ̂ =

M̂2
H

2 v̂2
.

The task is now to solve for the barred input variables in terms of the hatted measured

quantities, e.g. ḡ1(α̂em, M̂
2
Z , ĜF ), or ḡ1(ê, θ̂, v̂), with ḡ1 → ĝ1 in the limit that all higher

dimension coefficients vanish.

The Fermi constant ĜF is set by muon decay and determines v̂ through Eq. (D.13). In

the SM, muon decay comes from W -boson exchange, so ĜF is the ratio of the charged-current

(coupling)2 divided by the W boson mass. The effects of higher dimensional operators are:

i.) universal shifts to the charged-current coupling or W -boson mass, ii.) flavor-specific shifts

in the charged current (e.g. shifts in W boson coupling to e νe or µ νµ), and iii.) 4-fermion

contact terms. Calculated within the dimension-8 SMEFT, we find:

ĜF√
2

dim-8
=

ḡ2
2

8m2
W

+
δGF1

Λ2
+
v2
T δGF2

Λ4

=
1

2 v2
T

−
v2
T

4
√

2Λ4

(
c8,HD − c8,HD2

)
+

√
2 δGF1

Λ2
+

√
2 v2

T δGF2

Λ4
, (D.14)

where we use δGF1, δGF2 to parametrize the non-universal contributions from fermionic

dimension-6 and dimension-8 operators, such as O(3)
H` (in the notation of Ref. [5]), and the

analog of Table 7 operators with Q→ L. Inverting Eq. (D.14) defines vT (v̂, ci):

vT = v̂
(

1 +
v̂2

Λ2
δGF1 +

v̂4

8 Λ4
(−c8,H + c8,HD2 + 12 δG2

F1 + 8 δGF2)
)
. (D.15)

Throughout the text, we have neglected leptonic operators that would contribute to δGF1, δGF2.

Sticking strictly to the operators of our focus, one should set δGF1, δGF2 → 0, though we

will maintain the dependence on δGF1, δGF2 in the following expressions.

Having solved for vT , we can set Eqs. (D.10), (D.7) equal to the measured values ê, M̂2
Z ,

and then invert them to solve for ḡ1, ḡ2 (or some combination of them, such as sin θ̄, cos θ̄).
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Employing shorthand sin θ̂ = sθ̂, cos θ̂ = cθ̂, etc:

ḡ1 =
ê

cθ̂

(
1 +

v̂2 sθ̂ (4 cHWB cθ̂ + (cHD + 4 δGF1) sθ̂)

4 Λ2 c2θ̂

− v̂4

32 Λ4 c3
2θ̂

×
(
− 8 c8,HD2 s

2
θ̂
c2

2θ̂

−8 c8,HWB s2θ̂c
2
2θ̂
− 4 cHWB(cHW + cHB)

s2
4θ̂

s2
2θ̂

− 4 c2
HWB(6 c2θ̂ + 3 c4θ̂ + 7) s2

θ̂

+8 cHWB cHD(c2θ̂ − 2) sθ̂c
3
θ̂
− c2

HD(5 c2θ̂ + 2)s4
θ̂
− 2 δGF1 cHWB(11 s2θ̂ + 2 s4θ̂ + 3 s6θ̂)

−2 δGF1(2 δGF1 + cHD)(6 c2θ̂ + 3 c4θ̂ + 7) s2
θ̂
− 32 δGF2 s

2
θ̂
c2

2θ̂

))
(D.16)

ḡ2 =
ê

sθ̂

(
1−

v̂2cθ̂(4 cHWBsθ̂ + (cHD + 4 δGF1) cθ̂)

4 Λ2 c2θ̂

− v̂4

32 Λ4 c3
2θ̂

×
(

8 c8,HD2 c
2
θ̂
c2

2θ̂
+ 16 c8,HW2 c

3
2θ̂

+8 c8,HWB s2θ̂c
2
2θ̂

+ 4 cHWB (cHB + cHW ))
s2

4θ̂

s2θ̂

+ 4 c2
HWB(−6 c2θ̂ − 3 c4θ̂ + 7) c2

θ̂

+8 cHWBcHD(c2θ̂ + 2) s3
θ̂
cθ̂ − c

2
HD(5 c2θ̂ − 2) c4

θ̂
+ 2 δGF1 cHWB(11 s2θ̂ − 2 s4θ̂ + 3 s6θ̂)

+2 δGF1(2 δGF1 + cHD)(−6 c2θ̂ − 3 c4θ̂ + 7) c2
θ̂

+ 32 δGF2 c
2
θ̂
c2

2θ̂

))
(D.17)

Lastly, we can set Eq. (D.12) equal to the measured Higgs mass M̂2
H and invert to solve

for the quartic coupling.

λ =
M̂2
H

2 v̂2
+

1

4 Λ2
(M̂2

H(cHD − 4 cH� − 4 δGF1) + 6 cH v̂
2) +

v̂2

4 Λ4

(
M̂2
H (c8,HD − 4 δGF2)

+6 (c8,H + 2 cH δGF1) v̂2
)

(D.18)

With ḡ1, ḡ2, vT set, we can derive all other (EW) phenomenologically necessary parame-

ters such as mW and sin2 θZ .

E Explicit form for q̄qW, hWW and q̄qWh form factors

The form factors for the q̄qW, hWW and q̄qWh vertices are listed below. In the following

we have performed the field and coupling redefinitions following Appendix D, but we have

not re-expressed the couplings and vev in terms of measured EW inputs since that makes the
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expressions unwieldy.

cqqV 0 =
i ḡ2√

2

(
1 +

v2
T

Λ2
c

(3)
HQ −

v4
T

4 Λ4
(2 c8,Q2 + c8,Q4 − i c8,Q3)

)
cqqV 1 =

i ḡ2 v
2
T

2
√

2Λ4
(c8,3Q2 − c8,3Q4) (E.1)

chV V 0 =
i ḡ2

2 vT
2

(
1 +

v2
T

4Λ2
(4 cH� − cHD) +

v4
T

8 Λ4
(5 c8,HD − 7 c8,HD2 +

3

4
(cHD − 4 cH�)2)

)
chV V 1 = i

(
− 4 vT

Λ2
cHW −

v3
T

Λ4
(4 c8,HW − 8 c2

HW − cHW (4 cH� − cHD))
)

chV V 2 =
−i ḡ2 v

3
T

4Λ4
(c8,HDHW − i c8,HDHW2) (E.2)

cffWh0 = i
√

2 ḡ2 vT

(c(3)
HQ

Λ2
−

v2
T

4 Λ4
(4 c8,Q2 + 2 c8,Q4 − 2 i c8,Q3 − c(3)

HQ(4 cH� − cHD))
)

cffWh1 = −i ḡ2 vT√
2 Λ4

(
c8,3Q1 + c8,3Q3

)
cffWh2 = −i

√
2 ḡ2 vT
Λ4

(c8,QW3 + i c8,QW5)

cffWh3 = i
ḡ2 vT√

2 Λ4
(c8,3Q2)

cffWh4 = −i ḡ2 vT√
2 Λ4

(c8,3Q4) (E.3)

F Dimension-8 effects on other operators: c
(3)
HQ and cH�

In this appendix we repeat the analysis of Sec. 4 in two other scenarios, one where the

only non-zero dimension-6 operator is O(3)
HQ, and one with OH� only. In both cases, we set

the dimension-8 operator coefficients using the mixed-sign configuration of Sec. 4 (i.e. all

coefficients with equal magnitude, sign chosen to maximize effects at large
√
s). Expanding

the partonic cross section σ̂(pp→ hW+) for large ŝ, these dimension-6 operators contribute

to different powers of ŝ than OHW , so we expect the relative dimension-8 effects to differ from

OHW .

First we show the results for O(3)
HQ, whose coefficient c

(3)
HQ modifies σ̂(pp → hW+) at

O(ŝ). Comparing the domains of Fig. 4 with those of Figs. 2 and 3 we see that c
(3)
HQ has a

larger impact on σ(pp → hW+) than cHW . This is not a surprise given that c
(3)
HQ produces

stronger ŝ dependence. The dimension-8 effects are still present. For example, at |∆µ(pp→
hW+)| = 0.2, the variation between the scales inferred by the dimension-6 only interpretation

and the dimension-6 plus maximum dimension-8 interpretation is 3% (ΛNP = 3.39 TeV to

ΛNP = 3.51 TeV), while for |∆µ(pp → hW+)|mHW>500 GeV = 0.2 the difference in scales

increases to 37% (ΛNP = 7.12 TeV to Λ6 = 9.79 TeV). In both panels, the tapering effect
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Figure 4. Deviation in the inclusive (left panel) and high-mass (right panel) σ(pp → hW+) cross

section assuming the only non-zero dimension-6 operator is O(3)
HQ and adding in all dimension-8 oper-

ators with equal magnitude coefficients and mixed signs as in the bottom panel of Fig. 2. The blue,

red, and dashed black lines correspond to the same scenarios as in Fig. 2. The current limit on c
(3)
HQ

at 95% CL is 0.66TeV−1 [88]; we have zoomed in to make the dimension-8 contribution more visible.
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Figure 5. Deviation in the inclusive (left panel) and high-mass (right panel) σ(pp → hW+) cross
section assuming the only non-zero dimension-6 operator is OH� and adding in all dimension-8 op-
erators with equal magnitude coefficients and the mixed signs as in the bottom panel of Fig. 2. The
blue, red, and dashed black lines correspond to the same scenarios as in Fig. 2. Current constraints
on cH� are weak, so we have zoomed in to make the dimension-8 contribution more visible.

at low values of the dimension-6 coupling is less pronounced than it was in Figs . 2 and 3.

This is due to the fact that a larger dimension-6 contribution to the cross section means Λ8

can be lower before the ASM ×Adim-6 > ASM ×Adim-8 EFT validity criteria is violated. The

Λ8 = Λ6 line in this scenario is difficult to see because it hugs the blue line.

Next, we repeat the exercise assuming the only dimension-6 operator is OH�, with co-

efficient cH�. As cH� only modifies terms in the cross section at O(ŝ−1), its impact on

the cross section is very small. One might expect that a suppressed dimension-6 piece

could receive large relative dimension-8 corrections. However, our EFT validity requirement

ASM ×Adim-6 > ASM ×Adim-8 prevents this from happening. Notice that the majority of the

Λ6 = Λ8 line lies outside of the region where we trust the EFT. In terms of new physics scales

inferred by measurements of |∆µ|, |∆µ(pp → hW+)| = 0.1, the new physics scale ranges
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from 1.15 TeV (no dim-8) to 1.24 TeV (max dim-8), a 7% shift.
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