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We consider single-field inflation in light of string-motivated “swampland” conjectures suggesting
that effective scalar field theories with a consistent UV completion must have field excursion A¢ S
Mp1, in combination with a sufficiently steep potential, MpV,/V 2 O(1). Here, we show that
the swampland conjectures are inconsistent with existing observational constraints on single-field
inflation. Focusing on the observationally favoured class of concave potentials, we map the allowed
swampland region onto the ng-r “zoo plot” of inflationary models, and find that consistency with
the Planck satellite and BICEP2/Keck Array requires Mp1Vy/V < 0.1 and —0.02 S Mg, Ve /V < 0,
in strong tension with swampland conjectures. Extension to non-canonical models such as DBI
Inflation does not significantly weaken the bound.

I. THE SWAMPLAND-DE SITTER
CONJECTURES

Inflation is a postulated period of quasi-de Sit-
ter expansion in the very early Universe (see e.g.
Refs. [1-10] for early seminal work). Inflation pro-
vides an explanation for various problems arising
in the standard Big Bang cosmology such as the
observed homogeneity, flatness, and lack of relic
monopoles. In addition, inflation provides a mecha-
nism for generating the density perturbations whose
existence we infer from the observation of temper-
ature anisotropies in the Cosmic Microwave Back-
ground Radiation (CMBR) [11-15]: these density
perturbations, generated when quantum fluctua-
tions leave the Hubble radius during inflation, later
grow under gravitational instability to form the ob-
served cosmic large-scale structure. Among the
simplest class of inflationary models are single-field
models, wherein a dynamical scalar field (the “in-
flaton”) evolves under the influence of a nearly-flat
potential, leading to an approximately constant ex-
pansion rate.

It would naturally be desirable to embed inflation-
ary models within well-motivated high-energy UV-
complete theories, with the latter possibly including
a consistent description of quantum gravity: the be-
haviour of the inflaton field would then be captured
by the effective field theory (EFT) given by the low-
energy limit of this UV-complete theory. String the-
ory naturally emerges as a potential candidate for
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such a UV-complete theory. While the huge land-
scape of string vacua is believed to lead to consis-
tent EFTs, these are conjectured to be surrounded
by a “swampland” of semi-classical EFTs which do
not allow for a consistent theory of quantum grav-
ity [16].

Attempts to establish the conditions under which
a given EFT does not lie in the swampland have led
to a set of conjectures, such as the the weak-gravity
conjecture [17] and, more recently, a set of addi-
tional swampland conjectures [18-23]. In particular,
it has long been noted that, while it is easy to obtain
Minkowski and Anti-de Sitter vacua in string theory,
the same cannot be said about de Sitter (dS) vacua,
stable versions of which are notoriously extremely
hard to obtain [24-27]. This has raised the suspi-
cion that theories featuring dS vacua reside in the
swampland, rather than in the landscape [23, 28].
This observation would obviously have profound im-
plications for inflationary theories.

Here, we focus on two swampland conjectures [23]
whose cosmological implications were recently stud-
ied in Ref. [29]. These two conjectures, which we
shall refer to as SC; and SC» respectively, place con-
straints on the proper range traversed by scalar fields
in field space, A¢, as well as on the logarithmic gra-
dient of the scalar field potential V (&),
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where Mp; ~ 2.4 x 10'® GeV is the reduced Planck
mass, Vg stands for dV(¢)/d¢, and c is a positive
constant of order unity whose actual value depends
on the details of the compactification, but which in



many string realizations is typically larger than V2
and never smaller than unity [23]. It is not hard
to see how SCq represents a hazard for inflationary
theories, which typically require Vy < V in order to
sustain a sufficiently long period (of at least about
60 e-folds) of quasi-de Sitter expansion.

The two swampland conjectures SC; and SC, have
received significant attention in the recent literature,
and various follow-up works have examined their
implications for cosmology (including but not lim-
ited to inflation and dark energy) and more gen-
erally fundamental physics. For an incomplete list
of relevant papers, see e.g. Refs. [20-48]. Several
of these works, in particular, noticed that single-
field slow-roll inflation is in tension with criterion
SCs [29, 33, 34, 36, 37], since the latter places a lower
bound on the amplitude of primordial gravitational
waves produced during inflation, parametrized by
the tensor-to-scalar ratio r. It can be easily shown
that SCo in Eq. (2) implies 7 > 8¢ for single-field
slow-roll inflation [37], and since current constraints
from the Planck satellite in combination with the
BICEP2/Keck Array ground-based small aperture
telescopes suggest r < 0.07 at 95% confidence level
(C.L.) [49], a value of the parameter ¢ ~ O(1) would
strongly violate such bound.

In this note, it is our goal to revisit the status
of single-field slow-roll inflation in light of current
observational data and the conjectured swampland
criteria. However, unlike previous work which espe-
cially focused on the tensor-to-scalar ratio r, here
we also consider the restrictions imposed by the sec-
ond swampland criterion on the scalar spectral index
ng, including the second derivative of the potential.
We consider for definiteness models where the poten-
tial of the inflaton is concave (Vs = d*V/d¢? < 0)
rather than convex, since the former are observa-
tionally preferred over the latter. This allows us
to reach a conclusion on the inconsistency between
single-field slow-roll inflation, the swampland con-
jectures, and observational data, which is stronger
than those previously reached focusing only on r.
In particular, we find that single-field slow-roll infla-
ton potentials with ¢ > 0.1 are ruled out at > 95%
C.L. under generic assumptions based on string the-
ory. We also consider constraints on the curvature
of the potential in light of the more recently pro-
posed “refined” swampland criterion [50], and place
a lower bound —0.02 S MI%1V¢¢/V, in strong tension
with the refined conjecture. We then briefly con-
sider convex potentials, restricting ourselves to the
case where the inflaton is of the Dirac-Born-Infeld
(DBI) form in order to circumvent tight constraints
from overproduction of tensor modes, finding that
our conclusions are qualitatively unchanged.

The rest of this note is organized as follows. In

Sec. 11, we briefly review the equations of motion
in single-field slow-roll inflation and the definition
of the slow-roll parameters. In Sec. III, we make
the connection to the observables, namely the scalar
spectral index ng and the tensor-to-scalar ratio r, fo-
cusing on concave potentials. In Sec. IV, we briefly
consider the case of convex potentials where the in-
flaton is of the DBI form, and verify that our conclu-
sions are qualitatively unchanged. Finally, in Sec. V
we provide concluding remarks. Our main results
are showcased in Fig. 1, where we make connection
to the well-known “zoo plot” of inflationary models
on the ng-r plane [51].

II. SINGLE-FIELD SLOW-ROLL
INFLATION

We consider a generic single-field slow-roll infla-
tionary model wherein the role of inflaton is played
by a scalar field ¢ = ¢(z) moving under the influ-
ence of a potential V = V(¢). Within a Friedmann-
Robertson-Walker metric, the equation of motion for
the inflaton field is expressed as

¢+3Hp+Vy=0, (3)

where a dot indicates derivation with respect to cos-
mic time. On the other hand, the Friedmann equa-
tion for the expansion rate of the Universe is
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where as previously Mp; denotes the reduced Planck
mass, while the term within parentheses on the
right-hand side describes the total energy density of
the system.

If the potential V' (¢) is sufficiently flat and dom-
inates over the kinetic energy of the inflaton, i.e.
#? < V(¢), inflation occurs, with the Hubble ex-
pansion rate being approximately constant. During
this slow-roll regime, the higher time derivatives in
Eq. (3) can be neglected, i.e. ¢ < H ¢. Therefore,
Egs. (3,4) reduce to
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where we hereafter use the symbol “~” to imply an
approximate equality that holds during the slow-roll
regime. From Eq. (6) it follows that a shallow poten-
tial V' gives rise to a nearly constant expansion rate
H. The physics during slow-roll can be parametrized
by a set of slow-roll parameters €,  defined by [52]
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Slow-roll is achieved as long as the conditions
€,|n| < 1 are satisfied, whereas inflation ends when
e, [nl ~O(1).

III. CONNECTION TO OBSERVABLES

Within the inflationary scenario, scalar and ten-
sor fluctuations are redshifted to superhorizon scales
and later evolve into primordial perturbations in
the density field as well as primordial gravitational
waves, leaving an imprint in the CMBR, anisotropy
and on the large-scale structure [7, 11-15]. The spec-
trum of the adiabatic density (scalar) perturbations
generated during inflation is expressed by the dimen-
sionless power spectrum A% (k), which describes the
contribution to the total variance of primordial cur-
vature perturbations at a given scale per logarithmic
interval in k and is given as [53-55]
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where A; ~ 2.2 x 1079 is the amplitude of the pri-
mordial scalar power spectrum. The scalar spec-
tral index ng parametrizes the mild dependence of
the power spectrum on the co-moving wavenum-
ber k, with ng = 1 corresponding to a scale-
invariant power spectrum. In single-field slow-roll
inflation, the scalar spectral index is given by (see
e.g. Ref. [56])

ng — 1~ —6e+ 27, (9)

to leading order in the slow-roll parameters.

Recalling the definition of € and 7 in Eq. (7), we
are now ready to examine the implications of the
second swampland criterion SCo [Eq. (2)] for the
allowed values of the scalar spectral index ng. It
is clear that Eq. (2) in combination with the defi-
nition in Eq. (7) directly constrains the first slow-
roll parameter €. Regarding the second derivative
of the potential, quantum corrections typically force
M3, |Vgs| ~ V in the absence of a symmetry, which
is the well-known “p problem” [57]. This statement
has been recently formalised and included in a re-
fined version, here SCso,, of the second swampland
condition in Eq. (2) (see Ref. [50]). For a single-field
potential, SCo, reads

Voo ~¢, (10)
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where ¢’ is another constant of order unity. Using
the condition SCs,., we then immediately obtain
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The first of the two inequalities in Egs. (11) has
been already shown in a number of recent pa-
pers [36, 37, 42, 43], whereas the second of Eqgs. (11)
is motivated by both the n problem and by the re-
fined version of the swampland conjecture SCs,.. Ob-
servational constraints demand 7 < 0, correspond-
ing to concave potentials for single-field slow-roll in-
flation, Vg < O (see Fig. 1, since convex poten-
tials lead to an overproduction of tensor modes for
observationally allowed values of ng). The bounds
in Eqgs. (11) then have definite implications for the
scalar spectral index. Combining with Eq. (9), we
obtain the bound

1—ng 2 [3c% 2], (12)

where the term in square brackets is 3¢? for the case
SCy, or 2¢' for the case SCo,. In addition, single-
field slow-roll inflation predicts the consistency rela-
tion r = 16€ which, combined with the constraint in
Egs. (11), leads to [36, 37, 42, 43]

r > 8c2. (13)

Measurements of the CMBR temperature and polar-
ization anisotropies from the Planck satellite instead
set ng = 0.9645 + 0.0049 (Planck TT,TE,EE+lowP
dataset combination), with small shifts of @(0.001)
when external data (such as Baryon Acoustic Oscil-
lation distance measurements) are also included, or
when different assumptions are made concerning the
mass spectrum of massive neutrinos [58]. Regardless
of the prior used, it is safe to assert that cosmolog-
ical observations generically require 1 — ng ~ 0.04
and r < 0.1 measured at the quadrupole with k, =
0.002 hMpc™*. The bounds in Eqs. (12) and (13)
imply ¢ $ O(0.1) when compared with the obser-
vational results, which is in clear contrast with the
string-based expectation that ¢ should be of order
unity if not greater.

To make contact with observations, we overlay the
constraints imposed by Egs. (12) and (13) on the
usual “zoo plot”, the ng-r plane in Fig. 1, for se-
lected values of the parameter ¢ = 0.06,0.08,0.10
and for ¢ = 0. The region selected by the swamp-
land constraints is shaded in blue, whereas the red
contours correspond to the 68% and 95% C.L. al-
lowed regions when constrained with the Planck
2015 TT, TE,EE+lowTEB temperature and polar-
ization data [59, 60], and the BICEP2/Keck Array
2014 combined polarization data [61]. The allowed
contours are calculated numerically using a Markov
Chain Monte Carlo method with the CosmoMC sam-
pler [62], which makes use of the CAMB Boltzmann
code. We fit to a seven-parameter ACDM+7r model



with the following parameters:

e Baryon density Qph?.
e Dark matter density Qch?.

e Angular scale of acoustic horizon 6 at decou-
pling.

e Reionization optical depth 7.
e Power spectrum normalization As.

e Tensor-to-scalar ratio r, calculated at a pivot
scale of k = 0.05 hMpc L.

e Scalar spectral index ng.

Curvature Qy is set to zero, and the Dark Energy

equation of state is fixed at w = —1. We fix the
number of neutrino species at N, = 3.046, with
one massive neutrino with mass m, = 0.06 eV.

For these constraints, we run 8 parallel chains with
Metropolis-Hastings sampling, and use a conver-
gence criterion of R—1 < 0.05 for the Gelman-Rubin
parameter R. It is clear from the figure that ¢ = 0.1
is already in tension with the data, whereas ¢ of or-
der unity (not shown) is excluded at extremely high
significance. Constrains from the refined swampland
conjecture are also in significant tension with the
data, see the dashed lines in Fig. 1 with ¢/ = 0.01
and ¢’ = 0.02, respectively.

We therefore obtain limits from data on conjec-
tures (2) and (10), respectively of

v
Mplv‘f’ <0.1
Mgl% <0.02. (14)

There is no significant constraint arising from the
constraint (1) on the field excursion, since the
Planck+BICEP2/Keck Array upper bound of r <
0.07 corresponds to a bound on the field excursion
[63].

A¢p ~ Mp1\/r < 0.26, (15)
which is consistent with swampland conjectures.

IV. CONVEX POTENTIALS AND DBI
INFLATION

‘We have so far confined ourselves to a discussion of
concave potentials, for which Vg < 0. What about

I The data sets themselves contain multiple internal param-
eters, which we do not list here.
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FIG. 1. Regions in the ng-r plane allowed by data (red)
and the swampland conjectures (blue) for various values
of the parameter ¢ and with ¢’ = 0. In particular, the red
contours denote two-dimensional probability contours at
68% (dark red) and 95% C.L. (light red) in light of mea-
surements of temperature and polarization anisotropies
from Planck and measurements of degree-scale B-mode
polarization from BICEP2/Keck Array. The region in
the blue shaded contours is the region of parameter space
allowed for single-field slow-roll inflation by the swamp-
land conjectures, for various values of the parameter c
appearing in Eq. (2). For definiteness we have focused
on concave inflationary potentials (V¢ < 0), whose pa-
rameter space lies below the gray shaded region. It is
clear that ¢ < O(0.1) is required for the predictions of
single-field slow-roll inflation to be consistent with data,
violating the string-based expectation that ¢ should be of
order unity (the pivot scale plotted is k. = 0.05 h Mpc™ !,
and the calculated quantities ng and r have been rescaled
from k. = 0.002hMpc™'). The dashed lines show con-
tours for different values of the second slow roll pa-
rameter 1 = Mg Vss/V: the region below the dashed
lines is constrained by the refined swampland conjecture,
Eq. (10), with ¢’ = 0.01 and ¢’ = 0.02, respectively.

convex potentials, with Vgg > 0?7 Such models can
satisfy constraints on the scalar spectral index ng
even with n ~ ¢, since for n > 0, the quantity ng —1
in Eq. (9) might remain small via a cancellation be-
tween the opposite-sign € and 7 terms. However,
in the case of canonical single-field slow-roll infla-
tion, potentials with V44 > 0 overproduce tensor
perturbations, in conflict with data (Fig. 1). For ex-
ample, the well-studied case of power-law inflation,
with V' (¢) x exp(¢/Mpy), satisfies

V.
Mp17¢ = V/2¢ = const. (16)



The scalar spectral index and the tensor-to-scalar
ratio are respectively

ng =1— 2¢, (17)
r = 16¢, (18)

so that ng — 1 ~ 0.04 requires € ~ 0.02, resulting in
a tensor-to-scalar ratio of r ~ 0.3, which is excluded
by Planck constraints to high significance, and is also
inconsistent with the swampland conjectures, since
¢ ~ /e ~ 0.1, similar to our constraint on concave
potentials.

However, these bounds are relaxed if the inflaton
field is of the Dirac-Born-Infeld (DBI) form [64], in
which an effective speed limit keeps the inflaton field
near the top of V(¢) even if the potential is steep.
In string theory models of inflation, the inflaton is
a modulus parameter of a D-brane propagating in
an AdS warped throat region of an approximate
Calabi-Yau flux compactification. The propagation
of fluctuations depend on the sound speed parame-
ter c¢g which, in DBI inflation, is smaller than unity.
This reduced sound speed has the effect of suppress-
ing tensor production, with the tensor-to-scalar ratio
given by

r ~ 16cge. (19)

This means that non-canonical extensions of models
with convex potentials can be brought into agree-
ment with data in the case of ¢g < 1 [65, 66]. In the
case of cg < 1, additional constraints come into play,
in particular limits from Planck on primordial non-
Gaussianity. DBI inflation predicts an amplitude in
the equilateral mode for non-Gaussianity of

; 35 1
Equil.
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NL 108 (ckz9 ) ’ (20)

which is constrained by Planck to fﬁg“il' = —4+43

to 1o. Then the 20 upper bound of fﬁﬁuﬂ' < 82
gives a 20 lower bound on ¢g of [67]

cs > 0.0627. (21)

This can be combined with the upper bound from
Planck and BICEP2/Keck Array on the tensor-to-
scalar ratio of

r = 16cge < 0.07, (22)

to give an upper bound

€ <0.07 = ¢ < V2e < 0.37. (23)

Therefore, the combination of Planck upper bounds
on both the tensor-to-scalar ratio and the amplitude
of equilateral non-Gaussianity place limits on non-
canonical models with Vg4 > 0 slightly weaker than
the constraints we obtained for the V44 < 0 case
from limits on r and ng, but still in strong tension
with the swampland conjectures.
V. CONCLUSIONS

In this note, we have revisited the status of single-
field inflation in light of the swampland conjectures
Egs. (1,2). Unlike previous related works [29, 33,
34, 36, 37|, we have focused not only on the implica-
tions of the swampland conjectures for the allowed
values of the tensor-to-scalar ratio r, but also for
the scalar spectral index ng, under the generic ex-
pectation that the swampland conjectures lead to
€ ~ O(c?) and data favour n < 0. Our main result
is shown in Fig. 1, where we showcase the regions
in the ng-r plane allowed by the swampland conjec-
tures for various values of the parameters ¢ and ¢/,
and compare these to the regions allowed by current
observational data. We clearly see that ¢ < O(0.1)
and ¢ < O(0.01) are required to obtain consistency
between the predictions of single-field slow-roll in-
flation and data, at the cost of violating the string-
based expectation that ¢,¢’ ~ O(1). Extension to
DBI models results in a constraint of ¢ < 0.37, still in
significant tension with the swampland conjectures.
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