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We consider single-field inflation in light of string-motivated “swampland” conjectures suggesting
that effective scalar field theories with a consistent UV completion must have field excursion ∆φ <

∼
MPl, in combination with a sufficiently steep potential, MPlVφ/V >

∼ O(1). Here, we show that
the swampland conjectures are inconsistent with existing observational constraints on single-field
inflation. Focusing on the observationally favoured class of concave potentials, we map the allowed
swampland region onto the nS-r “zoo plot” of inflationary models, and find that consistency with
the Planck satellite and BICEP2/Keck Array requires MPlVφ/V <

∼ 0.1 and −0.02 <
∼ M2

PlVφφ/V < 0,
in strong tension with swampland conjectures. Extension to non-canonical models such as DBI
Inflation does not significantly weaken the bound.

I. THE SWAMPLAND-DE SITTER

CONJECTURES

Inflation is a postulated period of quasi-de Sit-
ter expansion in the very early Universe (see e.g.
Refs. [1–10] for early seminal work). Inflation pro-
vides an explanation for various problems arising
in the standard Big Bang cosmology such as the
observed homogeneity, flatness, and lack of relic
monopoles. In addition, inflation provides a mecha-
nism for generating the density perturbations whose
existence we infer from the observation of temper-
ature anisotropies in the Cosmic Microwave Back-
ground Radiation (CMBR) [11–15]: these density
perturbations, generated when quantum fluctua-
tions leave the Hubble radius during inflation, later
grow under gravitational instability to form the ob-
served cosmic large-scale structure. Among the
simplest class of inflationary models are single-field
models, wherein a dynamical scalar field (the “in-
flaton”) evolves under the influence of a nearly-flat
potential, leading to an approximately constant ex-
pansion rate.
It would naturally be desirable to embed inflation-

ary models within well-motivated high-energy UV-
complete theories, with the latter possibly including
a consistent description of quantum gravity: the be-
haviour of the inflaton field would then be captured
by the effective field theory (EFT) given by the low-
energy limit of this UV-complete theory. String the-
ory naturally emerges as a potential candidate for
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such a UV-complete theory. While the huge land-
scape of string vacua is believed to lead to consis-
tent EFTs, these are conjectured to be surrounded
by a “swampland” of semi-classical EFTs which do
not allow for a consistent theory of quantum grav-
ity [16].
Attempts to establish the conditions under which

a given EFT does not lie in the swampland have led
to a set of conjectures, such as the the weak-gravity
conjecture [17] and, more recently, a set of addi-
tional swampland conjectures [18–23]. In particular,
it has long been noted that, while it is easy to obtain
Minkowski and Anti-de Sitter vacua in string theory,
the same cannot be said about de Sitter (dS) vacua,
stable versions of which are notoriously extremely
hard to obtain [24–27]. This has raised the suspi-
cion that theories featuring dS vacua reside in the
swampland, rather than in the landscape [23, 28].
This observation would obviously have profound im-
plications for inflationary theories.
Here, we focus on two swampland conjectures [23]

whose cosmological implications were recently stud-
ied in Ref. [29]. These two conjectures, which we
shall refer to as SC1 and SC2 respectively, place con-
straints on the proper range traversed by scalar fields
in field space, ∆φ, as well as on the logarithmic gra-
dient of the scalar field potential V (φ),

|∆φ|

MPl

<
∼ ∆ ∼ O(1) (SC1) , (1)

MPl

|Vφ|

V
>
∼ c ∼ O(1) (SC2) , (2)

where MPl ≃ 2.4 × 1018 GeV is the reduced Planck
mass, Vφ stands for dV (φ)/dφ, and c is a positive
constant of order unity whose actual value depends
on the details of the compactification, but which in
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many string realizations is typically larger than
√
2

and never smaller than unity [23]. It is not hard
to see how SC2 represents a hazard for inflationary
theories, which typically require Vφ ≪ V in order to
sustain a sufficiently long period (of at least about
60 e-folds) of quasi-de Sitter expansion.

The two swampland conjectures SC1 and SC2 have
received significant attention in the recent literature,
and various follow-up works have examined their
implications for cosmology (including but not lim-
ited to inflation and dark energy) and more gen-
erally fundamental physics. For an incomplete list
of relevant papers, see e.g. Refs. [29–48]. Several
of these works, in particular, noticed that single-
field slow-roll inflation is in tension with criterion
SC2 [29, 33, 34, 36, 37], since the latter places a lower
bound on the amplitude of primordial gravitational
waves produced during inflation, parametrized by
the tensor-to-scalar ratio r. It can be easily shown
that SC2 in Eq. (2) implies r > 8c2 for single-field
slow-roll inflation [37], and since current constraints
from the Planck satellite in combination with the
BICEP2/Keck Array ground-based small aperture
telescopes suggest r < 0.07 at 95% confidence level
(C.L.) [49], a value of the parameter c ∼ O(1) would
strongly violate such bound.

In this note, it is our goal to revisit the status
of single-field slow-roll inflation in light of current
observational data and the conjectured swampland
criteria. However, unlike previous work which espe-
cially focused on the tensor-to-scalar ratio r, here
we also consider the restrictions imposed by the sec-
ond swampland criterion on the scalar spectral index
nS , including the second derivative of the potential.
We consider for definiteness models where the poten-
tial of the inflaton is concave (Vφφ ≡ d2V/dφ2 < 0)
rather than convex, since the former are observa-
tionally preferred over the latter. This allows us
to reach a conclusion on the inconsistency between
single-field slow-roll inflation, the swampland con-
jectures, and observational data, which is stronger
than those previously reached focusing only on r.
In particular, we find that single-field slow-roll infla-
ton potentials with c > 0.1 are ruled out at > 95%
C.L. under generic assumptions based on string the-
ory. We also consider constraints on the curvature
of the potential in light of the more recently pro-
posed “refined” swampland criterion [50], and place
a lower bound −0.02 <∼ M2

PlVφφ/V , in strong tension
with the refined conjecture. We then briefly con-
sider convex potentials, restricting ourselves to the
case where the inflaton is of the Dirac-Born-Infeld
(DBI) form in order to circumvent tight constraints
from overproduction of tensor modes, finding that
our conclusions are qualitatively unchanged.

The rest of this note is organized as follows. In

Sec. II, we briefly review the equations of motion
in single-field slow-roll inflation and the definition
of the slow-roll parameters. In Sec. III, we make
the connection to the observables, namely the scalar
spectral index nS and the tensor-to-scalar ratio r, fo-
cusing on concave potentials. In Sec. IV, we briefly
consider the case of convex potentials where the in-
flaton is of the DBI form, and verify that our conclu-
sions are qualitatively unchanged. Finally, in Sec. V
we provide concluding remarks. Our main results
are showcased in Fig. 1, where we make connection
to the well-known “zoo plot” of inflationary models
on the nS-r plane [51].

II. SINGLE-FIELD SLOW-ROLL

INFLATION

We consider a generic single-field slow-roll infla-
tionary model wherein the role of inflaton is played
by a scalar field φ = φ(x) moving under the influ-
ence of a potential V = V (φ). Within a Friedmann-
Robertson-Walker metric, the equation of motion for
the inflaton field is expressed as

φ̈+ 3Hφ̇+ Vφ = 0, (3)

where a dot indicates derivation with respect to cos-
mic time. On the other hand, the Friedmann equa-
tion for the expansion rate of the Universe is

H2 =
ρ

3M2
Pl

=
1

3M2
Pl

(

1

2
φ̇2 + V

)

, (4)

where as previously MPl denotes the reduced Planck
mass, while the term within parentheses on the
right-hand side describes the total energy density of
the system.
If the potential V (φ) is sufficiently flat and dom-

inates over the kinetic energy of the inflaton, i.e.
φ̇2 ≪ V (φ), inflation occurs, with the Hubble ex-
pansion rate being approximately constant. During
this slow-roll regime, the higher time derivatives in
Eq. (3) can be neglected, i.e. φ̈ ≪ H φ̇. Therefore,
Eqs. (3,4) reduce to

φ̇ ≃ − Vφ

3H
, (5)

H2 ≃ V

3M2
Pl

, (6)

where we hereafter use the symbol “≃” to imply an
approximate equality that holds during the slow-roll
regime. From Eq. (6) it follows that a shallow poten-
tial V gives rise to a nearly constant expansion rate
H. The physics during slow-roll can be parametrized
by a set of slow-roll parameters ǫ, η defined by [52]

ǫ ≡ M2
Pl

2

(

Vφ

V

)2

, η ≡ M2
Pl

Vφφ

V
. (7)
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Slow-roll is achieved as long as the conditions
ǫ , |η| ≪ 1 are satisfied, whereas inflation ends when
ǫ , |η| ∼ O(1).

III. CONNECTION TO OBSERVABLES

Within the inflationary scenario, scalar and ten-
sor fluctuations are redshifted to superhorizon scales
and later evolve into primordial perturbations in
the density field as well as primordial gravitational
waves, leaving an imprint in the CMBR anisotropy
and on the large-scale structure [7, 11–15]. The spec-
trum of the adiabatic density (scalar) perturbations
generated during inflation is expressed by the dimen-
sionless power spectrum ∆2

R
(k), which describes the

contribution to the total variance of primordial cur-
vature perturbations at a given scale per logarithmic
interval in k and is given as [53–55]

∆2
R
(k) ≡ k3 PR(k)

2π2
= As

(

k

k0

)nS−1

, (8)

where As ∼ 2.2 × 10−9 is the amplitude of the pri-
mordial scalar power spectrum. The scalar spec-
tral index nS parametrizes the mild dependence of
the power spectrum on the co-moving wavenum-
ber k, with nS = 1 corresponding to a scale-
invariant power spectrum. In single-field slow-roll
inflation, the scalar spectral index is given by (see
e.g. Ref. [56])

nS − 1 ≈ −6ǫ+ 2η , (9)

to leading order in the slow-roll parameters.
Recalling the definition of ǫ and η in Eq. (7), we

are now ready to examine the implications of the
second swampland criterion SC2 [Eq. (2)] for the
allowed values of the scalar spectral index nS . It
is clear that Eq. (2) in combination with the defi-
nition in Eq. (7) directly constrains the first slow-
roll parameter ǫ. Regarding the second derivative
of the potential, quantum corrections typically force
M2

Pl |Vφφ| ∼ V in the absence of a symmetry, which
is the well-known “η problem” [57]. This statement
has been recently formalised and included in a re-
fined version, here SC2r, of the second swampland
condition in Eq. (2) (see Ref. [50]). For a single-field
potential, SC2r reads

MPl

|Vφ|
V

>∼ c ∼ O(1) or M2
Pl

Vφφ

V
<∼ −c′ , (10)

where c′ is another constant of order unity. Using
the condition SC2r, we then immediately obtain

ǫ >∼
c2

2
or η <∼ −c′ . (11)

The first of the two inequalities in Eqs. (11) has
been already shown in a number of recent pa-
pers [36, 37, 42, 43], whereas the second of Eqs. (11)
is motivated by both the η problem and by the re-
fined version of the swampland conjecture SC2r. Ob-
servational constraints demand η ≤ 0, correspond-
ing to concave potentials for single-field slow-roll in-
flation, Vφφ < 0 (see Fig. 1, since convex poten-
tials lead to an overproduction of tensor modes for
observationally allowed values of nS). The bounds
in Eqs. (11) then have definite implications for the
scalar spectral index. Combining with Eq. (9), we
obtain the bound

1− nS
>∼ [3c2; 2c′] , (12)

where the term in square brackets is 3c2 for the case
SC2, or 2c′ for the case SC2r. In addition, single-
field slow-roll inflation predicts the consistency rela-
tion r = 16ǫ which, combined with the constraint in
Eqs. (11), leads to [36, 37, 42, 43]

r > 8c2 . (13)

Measurements of the CMBR temperature and polar-
ization anisotropies from the Planck satellite instead
set nS = 0.9645± 0.0049 (Planck TT,TE,EE+lowP
dataset combination), with small shifts of O(0.001)
when external data (such as Baryon Acoustic Oscil-
lation distance measurements) are also included, or
when different assumptions are made concerning the
mass spectrum of massive neutrinos [58]. Regardless
of the prior used, it is safe to assert that cosmolog-
ical observations generically require 1 − nS ≃ 0.04
and r < 0.1 measured at the quadrupole with k∗ =
0.002 hMpc−1. The bounds in Eqs. (12) and (13)
imply c <∼ O(0.1) when compared with the obser-
vational results, which is in clear contrast with the
string-based expectation that c should be of order
unity if not greater.

To make contact with observations, we overlay the
constraints imposed by Eqs. (12) and (13) on the
usual “zoo plot”, the nS-r plane in Fig. 1, for se-
lected values of the parameter c = 0.06 , 0.08 , 0.10
and for c′ = 0. The region selected by the swamp-
land constraints is shaded in blue, whereas the red
contours correspond to the 68% and 95% C.L. al-
lowed regions when constrained with the Planck

2015 TT,TE,EE+lowTEB temperature and polar-
ization data [59, 60], and the BICEP2/Keck Array
2014 combined polarization data [61]. The allowed
contours are calculated numerically using a Markov
Chain Monte Carlo method with the CosmoMC sam-
pler [62], which makes use of the CAMB Boltzmann
code. We fit to a seven-parameter ΛCDM+r model
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The scalar spectral index and the tensor-to-scalar
ratio are respectively

nS = 1− 2ǫ, (17)

r = 16ǫ, (18)

so that nS − 1 ∼ 0.04 requires ǫ ∼ 0.02, resulting in
a tensor-to-scalar ratio of r ∼ 0.3, which is excluded
by Planck constraints to high significance, and is also
inconsistent with the swampland conjectures, since
c ∼

√
ǫ ∼ 0.1, similar to our constraint on concave

potentials.
However, these bounds are relaxed if the inflaton

field is of the Dirac-Born-Infeld (DBI) form [64], in
which an effective speed limit keeps the inflaton field
near the top of V (φ) even if the potential is steep.
In string theory models of inflation, the inflaton is
a modulus parameter of a D-brane propagating in
an AdS warped throat region of an approximate
Calabi-Yau flux compactification. The propagation
of fluctuations depend on the sound speed parame-
ter cS which, in DBI inflation, is smaller than unity.
This reduced sound speed has the effect of suppress-
ing tensor production, with the tensor-to-scalar ratio
given by

r ≃ 16cSǫ. (19)

This means that non-canonical extensions of models
with convex potentials can be brought into agree-
ment with data in the case of cS ≪ 1 [65, 66]. In the
case of cS < 1, additional constraints come into play,
in particular limits from Planck on primordial non-
Gaussianity. DBI inflation predicts an amplitude in
the equilateral mode for non-Gaussianity of

fEquil.
NL =

35

108

(

1

c2S
− 1

)

, (20)

which is constrained by Planck to fEquil.
NL = −4± 43

to 1σ. Then the 2σ upper bound of fEquil.
NL < 82

gives a 2σ lower bound on cS of [67]

cS > 0.0627. (21)

This can be combined with the upper bound from
Planck and BICEP2/Keck Array on the tensor-to-
scalar ratio of

r = 16cSǫ < 0.07, (22)

to give an upper bound

ǫ < 0.07 → c <
√
2ǫ < 0.37. (23)

Therefore, the combination of Planck upper bounds
on both the tensor-to-scalar ratio and the amplitude
of equilateral non-Gaussianity place limits on non-
canonical models with Vφφ > 0 slightly weaker than
the constraints we obtained for the Vφφ < 0 case
from limits on r and nS , but still in strong tension
with the swampland conjectures.

V. CONCLUSIONS

In this note, we have revisited the status of single-
field inflation in light of the swampland conjectures
Eqs. (1,2). Unlike previous related works [29, 33,
34, 36, 37], we have focused not only on the implica-
tions of the swampland conjectures for the allowed
values of the tensor-to-scalar ratio r, but also for
the scalar spectral index nS , under the generic ex-
pectation that the swampland conjectures lead to
ǫ ∼ O(c2) and data favour η < 0. Our main result
is shown in Fig. 1, where we showcase the regions
in the nS-r plane allowed by the swampland conjec-
tures for various values of the parameters c and c′,
and compare these to the regions allowed by current
observational data. We clearly see that c <∼ O(0.1)
and c′ <∼ O(0.01) are required to obtain consistency
between the predictions of single-field slow-roll in-
flation and data, at the cost of violating the string-
based expectation that c, c′ ∼ O(1). Extension to
DBI models results in a constraint of c <∼ 0.37, still in
significant tension with the swampland conjectures.
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