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Abstract
Protein aggregation in vivo is generally combated by extensive proteostatic defenses. Many proteostasis factors specifically 
recognize aggregation-prone features and re-fold or degrade the targeted protein. However, protein aggregation is not uncom-
mon, suggesting that some proteins employ evasive strategies to aggregate in spite of the proteostasis machinery. Therefore, 
in addition to understanding the inherent aggregation propensity of protein sequences, it is important to understand how 
these sequences affect proteostatic recognition and regulation in vivo. In a recent study, we used a genetic mutagenesis and 
screening approach to explore the aggregation or degradation promoting effects of the canonical amino acids in the context 
of G-rich and Q/N-rich prion-like domains (PrLDs). Our results indicate that aggregation propensity scales are strongly 
influenced by the interplay between specific PrLD features and proteostatic recognition. Here, we briefly review these results 
and expand upon their potential implications. In addition, a preliminary exploration of the yeast proteome suggests that 
these proteostatic regulation heuristics may influence the compositional features of native G-rich and Q/N-rich domains 
in yeast. These results improve our understanding of the features affecting the aggregation and proteostatic regulation of 
prion-like domains in a cellular context, and suggest that the sequence space for native prion-like domains may be shaped 
by proteostatic constraints.
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Introduction

All cells depend on a suite of properly folded proteins for 
survival. While protein aggregation is not always detrimen-
tal [and in some cases may even be beneficial (Chakravarty 
and Jarosz 2018)], errors in protein folding often lead to 
toxic protein aggregation. This aggregation underlies a num-
ber of neurodegenerative disorders including Alzheimer’s 
disease, Parkinson’s disease, and amyotrophic lateral scle-
rosis, among others (for review, see Brundin et al. 2010; 
Holmes and Diamond 2012; King et al. 2012; Costanzo and 
Zurzolo 2013; Li et al. 2013; Ling et al. 2013; Ramaswami 
et al. 2013; Taylor et al. 2016). Consequently, cells pos-
sess a molecular battalion of proteostasis factors involved 

in the detection and elimination of protein folding threats. 
Yet a number of proteins effectively evade the proteostasis 
machinery and form aggregates, suggesting that some pro-
teins possess inherent features that simultaneously confer 
high aggregation propensity and the ability to evade proteo-
static systems. Therefore, defining these sequence character-
istics would advance our understanding of protein aggrega-
tion in vivo.

In yeast, a number of proteins can form self-perpetuating, 
infectious protein aggregates known as “prions”. The protein 
domains responsible for this activity have unusual amino 
acid compositions which, at least in some cases, is the pre-
dominant feature facilitating prion aggregation (Ross et al. 
2004, 2005). In accordance with these observations, the 
development of prion prediction methods have focused pre-
dominantly on amino acid composition to identify proteins 
with “prion-like domains” (PrLDs) in the yeast and human 
proteomes (Alberti et al. 2009; Toombs et al. 2010; King 
et al. 2012; Espinosa Angarica et al. 2013; Lancaster et al. 
2014; Afsar Minhas et al. 2017). Many of the proteins with 
top-scoring PrLDs have been associated with aggregation 
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and neurodegeneration/myopathy in humans (for review, 
see King et al. 2012; Harrison and Shorter 2017). However, 
many proteostasis factors specifically recognize aggrega-
tion-prone protein features and either re-fold or degrade 
these proteins (Flynn et al. 1991; Rudiger et al. 1997a, b, 
2001; Fredrickson et al. 2011, 2013; Willmund et al. 2013; 
Karagoz et al. 2014; Saio et al. 2014; Karagöz and Rüdiger 
2015). The ability of yeast prion proteins to aggregate with-
out triggering a strong proteostatic response makes them 
excellent models to explore the interplay between aggrega-
tion and proteostatic regulation.

Sequence features driving aggregation 
versus degradation of PrLDs

In a recent study, we explored the features of aggregation-
prone proteins that lead either to their detection and degrada-
tion by the ubiquitin–proteasome system, or to the forma-
tion of self-propagating prion aggregates (Cascarina et al. 
2018). Although canonical yeast prion domains tend to be 
extremely Q/N-rich, a number of the human PrLDs (while 
still moderately Q/N-rich) tend to be more G-rich. Might 
these compositional differences affect the molecular fates 
of aggregation-prone Q/N-rich and G-rich proteins in the 
eukaryotic intracellular environment?

We chose a canonical Q/N-rich yeast prion domain (PD) 
from Sup35, and two related G-rich human PrLDs from 
hnRNPA1 and hnRNPA2B1 as model substrates to exam-
ine how changes in the amino acid composition of Q/N-rich 
and G-rich PrLDs affect prion aggregation and degradation. 
When substituted in the place of a portion of the Sup35 PD, 
the hnRNPA1 and hnRNPA2B1 PrLDs are able to support 
prion activity in a mutation-dependent manner (Kim et al. 
2013; Paul et al. 2017). We, therefore, randomly mutagen-
ized a segment of the G-rich PrLDs within these fusion 
proteins in a manner analogous to previous mutagenesis of 
the Sup35 PD (Toombs et al. 2010; MacLea et al. 2015). 
Interestingly, while non-aromatic hydrophobic residues (I, 
L, M, and V) strongly promote prion formation in the Sup35 
PD (Toombs et al. 2010; MacLea et al. 2015), the same resi-
dues led to rapid, proteasome-mediated degradation of the 
G-rich PrLDs. However, when the degradation-promoting 
sequences were substituted into the Q/N-rich Sup35 PD, 
they did not noticeably accelerate degradation. Progressively 
increasing the number of hydrophobic residues led to a step-
wise increase in the degradation rate of the G-rich PrLDs 
before exceeding the resolution of our degradation assays, 
whereas progressively increasing hydrophobic content in an 
identical manner in the Sup35 PD led to a step-wise increase 
in the frequency of spontaneous prion formation. The Q/N 
content of the Sup35 was critical for resisting the degrada-
tion-promoting effects of hydrophobic residues: step-wise 

substitutions of G residues for Q/N residues in the Sup35 
PD led to a step-wise increase in degradation rate when 
degradation-promoting sequences were present.

These results indicated that high Q/N content may be one 
feature that effectively overrides the otherwise degradation-
promoting effects of the non-aromatic hydrophobic residues, 
allowing evasion of the ubiquitin–proteasome defenses. 
Conversely, the G-rich PrLDs are susceptible to enhanced 
proteolysis when nudged by certain aggregation-promoting 
residues.

We next asked whether any residues provide a sufficient 
balance between low detection by the ubiquitin–proteasome 
system and high aggregation propensity to facilitate prion 
aggregation of the G-rich PrLDs. After excluding the iso-
lates with a degradation phenotype from our original pheno-
typic tests, we screened the remaining isolates for the ability 
to form rare yet stable prion aggregates. Aromatic residues 
were significantly over-represented among the identified 
[PRION+] isolates, suggesting that they were simultaneously 
aggregation-prone and poorly detected by the ubiquitin–pro-
teasome system in the context of the G-rich PrLDs.

Conclusions and perspectives

These observations illuminate multiple ways through which 
some aggregation-prone proteins may violate conventional 
wisdom regarding their proteostatic regulation, and highlight 
important caveats when thinking about protein aggregation 
in a cellular context. Although a tight link between expo-
sure of aggregation-prone residues and efficient re-folding 
or clearance of the substrate by the proteostasis machin-
ery has been well-documented (Flynn et al. 1991; Rudiger 
et al. 1997a, b, 2001; Fredrickson et al. 2011, 2013; Will-
mund et al. 2013; Karagoz et al. 2014; Saio et al. 2014; 
Karagöz and Rüdiger 2015), we find that this relationship is 
not absolute, and can be severed in at least two ways. First, 
Q/N-rich regions effectively buffered the degradation-pro-
moting effects of hydrophobic residues, thereby permitting 
aggregation (Fig. 1a top). Second, aromatic residues pro-
moted aggregation of the G-rich PrLDs without efficiently 
alarming the ubiquitin–proteasome system (Fig. 1a bottom). 
Therefore, while scales describing aggregation-propensity 
or degradation-propensity for the 20 canonical amino acids 
represent essential advances in our understanding of molecu-
lar biochemistry, these scales are heavily dependent on both 
the molecular and cellular contexts (Cascarina et al. 2017, 
2018; Paul et al. 2017).

Ideally, our proteostatic defenses would be calibrated to 
recognize any protein whose aggregation propensity exceeds 
the solubility threshold under normal cellular conditions 
(Fig. 1b). However, it is interesting to note that both G-rich 
and Q/N-rich proteins showed gaps between aggregation and 
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proteostatic degradation (Fig. 1b). Although single-amino 
acid substitutions were sufficient to cause prion aggrega-
tion of G-rich PrLDs in our system, and are linked to neu-
romuscular degeneration in humans, these single substitu-
tions were not sufficient to trigger degradation. One possible 

explanation is that the proteostasis machinery must balance 
sensitivity toward exposed hydrophobicity with specificity 
toward misfolded proteins. Exposure of a single hydrophobic 
residue within a G-rich domain may increase the aggrega-
tion propensity yet still lie below the sensitivity of relevant 

Fig. 1   The effects of molecular and cellular contexts on aggrega-
tion or degradation of PrLDs in vivo. a Aromatic and non-aromatic 
hydrophobic residues are strongly prion-promoting in the context of 
a Q/N-rich PD. By contrast, only aromatic amino acids retain their 
prion-promoting effects in the context of two related G-rich PrLDs, 

whereas non-aromatic hydrophobic residues accelerate their degrada-
tion via the proteasome. b A simplified hypothetical model depicting 
the interplay between intracellular counter-aggregation defenses and 
aggregation propensity of Q/N-rich and G-rich domains
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proteostasis factors, effectively resulting in a proteostasis 
sensitivity gap for G-rich domains. For Q/N-rich PrLDs, 
this gap between aggregation and degradation may be even 
larger due to the masking of aggregation-prone features. 
Additionally, many yeast prions are actually able to propa-
gate precisely because of proteostasis factors (predomi-
nantly Hsp104, along with Hsp40 and Hsp70 chaperones) 
attempting to disassemble existing aggregates (for review, 
see Chernova et al. 2017b). Therefore, these proteins use 
a combination of proteostasis evasion and hijacking strate-
gies to aggregate and persist in vivo, potentially explaining 
why so many of these proteins are linked to functional and 
pathogenic aggregation.

This study provides a solid foundation for exciting new 
avenues of research. Although our G-rich PrLDs and Q/N-
rich PD allowed us to explore the features controlling their 
behavior in great depth, it is important to note that these 
experiments were performed on just three model proteins; 
therefore, additional experiments will be required to deter-
mine to what extent these heuristics apply to other native 
G-rich and Q/N-rich domains. Surprisingly, although G-rich 
domains appear to be remarkably susceptible to proteolysis 
upon insertion of only a few hydrophobic residues (Casca-
rina et al. 2018), native yeast proteins with G-rich domains 
are actually associated with higher protein half-lives (i.e., 
lower degradation rates) and higher protein abundances rela-
tive to non-G-rich proteins (Cascarina and Ross 2018). How, 
then, do native yeast G-rich domains avoid extremely short 
half-lives despite their susceptibility to proteolysis?

A simple bioinformatic exploration of native yeast G-rich 
and Q/N-rich domains provides a possible explanation for 
this apparent discrepancy, and yields a number of interesting 
observations (Fig. 2). First, strongly degradation-promoting 
residues (ILMV) are strikingly underrepresented among 
G-rich domains, suggesting that the natural avoidance of 
degradation-promoting residues (perhaps via strong selec-
tive pressure at the molecular level) may contribute to the 
higher half-lives associated with proteins containing G-rich 
domains. By contrast, Q/N-rich domains tend to have a 
higher relative ILMV content, which may be facilitated by 
the ability of Q/N-rich domains to suppress the degradation-
promoting effects of these residues. Second, strongly prion-
promoting residues (FWY) are more common among G-rich 
domains compared to the degradation-promoting residues, 
suggesting that many native G-rich domains still possess at 
least some aggregation-prone features, which may enable 
some G-rich PrLDs to exhibit prion-like activity (Kim et al. 
2013; Molliex et al. 2015; Xiang et al. 2015; Lee et al. 2016). 
Finally, native Q/N-rich domains tend to have fewer aromatic 
residues compared to the non-aromatic hydrophobic resi-
dues. This is somewhat surprising, given that the Q/N-rich 
prion domains from canonical yeast prion proteins tend to 
exhibit secondary biases for aromatic residues (particularly 

tyrosine; Harrison and Gerstein 2003; MacLea et al. 2015). 
However, when Q/N-rich domains from the known yeast 
prion proteins (Wickner 1994; Sondheimer and Lindquist 
2000; Derkatch et al. 2001; Du et al. 2008; Alberti et al. 
2009; Patel et al. 2009; Halfmann et al. 2012; Suzuki et al. 
2012; Chernova et al. 2017a) are considered as a separate 
class, these domains exhibit lower ILMV and higher FWY 
content relative to Q/N-rich domains as a unified class. Inter-
estingly, our lab has also found that, while both aromatic 
and hydrophobic residues within Q/N-rich prion domains 
strongly promote prion nucleation, the aromatic residues 
appear to uniquely facilitate prion propagation in addition to 
nucleation (MacLea et al. 2015). This may suggest that aro-
matic residues provide a sufficient balance between aggrega-
tion propensity and aggregate heritability over generations 
(both of which are necessary for many of the known prions 
to act as infectious proteins in yeast), and could explain, at 
least in-part, why some proteins with Q/N-rich domains are 
aggregation-prone, yet do not appear to form stable prions 
in vivo (Alberti et al. 2009; MacLea et al. 2015).

Fig. 2   Maximum percentage of degradation-promoting or aggre-
gation-promoting residues within native yeast G-rich and Q/N-rich 
domains. The yeast proteome was scanned exhaustively using a 40 
amino acid sliding window to identify domains with ≥ 35% G or 
≥ 50% Q/N (the approximate G or Q/N compositions of the hnRNP 
PrLDs and Sup35 nucleation domain, respectively). Box plots rep-
resent the maximum percentages of degradation-promoting (ILMV; 
left) or prion-promoting (FWY; right) residues among non-G resi-
dues within G-rich domains or non-Q/N residues within Q/N-rich 
domains. For the yeast prion proteins with Q/N-rich domains, maxi-
mum percentage values for the known Q/N-rich yeast prion proteins 
were simply extracted from the Q/N-rich domain dataset and repre-
sented as independent box plots. Of the nine canonical yeast prion 
proteins, seven have Q/N-rich domains that pass our Q/N threshold 
(Cyc8, Rnq1, Sup35, Lsb2/Pin3, Swi1, Ure2, and Mot3). Plotting and 
statistics were performed with the Matplotlib and SciPy packages, 
respectively
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It is also important to note that our results are not incom-
patible with an age-related decline in proteostatic quality 
control: it may be that some of the aggregation-prone pro-
teins are effectively held at bay until a deterioration in the 
cell’s proteostatic defenses. Proteins on the precipice of 
aggregation, yet effectively recognized by a healthy proteo-
stasis network, may become toxic when defenses are down 
(Chernova et al. 2017b; Klaips et al. 2018; Wisniewski et al. 
2018). Finally, not all protein aggregation is deleterious. 
Many proteins naturally form amyloid fibers (Ryzhova et al. 
2018), and controlled protein aggregation has been shown, 
in many cases, to mediate a variety of beneficial processes 
(Chuang et al. 2018; Chakravarty and Jarosz 2018). Pro-
teins involved in beneficial protein aggregation may pos-
sess sequence features that allow evasion of the proteostasis 
machinery.

Collectively, these studies indicate that the sequence 
landscapes of prion and prion-like domains that facilitate 
aggregation in vivo are strongly influenced by both the intra-
molecular context (i.e., the composition of neighboring pro-
tein regions) and the intracellular context (including, but 
perhaps not limited to, the native proteostasis factors). The 
apparent fluidity of aggregation- and degradation-propensity 
scales for the 20 canonical amino acids may necessitate the 
development of multiple scales in different molecular con-
texts (i.e., prion-like domains with varying starting composi-
tions), and validation of these scales in vivo, where proteo-
stasis systems can sway protein fates. Our results highlight 
the importance of considering proteostatic regulation of 
PrLDs in addition to inherent aggregation propensity, and 
enhance our understanding of both beneficial and pathologi-
cal protein aggregation.
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