
MODULAR INVARIANTS FOR GENUS 3 HYPERELLIPTIC

CURVES
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Abstract. In this article we prove an analogue of a theorem of Lachaud,

Ritzenthaler, and Zykin, which allows us to connect invariants of binary oc-

tics to Siegel modular forms of genus 3. We use this connection to show that
certain modular functions, when restricted to the hyperelliptic locus, assume

values whose denominators are products of powers of primes of bad reduc-
tion for the associated hyperelliptic curves. We illustrate our theorem with

explicit computations. This work is motivated by the study of the values of

these modular functions at CM points of the Siegel upper-half space, which, if
their denominators are known, can be used to effectively compute models of

(hyperelliptic, in our case) curves with CM.

1. Introduction

In his beautiful paper, Igusa [12] proved that there is a homomorphism from
a subring (containing forms of even weight) of the graded ring of Siegel modular
forms of genus g and level 1 to the graded ring of invariants of binary forms of
degree 2g + 2. In this paper, we consider Siegel modular functions which map to
invariants of hyperelliptic curves under this homomorphism, and are thus called
modular invariants.

We are interested in the primes that divide the denominators of certain quotients
of these modular invariants.1 Our work is motivated by the following computational
problem: To recognize the value of a modular invariant as an exact algebraic number
from a floating point approximation, one must have a bound on its denominator.
Furthermore, the running time of the algorithm is greatly improved when the bound
is tight.

Igusa [12] gave an explicit construction of the above-mentioned homomorphism
for all modular forms of level 1 which can be written as polynomials in the theta-
constants. Our first contribution is an analogue of a result of Lachaud, Ritzenthaler,
and Zykin [17, Corollary 3.3.2], which connects Siegel modular forms to invariants
of plane quartics. Using a similar approach, which first connects Siegel modular
forms to Teichmüller modular forms, we obtain a construction which is equivalent
to Igusa’s for modular forms of even weight. We then compute the image of the
discriminant of a hyperelliptic curve under this homomorphism, thus extending and
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rephrasing a result of Lockhart [20, Proposition 3.2]. This allows us to prove our
main theorem:

Theorem 1.1. Let Z be a period matrix in H3, the Siegel upper half-plane of genus
3, corresponding to a smooth genus 3 hyperelliptic curve C defined over a number
field M . Let f be a Siegel modular form of weight k such that the invariant Φ
obtained in Corollary 3.6 is integral. Then

j(Z) =
f

140
gcd(k,140)

Σ
k

gcd(k,140)

140

(Z)

is an algebraic number lying in M . Moreover, if an odd prime p of OM divides
the denominator of this number, then the curve C has geometrically bad reduction
modulo p.

Here, Σ140 is the Siegel modular form of genus 3 defined by Igusa [12] in terms
of the theta constants (see equation (2.1)) as follows:

Σ140(Z) =

36∑
i=1

∏
j 6=i

ϑ[ξj ](0, Z)8, (1.1)

where the ξi, i = 1, . . . , 36 are the even theta characteristics we define in Section 2.
To illustrate this theorem, in Section 5 we compute values of several modular

invariants whose expressions have a power of Σ140 in the denominator. For our
experiments, we used: genus 3 hyperelliptic CM curves defined over Q, a complete
list of which is given in [15]; genus 3 hyperelliptic curves already appearing in
some experiments concerning the Chabauty-Coleman method [1]; and some genus 3
hyperelliptic modular curves [6, 24].

Note that Theorem 1.1 is an analogue of a result of Goren and Lauter for curves
of genus 2 with CM [7]. The case of CM hyperelliptic curves is interesting because
the bound on the primes dividing the denominators of Igusa invariants proved in [7]
is used to improve the algorithms to construct genus 2 CM curves. We hope that
apart from its theoretical interest, our result will allow a similar computation in
the case of CM hyperelliptic curves of genus 3.
Outline. This paper is organized as follows. We begin in Section 2 with some
background on theta functions, the Igusa construction and the Shioda invariants
of hyperelliptic curves. Only the most basic facts are given, and references are
provided for the reader who would like to delve further.

Then, in Section 3, we give a correspondence that allows us to relate invariants
of octics to Siegel modular forms of degree 3. Using this correspondence, we then
show in Section 4 that the primes dividing the denominators of modular invariants
that have powers of the Siegel modular form Σ140 as their denominator are primes
of bad reduction, which is our main theorem (Theorem 1.1 above).

Finally, in Section 5 we present the list of hyperelliptic curves of genus 3 for
which we computed the values of several modular invariants having powers of Σ140

as their denominator, when evaluated at a period matrix of their Jacobian. We
compared the factorization of the denominators of these values against that of the
denominators of the Shioda invariants of these curves and the odd primes of bad
reduction of these curves.
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2. Hyperelliptic curves of genus 3 with complex multiplication

In this section we introduce notation and discuss theta functions and theta char-
acteristics, which are crucial to the definition of the Siegel modular invariants we
consider in this paper. We briefly recall Igusa’s contruction of a homomorphism
between the graded ring of Siegel modular forms and the graded ring of invariants
of a binary form. Finally, we define the Shioda invariants of genus 3 hyperelliptic
curves.

2.1. Theta functions and theta characteristics. In this work, by period matrix
we will mean a g × g symmetric matrix Z with positive imaginary part, that is,
a matrix in in the Siegel upper half-space of genus g. (This is sometimes called a
small period matrix, but for simplicity and since there is no risk of confusion here
we call them period matrices.)

In this case, the relationship between the abelian variety and the period matrix
is that the complex points of the abelian variety are exactly the complex points of
the torus Cg/(Zg + ZZg).

We denote by Hg the Siegel upper half space. We now turn our attention to
the subject of theta functions. For ω ∈ Cg and Z ∈ Hg, we define the following
important series:

ϑ(ω,Z) =
∑
n∈Zg

exp(πinTZn+ 2πinTω),

where throughout this article an exponent of T on a vector or a matrix denotes the
transpose.

Given a period matrix Z ∈ Hg, we obtain a set of coordinates on the torus
Cg/(Zg +ZZg) in the following way: A vector x ∈ [0, 1)2g corresponds to the point
x2 +Zx1 ∈ Cg/(Zg +ZZg), where x1 denotes the first g entries and x2 denotes the
last g entries of the vector x of length 2g.

For reasons beyond the scope of this short text, it is of interest to consider the
value of this theta function as we translate ω by points that, under the natural
quotient map Cg → Cg/(Zg + ZZg), map to 2-torsion points. These points are of
the form ξ2 + Zξ1 for ξ ∈ (1/2)Z2g. This motivates the following definition:

ϑ[ξ](ω,Z) = exp(πiξT1 Zξ1 + 2πiξT1 (ω + ξ2))ϑ(ω + ξ2 + Zξ1, Z), (2.1)

which is given in [22, page 123]. In this context, ξ is customarily called a charac-
teristic or theta characteristic. The value ϑ[ξ](0, Z) is called a theta constant.

For ξ ∈ (1/2)Z2g, let

e∗(ξ) = exp(4πiξT1 ξ2). (2.2)

We say that a characteristic ξ ∈ (1/2)Z2g is even if e∗(ξ) = 1 and odd if e∗(ξ) = −1.
If ξ is even we call ϑ[ξ](0, Z) an even theta constant and if ξ is odd we call ϑ[ξ](0, Z)
an odd theta constant.
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We have the following fact about the series ϑ[ξ](ω,Z) [22, Chapter II, Proposition
3.14]: For ξ ∈ (1/2)Z2g,

ϑ[ξ](−ω,Z) = e∗(ξ)ϑ[ξ](ω,Z).

From this we conclude that all odd theta constants vanish. Furthermore, we have
that if n ∈ Z2g is a vector with integer entries,

ϑ[ξ + n](ω,Z) = exp(2πiξT1 n2)ϑ[ξ](ω,Z).

In other words, if ξ is modified by a vector with integer entries, the theta value
at worst acquires a factor of −1. Up to this sign, we note that there are in total
2g−1(2g + 1) even theta constants and 2g−1(2g − 1) odd ones.

We can now finally fully describe the modular form Σ140 defined in the intro-
duction (equation (1.1)). First, we note that when g = 3, there are 36 even theta
characteristics. For simplicity of notation, we give an arbitrary ordering to these
even theta characteristics, and label them ξ1, . . . , ξ36. Then we have

Σ140(Z) =

36∑
i=1

∏
j 6=i

ϑ[ξj ](0, Z)8,

the 35th elementary symmetric polynomial in the even theta constants.
We will also need another Siegel modular form introduced by Igusa [12] and

given by

χ18(Z) =

36∏
i=1

ϑ[ξi](0, Z). (2.3)

Igusa shows that Σ140 and χ18 are Siegel modular forms for the symplectic group
of level 1 Sp(6,Z).

The significance of these modular forms is the following: in loc. cit, Igusa
shows that a period matrix Z corresponds to a simple Jacobian of hyperelliptic
curve when χ18(Z) = 0 and Σ140(Z) 6= 0 and it is a reducible Jacobian when
χ18(Z) = Σ140(Z) = 0. Moreover, χ18 will appear later as the kernel of Siegel’s
homomorphism mentioned in the introduction.

2.2. Igusa’s construction. Let S(2, 2g + 2) be the graded ring of projective in-
variants of a binary form of degree 2g + 2. We denote by Sp(2g,Z) the symplectic
group of matrices of dimension 2g and by A(Sp(2g,Z)) the graded ring of modular
forms of degree g and level 1. There exists a homomorphism

ρ : A(Sp(2g,Z))→ S(2, 2g + 2),

which was first constructed by Igusa [12]. Historically, Igusa only showed that the
domain of ρ equals A(Sp(2g,Z)) when g is odd or g = 2, 4, and that for even g > 4,
a sufficient condition for the domain to be the full ring A(Sp(2g,Z)) is the existence
of a modular form of odd weight that does not vanish on the hyperelliptic locus.
Such a form was later exhibited by Salvati Manni in [26], from which it follows that
the domain of ρ is the full ring of Siegel modular forms.

The kernel of ρ is given by modular forms which vanish on all points in Hg
associated with a hyperelliptic curve. In particular, Igusa shows that in genus 3,
the kernel of ρ is a principal ideal generated by the form χ18 defined in equation
(2.3). Furthermore, Igusa shows that this homomorphism ρ is unique, up to a
constant. More precisely, any other map is of the form ζk4 ρ on the homogenous
part A(Sp(2g,Z))k, where ζ4 is a fourth root of unity. In Section 3 we display
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a similar map sending Siegel modular forms to invariants, by going first through
the space of geometric Siegel modular forms and then through that of Teichmüller
forms. As a consequence, our map coincides with the map ρ constructed by Igusa,
up to constants. The advantage of our construction is that it allows us to identify
a modular form that is in the preimage of a power of the discriminant of the curve
under this homomorphism.

2.3. Shioda invariants. We lastly turn our attention to the (integral) invariants
under study in this article. We say that polynomials in the coefficients of a binary
form corresponding to a hyperelliptic curve that are invariant under the natural
action of SL2(C) are invariants of the hyperelliptic curve, and furthermore that
such an invariant is integral if the polynomial has integer coefficients. Shioda gave
a set of generators for the algebra of invariants of binary octics over the complex
numbers [28], which are now called Shioda invariants. In addition, over the complex
numbers, Shioda invariants completely classify isomorphism classes of hyperelliptic
curves of genus 3. More specifically, the Shioda invariants are 9 weighted projective
invariants (J2, J3, J4, J5, J6, J7, J8, J9, J10), where Ji has degree i, and J2, . . . , J7

are algebraically independent, while J8, J9, J10 depend algebraically on the previous
Shioda invariants.

In [19], the authors showed that these invariants are also generators of the algebra
of invariants and determine hyperelliptic curves of genus 3 up to isomorphism in
characteristic p > 7. Later, in his thesis [3], Basson provided some extra invariants
that together with the classical Shioda invariants classify hyperelliptic curves of
genus 3 up to isomorphism in characteristics 3 and 7. The characteristic 5 case is
still an unpublished theorem of Basson.

3. Invariants of hyperelliptic curves and Siegel modular forms

The aim of this section is to establish an analogue for the hyperelliptic locus of
Corollary 3.3.2 in an article of Lachaud, Ritzenthaler and Zykin [17]. Our result,
while technically new, does not use any ideas that do not appear in the original
paper. We begin by establishing the basic ingredients necessary, using the same
notation as in [17] for clarity, and with the understanding that, when omitted, all
details may be found in loc. cit.

Roughly speaking, the main idea of the proof is to compare three different “fla-
vors” of modular forms and invariants of non-hyperelliptic curves (which will here
be replaced with invariants of hyperelliptic curves). The comparison goes as fol-
lows: to connect analytic Siegel modular forms to invariants of curves, the authors
first connect analytic Siegel modular forms to geometric modular forms. Following
this, geometric modular forms are connected to Teichmüller modular forms, via the
Torelli map and a result of Ichikawa. Finally Teichmüller forms are connected to
invariants of curves.

3.1. From analytic Siegel modular forms to geometric Siegel modular
forms. Let Ag be the moduli stack of principally polarized abelian schemes of
relative dimension g, and π : Vg → Ag be the universal abelian scheme with zero
section ε : Ag → Vg. Then the relative canonical line bundle over Ag is given in
terms of the rank g bundle of relative regular differential forms of degree one on
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Vg over Ag by the expression

ω =

g∧
ε∗Ω1

Vg/Ag
.

With this notation, a geometric Siegel modular form of genus g and weight h,
for h a positive integer, over a field k, is an element of the k-vector space

Sg,h(k) = Γ(Ag ⊗ k,ω⊗h).

If f ∈ Sg,h(k) and A is a principally polarized abelian variety of dimension g defined
over k equipped with a basis α of the 1-dimensional space ωk(A) =

∧g
Ω1
k(A), we

define

f(A,α) =
f(A)

α⊗h
.

In this way f(A,α) is an algebraic or geometric modular form in the usual sense,
i.e.,

(1) f(A, λα) = λ−hf(A,α) for any λ ∈ k×, and
(2) f(A,α) depends only on the k̄-isomorphism class of the pair (A,α).

Conversely, such a rule defines a unique f ∈ Sg,h.
We first compare these geometric Siegel modular forms to the usual analytic

Siegel modular forms:

Proposition 3.1 (Proposition 2.2.1 of [17]). Let Rg,h(C) denote the usual space
of analytic Siegel modular forms of genus g and weight h. Then there is an isomor-
phism

Sg,h(C)→ Rg,h(C),

given by sending f ∈ Sg,h(C) to

f̃(Z) =
f(AZ)

(2πi)gh(dz1 ∧ . . . ∧ dzg)⊗h
,

where AZ = Cg/(Zg + ZZg), Z ∈ Hg and each zi ∈ C.

Furthermore, this isomorphism has the following pleasant property:

Proposition 3.2 (Proposition 2.4.4 of [17]). Let (A, a) be a principally polarized
abelian variety of dimension g defined over C, let ω1, . . . , ωg be a basis of Ω1

C(A)
and let ω = ω1 ∧ . . . ∧ ωg ∈ ωC(A). If Ω = ( Ω1 Ω2 ) is a Riemann matrix obtained
by integrating the forms ωi against a basis of H1(A,Z) for the polarization a, then
Z = Ω−1

2 Ω1 is in Hg and

f(A,ω) = (2πi)gh
f̃(Z)

det Ωh2
.

3.2. From geometric Siegel modular forms to Teichmüller modular forms.
We now turn our attention to so-called Teichmüller modular forms, which were
studied by Ichikawa [8][9][10][11]. Let Mg be the moduli stack of curves of genus
g, let π : Cg →Mg be the universal curve, and let

λ =

g∧
π∗Ω

1
Cg/Mg

be the invertible sheaf associated to the Hodge bundle.
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With this notation, a Teichmüller modular form of genus g and weight h, for h
a positive integer, over a field k, is an element of the k-vector space

Tg,h(k) = Γ(Mg ⊗ k,λ⊗h).

As before, if f ∈ Tg,h(k) and C is a curve of genus g defined over k equipped with
a basis λ of λk(C) =

∧g
Ω1
k(C), we define

f(C, λ) =
f(C)

λ⊗h
.

Again, f(C, λ) is an algebraic modular form in the usual sense. Ichikawa proves:

Proposition 3.3 (Proposition 2.3.1 of [17]). The Torelli map θ : Mg → Ag, asso-
ciating to a curve C its Jacobian JacC with the canonical polarization j, satisfies
θ∗ω = λ, and induces for any field a linear map

θ∗ : Sg,h(k)→ Tg,h(k)

such that (θ∗f)(C) = θ∗(f(JacC)). In other words, for a basis λ of λk(C) and
fixing α such that a basis α of ωk(C) whose pullback to C equals λ,

f(JacC,α) = (θ∗f)(C, λ).

3.3. From Teichmüller modular forms to invariants of binary forms. We
finally connect the Teichmüller modular forms to invariants of hyperelliptic curves.
To this end, let E be a vector space of dimension 2 over a field k of characteristic
different from 2, and put G = GL(E) and Xd = Symd(E∗), the space of homoge-
neous polynomials of degree d on E. We define the action of G on Xd, u · F for
F ∈ Xd, by

(u · F )(x, z) = F (u−1(x, z)).

(By a slight abuse of notation we denote an element of E by the pair (x, z), effec-
tively prescribing a basis. Our reason to do so will become clear later.)

We say that Φ is an invariant of degree h if Φ is a regular function on Xd,
homogeneous of degree h (by which we mean that Φ(λF ) = λhΦ(F ) for λ ∈ k×

and F ∈ Xd) and

u · Φ = Φ for every u ∈ SL(E),

where the action u · Φ is given by

(u · Φ)(F ) = Φ(u−1 · F ).

We note the space of invariants of degree h by Invh(Xd). Note that in what follows
we will define an open set of X0

d, and be interested in the invariants of degree h
that are regular on that open set. The definition of invariance is the same, all that
changes is the set on which the function is required to be regular.

From now on we require d ≥ 6 to be even, and put g = d−2
2 , then the universal

hyperelliptic curve over the the affine space Xd = Symd(E) is the variety

Yd =

{
(F, (x, y, z)) ∈ Xd × P

(
1,
d

2
, 1

)
: y2 = F (x, z)

}
,

where P(1, g + 1, 1) is the weighted projective plane with x and z having weight 1
and y having weight g + 1. The non-singular locus of Xd is the open set

X0
d = {F ∈ Xd : Disc(F ) 6= 0}.
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We denote by Y0
d the restriction of Yd to the nonsingular locus. The projection

gives a smooth surjective k-morphism

π : Y0
d → X0

d

and its fiber over F is the nonsingular hyperelliptic curve CF : y2 = F (x, z) of genus
g. In this case we have en explicit k-basis for the space of holomorphic differentials
of CF , denoted Ω1(CF ), given by

ω1 =
dx

y
, ω2 =

xdx

y
, . . . , ωg =

xg−1dx

y
. (3.1)

Now let u ∈ G act on Yd by

u · (F, (x, y, z)) = (u · F, u · (x, y, z)),

where the action on F is given by

(u · F )(x, z) = F (u−1(x, z))

and the action of u on (x, y, z) is given by replacing the vector (x, z) by u(x, z) and
leaving y invariant. Then the projection

π : Y0
d → X0

d

is G-equivariant.
Then as in [17], the section

ω = ω1 ∧ . . . ∧ ωg
is a basis of the one-dimensional space Γ(X0

d,α), where

α =

g∧
π∗Ω

1
Y0
d/X

0
d
,

the Hodge bundle of the universal curve over X0
d. For every F ∈ X0

d, an element
u ∈ G induces an isomorphism

φu : CF → Cu·F ,

and this defines a linear automorphism φ∗u of α.
For any h ∈ Z, we define Γ(X0

d,α
⊗h)G the subspace of sections s ∈ Γ(X0

d,α
⊗h)

such that

φ∗u(s) = s

for every u ∈ G. Then if α ∈ Γ(X0
d,α) and F ∈ X0

d, we define

s(F, α) =
s(F )

α⊗h
.

This gives us the space that will be related to invariants of hyperelliptic curves,
which we now define.

In this setting we have the exact analogue of Proposition 3.2.1 of [17]:

Proposition 3.4. The section ω ∈ Γ(X0
d ,α) satisfies the following properties:

(1) If u ∈ G, then

φ∗uω = det(u)w0ω,

with

w0 =
dg

4
.
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(2) Let h ≥ 0 be an integer. The linear map

τ : Inv gh
2

(X0
d)→ Γ(X0

d,α
⊗h)G

Φ 7→ Φ · ω⊗h

is an isomorphism.

Proof. The proof of the first part goes exactly as in the original: For u ∈ G, we
have that

(φ∗uω)(F, ω) = c(u, F )ω(F, ω),

and we can conclude, via the argument given in [17], that c(u, F ) is independent of
F and a character χ of G, and that in fact

c(u, F ) = χ(u) = detuw0

for some integer w0. To compute w0 we again follow the original and set u = λI2
with λ ∈ k× to obtain

ωi(λ
−dF )

ωi(F )
=

xi−1dx√
λ−dF (x, y)

÷ xi−1dx√
F (x, y)

= λd/2,

since y =
√
F (x, y), for each i = 1, . . . , g. Hence

(φ∗uω)(F, ω) = λdg/2 = det(u)w0

and since det(u) = λ2 we have

w0 =
dg

4
=
d(d− 2)

8
.

The proof of the second part also goes exactly as in the original, with the re-
placement of a denominator of 4 instead of 3 in the quantity that is denoted w in
[17]. �

3.4. Final step. With this in hand, we immediately obtain the analogue of Propo-
sition 3.3.1 of [17]. We begin by setting up the notation we will need. We continue
to have d ≥ 6 an even integer and g = d−2

2 . Because the fibers of π : Y0
d → X0

d are
smooth hyperelliptic curves of genus g, by the universal property of Mg, we get a
morphism

p : X0
g →Mhyp

g ,

where this time Mhyp
g is the hyperelliptic locus of the moduli stack Mg of curves

of genus g. By construction we have p∗λ = α, and therefore we obtain a morphism

p∗ : Γ(Mhyp
g ,λ⊗h)→ Γ(X0

d,α
⊗h).

As in [17], by the universal property of Mhyp
g , we have

φ∗u ◦ p∗(s) = p∗(s)

for s ∈ Γ(Mhyp
g ,λ⊗h). From this we conclude that p∗(s) ∈ Γ(X0

d ,α)G, and combin-
ing this with the second part of Proposition 3.4, which establishes the isomorphism
of Γ(X0

d ,α)G and Invgh(X0
d), we obtain:
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Proposition 3.5. For any even h ≥ 0, the linear map given by σ = τ−1 ◦ p∗ is a
homomorphism

σ : Γ(Mhyp
g ,λ⊗h)→ Inv gh

2
(X0

d)

satisfying

σ(f)(F ) = f(CF , (p
∗)−1ω)

for any F ∈ X0
d and any section f ∈ Γ(Mhyp

g ,λ⊗h).

This is the last ingredient necessary to show the analogue of Corollary 3.3.2 of
[17].

Corollary 3.6. Let f ∈ Sg,h(C) be a geometric Siegel modular form, f̃ ∈ Rg,h(C)
be the corresponding analytic modular form, and Φ = σ(θ∗f) the corresponding
invariant. Let further F ∈ X0

d give rise to the curve CF equipped with the basis
of regular differentials given by the forms ω1, . . . , ωg given in equation (3.1). Then
if Ω = ( Ω1 Ω2 ) is a Riemann matrix for the curve CF obtained by integrating
the forms ωi against a symplectic basis for the homology group H1(CF ,Z) and
Z = Ω−1

2 Ω1 ∈ Hg, we have

Φ(F ) = (2iπ)gh
f̃(Z)

det Ωh2
.

The last two results display a connection between Siegel modular forms of even
weight restricted to the hyperelliptic locus and invariants of binary forms of degree
2g + 2.

4. Denominators of modular invariants and primes of bad reduction

In this Section we prove our main theorem, Theorem 1.1. The proof of this result
has three main ingredients. In the previous Section, we have already adapted to
the case of hyperelliptic curves a result of Lachaud, Ritzenthaler and Zykin [17]
that connects invariants of curves to Siegel modular forms. In this Section, we
now generalize a result of Lockhart [20] to specifically connect the discriminant of
a hyperelliptic curve to the Siegel modular form Σ140 of equation (1.1). Then, we
deduce the divisibility of Σ140 by an odd prime p to the bad reduction of the curve
using a result of Kılıçer, Lauter, Lorenzo Garćıa, Newton, Ozman, and Streng [14].

4.1. The modular discriminant. We first turn our attention to the work of
Lockhart, [20, Definition 3.1], in which the author gives a relationship between the
discriminant ∆ of a hyperelliptic curve of genus g given by y2 = F (x, 1), which is
related to the discriminant D of the binary form F (x, z) by the relation

∆ = 24gD (4.1)

(see [20, Definition 1.6]), and a Siegel modular form similar to Σ140. From a compu-
tational perspective, the issue with the Siegel modular form proposed by Lockhart
is that its value, as written, will be nonzero only for Z a period matrix in a certain
Γ(2)-equivalence class. Indeed, on page 740, the author chooses the traditional
symplectic basis for H1(C,Z) which is given by Mumford [23, Chapter III, Sec-
tion 5]. If one acts on the symplectic basis by a matrix in Γ(2), the value of the
form given by Lockhart will change by a nonzero constant (the appearance of the
principal congruence subgroup of level 2 is related to the use of half-integral theta
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characteristics to define the form), but if one acts on the symplectic basis by a
general element of Sp(6,Z), the value of the form might become zero.

As explained in [2], in general to allow for the period matrix to belong to a
different Γ(2)-equivalence class, one must attach to the period matrix an element
of a set defined by Poor [25], which we call an η-map. Therefore in general one must
either modify Lockhart’s definition to vary with a map η admitted by the period
matrix or use the form Σ140, which is nonzero for any hyperelliptic period matrix.
We give here the connection between these two options. We begin by describing
the maps η that can be attached to a hyperelliptic period matrix. We refer the
reader to [25] or [2] for full details.

Throughout, let C be a smooth hyperelliptic curve of genus g defined over C
equipped with a period matrix Z for its Jacobian, and for which the branch
points of the degree 2 morphism π : C → P1 have been labeled with the sym-
bols {1, 2, . . . , 2g + 1,∞}. We note that this choice of period matrix yields an
Abel–Jacobi map,

AJ : Jac(C)→ Cg/(Zg + ZZg).
We begin by defining a certain combinatorial group we will need.

Definition 4.1. Let B = {1, 2, . . . , 2g + 1,∞}. For any two subsets S1, S2 ⊆ B,
we define

S1 ◦ S2 = (S1 ∪ S2)− (S1 ∩ S2),

the symmetric difference of the two sets. For S ⊆ B we also define Sc = B − S,
the complement of S in B. Then we have that the set

{S ⊆ B : #S ≡ 0 (mod 2)}/{S ∼ Sc}
is a commutative group under the operation ◦, of order 22g, with identity ∅ ∼ B.

Given the labeling of the branch points of C, there is a group isomorphism (see
[23, Corollary 2.11] for details) between the 2-torsion of the Jacobian of C and the
group GB in the following manner: To each set S ⊆ B such that #S ≡ 0 (mod 2),
associate the divisor class of the divisor

eS =
∑
i∈S

Pi − (#S)P∞. (4.2)

Then we can assign a map which we denote η by sending S ⊆ B to the unique
vector ηS in (1/2)Z2g/Z2g such that AJ(eS) = (ηS)2 + Z(ηS)1. Since there are
(2g+ 2)! different ways to label the 2g+ 2 branch points of a hyperelliptic curve C
of genus g, there are several ways to assign a map η to a matrix Z ∈ Hg. It suffices
for our purposes to have one such map η.

Given a map η attached to Z, one may further define a set Uη ⊆ B:

Uη = {i ∈ B − {∞} : e∗(η({i})) = −1} ∪ {∞},
where for ξ = ( ξ1 ξ2 ) ∈ (1/2)Z2g, we write

e∗(ξ) = exp(4πiξT1 ξ2),

as in equation (2.2).
Then following Lockhart [20, Definition 3.1], we define

Definition 4.2. Let Z ∈ Hg be a hyperelliptic period matrix. Then we write

φη(Z) =
∏
T∈I

ϑ[ηT◦Uη ](0, Z)4 (4.3)
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where I is the collection of subsets of {1, 2, . . . , 2g + 1,∞} that have cardinality
g + 1.

Remark 4.3. We note that in this work we write our hyperelliptic curves with a
model of the form y2 = F (x, 1), where F is of degree 2g + 2. In other words we
do not require one of the Weierstrass points of the curve to be at infinity. It is for
this reason that we modify Lockhart’s definition above, so that the analogue of his
Proposition 3.2 holds for F of degree 2g + 2 rather than 2g + 1.

The Siegel modular form that we define here is equal to the one given in his
Definition 3.1 for the following reason: Because T c ◦Uη = (T ◦Uη)c, it follows that
ηT◦Uη ≡ ηT c◦Uη (mod Z). Therefore ϑ[ηT◦Uη ](0, Z) differs from ϑ[ηT c◦Uη ](0, Z) by
at worse their sign. Since we are raising the theta function to the fourth power, the
sign disappears, and the product above is equal to the product given by Lockhart, in
which T ranges only over the subsets of {1, 2, . . . , 2g + 1} of cardinality g + 1, but
each theta function is raised to the eighth power.

We now recall Thomae’s formula, which is proven in [5, 23] for Mumford’s period
matrix, obtained using his so-called traditional choice of symplectic basis for the
homology group H1(C,Z), and in [2] for any period matrix.

Theorem 4.4 (Thomae’s formula). Let C be a hyperelliptic curve defined over C
and fix y2 = F (x, 1) =

∏2g+2
i=1 (x−ai) a model for C. Let Ω = ( Ω1 Ω2 ) be a Riemann

matrix for the curve obtained by integrating the forms ωi of equation (3.1) against
a symplectic basis for the homology group H1(C,Z) and Z = Ω−1

2 Ω1 ∈ Hg be the
period matrix associated to this symplectic basis. Finally, let η be an η-map attached
to the period matrix Z. For any subset S of B of even cardinality, we have that

ϑ[ηS◦Uη ](0, Z)4 = c
∏
i<j
i,j∈S

(ai − aj)
∏
i<j
i,j 6∈S

(ai − aj),

where c is a constant depending on Z and on the model for C.

We now restrict our attention to the case of genus g = 3 which is of interest to
us in this work. We note that since Z is a hyperelliptic period matrix, by [12] a
single one of its even theta constants vanishes, and therefore we have

φη(Z) = Σ140(Z).

We then have the following Theorem, which is a generalization to our setting of
Proposition 3.2 of [20] for genus 3 hyperelliptic curves:

Theorem 4.5. Let C be a hyperelliptic curve defined over C and fix y2 = F (x, 1) =∏2g+2
i=1 (x− ai) a model for C. Let Ω = ( Ω1 Ω2 ) be a Riemann matrix for the curve

obtained by integrating the forms ωi of equation (3.1) against a symplectic basis for
the homology group H1(C,Z) and Z = Ω−1

2 Ω1 ∈ Hg be the period matrix associated
to this symplectic basis. Then

∆15 = 2180π420 det(Ω2)−140Σ140(Z), (4.4)

where we recall that ∆ is the discriminant of the model that we have fixed for C.

Proof. We show how to modify Lockhart’s proof. We first remind the reader that
∆ = 212D by [20, Definition 1.6], where again D is the discriminant of the binary
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form F (x, z). Then as Lockhart does, we use Thomae’s formula:

ϑ[ηT◦Uη ](0, Z)4 = c
∏
i<j
i,j∈T

(ai − aj)
∏
i<j
i,j 6∈T

(ai − aj),

if T is a subset of {1, 2, . . . , 7,∞} of cardinality 4. Taking the product over all such
T , we get

φη(Z) = c70
∏
T

 ∏
i<j
i,j∈T

(ai − aj)
∏
i<j
i,j 6∈T

(ai − aj)

 ,

since
(

8
4

)
= 70.

We now count how many times each factor of (ai− aj) appears on the left-hand
side:

#{T : i, j ∈ T or i, j 6∈ T} = #{T : i, j ∈ T}+ #{T : i, j 6∈ T}

=

(
6

2

)
+

(
6

4

)
= 2

(
6

4

)
= 30.

Therefore,

φη(Z) = c70
∏
i<j
i,j∈B

(ai − aj)30,

= c70D15,

= 2−180c70∆15.

Since Σ140(Z) = φη(Z) when Z is hyperelliptic, we therefore get that

∆15 = 2180c−70Σ140(Z). (4.5)

We now compute the value of the constant c. We denote by Z̃ the period matrix
associated to Mumford’s so-called traditional choice of a symplectic basis for the
homology group H1(C,Z). Lockhart showed that:

∆15 = 2180π420 det(Ω̃2)−140Σ140(Z̃), (4.6)

where Ω̃2 is the right half of the Riemann matrix obtained by integrating the basis
of forms ωi of equation (3.1) against Mumford’s traditional basis for homology.

Now consider again our arbitrary period matrix Z and let M = (A B
C D ) ∈ Sp(6,Z)

be such that M · Z̃ = Z. Since Σ140 is a Siegel modular form of weight 140 for
Sp(6,Z), it follows that Σ140(Z) = det(CZ̃+D)140Σ140(Z̃) and combining equations
(4.5) and (4.6), we obtain

c = π−6 det(CZ̃ +D)2 det(Ω̃2)2

= π−6 det(Z̃CT +DT )2 det(Ω̃2)2

= π−6 det(Ω2)2.

To obtain the last equality we used the fact that Ω2 = Ω̃1C
T + Ω̃2D

T . This
concludes the proof. �
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Up to the factors of 2 appearing in the formula, this Theorem therefore realizes
Corollary 3.6, as it connects explicitly an invariant of a hyperelliptic curve to a
Siegel modular form. We furthermore note that the proof above suggests that the
constant c in Thomae’s formula for a general period matrix Z of the Jacobian of a
hyperelliptic curve of genus g is π−2g det(Ω2)2. Finally, the proof of Theorem 4.5
could be easily generalized to genus g > 3 if φη were shown to be a modular form
for Sp(2g,Z). We believe this is true, but leave it as future work.

Remark 4.6. Let ng =
(

2g+1
g

)
. In [26, p. 291], for Z a hyperelliptic period matrix,

the author defines the set M = (ξ1, . . . , ξng ) to be the unique, up to permutations,
sequence of mutually distinct even characteristics satisfying:

P (M)(Z) = ϑ[ξ1](0, Z)ϑ[ξ2](0, Z) . . . ϑ[ξng ](0, Z) 6= 0.

We note that the eighth power of this form is exactly the form which we denote here
by φη, since θ[ηT◦Uη ](0, Z) 6= 0 if and only if T has cardinality g + 1, by Mumford
and Poor’s Vanishing Criterion for hyperelliptic curves [25, Proposition 1.4.17], and
in the product giving φη, each characteristic appears twice.

The author then introduces the modular form

F (Z) =
∑

σ∈Sp(2g,F2)

P (σ ◦M)8(Z),

where Sp(2g,F2) is the group of 2g×2g symplectic matrices with entries in F2, and
where the action of Sp(2g,F2) on the set M is given in the following manner: For
σ = (A B

C D ) ∈ Sp(2g,F2) and m ∈ (1/2)Z2g (mod Z2g) a characteristic, we write

σ ◦m =

(
D −C
−B A

)
m+

(
diag(CTD)
diag(ATB)

)
.

Then P (σ ◦M) is simply the form P (M) but with each characteristic ξi replaced
with σ ◦ ξi.

For Z a hyperelliptic matrix, P (σ ◦M)(Z) is nonzero exactly when σ ◦M is a
permutation of M , by definition of the set M . Therefore, up to a constant, F is
simply Σ140 on the hyperelliptic locus, and therefore F − Σ140 is of the form aχ18

for a ∈ C.
The author then proves that ρ(F ) = Dgng/(2g+1), where as before D is the dis-

criminant of the binary form F (x, z) such that the hyperelliptic curve is given by
the equation y2 = F (x, 1). We note that the power given here corrects an error in
the manuscript [26], and agrees with the result we obtain in this paper.

4.2. Proof of Theorem 1.1. We are now in a position to prove Theorem 1.1.

For simplicity, we replace f
140

gcd(k,140) with h̃, a Siegel modular form of weight k̃ =
140k

gcd(k,140) , and let ` = k
gcd(k,140) . Note that k̃ = 140` and is divisible by 4.

Using the notation of Section 3, the analytic Siegel modular form h̃ corresponds
to a geometric Siegel modular form h by Proposition 3.1. Let Φ = σ(θ∗h) be the
corresponding invariant of the hyperelliptic curve. Then by Corollary 3.6, if the
hyperelliptic curve y2 = F (x, 1) has period matrix Z, we have

Φ(F ) = (2πi)3k̃ det(Ω2)−k̃h(Z).

Therefore we have
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j(Z) =
h

Σ`140

(Z) =
(2πi)−3k̃ det(Ω2)k̃Φ(F )

π−420` det(Ω2)140` Disc(F )15`

= 2−
140k

gcd(k,140)
Φ(F )

Disc(F )15`
.

We note that since Φ is assumed to be an integral invariant, it does not have a
denominator when evaluated at F ∈ Z[x, z]. We have thus obtained an invariant
as in [14, Theorem 7.1] (we note that loc. cit. assumes throughout that invariants
of hyperelliptic curves are integral, see the discussion between Proposition 1.4 and
Theorem 1.5), having negative valuation at the prime p. We conclude that C has
bad reduction at this prime.

5. Computing modular invariants

In this Section, we consider certain modular functions having Σ140 in the de-
nominator. We then present a list of hyperelliptic curves of genus 3 for which we
computed the primes of bad reduction. As illustration of Theorem 1.1, we imple-
mented and computed with high precision the modular functions involving the form
Σ140 at period matrices corresponding to curves in our list.

5.1. Computation of the modular invariants. For a given hyperelliptic curve
model, we used the Molin-Neurohr Magma code [21] to compute a first period
matrix and then applied the reduction algorithm given in [13] and implemented by
Sijsling in Magma to obtain a so-called reduced period matrix that is Sp(2g,Z)-
equivalent to the first matrix, but that provides faster convergence of the theta
constants.

Once we obtained a reduced period matrix Z, using Labrande’s Magma imple-
mentation for fast theta function evaluation [16], we computed the 36 even theta
constants for these reduced period matrices, up to 30,000 bits of precision. 2 Fi-
nally, from these theta constants we computed the modular invariants that we
define below.

To define our modular invariants, we consider the following Siegel modular forms.
Let h4 be the Eisenstein series of weight 4 given by

h4(Z) =
1

23

∑
ξ

θ[ξ]8(Z), (5.1)

where ξ ranges over all even theta characteristics. We denote by α12 the modular
form of weight 12 defined by Tsuyumine [31]:

α12(Z) =
1

23 · 32

∑
(ξi)

(θ[ξ1](Z)θ[ξ2](Z)θ[ξ3](Z)θ[ξ4](Z)θ[ξ5](Z)θ[ξ6](Z))4, (5.2)

where (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) is a maximal azygetic system of even theta character-
istics. By this we mean that (ξi) is a sextuple of even theta characteristics such

2Apart from curves (1) and (6), we could recognize these values as algebraic numbers with
15,000 bits of precision; for curve (1), we needed 30,000 bits of precision. In fact, for CM field
(6), the theta constants obtained using the Magma implementation [16] for high precision (i.e.

≥ 30, 000 bits) were not conclusive. We therefore ran an improved implementation of the naive
method to get these values up to 30,000 bits of precision, and recognized the invariants as algebraic
numbers after multiplying by the expected denominators.
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that the sum of any three among these six is odd. Notice that α12 is one of the 35
generators given by Tsuyumine [30] of the graded ring A(Γ3) of modular forms of
degree 3 and cannot be written as a polynomial in Eisenstein series.

In the computations below, we consider thus the following three modular func-
tions:

j1(Z) =
h35

4

Σ140
(Z), j2(Z) =

α35
12

Σ3
140

(Z), j3(Z) =
h5

4α
10
12

Σ140
(Z). (5.3)

5.2. Invariants of hyperelliptic curves of genus 3. We say that a genus 3 curve
C over a field M has complex multiplication (CM) by an order O in a sextic CM
field K if there is an embedding O ↪→ End(Jac(C)M ). The curves numbered (1)–(8)
below are the conjectural complete list of hyperelliptic CM curves of genus 3 that
are defined over Q. As we mentioned in the introduction, they are taken from a list
that can be found in [15]. We note more specifically that the curves (5), (6) and (8)
were found by Balakrishnan, Ionica, Kılıçer, Lauter, Somoza, Streng, and Vincent,
and (1), (2), (3), and (7) were computed by Weng [32]. Moreover, the hyperelliptic
model of the curve with complex multiplication by the ring of integers in CM field
(3) was proved to be correct by Tautz, Top, and Verberkmoes [29, Proposition 4],
and the hyperelliptic model of the curve with complex multiplication by the ring
of integers in CM field (4) was given by Shimura and Taniyama [27] (see Example
(II) on page 76). For these examples, OK denotes the ring of integers of the CM
field K.

The curves numbered (9)–(10) are non-CM hyperelliptic curves presented in [1].
They were already used there for experiments, this time related to the Chabauty-
Coleman method. The curves numbered (11)–(13) are non-CM modular hyperellip-
tic curves; a list, which contains X0(33), X0(39) and X0(41), of modular hyperellip-
tic curves are given by Ogg [24], then Galbraith in his Ph.D thesis writes equations
for these curves [6].

When we say that a prime is of bad reduction, we will mean that it is a prime
of geometrically bad reduction of the curve. For each curve below, the odd primes
of bad reduction are computed using the results in [18, Section 3] if p > 7 and in
Proposition 4.5 and Corollary 4.6 in [4] if p = 3, 5, 7. We denote the discriminant
of a curve C by ∆, as before.

(1) ([32, §6 - 3rd ex.]) Let K = Q[x]/(x6 + 13x4 + 50x2 + 49), which is of class
number 1 and contains Q(i). A model for the hyperelliptic curve with CM
by OK is

C : y2 = x7 + 1786x5 + 44441x3 + 278179x

with ∆ = −218 · 724 · 1112 · 197. The odd primes of bad reduction of C are
7 and 11.

(2) ([32, §6 - 2nd ex.]) Let K = Q[x]/(x6 + 6x4 + 9x2 + 1), which is of class
number 1 and contains Q(i). A model for the hyperelliptic curve with CM
by OK is

C : y2 = x7 + 6x5 + 9x3 + x

with ∆ = −218 · 38. The only odd prime of bad reduction of C is 3.



MODULAR INVARIANTS FOR GENUS 3 HYPERELLIPTIC CURVES 17

(3) ([32, §6 - 1st ex.]) Let K = Q[x]/(x6 + 5x4 + 6x2 + 1) = Q(ζ7 + ζ−1
7 , i),

which is of class number 1. A model for the hyperelliptic curve with CM
by OK is

C : y2 = x7 + 7x5 + 14x3 + 7x

with ∆ = −218 · 77. The curve C has good reduction at each odd p 6= 7
and potentially good reduction at p = 7.

(4) Let K = Q[x]/(x6 + 7x4 + 14x2 + 7) = Q(ζ7), which is of class number 1
and contains Q(

√
−7). A model for the hyperelliptic curve with CM by OK

is

C : y2 = x7 − 1

with ∆ = −212 · 77. The curve C has good reduction at each odd p 6= 7
and potentially good reduction at p = 7.

(5) Let K = Q[x]/(x6 + 42x4 + 441x2 + 847), which is of class number 12 and
contains Q(

√
−7). A model for the hyperelliptic curve with CM by OK is

C : y2 + x4y = −7x6 + 63x4 − 140x2 + 393x− 28

with ∆ = −38 · 524 · 77. The odd primes of bad reduction of C are 3 and 5.

(6) Let K = Q[x]/(x6 + 29x4 + 180x2 + 64), which is of class number 4 and
contains Q(i). A model for the hyperelliptic curve with CM by OK is

C : y2 = 1024x7 − 12857x5 + 731x3 + 688x

with ∆ = −260 · 1124 · 437. The only odd prime of bad reduction of C is 11.

(7) ([32, §6 - 4th ex.]) Let K = Q[x]/(x6 +21x4 +116x2 +64), which is of class
number 4 and contains Q(i). A model for the hyperelliptic curve with CM
by OK is

C : y2 = 64x7 − 124x5 + 31x3 + 31x

with ∆ = −244 · 317. The curve has potentially good reduction at 31.

(8) Let K = Q[x]/(x6 + 42x4 + 441x2 + 784), which is of class number 4 and
contains Q(i). A model for the hyperelliptic curve with CM by OK is

C : y2 = 16x7 + 357x5 − 819x3 + 448x

with ∆ = −248 · 38 · 77. The only odd prime of bad reduction of C is 3.

(9) ([1]) The hyperelliptic curve

C : y2 = 4x7 + 9x6 − 8x5 − 36x4 − 16x3 + 32x2 + 32x+ 8

is a non-CM curve with ∆ = 237 ·1063. The only odd prime of bad reduction
of C is 1063.

(10) ([1]) The hyperelliptic curve

C : y2 = −4x7 + 24x6 − 56x5 + 72x4 − 56x3 + 28x2 − 8x+ 1

is a non-CM curve with ∆ = −228 ·34 ·599. The odd primes of bad reduction
of C are 3 and 599.
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(11) ([6][24]) The hyperelliptic curve

C : y2 = x8 + 10x6 − 8x5 + 47x4 − 40x3 + 82x2 − 44x+ 33

is the modular curve X0(33). It has ∆ = 228 · 312 · 116. The odd primes of
bad reduction of C are 3 and 11.

(12) ([6][24]) The hyperelliptic curve

C : y2 = x8 − 6x7 + 3x6 + 12x5 − 23x4 + 12x3 + 3x2 − 6x+ 1

is the modular curve X0(39). It has ∆ = 228 · 38 · 134. The odd primes of
bad reduction of C are 3 and 13.

(13) ([6][24]) The hyperelliptic curve

C : y2 = x8 − 4x7 − 8x6 + 10x5 + 20x4 + 8x3 − 15x2 − 20x− 8

is the modular curve X0(41). It has ∆ = −228 · 416. The only odd prime
of bad reduction of C is 41.

We recall that the discriminant ∆ of a hyperelliptic curve C of genus 3 is an
invariant of degree 14 (Section 1.5 of [19]). For our computations, we considered
the following absolute3 invariants, derived using the Shioda invariants:

J7
2/∆, J

14
3 /∆3, J7

4/∆
2, J14

5 /∆5, J7
6/∆

3, J2
7/∆, J

7
8/∆

4, J14
9 /∆9, J7

10/∆
5. (5.4)

The numerical data in Table 5.1 shows the tight connection between the odd
primes appearing in the denominators of these invariants, the odd primes of bad
reduction for the hyperelliptic curve, and the odd primes dividing the denominators
of j1, j2 and j3. In the denominators of j1, j2 and j3, we intentionally omitted the
denominators of the formulae (5.1) and (5.2), i.e. 23 and 23 · 32. Note that we do
not have a proof for the fact that h4 and α12 fulfill the condition in Theorem 1.1,
i.e. that their corresponding curve invariants are integral. One can see that for all
the curves we considered, a prime ≥ 3 appears in the denominator of these modular
invariants if and only if it is a prime of bad reduction for the curve. Our results
are evidence that either the condition in Theorem 1.1 is a reasonable one, or that
the result in this theorem may be extended to a larger class of modular forms.

Note that the Shioda invariants J2, J3, . . . , J10 are not integral and their denom-
inators factor as products of powers of 2,3,5 and 7 (see [19] for a set of formulae).
This is the reason why these primes may appear in the denominators of the Shioda
invariants, even when they are not primes of bad reduction. However, one can see
that the primes > 7 appearing in the denominators of the invariants in Eq. (5.4)
are exactly the primes of bad reduction, which confirms Theorem 7.1 in [14]. In
the Table, all the entries marked by − represent values equal to zero.

3An absolute invariant is a ratio of homogeneous invariants of the same degree.
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We note that because of its large weight, Σ140 is expensive to compute, so the
modular invariants computed here may not be the most convenient to use from
a computational point of view. As suggested by Lockhart [20, p. 741], it might
be worth finding a Siegel modular form that corresponds to a lower power of the
discriminant, especially if one is to pursue further the goal of finding modular
expressions for the Shioda invariants. We note that Tsuyumine [30] introduced the
modular form χ28 of weight 28 such that ρ(χ28) = D3, where as earlier D is the
discriminant of the binary form F (x, z) such that the hyperelliptic curve is given by
y2 = F (x, z). The reason for which we chose to work with Σ140 in the computations
is because it was straightforward to implement.

Finally, we note that in the non-hyperelliptic curve case, one could show with
similar reasoning as in Theorem 1.1 that a modular function having a power of
χ18 in the denominator, when evaluated at a plane quartic period matrix, has
denominator divisible by the primes of bad reduction or of hyperelliptic reduction of
the curve associated to the period matrix. In this direction, a relationship between
χ18 and the discriminant of the non-hyperelliptic curve was shown by Lachaud,
Ritzenthaler, and Zykin [17, Theorem 4.1.2, Klein’s formula].

6. Conclusion

We have displayed a connection between the values of certain geometric modular
forms of even weight restricted to the hyperelliptic locus and the primes of bad
reduction of hyperelliptic curves. A complete description of the Shioda invariants
of hyperelliptic curves in terms of modular forms deserves further investigation.
However, our result, combined with the bounds obtained in [14] on primes of bad
reduction for hyperelliptic curves, yields a bound on the primes appearing in the
denominators of modular invariants.
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