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Abstract— This paper introduces a notion of topological
entropy for switched systems, formulated using the minimal
number of initial states needed to approximate all initial states
within a finite precision. We show that it can be equivalently
defined using the maximal number of initial states separable
within a finite precision, and introduce switching-related quan-
tities such as the active time of each mode, which prove to be
useful in calculating the topological entropy of switched linear
systems. For general switched linear systems, we show that the
topological entropy is independent of the set of initial states,
and establish upper and lower bounds using the active-time-
weighted averages of the norms and traces of system matrices in
individual modes, respectively. For switched linear systems with
scalar-valued state or simultaneously diagonalizable matrices,
we derive formulae for the topological entropy using active-
time-weighted averages of eigenvalues, which can be extended
to the case with simultaneously triangularizable matrices to
obtain an upper bound. In these three cases with special matrix
structure, we also provide more general but more conservative
upper bounds for the topological entropy.

I. INTRODUCTION

In systems theory, topological entropy describes the in-
formation accumulation needed to approximate trajectories
within a finite precision, or the complexity growth of a
system acting on sets with finite measure. The latter idea
corresponds to Kolmogorov’s original definition in [1], and
shares a striking resemblance to Shannon’s information en-
tropy [2]. Adler first defined topological entropy as an ex-
tension of Kolmogorov’s metric entropy, quantifying a map’s
expansion by the minimal cardinality of subcover refinements
[3]. An alternative definition using the maximal number of
trajectories separable within a finite precision was introduced
by Bowen [4] and independently Dinaburg [5]. Equivalence
between the two definitions above was established in [6].
Most results on topological entropy are for time-invariant
systems, as time-varying dynamics introduce complexities
which require new methods to understand [7], [8]. This
work on the topological entropy of switched linear systems
provides an initial study on some of these complexities.

Entropy has played a prominent role in control theory,
in which information flow appears between sensors and
actuators for maintaining or inducing desired properties.
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Nair et al. first introduced topological feedback entropy
for discrete-time systems [9], following the construction in
[3]. Their definition extended the classical entropy notions,
notably in allowing for non-compact state spaces, but still
described the uncertainty growth as time evolves. Colonius
and Kawan later proposed a notion of invariance entropy for
continuous-time systems [10], which is closer in spirit to
the trajectory-counting formulation in [4], [5]. In [11], the
two notions above were summarized and an equivalence was
established between them. The results of [10] were extended
from set invariance to exponential stabilization in [12].

This paper studies the topological entropy of switched
linear systems. Switched systems have become a popular
topic in recent years (see, e.g., [13] and references therein).
It is well-known that, in general, a switched system does not
inherit stability properties of the individual modes. In [14], it
was shown that a switched linear system generated by a finite
family of pairwise-commuting Hurwitz matrices is globally
uniformly exponentially stable. This result has been gener-
alized to the cases where the Lie algebra generated by the
system matrices is nilpotent [15], solvable [16], [17], or has a
compact semisimple part [18], [19]. In particular, a nilpotent
or solvable Lie algebra implies that the system matrices are
simultaneously triangularizable, which motivates us to study
the topological entropy of such switched linear systems.

Our interest in studying entropy of switched systems is
strongly motivated by its relation to the data-rate require-
ments in control systems. For a linear time-invariant control
system, it has been shown that the minimal data rate for
stabilization equals the topological entropy in open-loop [20],
[21]. For switched systems, however, neither the minimal
data rate nor the topological entropy is well-understood.
Sufficient data rates for feedback stabilization of switched
linear systems were established in [22], [23]. The paper
[24] extended the estimation entropy from [25] to switched
systems and formulated similar data-rate conditions. In this
work we aim at contributing to these efforts.

The main contribution of this paper is the construction of
formulae and bounds for the topological entropy of switched
linear systems. Section II introduces the entropy definition
and switching-related quantities such as the active time of
each mode, which prove to be useful in calculating the
topological entropy. Section III proves that the topological
entropy of a switched linear system is independent of the
set of initial states, and establishes upper and lower bounds
for the topological entropy of a general switched linear
system using active-time-weighted averages of the norms and
traces of systems matrices in individual modes, respectively.
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Sections IV–VI provide formulae and tighter bounds for
the topological entropy of switched linear systems with
special matrix structure. Section IV considers the case with a
scalar-valued state, and derives a formula for the entropy—
which equals the previous lower bound for the general
case—and also general upper bounds. Section V examines
the case with simultaneously diagonalizable matrices by
deriving a formula for the entropy using the component-
wise active-time-weighted averages of eigenvalues, relating
it to the entropy in each scalar component or in each mode,
and establishing general upper bounds. Section VI studies
the more general case with simultaneously triangularizable
matrices, and derives an upper bound for the entropy us-
ing the active-time-weighted averages of eigenvalues in the
first scalar component and eigenvalue differences between
adjacent scalar components, as well as more general upper
bounds. In the proof, we derive a formula for solutions of
switched triangular systems, which is of independent interest.
Section VII remarks on a future research topic.

Notations: By default, all logarithms are natural loga-
rithms. Let R+ := [0,∞) and N := {0, 1, . . .}. For a scalar
a ∈ C, denote by Re(a) and Im(a) its real and imaginary
parts, respectively. For a vector v ∈ Cn, denote by vi its
i-th scalar component. For a matrix A ∈ Cn×n, denote
by spec(A), tr(A), and det(A) its spectrum, trace, and
determinant, respectively. For a set E ⊂ Cn, denote by |E|
and vol(E) its cardinality and volume (Lebesgue measure),
respectively. Denote by ‖v‖∞ := maxi |vi| the ∞-norm of
a vector v, and by ‖A‖∞ := maxi

∑
j |aij | the (induced)

∞-norm of a matrix A = [aij ].

II. PRELIMINARIES

A. Entropy definitions

Consider a family of continuous-time dynamical systems

ẋ = fp(x), p ∈ P (1)

with the state x ∈ Rn, in which each system is labeled by
an index p from a finite index set P , and all the functions
fp : Rn → Rn are locally Lipschitz. We are interested in the
corresponding switched system defined by

ẋ = fσ(x), x(0) ∈ K, (2)

where σ : R+ → P is a right-continuous, piecewise constant
switching signal, and K ⊂ Rn is a compact set of initial
states with a nonempty interior. We call the system with
index p in (1) the p-th mode of (2), and σ(t) the active mode
at time t. Denote by ξσ(x, t) the solution of (2) at time t with
switching signal σ and initial state x. For fixed σ and x,
the trajectory ξσ(x, ·) is absolutely continuous and satisfies
the differential equation (2) away from discontinuities of σ,
which are called switching times, or simply switches. We
assume there is at most one switch at a time, and finitely
many switches on a finite time interval (i.e., the set of
switches has no accumulation point). Denote by Nσ(t, τ)
the number of switches on an interval (τ, t].

Let ‖·‖ be some chosen norm on Rn and the corresponding
induced norm on Rn×n, and σ a switching signal. Given a

time horizon T ≥ 0 and a radius ε > 0, we define the
following open ball in K with center x:

Bfσ (x, ε, T ) :=
{
x′ ∈ K : max

t∈[0,T ]
‖ξσ(x′, t)−ξσ(x, t)‖ < ε

}
.

(3)
We say a finite set of points E ⊂ K is (T, ε)-spanning if

K =
⋃

x̂∈E
Bfσ (x̂, ε, T ), (4)

or equivalently, for each x ∈ K, there is a point x̂ ∈ E such
that ‖ξσ(x, t) − ξσ(x̂, t)‖ < ε for all t ∈ [0, T ]. Denote by
S(fσ, ε, T,K) the minimal cardinality of a (T, ε)-spanning
set. The topological entropy of the switched system (2) with
initial set K and switching signal σ is defined as

h(fσ,K) := lim
ε↘0

lim sup
T→∞

1

T
logS(fσ, ε, T,K). (5)

Note that h(fσ,K) is nonnegative. For brevity, we will
refer to h(fσ,K) simply as the (topological) entropy of the
switched system (2) in the remainder of the paper.

Remark 1. In light of [26, Prop. 3.1.2], the value of h(fσ,K)
is the same for all metrics defining the same topology. Hence
‖·‖ can be arbitrary. For concreteness, we take ‖·‖ to be the
∞-norm of a vector or the (induced) ∞-norm of a matrix.

Next, we introduce an equivalent definition for the entropy
of the switched system (2). With T and ε given as before,
we say a finite set of points E ⊂ K is (T, ε)-separated if
x̂′ /∈ Bfσ (x̂, ε, T ) for all x̂, x̂′ ∈ E, or equivalently, for all
distinct points x̂, x̂′ ∈ E, there is a time t ∈ [0, T ] such that
‖ξσ(x̂′, t) − ξσ(x̂, t)‖ ≥ ε. Denote by N(fσ, ε, T,K) the
maximal cardinality of a (T, ε)-separated set. The entropy
h(fσ,K) can be equivalently formulated as follows:

Proposition 1. The topological entropy of (2) satisfies

h(fσ,K) = lim
ε↘0

lim sup
T→∞

1

T
logN(fσ, ε, T,K). (6)

B. Active time, active rates, and weighted averages

For each mode, we define the active time over [0, t] by

τp(t) :=

∫ t

0

1p(σ(s)) ds, p ∈ P (7)

with the indicator function 1p(σ(s)) = 1 if σ(s) = p and
1p(σ(s)) = 0 if σ(s) 6= p, the active rate over [0, t] by

ρp(t) := τp(t)/t, p ∈ P (8)

with ρp(0) := 1p(σ(0)), and the asymptotic active rate by

ρ̂p := lim sup
t→∞

ρp(t), p ∈ P . (9)

Clearly, τp are nondecreasing and satisfy
∑
p τp(t) = t for

all t ≥ 0, and ρp satisfy
∑
p ρp(t) = 1 for all t ≥ 0. In

contrast, it is possible that
∑
p ρ̂p > 1.

Given a family of scalars {ap ∈ R : p ∈ P}, we define
the asymptotic weighted average by

â := lim sup
t→∞

∑
p∈P

apρp(t), (10)
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and the maximal weighted average over [0, T ] by

ā(T ) := max
t∈[0,T ]

∑
p∈P

apτp(t)/T. (11)

Lemma 1. The asymptotic weighted average â and maximal
weighted average ā satisfy lim supT→∞ ā(T ) = max{â, 0}.

III. ENTROPY OF GENERAL SWITCHED LINEAR SYSTEMS

Our main goal is to study the entropy of a switched linear
system with a family of matrices {Ap ∈ Rn×n : p ∈ P}:

ẋ = Aσx, x(0) ∈ K. (12)

Viewing matrices as linear operators, we denote the entropy
of (12) by h(Aσ,K). In this section, we first prove h(Aσ,K)
is independent of K, and provide standard constructions of
spanning and separated sets using grids. Next, we present a
result for the non-switched case. Finally, we establish general
upper and lower bounds for the entropy of (12).

A. Initial set and grid

Proposition 2. The topological entropy of (12) is indepen-
dent of the choice of the initial set K.

Proof. First, the solution of (12) at time t with switching
signal σ and initial state x satisfies ξσ(x, t) = Φσ(t, 0)x
with the state-transition matrix Φσ(t, 0).

Second, we show the entropy of (12) is invariant under
translation and uniform scaling of the initial set. Let K1 be
an initial set, and define K2 := {sx + v : x ∈ K1} for
some scalar s > 0 and vector v ∈ Rn. Given T, ε > 0,
let E1 be a minimal (T, ε)-spanning set of K1. For an
x2 ∈ K2, let x1 := (x2 − v)/s ∈ K1. Then there is an
x̂1 ∈ E1 such that maxt∈[0,T ] ‖Φσ(t, 0)(x1− x̂1)‖ < ε; thus
maxt∈[0,T ] ‖Φσ(t, 0)(x2 − x̂2)‖ < sε with x̂2 := sx̂1 + v.
Hence E2 := {sx̂ + v : x̂ ∈ E1} is a (T, sε)-spanning
set of K2. As |E2| = |E1|, we get S(Aσ, sε, T,K2) ≤
S(Aσ, ε, T,K1) and thus h(Aσ,K2) ≤ h(Aσ,K1). Sim-
ilar arguments with separated sets imply h(Aσ,K2) ≥
h(Aσ,K1). Hence h(Aσ,K2) = h(Aσ,K1).

Finally, we show the entropy of (12) is independent of
the choice of the initial set. Let K be an initial set. As
K is a compact set with a nonempty interior, there exist
closed balls B1, B2 ⊂ Rn such that B1 ⊂ K ⊂ B2;
thus h(Aσ, B1) ≤ h(Aσ,K) ≤ h(Aσ, B2). The result from
the second step implies h(Aσ, B1) = h(Aσ, B2) and thus
h(Aσ, B1) = h(Aσ,K) = h(Aσ, B2). Therefore, h(Aσ,K)
is independent of the choice of K.

Following Proposition 2, we omit the initial set K and
denote by h(Aσ) the entropy of (12). For concreteness, we
take K := {x ∈ Rn : ‖x‖ ≤ 1} in the following analysis.

Next, given T, ε > 0, we construct standard (T, ε)-
spanning and (T, ε)-separated sets using grids. Given a
vector θ ∈ Rn>0, we define the following grid on K:

G(θ) := {(k1θ1, . . . , knθn) ∈ K : k1, . . . , kn ∈ Z}. (13)

Its cardinality satisfies |G(θ)| =
∏
i(2b1/θic + 1). For an

x̂ ∈ G(θ), denote by R(x̂) the open hyperrectangle in K
with center x̂ and sides 2θ1, . . . , 2θn, that is,

R(x̂) := {x ∈ K : |xi − x̂i| < θi for i = 1, . . . , n}. (14)

Then the points in G(θ) adjacent to x̂ are on the boundary
of the closure of R(x̂), and the union of all R(x̂) covers K.

Lemma 2. 1) If R(x̂) ⊂ BAσ (x̂, ε, T ) for all x̂ ∈ G(θ),
then the grid G(θ) is (T, ε)-spanning; thus

logS(Aσ, ε, T,K) ≤
∑n

i=1
log(2/θi + 1). (15)

2) If BAσ (x̂, ε, T ) ⊂ R(x̂) for all x̂ ∈ G(θ), then the grid
G(θ) is (T, ε)-separated; thus

logN(Aσ, ε, T,K) ≥
∑n

i=1
log(2/θi − 1). (16)

B. Entropy of linear time-invariant systems

Consider a linear time-invariant (LTI) system

ẋ = Ax, x(0) ∈ K (17)

with a matrix A ∈ Rn×n. The next result provides a formula
for the entropy h(A). The proof is along the lines of those
of the corresponding discrete-time results such as [4, Th. 15]
or [27, Th. 2.4.2]; see [28, Ch. 4] for a complete proof.

Proposition 3. The topological entropy of (17) satisfies

h(A) =
∑

λ∈spec(A)
max{Re(λ), 0}. (18)

C. Entropy of general switched linear systems

Now we establish general upper and lower bounds for the
entropy of the switched linear system (12).

Theorem 4. The topological entropy of (12) satisfies

h(Aσ) ≤ lim sup
t→∞

∑
p∈P

n‖Ap‖ρp(t) (19)

and also

h(Aσ) ≥ max
{

lim sup
t→∞

∑
p∈P

tr(Ap)ρp(t), 0
}

(20)

with the active rates ρp defined by (8).

Proof. First, we establish (19). Let t1 < · · · < tNσ(t,0) be
the sequence of switches on (0, t] =: (t0, tNσ(t,0)+1]. For
initial states x, x′ ∈ K, the corresponding solutions at time
t with switching signal σ satisfy ‖ξσ(x′, t) − ξσ(x, t)‖ ≤
e
∑Nσ(t,0)
l=0 ‖Aσ(tl)‖(tl+1−tl)‖x′ − x‖ = e

∑
p ‖Ap‖τp(t)‖x′ − x‖

with the active times τp defined by (7). As τp are non-
decreasing functions, maxt∈[0,T ′] ‖ξσ(x′, t) − ξσ(x, t)‖ ≤
e
∑
p ‖Ap‖τp(T ′)‖x′ − x‖ for all T ′ ≥ 0. Given T, ε > 0,

consider the grid G(θ) and hypercubes R(x̂) defined by (13)
and (14) with θi := e−

∑
p ‖Ap‖τp(T )ε, respectively. Clearly,

R(x̂) ⊂ BAσ (x̂, ε, T ) for all x̂ ∈ G(θ). Then Lemma 2
implies G(θ) is (T, ε)-spanning, and substituting (15) into
(5) yields h(Aσ) ≤ lim supT→∞

∑
p n‖Ap‖ρp(T ).

Second, we prove (20) via volume-based arguments. Given
T, ε > 0, an open ball BAσ (x, ε, T ) defined by (3) satisfies
BAσ (x, ε, T ) ⊂ {x′ ∈ K : ‖ξσ(x′, T ) − ξσ(x, T )‖ < ε} =
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{Φσ(T, 0)−1v + x ∈ K : ‖v‖ < ε}. Thus its vol-
ume satisfies vol(BAσ (x, ε, T )) ≤ (2ε)n/ det(Φσ(0, T )) =

e−
∑Nσ(t,0)
l=0 tr(Aσ(tl))(tl+1−tl)(2ε)n = e−

∑
p tr(Ap)τp(T )(2ε)n,

where the first equality uses Liouville’s trace formula. For
a (T, ε)-spanning set E, the previous volume bound and
(4) implies vol(K) ≤ |E|e−

∑
p tr(Ap)τp(T )(2ε)n. Hence

the minimal cardinality of a (T, ε)-spanning set satis-
fies S(Aσ, ε, T ) ≥ e

∑
p tr(Ap)τp(T ) vol(K)/(2ε)n, and thus

h(Aσ) ≥ limε↘0 lim supT→∞ log(e
∑
p tr(Ap)τp(T ))/T =

lim supT→∞
∑
p tr(Ap)ρp(T ). The proof of (20) is com-

pleted by recalling the entropy is nonnegative.

Remark 2. The upper bound (19) has been formulated using
∞-norms but actually holds for all induced matrix norms
(which is consistent with Remark 1), as all norms on Rn
are equivalent up to a multiplicative factor [29, Cor. 5.4.5]
(which would disappear after dividing by T and taking the
limit supremum). Hence it can be improved by taking the
infimum over all induced matrix norms.

There is in general a gap between the upper bound (19)
and lower bound (20) in Theorem 4 (e.g., consider the LTI
system (17) with a matrix of one positive and one negative
eigenvalue). For a general switched linear system, due to
the lack of “alignment” between eigenspaces of different
modes, we are not able to construct an exact formula for
the entropy h(Aσ). In Sections V–VI, we examine switched
linear systems with special matrix structure, and establish
formulae and tighter bounds for the entropy.

IV. ENTROPY OF SWITCHED SCALAR SYSTEMS

In this section, we consider switched linear systems with a
scalar-valued state. Then each Ap becomes a scalar ap ∈ R,
and (12) becomes a switched scalar system

ẋ = aσx, x(0) ∈ K ⊂ R. (21)

The next theorem provides a formula for the entropy h(aσ).

Theorem 5. The topological entropy of (21) satisfies

h(aσ) = max{â, 0} (22)

with the asymptotic weighted average â defined by (10).

Theorem 5 follows from Lemma 1 and the next result.

Lemma 3. The entropy satisfies h(aσ) = lim supT→∞ ā(T )
with the maximal weighted average ā defined by (11).

Proof. For all initial states x, x′ ∈ K, the corresponding
solutions at time t with switching signal σ satisfy |ξσ(x′, t)−
ξσ(x, t)| = e

∑
p apτp(t)|x′ − x| with the active times τp

defined by (7). Let η̄(T ) := maxt∈[0,T ]

∑
p apτp(t) =

ā(T )T . Then maxt∈[0,T ′] |ξσ(x′, t)−ξσ(x, t)| = eη̄(T ′)|x′−
x| for all T ′ ≥ 0. Given T, ε > 0, consider the grid
G(θ) and hypercubes R(x̂) defined by (13) and (14) with
θ := e−η̄(T )ε, respectively. Clearly, R(x̂) = Baσ (x̂, ε, T )
for all x̂ ∈ G(θ). Then Lemma 2 implies G(θ) is both
(T, ε)-spanning and (T, ε)-separated, and substituting (15)
and (16) into (5) yields h(aσ) ≤ lim supT→∞ ā(T ) and
h(aσ) ≥ lim supT→∞ ā(T ), respectively.

For a switched scalar system, the formula (22) coincides
with the general lower bound (20). However, for non-scalar
cases, the volume-based approach of Theorem 4 generally
yields a strictly more conservative bound than the separated-
set-based approach of Lemma 3.

Based on the formula (22), we derive the following upper
bounds for the entropy of the switched scalar system (21).

Corollary 6. The topological entropy of (21) satisfies

h(aσ) ≤
∑

p∈P
h(ap)ρ̂p (23)

with the asymptotic active rates ρ̂p defined by (9), and also

h(aσ) ≤ max
p∈P

h(ap), (24)

where each h(ap) denotes the topological entropy of the p-th
mode and satisfies (18), that is, h(ap) = max{ap, 0}.

Remark 3. When the scalars ap are complex and state
space is extended from R to C, the results in this section
still hold after replacing ap with the real parts Re(ap)
in (10) and (11) and noticing that (18) implies h(ap) =
max{Re(ap), 0}, since the imaginary parts Im(ap) do not
affect the entropy. This can be seen from |ξσ(x′, t) −
ξσ(x, t)| = e

∑
p Re(ap)τp(t)|x′ − x| for the solutions of (21).

Compared with (22), the upper bound (23) is the same for
all switching signals with the same asymptotic active rates
ρ̂p; the upper bound (24) is independent of the switching. In
general, the relation between (23) and (24) is unknown.

V. ENTROPY OF SWITCHED DIAGONAL SYSTEMS

In this section, we consider switched linear systems with
simultaneously diagonalizable matrices, that is, there exists a
(possibly complex) change of basis under which the matrices
Ap in (12) all become diagonal (or equivalently, Ap are
all diagonalizable and commute pairwise [29, Th. 1.3.19]).
Hence we assume, without loss of generality, that every Ap is
diagonal, and denote it by Dp := diag(a1

p, . . . , a
n
p ) ∈ Cn×n,

that is, aip is the i-th diagonal entry of Dp. Then (12)
becomes the switched diagonal system in Cn

ẋ = Dσx, x(0) ∈ K. (25)

The next theorem provides a formula for the entropy h(Dσ).

Theorem 7. The topological entropy of (25) satisfies

h(Dσ) = lim sup
T→∞

∑n

i=1
āi(T ) (26)

with the component-wise maximal weighted averages over
[0, T ] defined by āi(T ) := maxt∈[0,T ]

∑
p Re(aip)τp(t)/T ≥

0 for i = 1, . . . , n, where τp are defined by (7).

Proof. For all initial states x, x′ ∈ K, the corresponding
solutions at time t with switching signal σ satisfy ‖ξσ(x′, t)−
ξσ(x, t)‖ = maxi e

∑
p Re(aip)τp(t)|x′i − xi|. Let η̄i(T ) :=

maxt∈[0,T ]

∑
p Re(aip)τp(t) = āi(T )T for i = 1, . . . , n.

Then maxt∈[0,T ′] ‖ξσ(x′, t)− ξσ(x, t)‖ = maxi e
η̄i(T

′)|x′i −
xi| for all T ′ ≥ 0. Given T, ε > 0, consider the grid G(θ)
and hypercubes R(x̂) defined by (13) and (14) with θi :=
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exp(−η̄i(T )) ε, respectively. Clearly, R(x̂) = BDσ (x̂, ε, T )
for all x̂ ∈ G(θ). Then Lemma 2 implies that G(θ) is both
(T, ε)-spanning and (T, ε)-separated, and substituting (15)
and (16) into (5) yields h(Dσ) ≤ lim supT→∞

∑
i āi(T )

and h(Dσ) ≥ lim supT→∞
∑
i āi(T ), respectively.

While the formula (26) is rather complex, it gives the exact
value of h(Dσ). It also leads to the following upper bounds
for the entropy of the switched diagonal system (25).

Proposition 8. The topological entropy of (25) satisfies

h(Dσ) ≤
∑n

i=1
h(aiσ), (27)

where each h(aiσ) satisfies h(aiσ) = max{âi, 0} with the
component-wise asymptotic weighted averages defined by
âi := lim supt→∞

∑
p Re(aip)ρp(t) for i = 1, . . . , n, where

the active rates ρp are defined by (8). Moreover, (27) holds
with equality for all switching signals σ such that the active
rates ρp(t) converge as t→∞ for all p ∈ P .

Proposition 9. The topological entropy of the switched
diagonal system (25) is upper-bounded by

h(Dσ) ≤ lim sup
t→∞

∑
p∈P

h(Dp)ρp(t) (28)

with the active rates ρp defined by (8), where each h(Dp)
denotes the topological entropy of the p-th mode and satisfies
(18). Moreover, (28) holds with equality if Re(aip) ≥ 0 for
all i ∈ {1, . . . , n} and p ∈ P .

Corollary 10. The topological entropy of (25) satisfies

h(Dσ) ≤
∑

p∈P
h(Dp)ρ̂p (29)

with the asymptotic active rates ρ̂p defined by (9), and also

h(Dσ) ≤ max
p∈P

h(Dp), (30)

where each h(Dp) denotes the topological entropy of the
p-th mode and satisfies (18).

Unlike the formula (26) and upper bound (27), the upper
bounds (28)–(30) are independent of the relative order of the
scalar components between the matrices Dp in (25), and can
thus be calculated without diagonalization. For a fixed family
of matrices {Dp : p ∈ P}, the upper bounds (27) and (28)
depend only on the active rates ρp, the upper bound (29)
only on the asymptotic active rates ρ̂p; the upper bound (30)
is independent of switching. In general, the relation between
the upper bounds (27) and (28), and that between the upper
bounds (29) and (30), are both unknown. Meanwhile, both
(27) and (28) imply (29), whereas only (28) implies (30).

VI. ENTROPY OF SWITCHED TRIANGULAR SYSTEMS

In this section, we consider switched linear systems with
simultaneously triangularizable matrices, that is, there exists
a (possibly complex) change of basis under which the matri-
ces Ap in (12) are all upper-triangular. Sufficient conditions
for simultaneous triangularizability include that the matrices
Ap commute pairwise [29, Th. 2.3.3], or, more generally, that
the Lie algebra {Ap : p ∈ P}LA is solvable (Lie’s theorem
[30, Th. A′′]). Hence we assume, without loss of generality,
that every Ap is upper-triangular, and denote it by

Up :=


a1
p b1,2p · · · b1,np

0 a2
p

. . .
...

...
. . . . . . bn−1,n

p

0 · · · 0 anp

 ∈ Cn×n.

Then (12) becomes the switched triangular system in Cn:

ẋ = Uσx, x(0) ∈ K. (31)

The next theorem provides an upper bound for h(Uσ).

Theorem 11. The topological entropy of (31) satisfies

h(Uσ) ≤ lim sup
T→∞

(
nā1(T )+

∑n

i=2
(n+1− i)d̄i(T )

)
(32)

with ā1(T ) := maxt∈[0,T ]

∑
p Re(a1

p)τp(t)/T ≥ 0 and
d̄i(T ) := maxt∈[0,T ]

∑
p Re(aip − ai−1

p )τp(t)/T ≥ 0 for
i = 2, . . . , n, where the active times τp are defined by (7).

Proof. The proof of Theorem 11 consists of three steps. In
this proof, we omit the fixed switching signal σ and denote
by ξi(x, t) the i-th scalar component of the solution ξσ(x, t).

First, we derive a formula for the solution ξσ(x, t) of (31)
at time t with switching signal σ and initial state x. Let
ηi(t) :=

∑
p a

i
pτp(t) for i = 1, . . . , n, and νi,j(t) := ηj(t)−

ηi(t) for 1 ≤ i < j ≤ n.

Lemma 4. For k = 0, . . . , n − 1, the (n − k)-th scalar
component of ξσ(x, t) satisfies (33) below with the sets
Ck,l,i := {(c0, . . . , ci) ∈ Ni+1 : n − k = c0 < c1 < · · · <
ci−1 < ci = n− l} for l = 0, . . . , k−1 and i = 1, . . . , k− l.

Second, for all initial states x, x′ ∈ K, we estimate
‖ξσ(x′, t)−ξσ(x, t)‖ based on the formula (33). Let η̄i(T ) :=
maxt∈[0,T ] Re(ηi(t)) = āi(T )T for i = 1, . . . , n, and
ν̄i,j(T ) := maxt∈[0,T ] Re(νi,j(t)) for 1 ≤ i < j ≤ n. Then
ν̄i−1,i(T

′) = d̄i(T
′)T ′ for all T ′ ≥ 0 and i ∈ {2, . . . , n}.

Lemma 5. It holds that maxt∈[0,T ′] ‖ξσ(x′, t)− ξσ(x, t)‖ ≤∑
i |x′i−xi|e

η̄1(T ′)+
∑i−1
j=1 ν̄j,j+1(T ′)Pi(T

′) for all T ′ ≥ 0 with
polynomials Pi which are positive and increasing on R+.

Finally, given T, ε > 0, consider the grid G(θ) and
hypercubes R(x̂) defined by (13) and (14) with θi :=

ξn−k(x, t) = eηn−k(t)

(
xn−k +

k−1∑
l=0

(
xn−l

k−l∑
i=1

∑
(c0,...,ci)∈Ck,l,i

∫ t

0

∫ s1

0

· · ·
∫ si−1

0

i∏
j=1

b
cj−1,cj
σ(sj)

eνcj−1,cj
(sj) dsj

))
(33)
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exp(−η̄1(T ) −
∑i−1
j=1 ν̄j,j+1(T )) ε/(nPi(T )), respectively.

Clearly, R(x̂) ⊂ BUσ (x̂) for all x̂ ∈ G(θ). Then Lemma 2
implies that G(θ) is (T, ε)-spanning, and substituting (15)
into (5) yields h(Uσ) ≤ lim supT→∞

(
nā1(T ) +

∑n
i=2(n+

1 − i)d̄i(T )
)
. In particular, the off-diagonal entries bi,jp of

the matrices Up in (31) are absorbed into the polynomials
Pi, and thus do not appear in the bound (32).

Based on (32), we derive the following upper bounds for
the entropy of the switching triangular system (31).

Proposition 12. The topological entropy of (31) satisfies

h(Uσ) ≤ nh(a1
σ) +

∑n

i=2
(n+ 1− i)h(diσ), (34)

where h(a1
σ) = max{â1, 0} and h(diσ) = max{d̂i, 0} for

i = 2, . . . , n with â1 := lim supt→∞
∑
p Re(a1

p)ρp(t) and
d̂i := lim supt→∞

∑
p Re(aip−ai−1

p )ρp(t), where the active
rates ρp are defined by (8).

Proposition 13. The topological entropy of (31) satisfies

h(Uσ) ≤ lim sup
t→∞

∑
p∈P

ĥ(Up)ρp(t) (35)

with ĥ(Up) := nmax{Re(a1
p), 0} +

∑n
i=2(n + 1 − i) ×

max{Re(aip − ai−1
p ), 0} for p ∈ P , where the active rates

ρp are defined by (8).

Corollary 14. The topological entropy of (31) satisfies

h(Uσ) ≤
∑

p∈P
ĥ(Up)ρ̂p (36)

with the asymptotic active rates ρ̂p defined by (9), and by

h(Uσ) ≤ max
p∈P

ĥ(Up). (37)

For a fixed family of matrices {Up : p ∈ P}, the upper
bounds (34) and (35) depend only on the active rates ρp, the
upper bound (36) only on the same asymptotic active rates
ρ̂p; the upper bound (37) is independent of switching. The
upper bound (32) implies (34), (35), (36) and (37). In general,
the relation between the upper bounds (34) and (35), and
that between the upper bounds (36) and (37), are unknown.
Meanwhile, both (34) and (35) imply (36), whereas only (35)
implies (37).

VII. FUTURE RESEARCH

The topological entropy proposed in this paper depends
on switching. For switched systems with unknown switching
signal, a different entropy notion is needed to capture the
additional uncertainty of the trajectory and to quantify the
extra information needed for stabilization. Sufficient data rate
for feedback stabilization of switched linear systems were
established in [22], [23]. A similar data-rate bound for state-
estimation was formulated in [24]. These data-rate bounds
should be upper bounds for the entropy notion to be defined.
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