Robust Trajectory Execution for)
Multi-robot Teams Using Distributed L
Real-time Replanning

Baskin Senbaslar, Wolfgang Honig and Nora Ayanian

Abstract Robust trajectory execution is an extension of cooperative collision avoid-
ance that takes pre-planned trajectories directly into account. We propose an algo-
rithm for robust trajectory execution that compensates for a variety of dynamic
changes, including newly appearing obstacles, robots breaking down, imperfect
motion execution, and external disturbances. Robots do not communicate with each
other and only sense other robots’ positions and the obstacles around them. At
the high-level we use a hybrid planning strategy employing both discrete plan-
ning and trajectory optimization with a dynamic receding horizon approach. The
discrete planner helps to avoid local minima, adjusts the planning horizon, and pro-
vides good initial guesses for the optimization stage. Trajectory optimization uses
a quadratic programming formulation, where all safety-critical parts are formulated
as hard constraints. At the low-level, we use buffered Voronoi cells as a multi-robot
collision avoidance strategy. Compared to ORCA, our approach supports higher-
order dynamic limits and avoids deadlocks better. We demonstrate our approach in
simulation and on physical robots, showing that it can operate in real time.

1 Introduction

Motion planning for multi-robot systems is particularly important in cases where
many robots must interact with each other in confined spaces, potentially with
many obstacles. Examples include coordination of robots in warehouses [18], traffic
management at intersections [6], and airport management [12]. Modern planning

B. Senbaglar (B<1) - W. Honig - N. Ayanian

University of Southern California, Los Angeles, CA, USA
e-mail: baskin.senbaslar@usc.edu

W. Honig

e-mail: whoenig@usc.edu

N. Ayanian
e-mail: ayanian@usc.edu

© Springer Nature Switzerland AG 2019 167
N. Correll et al. (eds.), Distributed Autonomous Robotic Systems,

Springer Proceedings in Advanced Robotics 9,

https://doi.org/10.1007/978-3-030-05816-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05816-6_12&domain=pdf
mailto:baskin.senbaslar@usc.edu
mailto:whoenig@usc.edu
mailto:ayanian@usc.edu
https://doi.org/10.1007/978-3-030-05816-6_12

168 B. Senbaslar et al.

algorithms can find trajectories that effectively coordinate hundreds of robots while
approximately optimizing objectives such as total energy used [9]; however, all such
solutions assume that the resulting trajectories can be executed nearly perfectly,
which is an unrealistic assumption for teams of hundreds of robots that must operate
persistently.

To compensate for changes in the environment or imperfect execution, one might
apply cooperative collision avoidance strategies, such as ORCA [2], at runtime.
However, such algorithms often operate locally and do not take the pre-planned tra-
jectories into account. Robust trajectory execution, on the other hand, avoids future
collision more effectively because it directly considers pre-planned trajectories. Con-
sider the example in Fig. 1a, where two robots must swap positions. The pre-planned
trajectories are collision-free in terms of robot-to-robot collisions, but they do not
consider the newly introduced obstacle and the blue robot does not start at its correct
location. However, the pre-planned trajectories can be used as guidance for replan-
ning. In this example, robots can get stuck if a local cooperative collision avoidance
strategy is applied. Using our method, the robots can successfully swap positions,
while staying as close as possible to the pre-planned trajectories, as in Fig. 1b. Our
method is fully distributed and requires no communication. The robots only need
to know their own trajectories and be able to sense other robots’ positions and the
obstacles around them.

Robust trajectory execution is an extension of cooperative collision avoidance
where the objective is to stay as close to the originally planned trajectories as possible.
In contrast, traditional collision avoidance methods frequently only take a desired
velocity, desired goal state, or desired action as input (we discuss these in more detail
in Sect. 2). Our method relies on Buffered Voronoi Cells (BVC) [19] as the underlying
cooperative collision avoidance strategy and retains the same theoretical guarantees.
We employ a novel combination of trajectory optimization and discrete search-based
planning using a dynamic receding horizon approach. The discrete search allows us
to avoid local minima effectively even in difficult scenarios, while the trajectory
optimization generates smooth trajectories that are collision-free.

(a) (b)

- ~o

Fig.1 aTworobots (green and blue circles) are tasked with following their pre-planned trajectories
(green and blue dashed lines). The initial plans were created without the knowledge of the obstacle
(gray) and the blue robot does not start at its planned initial position. b Our approach computes
smooth trajectories in real-time, avoiding both the new obstacle and other robots while staying close
to the pre-planned trajectory

Robust Trajectory Execution for Multi-robot Teams ... 169

The main contribution of this work is a novel distributed algorithm for robust
trajectory execution that considers higher-order dynamic limits. It also compensates
for a variety of dynamic changes, including imperfect motion execution of robots,
newly appearing obstacles, robots breaking down, or external disturbances. We show
in simulations that our method avoids deadlocks better than ORCA [2]. Furthermore,
we implement and test our approach on a team of six differential drive robots with
several dynamic environmental changes.

2 Related Work

Our method is closely related to cooperative collision avoidance such as reciprocal
velocity obstacles, buffered Voronoi cells, and safety barrier certificates. Methods
based on reciprocal velocity obstacles (RVO) [3] assume that robots continue with
constant velocity and compute the safe configuration space such that no other robot
might collide for the time horizon. Many extensions of the RVO method have been
proposed, see [1] for an extensive overview. Buffered Voronoi Cells (BVC) [19]
compute the safe configuration space for a robot by its Voronoi cell shifted by the
physical extent of the robot. Safety barrier certificates achieve collision-free operation
by modifying a user-specified controller such that no collision can occur [17]. Our
robust trajectory execution approach uses cooperative collision avoidance at its core
(specifically BVC), while extending it to minimize the difference to the original
trajectories (rather than just a preferred velocity as in [1], preferred control input as
in [17], or difference over a fixed time horizon as in [19].)

Our method is inspired by our previous work on offline planning for robotic
teams [9] and uses the same optimization framework based on Bézier curves to
generate trajectories, although with a different cost function. Similar to previous
work we use discrete search to quickly get out of local minima, but do so in a
distributed manner.

While our approach naturally works in multi-robot settings, some of the methods
are inspired by single-robot optimization and collision avoidance. Local collision
avoidance for single robots such as UAVs can be formulated as optimization prob-
lems [13, 16]. In both cases collisions are considered as a soft constraint in the cost
function using a Euclidean (Signed) Distance Field. In contrast, our formulation uses
a hard constraint allowing us to easily detect infeasible trajectories. The optimization
can use a discrete plan as an initial guess [13] or shift the existing trajectory based
on newly appearing obstacles [16]. In contrast, our approach shifts the existing tra-
jectory whenever possible, while falling back to an efficient discrete planner with
dynamic receding horizon to avoid local minima.

170 B. Senbaslar et al.

3 Problem Formulation

The general problem we would like to solve can be formulated as follows. Consider
a group of m robots. Each robot i is given the following:

0; () : original trajectory (R — R") of ith robot where time ¢ € [0, T;],
c : order of derivative up to which smoothness is required,
R(p) : convex collision shape of any robot at position p,

¥, : dynamic limit of the robot for the kth derivative of its trajectory.

Each robot i can sense the positions {p1, ..., p.} of other robots as well as the
current occupied space O; around it.! We represent O; as a set of 6 convex obstacles.
Robots are unaware of the other robots’ planned trajectories, and cannot communicate
with each other. Each robot i must execute a trajectory f; (¢), where f; (¢) is a solution
to the following optimization problem:

T
minimize /||f,-(t) —0;(1)|* dt
0

subject to

f; (t) is continuous up to degree c,

4t dip, . (1)
W(O) = dT(O) for] S {O, 1, ey C}
f; (t) is collision-free, and
dkfi t
dt’E) < y4 for all desired k,

where t € [0, T;].

We solve this problem approximately, using a dynamic receding horizon approach
iteratively. At every iteration K, robot i plans a trajectory fiK (¢) that starts at the
robot’s current position and is safe to execute up to the user-provided period §z. We
set R(p) to a sphere with radius r; centered at p.

4 Preliminaries

This section introduces important mathematical concepts and notations that will be
used throughout the paper.

ISince our approach can accommodate many sensing modalities, we do not provide a specific
sensing capability in the general problem.

Robust Trajectory Execution for Multi-robot Teams ... 171

4.1 Buffered Voronoi Cell

Given a set of m robots with positions py, p2, ..., P» € R" and radii r; € R, the
buffered Voronoi cell V; of robot i is defined as [19]:

P —Pi P;—Pi P;+DP
S —— .p_ .
lp; — pill lp; —p:ll 2

ViZ{pZV.]‘#i +"s§0}, (2)

where ||p|| is the L?-norm of the vector p. ' .
The inequality inside (2) defines a hyperspace S; bounded by hyperplane H; that

separates point p; from p;. ’Hij has normal otl.j € R” and distance ,Bij € R along aij

such that
of = DiTP andﬂijzaij-(pi—i_pj)—rx. 3)
Ip; —pill 2

For a given buffered Voronoi decomposition of the space, any point p € R” can
be inside of at most one of the buffered Voronoi cells. We use this property in order
to avoid robot-to-robot collisions.

Using the hyperspaces S/ we can reformulate V; as follows:

Vi:ﬂsij,WhereS,-j=Hpiaij'p_'gljfo}' @
J#

Thus, we can compute the buffered Voronoi cell of any robot i as the set of the
hyperplanes H; in O (m) time.

4.2 Bezier Curve

A degree d Bézier curve f(¢) implicitly parametrized by duration T is defined by
d + 1 control points Py, Py, ..., P; € R” such that

f(t):Xd:P-(d> <i>i<1—i)d_i 0<t=<T)
P "\iJ\T T ’ - =

The curve starts at Py and ends at P;, however does not interpolate other control
points. A Bézier curve lies completely inside the convex hull of its control points [7];
we leverage this property to avoid robot-to-obstacle collisions.

We use splines as trajectories with user-specified number of pieces (/) and degree
(d), where each piece is a degree d Bézier curve. Given a trajectory £ (¢) for robot i
with / pieces and duration T;¥ atiteration K, Tllj denotes the duration of the jth piece
where j € {1,2,...,1}. ffj (t) denotes the jth piece of the trajectory with implicit
duration parameter 7% where 7 € [0, T;,]. PX; | denotes the pth control point of the
jth piece where p € {0, 1, ...,d}.

172 B. Senbaslar et al.

4.3 Trajectory Optimization using Quadratic Programming

Our replanning approach utilizes quadratic programming (QP) for trajectory opti-
mization. The decision variables x are the concatenated Bézier curve control points.
The overall structure of our quadratic optimization problem is as follows:

minimize —x Hx+x'g
2 (6)
subject to lbA < Ax < ubA.

A quadratic cost function is represented using the matrix H and the vector g. The
quadratic cost function we use is described in Sect. 5.2.

The constraints are represented using the matrix A with vectors IbA and ubA.
Notice that all constraints should be linear in the decision variables. There are three
types of constraints we impose on the curves: initial point constraints, continuity
constraints, and hyperspace constraints. An initial point constraint on a Bézier curve
requires the initial point of the curve to be equal to a given vector in a specified
degree of differentiation. This translates to n linear constraints on control points, n
being the dimension we are working in. A continuity constraint between curve j and
curve j + 1 requires the end of curve j to be equal to the beginning of curve j + 1
at any order of differentiation. We take the vector difference of those values and
require it to be equal to 0. This translates to n linear constraints on control points. A
hyperspace constraint requires all control points of a curve to be on a specific side of
a hyperplane. If a curve has d + 1 control points, this translates to d + 1 constraints
on control points. All three types of constraints are linear in control points. The exact
construction is discussed in a previous work [9].

5 Approach

Replanning is done at a fixed period of §z. In each iteration K, we sense the other
robots’ positions to compute the buffered Voronoi cell V;, update our current repre-
sentation of the occupied space (0;), and compute a trajectory £X (¢). The planning
horizon t’ is automatically adjusted, but the desired planning horizon 7 can be pro-
vided.

We execute the following three major components iteratively: discrete planning
that is used to efficiently plan around new obstacles, trajectory optimization to gen-
erate smooth and collision-free trajectories, and temporal rescaling to enforce the
dynamic limits of the robot (see Fig. 2).

In the beginning of each iteration, we check several conditions to decide if discrete
planning is required. If discrete planning is required, we execute a discrete search
that results in a discrete path that is collision-free but not smooth. We use this discrete
path as an initial guess in trajectory optimization. If discrete planning is not required,
we use the control points of the previous plan as the initial guess.

Robust Trajectory Execution for Multi-robot Teams ... 173

Discrete Planning (5.1) Continuous Optimization (5.2) ~ Temporal Rescaling (5.3)

Discrete Construct
Search QP L

D){nafmic No
limits
violated?

Trajectory
Optimization

Discrete
replanning
required?

Construct

QP

Rescaling

Execute for §t and start next iteration

Fig. 2 Overview of the replanning pipeline

We construct a QP with hard constraints for trajectory optimization in a slightly
different way depending on whether discrete planning was executed or not. In both
cases, buffered Voronoi cells are used to ensure collision-free operation for time §¢
and collisions with static obstacles are avoided for the planning horizon using support
vector machines.

Dynamic limits cannot be represented as linear constraints in our QP. Thus, we
check dynamic limit violations in the temporal rescaling stage that runs after opti-
mization. While dynamic limits are violated, we increase the durations of all trajec-
tory pieces uniformly, and since the initial point constraints are violated when the
durations are increased, we re-solve the QP.

At the end of each iteration, each robot has its trajectory £X (7) that is guaranteed
to be collision-free up to time §¢; is continuous up to the cth derivative; obeys the
dynamic limits of the robot; tries to stay close to the original trajectory; and is a good
starting point for the next iteration. We execute this trajectory for a period of §¢ and
replan for the next iteration.

5.1 Discrete Planning

Robot i executes discrete planning if any of the following conditions are true, where
Y = Kt is the current time:

1. The original trajectory is not collision-free for the desired time horizon t, i.e.,
ey, y+1]: RO (0))NO; #4,

2. The first piece of the previously planned trajectory is outside the robot’s buffered
Voronoi cell, i.e., 3t € [0, 7}{{1_1] : fil_(l_l(t) ¢V, or

3. The previously planned trajectory is not collision-free for the desired time horizon
T,ie,3t €[0,7]: RE (1) NO; £ 0.

The first condition handles cases where previously unknown obstacles block the
pre-planned path of a robot. The second condition handles cases where previously

174 B. Senbaslar et al.

unknown robots appear and cases where robots are close and moving towards each
other. The third condition handles dynamic obstacles, and also infeasibilities and
numerical issues that resulted in a trajectory with collisions in the previous iter-
ation. Sections 5.4 and 6.1 detail reasons for infeasibilities and numerical issues,
respectively.

Discrete planning uses a dynamic receding horizon approach. First, we find the
earliesttime v’ € [min(z, T; — ¥), T; —] where the original trajectory is collision-
free at time v + t’ with respect to both obstacles and other robots. Second, we use
a discrete graph search to find a path from the robot’s current location to o; (+ t°)
that avoids both static obstacles and other robots. If 7/ does not exist or no solution
path exists, we skip the discrete planning stage and construct the QP as if discrete
planning was not required. Third, we use the first / segments of the discrete path to
uniformly place the new estimated control points on top of those segments. In case the
discrete path has fewer than / segments, the last discrete segment is shared between
multiple Bézier curves. Finally, we adjust Tlli relative to the segment lengths and
scale by 7/, such that we would arrive at time ¥ + t’ at 0; (¥ + t’) if we followed the
discrete path with constant speed. To guarantee collision-free operation, we ensure
that 7§ > &z in any case.

An example is shown in Fig. 3a, with parameters / = 4 and d = 7. Discrete plan-
ning is executed because the original trajectory (green dashed line) passes through an
obstacle. We find the earliest time ¢’ such that R(0, (¥ + 7')) does not intersect with
the obstacle and the blue robot where g is the green robot. The discrete planner is
then used to find a path (green dotted line) that avoids both the static obstacle and the
other (blue) robot, with a total of six path segments. The first four segments (I = 4)
are used to place new guesses of Bézier control points (blue, green, red, and cyan
circles). Notice that since d = 7, each curve has eight control points, while some
of the points are overlapping. The duration Tlli for each Bézier curve is adjusted
linearly according to its segment length; for example, the duration of the segment
with the red control points (ng) is approximately twice as long as the duration of
the segment with the green control points (Tig).

(a) (b)

P T T O) My tecicicicscsnnifen s BT IOW

Fig.3 Exampleats = 3.9 s. a Discrete path around an obstacle and other robot back to the original
trajectory. b Continuous trajectory split into four pieces and respective hyperspaces

Robust Trajectory Execution for Multi-robot Teams ... 175

5.2 Continuous Optimization

‘We compute a new trajectory by formulating a quadratic program where the decision
variables are the concatenated control points of the pieces. The parameters d and
[of the pieces (see Sect. 4.2) are provided by the user. If discrete planning is not
performed, initial guesses of the decision variables are copied from the previous
iteration, and the durations TK are set uniformly to w If discrete planning
is performed, initial varlables and durations are calculated from the discrete path as
explained in Sect. 5.1. The objective that we minimize is defined ds

F e

where y; is the point where we want piece j to end. The first term of the objective min-
imizes the energy along the trajectory, and is the combination of integrated squared
derivatives up to user provided degree £ with weights X, [9, 14]. The second term of
the objective penalizes deviation from the given end points for each piece of the tra-
jectory with different weights 6;. In case discrete planning is performed, we attempt
to get to the position of the last guessed control point, i.e., we set 6; to a positive value,
enforcing PlKl s =x-and0; =0, Vj < [.If discrete planning is not performed, we
attempt to stay as close as possible to the original trajectory, i.e., we set 6; = 0, and
0;,Vj = 2 to positive values (increasing with j) and x; = o;(/ + Zu 1 T,Ii) The
matrix H (see Sect. 4.3) for the first term of our objective can be constructed as in
our previous work [9]. The second term is a quadratic function of the control points;
hence it is straightforward to construct the H matrix and the g vector.

For robot-to-robot collision avoidance, the buffered Voronoi hyperplanes are com-
puted according to (3) and m — 1 hyperspace constraints are added for the first piece.
These constraints ensure that the first piece stays inside V; because of the convexity
of V; and the convex hull property of Bézier curves. As long as Tl’i > §t and all
other robots stay inside their Voronoi cells up to time &¢, we can be sure that no
robot-to-robot collision will occur up to time §7.

For robot-to-obstacle collision avoidance we compute separating hyperplanes
between convex obstacles O; for each curve piece j. Let M j’ be the hyperplane
that seperates the initially guessed control points of the jth piece from the bth con-
vex obstacle obtained from O; (these can be computed, e.g., using support vector
machines [4]). We shift each hyperplane towards its obstacle and than shift it back
using the radius r, to account for the physical extent of the robot. We add hyperspace
constraints as before, requiring control points of the jth piece in the non-occupied
side of each hyperplane M;. b These constraints ensure that no robot-to-obstacle colli-
sion will occur up to time ‘L' In case discrete planning was executed, we additionally
treat other robots as static obstacles. Fig. 3b shows the effective set of hyperspaces
for our example.

1
dt +) 60, |PK = x I” (7

Jj=1

176 B. Senbaslar et al.

Moreover, we add continuity constraints that enforce the continuity requirements
between pieces and initial point constraints that enforce continuity requirements
between iterations.

All constraints are linear and matrix A and its bounds can be constructed as in
Sect. 4.3. The number of decision variables in our QP is I(d + 1)n. Let &' describe
the number of considered static obstacles, i.e., &' is equal to 6 + (m — 1) if discrete
planning was performed and 6 otherwise. We add (m — 1)(d + 1) + 0'l(d + 1) +
(c + 1)nl linear constraints, where the terms refer to the Voronoi hyperspace, obstacle
hyperspace, and continuity constraints, respectively. For our example in Fig. 3, we
haven =2, m=2,d =7,] =4, and ¢ = 2. Thus, we have 64 decision variables
and 8 + 128 4 24 = 160 linear constraints.

5.3 Temporal Rescaling

Since we use fixed durations of the pieces and do not account for the dynamic limits of
the robot during optimization, the resulting trajectory may violate the dynamic limits
of the robot. After trajectory optimization, we calculate the maximum magnitudes
I}, of the kth derivatives of the curve, and check if there exists a k such that I} >
¥k, Where y; is the dynamic limit of the robot in the kth derivation degree. If that
is the case, we uniformly scale the piece durations Tlli, and re-run the trajectory
optimization with the same exact constraints using the previous result as the initial
guess. If the dynamic limits are not violated, no temporal rescaling is needed and the

trajectory is feasible.

5.4 Theoretical Guarantees

For robot-to-robot collision avoidance our approach uses buffered Voronoi cells
which has the following theoretical guarantee: if robots start in a collision-free
configuration (that is, ||p; — p;ll > 2ry, Vi # j), then all future configurations are
collision-free. However, this guarantee has only been proven for the case of syn-
chronous robot execution, if robots have first-order integrator dynamics (¢ = 0),
and if they execute their trajectories perfectly [19]. The QP in our formulation has
additional constraints that can cause it to be infeasible. However, in this case, one
can simply fallback to the QP formulation of the BVC approach to retain the same
theoretical guarantee.

Formal guarantees under arbitrary disturbances and higher order dynamics cannot
be provided. In fact, our QP can fail if it is not feasible to satisfy all safety and conti-
nuity constraints under the given dynamic limits. However, our empirical evaluation
presented in Sect. 6.1 shows that the QP rarely fails and even if it does, the robots
do not collide with each other and the obstacles since the QP becomes feasible in
the following iterations. In addition, our QP formulation allows us to easily detect
failure cases because we model all safety-critical parts as hard constraints.

Robust Trajectory Execution for Multi-robot Teams ... 177

Similar to other work, there are no formal liveness guarantees and there might be
deadlocks [19]. Nevertheless, our approach works well in practice for robots with
higher-order dynamics, if robot execution is asynchronous, or trajectories are not
executed perfectly.

6 Evaluation

We implement our approach in C++. We use an occupancy grid as the environment
representation, because previous work has shown that such data structures can be
updated in real-time on robots that are equipped with a LIDAR sensor or an RGB-D
camera. In particular, OctoMap [10] is an octree-based 3D occupancy grid that can
be run on unmanned aerial vehicles with at least 4 Hz update rate [13]. OctoMaps
are memory efficient, but update operations can show high execution time variance.
For local replanning, occupancy grids using ring buffers as data structures have been
shown to achieve near constant execution time [16]. Our implementation uses a
simple pre-initialized 2D occupancy grid.

We use the CVXGEN-package [11] to generate small QPs to find separating
hyperplanes between control points and obstacles. We test with qpOASES [8] and
OSQP [15] as QP solvers; both are open source and have been shown to work well
in model predictive control scenarios.

A supplemental video containing some of our simulations and physical experi-
ments is available at https://youtu.be/LbWRVLfdwTA.

6.1 Simulation

We test our algorithm in a simulation running on a laptop computer (i7-4700MQ
2.4GHz, 16 GB) with Ubuntu 16.04 as the operating system.

In the first set of experiments, we test the scalability of our method in terms of the
number of pieces [we plan for, the number of occupied cells 6 in the occupancy grid
and the number of robots m. Our results are summarized in Tables 1, 2, and 3, where
tavg 15 the average time that qpOASES takes per iteration. Our algorithm scales well
with the number of robots. In terms of number of curves, our algorithm has almost
the same performance up to / = 10. For the simulations and physical experiments
we did, we never needed more than / = 4. The bottleneck of our algorithm is the
number of occupied cells in the occupancy grid. However, as it can be seen in Table 2,
our algorithm still has real-time capability when considering hundreds of occupied
cells, assuming a 10 Hz execution. When we use OSQP instead of qpOASES, our
implementation takes significantly more time if we consider many obstacles. For
example, when we do experiment 7 using OSQP, it takes 297 ms on average.

https://youtu.be/LbWRvLfdwTA

178 B. Senbaslar et al.

Table 1 Runtime with

. # l 0 m tavg (S)

varying curve count /

1 4 0 4 10

2 8 0 4 15

3 10 0 4 13

4 12 0 4 27

5 16 0 4 107
Tabl.e 2 Runt.ime with # ! 9 m favg (M)
varying occupied cells 6

6 4 4 4 9

7 4 62 4 28

8 4 196 4 47

9 4 213 4 69

10 4 1250 4 253
Tabl.e 3 Runtime with # / 9 m favg (M)
varying robot count m

11 4 5 9

12 4 5 8 10

13 4 5 16 13

14 4 5 32 15

15 4 5 64 14

We also compare our method to two ORCA variants in the second set of experi-
ments. In the first ORCA variant, we use the RVO2 library [2] and set the preferred
velocities at time v to o}(y) if p; = 0;(y) or to W otherwise. In the sec-
ond ORCA variant, we combine ORCA and our discrete planning method with a
dynamic receding horizon approach (denoted as DS+ORCA). We demonstrate that
this variant resolves deadlocks better than the first variant. For our method we use
6t =0.1s5,]l =4, and d = 7 and for the ORCA variants we use 6t = 0.01s. The
results are summarized in Table 4. All robots using our method or DS+ORCA reach
their destinations, while robots using ORCA can easily get stuck around obstacles.
Our method takes more time in computation compared to the ORCA variants, but
produces smooth curves up to a user-defined smoothness. We use ¢ = 2 in our exper-
iments meaning that the generated trajectories are continuous in position, velocity,
and acceleration. The ORCA variants, on the other hand, provide smoothness guar-
antees up to ¢ = 0 only, i.e., velocities can jump between iterations. Furthermore,
the ORCA variants must sense the other robots’ velocities and positions while our
approach relies on positions only.

We also report the percentage of time our QP fails, which happens no more than
0.3 % of the time. Notice that even if our QP fails, robots do not collide with each
other and the obstacles, because the QP becomes feasible in the following itera-

Robust Trajectory Execution for Multi-robot Teams ... 179

Table 4 Comparison of our method, ORCA, and DS+ORCA with respect to average computation
time (avg), the number of robots that reach their destinations (s), and the percentage of time that
our QP fails

ORCA DS+ORCA Our Method

m 0 tayg (ms) | s tayg (ms) | s tayg (ms) | s QP failures (%)

16 2 4 <1 0 <1 2 7 2 0.00

17 4 12 <1 0 <1 10 4 0.30

18 8 30 <1 <1 8 13 8 0.00

19 16 9 <1 13 <1 16 12 16 0.08

20 32 30 <1 23 <1 32 16 32 0.09

(a) (b) ()

I/I \\\ - -\\\
/) b3¢ \
/ J3 K s \

{ | X Ly /. \\ \

II . 1‘!7 /! \ :
SAN - i SR
< P Y N B S

DALLER A RN
\\{ _ oo |l YN I‘ \\\ ~~__\>_(_,_’,f ¥
\\ \ \\ ~ N L
\

s,

Fig. 4 The original trajectories and the occupancy grids in the simulation experiments 17 (a), 19
(b), and the physical experiment (c¢)

tion after 100 ms. There are two reasons for QP failures: infeasibilities, which are
explained in Sect. 5.4, and numerical issues. The numerical issues stem from sep-
arating hyperplane calculations between robots and obstacles. We use hard-margin
SVMs to calculate separating hyperplanes. When robots get too close to obstacles,
small epsilon values in SVM optimization may result in invalid hyperplanes, and
hence QP fails. The original trajectories and the occupancy grids in some experi-
ments are shown in Fig. 4 and the supplemental video contains selected simulations.

6.2 Physical Robots

We implement our approach on six differential drive robots (iRobot Create2) that
are equipped with one of ODROID C1+ or ODROID XU4 single-board computers.
Those computers run Ubuntu 16.04 with ROS Kinetic, but C1+ has very limited
computation capabilities (ARM Cortex-AS, max. 10 W). The robots are arranged
in a circle (2m radius) and are tasked with swapping sides (Fig. 4c). We plan the
original trajectories with one static obstacle using a centralized planner [5]. Each
robot receives the position information of all other robots using a motion capture

180 B. Senbaslar et al.

system. A trajectory tracking controller and our algorithm run on-board at a frequency
of 10Hz.

We conduct several experiments and add an additional obstacle, change the robots
initial position, disturb the robots during run-time, or artificially stop one of the
robots. In all cases robots successfully avoid collisions and in many cases they reach
their final destination within the originally planned durations. We also saw a few cases
where robots got into a deadlock, which we attribute to the fact that the robots, unlike
the simulation, cannot execute very low velocity commands. The supplemental video
includes recordings of our experiment.

7 Conclusion

We present a method for robust trajectory execution that takes pre-planned trajecto-
ries as input and compensates for a variety of dynamic changes, including imperfect
motion execution, newly appearing obstacles, robots breaking down, or external dis-
turbances. Our approach does not require communication between the robots. We
use a novel planning strategy employing both discrete planning and trajectory opti-
mization with a dynamic receding horizon approach. We demonstrate in simulation
and on physical robots that we can generate smooth trajectories in real-time, while
avoiding deadlocks successfully. In comparison, ORCA neither generates smooth
trajectories nor avoids deadlocks in our test cases.

In future work we would like to conduct additional experiments with robots using
on-board perception and flying robots, handle dynamic obstacles, and consider com-
munication between robots to improve their plans. We also would like to actively
address numerical issues and QP infeasibilities.

Acknowledgements This research was supported in part by Office of Naval Research grant
NO00014-14-1-073 and National Science Foundation grant 1724399. B. Senbaslar gratefully acknowl-
edges the support from the Fulbright program sponsored by U.S. Department of State.

References

1. Alonso-Mora, J., Beardsley, P.A., Siegwart, R.: Cooperative collision avoidance for nonholo-
nomic robots. IEEE Trans. Robot. (T-RO) 34(2), 404-420 (2018)

2. van den Berg, J., Guy, S.J., Lin, M.C., Manocha, D.: Reciprocal n-body collision avoidance.
In: International Symposium of Robotic Research (ISRR), pp. 3—19 (2009). http://gamma.cs.
unc.edu/RVO2/

3. vanden Berg, J.P.,, Lin, M.C., Manocha, D.: Reciprocal velocity obstacles for real-time multi-
agent navigation. In: IEEE International Conference on Robotics and Automation (ICRA), pp.
1928-1935 (2008)

4. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273-297 (1995)

http://gamma.cs.unc.edu/RVO2/
http://gamma.cs.unc.edu/RVO2/

Robust Trajectory Execution for Multi-robot Teams ... 181

13.

15.

16.

17.

18.

19.

. Debord, M., Honig, W., Ayanian, N.: Trajectory planning for heterogeneous robot teams.

In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018).
accepted. To appear

. Dresner, K.M., Stone, P.: A multiagent approach to autonomous intersection management. J.

Artif. Intell. Res. (JAIR) 31, 591-656 (2008)

. Farouki, R.T.: The bernstein polynomial basis: a centennial retrospective. Comput. Aided

Geom. Des. 29(6), 379-419 (2012)

. Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: qpOASES: a parametric active-

set algorithm for quadratic programming. Math. Program. Comput. 6(4), 327-363 (2014)

. Honig, W., Preiss, J.A., Kumar, T.K.S., Sukhatme, G.S., Ayanian, N.: Trajectory planning for

quadrotor swarms. IEEE Trans. Robot. (T-RO) 34(4), 856-869 (2018)

. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: An efficient

probabilistic 3D mapping framework based on octrees. Auton. Robot. 34(3), 189-206 (2013).
http://octomap.github.com

. Mattingley, J., Boyd, S.: CVXGEN: a code generator for embedded convex optimization.

Optim. Eng. 13(1), 1-27 (2012)

. Morris, R., Pasareanu, C.S., Luckow, K.S., Malik, W., Ma, H., Kumar, T.K.S., Koenig, S.:

Planning, scheduling and monitoring for airport surface operations. In: AAAI Workshop on
Planning for Hybrid Systems. AAAI Workshops, vol. WS-16-12, pp. 608-614 (2016)
Oleynikova, H., Burri, M., Taylor, Z., Nieto, J.I., Siegwart, R., Galceran, E.: Continuous-time
trajectory optimization for online UAV replanning. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5332-5339 (2016)

Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for aggressive quadrotor flight
in dense indoor environments. In: International Symposium of Robotic Research (ISRR), pp.
649-666 (2013)

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S.: OSQP: An operator splitting
solver for quadratic programs. ArXiv e-prints, Jan 2018

Usenko, V.C., von Stumberg, L., Pangercic, A., Cremers, D.: Real-time trajectory replanning for
MAVs using uniform B-splines and a 3D circular buffer. In: IEEE/RS]J International Conference
on Intelligent Robots and Systems (IROS), pp. 215-222 (2017)

Wang, L., Ames, A.D., Egerstedt, M.: Safety barrier certificates for collisions-free multirobot
systems. IEEE Trans. Robot. (T-RO) 33(3), 661-674 (2017)

Wurman, P.R., D’ Andrea, R., Mountz, M.: Coordinating hundreds of cooperative, autonomous
vehicles in warehouses. Al Mag. 29(1), 9-20 (2008)

Zhou, D., Wang, Z., Bandyopadhyay, S., Schwager, M.: Fast,: On-line collision avoidance
for dynamic vehicles using buffered voronoi cells. IEEE Robot. Autom. Lett. (RA-L) 2(2),
1047-1054 (2017)

http://octomap.github.com

	Robust Trajectory Execution for Multi-robot Teams Using Distributed Real-time Replanning
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Preliminaries
	4.1 Buffered Voronoi Cell
	4.2 Bézier Curve
	4.3 Trajectory Optimization using Quadratic Programming

	5 Approach
	5.1 Discrete Planning
	5.2 Continuous Optimization
	5.3 Temporal Rescaling
	5.4 Theoretical Guarantees

	6 Evaluation
	6.1 Simulation
	6.2 Physical Robots

	7 Conclusion
	References

