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Abstract— This paper proposes a multirate output-feedback
controller for multi-input multi-output (MIMO) systems, pos-
sibly with non-minimum-phase zeros, using the L1 adaptive
control structure. The analysis of stability and robustness of the
sampled-data controller reveals that under certain conditions
the performance of a continuous-time reference system is
uniformly recovered as the sampling time goes to zero. The
controller is designed for detection and mitigation of actuator
attacks. By considering a multirate formulation, stealthy zero-
dynamics attacks become detectable. The experimental results
from the flight test of a small quadtotor are provided. The
tests show that the multirate L1 controller can effectively detect
the zero-dynamics actuator attack and recover stability of the
quadrotor.

I. INTRODUCTION

Simplex design is recognized as a useful approach for
protection of cyber-physical systems (CPSs) against cyber
attacks [1], [2]. However, it relies on the system model
and accurate measurements, which are not always avail-
able in real-world systems. Additionally, since most of the
controllers are implemented on digital computers, equipped
with sample and hold mechanisms for sending/receiving the
physical system’s input/output data, vulnerability to stealthy
attacks due to the sampling zeros needs to be given serious
attention [3]–[5]. This paper investigates the security of feed-
back systems in the case of stealthy zero-dynamics attacks,
which are hard to detect and mitigate from a control theory
perspective [5]. If a closed-loop system possesses an unstable
zero, an (ultimately) unbounded actuator (or sensor) attack
may not be observed by the monitoring data, i.e., the sampled
outputs and the control command signals. In this regard, we
propose a multirate robust adaptive controller for detection
and mitigation of zero-dynamics actuator attacks, while also
compensating for other uncertainties and disturbances in the
CPSs.

As shown in [5], an interesting property of multirate
sampling is its ability to remove certain unstable zeros of the
discrete-time system when viewed in the lifted linear time-
invariant (LTI) domain. Multirate sampling has been studied
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extensively in the context of sampled-data control, and
relevant analysis and synthesis results have been reported in
[6], [7], to mention only a few. The problem of sampled-data
(SD) output-feedback control is addressed by introducing
high-gain observers to estimate the unmeasured states [8],
[9]. SD output-feedback control of systems with uncertainties
and disturbances has been addressed in [10]–[12] for a class
of single-input single-output (SISO) nonlinear systems under
a lower-triangular linear growth condition.

This paper aims to extend the L1 adaptive control the-
ory to multirate SD systems, including systems with non-
minimum-phase zeros. L1 adaptive control is known as a
robust technique, with quantifiable performance bounds and
robustness margins [13]–[15]. The controller compensates
for uncertainties and disturbances within the bandwidth of
a lowpass filter. In [16], L1 controllers has been developed
for under-actuated MIMO systems with stable transmission
zeros. Compared to continuous-time approach, the sampled-
data framework of this paper provides a richer and more agile
architecture for control of CPSs, which often involve digital
computers interacting with physical plants. The preliminary
results in [17] on mutirate L1 control design are limited to
square MIMO systems without unstable transmission zeros.
The current paper extends to non-minimum phase under-
actuated systems, where the number of outputs is greater
than or equal to the number of inputs. We recognize that a
few adaptive control schemes that study SISO non-minimum
systems are given in [18]–[20].

In order to verify the effectiveness of the proposed ap-
proach, the multirate L1 adaptive controller is implemented
for trajectory tracking control of a quadrotor in an indoor
flight arena equipped with VICON cameras. By leveraging
the multirate approach, the stealthy zero-dynamics attack
becomes detectable. The controller recovers the stability of
the quadrotor subject to such attack. The estimation loop in
the control structure, which has faster rate than the control
input, can timely detect the abnormality in the measured
output data and trigger a switch to a safe mode control.

The rest of the paper is organized as follows. Section II
presents the mathematical preliminaries and a few defini-
tions. Section III formulates the problem. In Section IV, the
structure of the multirate adaptive controller is presented.
Section V demonstrates the experimental results. Finally,
Section VI concludes the paper.

II. PRELIMINARIES

The notation ‖.‖p represents the vector or matrix p-norms
with 1 ≤ p ≤ ∞. The variable z denotes the z-transform
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variable, while s is used for the Laplace transform.
Consider a continuous-time LTI plant Pc, and the cor-

responding discrete time LTI plant Pd = SPcH, which is
defined with the standard zero-order hold and sample devices
H and S, respectively. The relationship between Pc and Pd
follows from the following definition.

Definition 1: Given an LTI system Pc with the minimal
realization (Ac, Bc, Cc, Dc), the equivalent step-invariant
discrete-time system Pd is given by the following state-space
matrices:

Ad = eAcTs , Bd =

∫ Ts

0

eAcτBcdτ, Cd = Cc, Dd = Dc,

(1)
where Ts > 0 is the sampling period.

Definition 2: (Zero-dynamics attack) Assume the system
Pd with the state-space matrices in (1) has unstable trans-
mission zero at z0 ∈ C. Then the unbounded actuator attack
signal of the form d[k] = εz0

k, which can be implemented
as an additive input disturbance, can remain undetected for
small enough ε at the sampled output, while causing the
states of the system expand exponentially [5].

Definition 3: A MIMO system with the state-space real-
ization (Am, Bm, Cm) has relative degree l > 1, if

CmA
i
mBm = 0, i ∈ {0, ..., r − 2},

CmA
l−1
m Bm 6= 0.

III. PROBLEM FORMULATION

Consider the following MIMO system

ẋ(t) = Amx(t) +Bm (u(t) + d(t)) , x(0) = x0,
y(t) = Cmx(t),

(2)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rp is the input
signal, and y(t) ∈ Rq is the system output vector, where
p ≤ q. Also, {Am ∈ Rn×n, Bm ∈ Rn×p, Cm ∈ Rq×n}
is an observable-controllable triple, where Am is Hurwitz,
and Bm, Cm are full rank matrices. The unknown initial
condition x0 is assumed to be inside an arbitrarily large
known set, so that ‖x0‖∞ ≤ ρ0 < ∞ for some known
ρ0 > 0. The transfer function

M(s)
∆
= Cm(sIn −Am)−1Bm (3)

represents the desired dynamics.
The control input, which is implemented via a zero-order

hold mechanism with time period of Ts > 0, is given by

u(t) = ud[k], t ∈ [kTs, (k + 1)Ts) , k ∈ Z≥0, (4)

where ud[k] is the discrete-time control law. The output is
sampled N times faster with the sampling period of Ts

N . For
each period Ts, the N sampled outputs are grouped in a
vector form given by

ȳd[k] =

[
y> (kTs) , . . . , y

>
(

(Nk +N − 1)Ts
N

)]>
. (5)

Finally, the system uncertainties, disturbances, and the actu-
ator attack are represented by

d(t) = f(kTs, x(kTs)), t ∈ [kTs, (k + 1)Ts) , k ∈ Z≥0,
(6)

where f (·, ·) : (R, Rn)→ Rp is an unknown function.
Assumption 1: The system M(s) in (3) does not have a

transmission zero at the origin.
Assumption 2: For arbitrary δ > 0 there exist Kδ > 0 and

L0 > 0, such that

‖f(t2, x2)− f(t1, x1)‖∞ ≤ L0|t2 − t1|+Kδ‖x2 − x1‖∞

holds for all ‖xi‖ ≤ δ, and ti ≥ 0, i ∈ {1, 2}.
Assumption 3: There exists constant B0 > 0, such that

‖f(t, 0)‖∞ ≤ B0

holds uniformly in t ≥ 0.
Remark 1: In the case of zero-dynamics attack, the

boundedness of the attack signal d(t) can be realized by
assuming a secure software/hardware structure for the CPS
(Simplex architecture [1], [2], [21], [22]). In such structure,
a backup controller will operate the system, when the normal
mode controller is compromised due to a cyber attack.
By switching from the normal mode to a secured backup
controller, the unbounded stealthy attack can be removed
(from the cyber space), rendering d(t) bounded. However,
sensor/actuator attacks, such as zero-dynamics attack, can
undermine the effectiveness of model-based detection and
control algorithms needed to operate the Simplex architec-
ture. For example, the control design in [2] does not consider
the sampled-data structure of CPSs and cannot deal with
stealthy zero-dynamics attacks. This motivates to address the
detection and control problem for Simplex architecture in the
presence of zero-dynamics attacks.

The control objective is to design an output feedback con-
troller u(t) such that the system output y(t) tracks the desired
response ym(t) governed by ym(s) = M(s)r(s), where r(s)
is the Laplace transform of the piece-wise constant signal
r(t) given by

r(t) = rd[k], t ∈ [kTs, (k + 1)Ts) , k ∈ Z≥0, (7)

with rd[k] being the discrete-time signal. Let ‖r‖L∞
≤Mr,

where Mr is a positive constant.

IV. CONTROL DESIGN

First, we define a few variables of interest and design
constraints. For design of the controller, we consider a strictly
proper stable transfer function C(s) such that C(0) = Ip. Let

H(s)
∆
= (sIn −Am)

−1
Bm,

G(s)
∆
= H(s) (Ip − C(s)) .

(8)

The selection of C(s) must ensure that for a given ρ0, there
exists ρr > 0 such that the following L1-norm condition
holds:

‖G(s)‖L1
<
ρr − ‖H(s)C(s)Kg‖L1

Mr − ρin
Lρrρr +B0

, (9)

where
ρin

∆
=
∥∥∥s(sIn −Am)

−1
∥∥∥
L1

ρ0. (10)
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Further, for every δ > 0, let

Lδ
∆
=
γ̄1 + δ

δ
K(γ̄1+δ), (11)

where Kδ is introduced in Assumption 2, and γ̄1 is an
arbitrarily small positive constant.

To deal with the multirate structure of the controller, where
the rate of sampling at the output is N times faster than the
rate of hold at the input, we use the standard lifting technique
to represent the system matrices. The desired plant M(s)
with dual-rate sampling and hold can be described by the
discrete-time mapping, given by

M̄d = SNMH.

One can obtain a step-invariant LTI description of the
discrete-time system M̄d by grouping the plant outputs as
in (5). A state-space description of M̄d can be obtained as
follows:

Ād = AN , B̄d =
N−1∑
k=0

AkB,

C̄d =


C
CA

...
CAN−1

 , D̄d =


0q×p
CB

...

C
N−2∑
k=0

AkB

 ,
(12)

where

A = eAm
T
N , B =

∫ T
N

0

eAmτBmdτ, C = Cm. (13)

For brevity the dependence of Ād, B̄d, C̄d, and D̄d on
the parameter Ts has been dropped. Assuming that the
sampling is not pathological [4], the realization (A, B, C)
is controllable/observable. For the multirate control design,
N ∈ N is selected such that

Z
∆
=


C
CA

...
CAN−2

 (14)

is full column rank, where matrices A, B, and C are given in
(13). This condition holds for large enough N , in particular
N = n + 1, since the pair (A, C) is observable. It ensures
that C̄d is also full rank.

Remark 2: Using the results obtained in [5], if rank(Z) =
n and Assumption 1 is true, it can be shown that the
lifted system M̄d does not have a non-minimum-phase zero.
Therefore, a stealthy zero-dynamics attack is impossible.

Define

K(Ts)
∆
= ((Ād − I)C̄†dD̄d − B̄d)†, (15)

where † denotes the left pseudo inverse.
Let (Af , Bf , Cf ) be a minimal state-space realization

such that

Cf (sInc −Af )
−1
Bf

∆
= C(s), (16)

where nc is the order of C(s). Define the function Γ(·) as

Γ (Ts)
∆
= α1(T )

∥∥(sInc −Af )−1Bf
∥∥
L1

+ α2(Ts), (17)

where

α1(Ts)
∆
= max
t∈[0, Ts]

∥∥Cf (eAf t − Inc
)∥∥
∞ ,

α2(Ts)
∆
= max
t∈[0, Ts]

∫ t

0

∥∥∥CfeAf (t−τ)Bf

∥∥∥
∞
dτ.

Let
Ω(Ts) =

(∥∥ĀdC̄+
d D̄d − B̄d

∥∥
∞ +

∥∥C̄+
d D̄d

∥∥
∞

)
(B0 + Lρrρr)

ρu(Ts) =‖C(s)‖L1
‖K(Ts)‖∞Ω(Ts),

γdx(Ts) =Lρr
(∥∥Ād − In

∥∥
∞ρr +

∥∥B̄d∥∥∞ (ρu(Ts) +B0 + Lρrρr)
)

+ L0Ts,

γ0(Ts) =
∥∥∥(Ip +K(Ts)C̄

†
dD̄d

)∥∥∥
∞
γdx(Ts),

γC(Ts) =Γ(Ts)‖C(s)‖L1
(B0 + Lρrρr + γ0(Ts))

+ Γ(Ts)‖Kg‖∞Mr,

ρd0 =‖sH(s)C(s)‖L1
(B0 + Lρrρr) ,

(18)

where Kg
∆
= −CmA−1

m Bm, H(s) is defined in (8), and Γ(·)
is given in (17). Matrices Ād, B̄d, C̄d, and D̄d are introduced
in (12). Also, C̄†d denotes the pseudo-inverse of C̄d. Finally
let
γx(Ts) =
‖G(s)‖L1

γdx(Ts)+‖H(s)‖L1
γC(Ts)+‖H(s)C(s)‖L1

γ0(Ts)+Tsρd0
1−Lρr‖G(s)‖L1

.

(19)
The sampling time Ts of the digital controller is chosen

such that
γx(Ts) < γ̄1, (20)

where γ̄1 > 0 is introduced in (11), and γx(·) is given in
(19). Also, the sampling time Ts should not be pathological.

Remark 3: Existence of such Ts depends on the uncer-
tainty bounds and the system parameters. For certain class
of MIMO systems that additionally satisfy

rank


 Cm

...
CmA

l−1
m


 = n, (21)

where l and n are the relative degree and order of M(s)
in (3), respectively, it can be shown that the continuous-time
function γx(Ts) tends to zero as Ts goes to zero. As a result,
if the relation (21) is true, the condition in (20) can be met
by choosing small enough sampling time Ts.

The elements of the proposed mutirate adaptive controller
are given in the following.

Output Predictor: The predicted output ˆ̄yd[k] is given by

x̂d[k + 1] = Ādx̂d[k] + B̄dud[k] + d̂d[k], x̂d[0] = C̄†dȳ0,

ˆ̄yd[k] = C̄dx̂d[k] + D̄dud[k],
(22)

where
ȳ0 = [y0, ..., y0︸ ︷︷ ︸

N

]>, y0 = Cmx0, (23)
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and d̂d[k] ∈ Rn, ud[k] ∈ Rp are provided by adaptation and
control laws, respectively. Also, Ād, B̄d, C̄d, D̄d are defined
in (12).

Adaptation Law: The update law for d̂d[k] is given by

d̂[k] = −ĀdC̄†dỹd[k], (24)

where ỹd[k] = ˆ̄yd − ȳd[k], and C†d is the left inverse of C̄d.
Control Law: The control signal is defined as

ud[z] = Cd[z]
(
Kgrd[z] +K(Ts)Ā

−1
d d̂d[z]

)
, (25)

where

Cd[z] = Cf
(
zInc − eAfTs

)−1
A−1
f

(
eAfTs − Inc

)
Bf ,

and (Af , Bf , Cf ) is a minimal state-space realization of
C(s). Also, d̂d[z] is the z-transform of the discrete-time
signal d̂d[k] given by (24).

V. EXPERIMENTAL STUDY

We implemented the proposed controller for trajectory
tracking of a Crazyflie quadrotor, in x-y plane. Also, the
effectiveness of the multirate controller is compared with
a standard L1 adaptive control, which is implemented with
uniform sampling time [23]. In this experiment, we consider
PID as the baseline control, augmented with L1 adaptive
output-feedback to improve the tracking performance and
robustness of the closed-loop system. Then, a zero-dynamics
actuator attack is injected into the control input channel.
In the following, the flight test results are provided to
demonstrate the capability of the proposed multirate adaptive
controller in timely detection and mitigation of actuator
attacks.

In the multirate trajectory tracking control setup, the pitch
and roll command signals are sent to the quadrotor from
Simulink with the sampling period of Ts = 0.03sec, and
the position measurement signal from Vicon is received
with N = 3 times faster rate at the sampling period of
Ts
N = 0.01sec. For comparison, we also implemented the
L1 controller with uniform rate of Ts = 0.03sec. The rest
of the closed-loop system parameters are chosen the same
for the singlerate and multirate implementations. The desired
dynamics and the low-pass filter are chosen as

M(s) =

[ 4
s2+1.5s+4 0

0 4
s2+1.5s+4

]
,

C(s) =

[
2.53

(s+2.5)3
0

0 2.53

(s+2.5)3

]
.

(26)

In this experiment, the pitch angle command navigates
the quadrotor in x-axis direction, while the roll angle com-
mand controls the y-axis position. Therefore, the dynamics
governing the position of the quadrotor are decoupled in x
and y directions. Using Matlab system identification toolbox,
and by collecting input/output data, the following transfer
functions for the model of quadrotor dynamics with the
baseline PID controller from the reference commands, Rx

and Ry , to the actual x-axis and y-axis positions, X and Y ,
are obtained

X(s)

Rx(s)
=

1.276s2 + 12.33s+ 7.058

s4 + 3.762s3 + 8.984s2 + 14.75s+ 7.013
, (27)

Y (s)

Ry(s)
=
−2675s3 + 4.167s2 + 3.556s+ 13.39

s4 + 1.449s3 + 7.796s2 + 5.325s+ 11.92
. (28)

We notice that if the transfer functions in (27) and (28) are
sampled at a single rate with sampling time Ts = 0.03sec,
the discrete-time plants have unstable zeros at zx = −1.06
and zy = 1.66, respectively. These unstable zeros can be
used to devise an attack signal in the form of

d[k] = [εxz
k
x, εyz

k
y ]>, (29)

where εx = 10−20 and εy = 5× 10−177 are small constants.
Also, zx = −1.06 and zy = 1.66 are the unstable sampling
zeros for the discrete-time model of quadrotor dynamics
in (27) and (28), respectively. Using the multirate control
approach of this paper, these unstable zeros can be removed.

Since a cyber attack, such as the zero-dynamics attack
in (29), can involve unbounded signals (implemented in
cyber space), the feedback control algorithm by itself cannot
mitigate the attack. Therefore, the controller should be inte-
grated with a secure software/hardware architecture such as
Simplex structure [1], [2], [21], [22]. This structure includes
normal control environment and a backup secure control
environment. After a cyber attack is detected, the control
is switched from normal mode to the safe mode. An ideal
control algorithm for Simplex architecture should detect the
attack fast enough, and maintain the stability of the perturbed
system. This Simplex structure can be achieved using mod-
ern multicore processors and virtualization technology [24],
which is out of scope of this paper. A simple way to simulate
the Simplex structure for this experiment is to remove the
attack signal as soon as it is detected.

In the following, we consider a residual for attack de-
tection that triggers switching to a safe mode, which is
calculated using the output prediction error. The one-time
switch is triggered once the criteria∥∥∥[ wỹ>d [k + 1], ỹ>d [k + 1]− ỹ>d [k]

]>∥∥∥
∞
> ∆, k ∈ N,

(30)
is met, where the output prediction error ỹd[k] is defined in
(24), ∆ is the detection threshold, and w ∈ R is a weighting
coefficient. The residual is a weighted norm of the output
prediction error and its rate of change as defined in (30).
In the multirate approach, ∆ = 0.03 is chosen, while the
threshold is ∆ = 0.02 for the singlerate control. Also, the
weighting coefficient is selected to be w = 0 in (30). Figure
1 shows the residuals over time calculated for multirate and
singlerate controllers. As shown in Figure 1, the thresholds
are chosen above the level of errors due to measurement
noise or system uncertainties in order to reduce the number
of false alarms. For the same attack signals, the multirate
detection happens 0.45sec sooner than the singlerate de-
tection (Figure 1), which is sufficient enough to save the
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Fig. 1: Calculated residual given by (30) for attack detection.
Residual history is shown over the active attack interval. For each
flight test, the attack signals are removed as soon as the residual
exceeds the threshold (∆multirate = 0.03, ∆singlerate = 0.02).
The multirate L1 controller provides a 0.45sec faster detection
compared to the controller with uniform rate.

quadrotor from crash. Fast detection is particularly important
to recover the stability in the case of exponentially growing
attack signals. In addition, Figures 2a and 2b show the
norm of the output prediction error ‖ỹd[k]‖∞ for multirate
and singlerate L1 controllers, respectively. In Figure 2a for
multirate approach, we can notice a change in the profile of
prediction error norm, when the attack signal starts to grow
to significant levels (after t = 21.5sec). However, a change in
the prediction error norm can be detected from t = 23.5sec
in Figure 2b for singlerate method. This indicates that the
singlerate detection has a considerable latency compared to
multirate detection in the case of zero-dynamics attacks.
In addition, comparison of Figures 2a and 2b reveals that
the output prediction error norm is smaller under multirate
controller, which indicates a better performance for tracking
the L1 reference system.

The rest of the flight test results are illustrated in Figure
3. Figure 3a shows the zero-dynamics attack signals for
pitch and roll commands, which become noticeable at around
t = 21.5sec, and grow exponentially till t = 24.12sec,
when attack is detected as the residual exceeds the threshold
(Figure 1). After being detected, the attack signals can
be removed by switching to a secure computing platform,
which performs as a backup for the compromised controller
software. Figure 3b shows the trajectory of the quadrotor
in x-y plane under augmented single-rate and multirate L1

adaptive controllers, in two separate flight tests. We can
see that the closed-loop system with single-rate controller
crashes due to zero-dynamics attack, however the system
with multirate controller is robust to the attack. The x and y
trajectories of the quadrotor versus time are shown in Figures
3c and 3d, respectively.

Remark 4: The results of this experiment and choice of
the threshold in (30) depend on the quality of the measure-
ment outputs and the level of noise in the motion capture
system. In the flight tests similar to above, false alarm cases
can occur due to the inaccuracy in the measurements.

VI. CONCLUSION

A multirate adaptive output-feedback control approach is
proposed for MIMO systems. Leveraging the fact that by
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Fig. 2: Norm of the output prediction error ‖ỹd[k]‖∞ for multirate
L1 controller in (a), and for singlerate L1 controller in (b). The
active attack interval is marked in the plots. A change in the profile
of prediction error norm can be observed in Figure 2a during the
active attack interval, while the profile change in Figure 2b becomes
noticeable with about 2sec delay.

multirate sampling the possible non-minimum-phase zeros
of a system can be removed, the approach of this paper
can be applied to systems with unstable zeros. A sufficient
condition on the sampling time of the digital controller is
obtained that ensures stability of the closed-loop system.
Under the specified conditions in the paper, the closed-loop
multirate system can uniformly recover the performance of
a continuous-time reference system as the sampling time
goes to zero. Results from an indoor quadrotor flight test
are provided to demonstrate that the fast estimation loop in
the multirate L1 control structure can detect zero-dynamics
attacks, and maintain the stability of the quadrotor flight
subject to disturbances, attacks, and system uncertainties.
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