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Abstract. Graph-structured data naturally appear in numerous appli-
cation domains, ranging from social analysis, bioinformatics to computer
vision. The unique capability of graphs enables capturing the structural
relations among data, and thus allows to harvest more insights compared
to analyzing data in isolation. However, graph mining is a challenging
task due to the underlying complex and diverse connectivity patterns. A
potential solution is to learn the representation of a graph in a low-
dimensional Euclidean space via embedding techniques that preserve
the graph properties. Although tremendous efforts have been made to
address the graph representation learning problem, many of them still
suffer from their shallow learning mechanisms. On the other hand, deep
learning models on graphs have recently emerged in both machine learn-
ing and data mining areas and demonstrated superior performance for
various problems. In this survey, we conduct a comprehensive review
specifically on the emerging field of graph convolutional networks, which
is one of the most prominent graph deep learning models. We first intro-
duce two taxonomies to group the existing works based on the types of
convolutions and the areas of applications, then highlight some graph
convolutional network models in details. Finally, we present several chal-
lenges in this area and discuss potential directions for future research.
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1 Introduction

Graphs naturally arise in many real-world applications, including social analysis
[3], fraud detection [1,45], traffic prediction [28], computer vision [31] and many
more. By representing the data as graphs, the structural information can be
encoded tomodel the relations among entities, and furnishmore promising insights
underlying the data. For example, in a transportation network, nodes are often the
sensors and edges represent the spatial proximity among sensors. In addition to
the temporal information provided by the sensors themselves, the graph structure
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modeled by the spatial correlations leads to a prominent improvement in the traf-
fic prediction problem [28]. Moreover, by modeling the transactions among people
as a graph, the complex transaction patterns can be mined for synthetic identity
detection [45] and money laundering detection [46].

However, the complex structure of graphs [5] often hampers the capability of
gaining the true insights underlying the graphs. Such complexity, for example,
resides in the non-Euclidean nature of the graph-structured data. A potential
solution to deal with the complex patterns is to learn the graph representations in
a low-dimensional Euclidean space via embedding techniques, including the tra-
ditional graph embedding methods [4,34,37] and the recent network embedding
methods [21,33]. Once the low-dimensional representations are learned, many
graph-related problems can be easily done, such as the classic node classification
and link prediction [21]. There exist many thorough reviews on both traditional
graph embedding and recent network embedding methods. For example, [40]
reviews several well-established traditional graph embedding methods and dis-
cusses the general framework for graph dimensionality reduction. Hamilton et
al. review the general graph representation learning methods, including node
embedding and subgraph embedding [23]. Furthermore, [11] discusses the differ-
ences between the traditional graph embedding and the recent network embed-
ding methods. One notable difference is that the recent network embedding is
more suitable for the task-specific network inference. Other existing literature
reviews on network embedding include [8,20].

Despite some successes of these embedding methods, many of them suffer
from the limitations of the shallow learning mechanisms [21,33] and might fail
to discover the more complex patterns behind the graphs. Deep learning models,
on the other hand, have been demonstrated their power in many applications. For
example, convolution neural networks (CNN) achieve a promising performance
in many computer vision [19] and natural language processing [18] applications.
In particular, due to the grid-like nature of images, the convolution layers in
CNN enable to learn different trainable localized filters which scan every pixel
in the images, combining with the surrounding pixels. The basic components are
the convolution and pooling operators, as well as the trainable localized filters.

However, the non-Euclidean characteristic of graphs (e.g., the irregular struc-
ture) makes the graph convolutions and graph filtering not as well-defined as on
images. In the past decades, researchers have been working on the graph signal
operations, such as graph filtering, graph wavelets, etc. Shuman et al. give a com-
prehensive overview of graph signal processing, including the common operations
on graphs [36]. To be brief, spectral graph convolutions are defined in the graph
Fourier domain, which is considered as an analogy of 1-D signal Fourier trans-
form. Graph filtering can be defined in the spectral and vertex domains. The emer-
gence of these operators open a door to graph convolutional networks. Note that
in the past few years, many other graph deep learning models have been proposed,
including (but are not limited to): (1) graph auto-encoder [26], (2) graph genera-
tive adversarial model [14,44], (3) graph attention model [27,39], (4) graph recur-
rent neural networks [43]. But in this survey, we focus specifically on reviewing the
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existing literature of the graph convolutional networks. The main contributions of
this survey are summarized as following:

1. We introduce two taxonomies to group the existing graph convolutional net-
work models by the types of filtering and the areas of applications.

2. We motivate each taxonomy by surveying and discussing the state-of-the-art
graph convolutional network models.

3. We discuss the challenges of the current models that need to be addressed
and highlight some promising directions for the future work.

The rest of the paper is organized as follows. We start by summarizing the
notations and introducing some preliminaries of graph convolutional networks
in Sect. 2. Then in Sect. 3 and Sect. 4, we categorize the existing models into the
spectral based methods and the spatial based methods by the types of graph
filtering with some detailed examples. Section 5 presents the methods from a
view of applications. In Sect. 6, we conclude our survey, discuss some of the
challenges and provide some directions for the future work.

2 Notations and Preliminary

In this section, we present the notations and some preliminaries for the graph
convolutional networks. In general, we use bold uppercase letters for matrices,
bold lowercase letters for vectors, and lowercase letters for scalars. For matrix
indexing, we use A(i, j) to denote the entry at the intersection of the i-th row
and j-th column. We denote the transpose of a matrix A as AT .

Graphs and Graph Signals. In this survey, we are interested in the graph convo-
lutional network models on an undirected connected graph G = {V, E ,A}, which
consists of a set of nodes V with |V| = n, a set of edges E with |E| = m and the
adjacency matrix A. If there is an edge between node i and node j, the entry
A(i, j) denotes the weight of the edge; otherwise, A(i, j) = 0. For unweighted
graphs, we simply set A(i, j) = 1. We denote the degree matrix of A as a diag-
onal matrix D where D(i, i) =

∑n
j=1 A(i, j). Then the Laplacian matrix of A is

denoted as L = D − A. The corresponding symmetrically normalized Laplacian
matrix is L̃ = I − D− 1

2 AD− 1
2 where I is an identity matrix.

A graph signal defined on the nodes is represented as a vector x ∈ Rn where
x(i) is the signal value on the node i [36]. Node attributes, for instance, can be
considered as the graph signals. Denote X ∈ Rn×d as the node attribute matrix
of an attributed graph, then the columns of X are the d signals of the graph.

Graph Fourier Transform. It is well-known that the classic Fourier transform of
an 1-D signal f is computed by f̂(ξ) = 〈f, e2πiξt〉 where ξ is the frequency of
f̂ in the spectral domain and the complex exponential is the eigenfunction of
the Laplace operator. Analogously, the graph Laplacian matrix L is the Laplace
operator defined on a graph, and hence an eigenvector of L associated with its
corresponding eigenvalue is an analog to the complex exponential at a certain
frequency. Note that the symmetrically normalized Laplacian matrix L̃ and the
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random-walk transition matrix can be also used as the graph Laplace operator.
In particular, denote the eigenvalue decomposition of L̃ as L̃ = UΛUT where the
l-th column of U is the eigenvector ul and Λ(l, l) is the corresponding eigenvalue
λl, then we can compute the Fourier transform of a graph signal x as

x̂(λl) = 〈x,ul〉 =
n∑

i=1

x(i)u∗
l (i) (1)

The above equation represents in the spectral domain a graph signal defined in
the vertex domain. Then the inverse graph Fourier transform can be written as

x(i) =
n∑

l=1

x̂(λl)ul(i) (2)

Graph Filtering. Graph filtering is a localized operation on graph signals. Analo-
gous to the classic signal filtering in the time or spectral domain, one can localize
a graph signal in its vertex domain or spectral domain as well.
(1) Frequency filtering: Recall that the frequency filtering of a classic signal is
often represented as the convolution with the filter signal in the time domain.
However, due to the irregular structure of the graphs (e.g., different nodes having
different numbers of neighbors), graph convolution in the vertex domain is not as
straightforward as the classic signal convolution in the time domain. Note that
for classic signals, the convolution in the time domain is equivalent to the inverse
Fourier transform of the multiplication between the spectral representations of
two signals. Therefore, the spectral graph convolution is defined analogously as

(x ∗G y)(i) =
n∑

l=1

x̂(λl)ŷ(λl)ul(i) (3)

Note that x̂(λl)ŷ(λl) indicates the filtering in the spectral domain. Thus, the
frequency filtering of a signal x on graph G with a filter y is exactly same as Eq.
(3) and is further re-written as

xout = x ∗G y = U

⎡

⎢
⎣

ŷ(λ1) 0
. . .

0 ŷ(λn)

⎤

⎥
⎦UT x (4)

(2) Vertex filtering: The graph filtering of a signal x in the vertex domain is
generally defined as a linear combination of the signal components in the nodes
neighborhood. Mathematically, the vertex filtering of a signal x at node i is

xout(i) = wi,ix(i) +
∑

j∈N (i,K)

wi,jx(j) (5)

where N (i,K) represents the K-hop neighborhood of node i in the graph and
the parameters {wi,j} are the weights used for the combination. It can be shown
that by using a K-polynomial filter, the frequency filtering can be interpreted
from the vertex filtering perspective [36].
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3 Spectral Graph Convolutional Networks

In this section and the subsequent Sect. 4, we categorize the graph convolutional
neural networks into the spectral based methods and the spatial based methods
respectively. We consider the spectral based methods to be those methods that
start with constructing the frequency filtering.

The first notable spectral based graph convolutional network is proposed
by Bruna et al. [7]. Motivated by the classic CNN, this deep model on graphs
contains several spectral convolutional layers that take a vector Xp of size n×dp

as the input feature map and output a feature map Xp+1 of size n × dp+1 by:

Xp+1(:, j) = σ

⎛

⎜
⎝

dp∑

i=1

V

⎡

⎢
⎣

(θj
i )(1) 0

. . .
0 (θj

i )(n)

⎤

⎥
⎦VT Xp(:, i)

⎞

⎟
⎠ , ∀j = 1, · · · , dp+1

(6)
where Xp(:, i) (Xp+1(:, j)) is the i-th (j-th) dimension of the input (output) fea-
ture map respectively, θj

i denotes a vector of learnable parameters of the filter
θj

i . Each column of V is the eigenvector of L and σ(·) is the activation func-
tion. However, there are several issues with this convolutional structure. First,
the eigenvector matrix V requires the explicit computation of the eigenvalue
decomposition of the graph Laplacian matrix, and hence suffers from the O(n3)
time complexity which is impractical for large-scale graphs. Second, though the
eigenvectors can be pre-computed, the time complexity of Eq. (6) is still O(n2).
Third, there are O(n) parameters to be learned in each layer. Besides, these
non-parametric filters are not localized in the vertex domain. To overcome the
limitations, the authors also propose to use a rank-r approximation of eigenvalue
decomposition. To be specific, they use the first r eigenvectors of V that carry
the most smooth geometry of the graph and consequently reduce the number of
parameters of each filter to O(1) [7]. Moreover, if the graph contains the clus-
tering structure that can be explored via such a rank-r factorization, the filters
are potentially localized. However, it still requires O(n2) time complexity.

To address these limitations, Defferrard et al. propose to use K-polynomial
filters in the convolutional layers for localization [12]. Such a K-polynomial filter
is represented by ŷ(λl) =

∑K
k=1 θkλk

l . As mentioned in Sect. 2, the K-polynomial
filters achieve a good localization by integrating the node features within the K
hop neighborhood [36], and the number of the trainable parameters decreases to
O(K) = O(1). In addition, to further reduce the computational complexity, the
Chebyshev polynomial approximation [24] is used to compute the spectral graph
convolution. Mathematically, the Chebyshev polynomial Tk(x) of order k can be
recursively computed by Tk(x) = 2xTk−1(x) − Tk−2(x) with T0 = 1, T1(x) = x.
They normalize the filters by λ̃l = 2 λl

λmax
− 1 to make the scaled eigenvalues lie

within [−1, 1] [12]. As a result, the convolution layer is

Xp+1(:, j) = σ

⎛

⎝
dp∑

i=1

K−1∑

k=0

(θj
i )(k + 1)Tk(L̃)Xp(:, i)

⎞

⎠ , ∀j = 1, · · · , dp+1 (7)



84 S. Zhang et al.

where θj
i is a K-dimensional parameter vector for the i-th column of input

feature map and the j-th column of output feature map. The authors also design
a max pooling operation [12] with the multilevel clustering method Graclus [13]
which is quite efficient to uncover the hierarchical structure of the graphs.

As a special variant, the graph convolutional network proposed by Kipf et al.
(named as GCN) aims at the semi-supervised node classification task on graphs
[25]. In this model, the authors truncate the Chebyshev polynomial to first-order
(i.e., K = 2 in Eq. (7)) and specifically set (θ)j

i (1) = −(θ)j
i (2) = θj

i . Besides,
since the eigenvalues of L̃ are within [0, 2], relaxing λmax = 2 still guarantees
−1 ≤ λ̃l ≤ 1, ∀l = 1, · · · , n. This leads to the simplified convolution layer as

Xp+1 = σ
(
D̃− 1

2 ÃD̃− 1
2 XpΘp

)
(8)

where Ã = I + D− 1
2 AD− 1

2 and D̃ is the diagonal degree matrix of Ã, Θp is
a dp+1 × dp parameter matrix. Besides, Eq. (8) has a close relationship with
the Weisfeiler-Lehman isomorphism test [35]. The last layer outputs the node
representations. A softmax classifier is then added after the last spectral convo-
lutional layer and the objective is to minimize the cross-entropy error over the
labeled nodes. The objective function is then minimized in a gradient descent
manner. However, the training process could be costly (in terms of memory) for
large-scale graphs. Moreover, the transduction of GCN interferes with the gen-
eralization, making the learning of representations of the unseen nodes in the
same graph and the nodes in an entirely different graph more difficult [25].

To address the issues of GCN [25], FastGCN [10] improves the original GCN
model by viewing the spectral graph convolution as an integral of embedding
functions under some probability measure. It first assumes the input graph G
is an induced subgraph of a possibly infinite graph G′ such that the nodes V of
G are i.i.d. samples of the nodes of G′ (denoted as V ′) under some probability
measure P. This way, the original convolution layer represented by Eq. (8) can
be illustrated by an embedding function of independent vertices. Denote the
embedding function at the p-th layer as xp, then we have

xp+1(v) = σ

(∫

Ã(v, u)xp(u)ΘpdP(u)
)

(9)

where u, v are some independent nodes. Now, Eq. (9) can be approximated by
Monte Carlo sampling. Denote some i.i.d. samples up

1, · · · , up
tp at layer-p, the

integral can be estimated by

xp+1(v) = σ

(
1
tp

tp∑

i=1

Ã(v, up
i )xp(u

p
i )Θp

)

(10)

Denote P as the number of layers of the deep architecture, and uP
1 , · · · , uP

tP as
a batch of nodes. At each layer p, they uniformly sample with replacement the
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nodes up
1, · · · , up

tp , then the output feature map is computed by

Xp+1(v, :) = σ

(
n

tp

tp∑

i=1

Ã(v, up
i )Xp(u

p
i , :)Θp

)

(11)

and the batch loss w.r.t. the output of the last layer is

L =
1
tP

tP∑

i=1

g
(
XP (uP

i , :)
)

(12)

where g(·) is some loss function. Note that this Monte Carlo estimator of the
original convolution could lead to a high variance of estimation. To reduce the
variance, the authors also formalize the variance and solve for a sampling dis-
tribution P of nodes. Due to the space limitation, we suggest the readers of
interests to refer to [10]. In addition, [9] is another recent work on the stochastic
training of GCN [25]. To reduce the variance of the estimator, the authors use
the historical activations of nodes as a control variate and propose an efficient
sampling-based stochastic algorithm. Besides, the authors theoretically prove
the convergence of the algorithm regardless of the sampling size in the training
phase, and also the exact predictions in the testing phase in [9].

4 Spatial Graph Convolutional Networks

As the spectral graph convolution relies on the specific eigenfunctions of Lapla-
cian matrix, it is nontrivial to transfer the spectral based graph convolutional
network models learned on one graph to another graph whose eigenfunctions
are different. Spatial based methods, on the other hand, alternatively general-
ize the convolution to the combinations of the graph signal within the nodes
neighborhood and define the learnable filters in the vertex domain.

Monti et al. propose a generic graph convolution network framework named
MoNet [31] by designing a universe patch operator which integrates the signals
within the node neighborhood. In particular, for a node i and its neighboring
node j ∈ N (i), they define a d-dimensional pseudo-coordinates u(i, j) and feed it
into P learnable kernel functions (w1(u), · · · , wP (u)). Then the patch operator
is formulated as Dp(i) =

∑
j∈N (i) wp(u(i, j))x(j), p = 1, · · · , P where x(j) is

the signal value at the node j. The graph convolution in the spatial domain is
then based on the patch operator as

(x ∗s y)(i) =
P∑

l=1

g(p)Dp(i)x (13)

It is shown that by carefully selection of u(i, j) and the kernel function wp(u),
many existing graph convolutional network models [2,25] can be viewed as a
specific case of MoNet. SplineCNN [15] follows the same framework (i.e., Eq.
(13)) but uses a different convolution kernel based on B-splines.
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From a more general perspective, the graph convolution in the spatial domain
can be alternatively thought of as an aggregation of a subset of nodes. Hamilton
et al. propose an aggregation based representation learning, named GraphSAGE
[22]. The full batch version of the algorithm is straightforward: for a node i, one
(1) aggregates the representation vectors of all its immediate neighbors in the
current layer via some learnable aggregator; (2) concatenates the representation
vector of node i with the aggregated representation; (3) then feeds the concate-
nated vector to a fully connected layer with some nonlinear activation function
σ(·), followed by a normalization step. The output of the last layer is considered
as the final representations of nodes, which can be followed by some loss func-
tion. The authors provide some choices of the aggregator functions, including the
mean aggregator, LSTM aggregator and the pooling aggregator. Among others,
using the mean aggregator makes the whole algorithm approximately resemble
the GCN model [25]. In addition, for training efficiency, they also provide a
minibatch variant by uniformly sampling the neighboring nodes [22].

Velickovic et al. design a novel attention layer that aggregates the features
of the neighboring nodes weighted by some learnable importance [39]. Consider
the input node attribute matrix X with each row as the feature vector of a node.
The attention layer contains a shared learnable weight matrix W and computes
the attention coefficients between node i and its neighbor node j ∈ N (i) by

αij =
exp

(
aT [WX(i, :)T ‖WX(j, :)T ]

)

∑
q∈N (i) exp (aT [WX(i, :)T ‖WX(q, :)T ])

(14)

where ‖ denotes the concatenation operation and a is a single-layer feedfor-
ward neural network. This attention coefficient acts as a weight to encode
the importance of feature vector of the neighboring node j for node i. And
the final output of the feature vector is computed by a linear combination
Xout(i, :) = σ

(∑
j∈N (i) αijWX(j, :)T

)
. To stabilize the learning process, the

authors apply the multi-head attention [38] (i.e., L independent attention mech-
anism as Eq. (14)), and then feed the average of the output of all heads to
a nonlinearity. Compared to the GCN model [25], more flexibility is achieved
thanks to the learnable importance of the nodes within the neighborhood.

Note that despite the inherent differences among the models above, all of
them can be viewed as an instance of using vertex filtering. It is just the strategy
of how to decide the weights wij in Eq. (5) that differentiates the models.

5 Applications of Graph Convolutional Networks

The different graph convolutional network models can be also divided by what
kind of data they are applied to. Although a substantial amount of applica-
tions exist, we generally categorize them into (1) applications on graph data, (2)
applications on image and manifold, and (3) applications on other data.

Applications on Graph Data. A number of works have been proposed to solve
the tasks on graphs. The majority of them are for node classification, includ-
ing [10,17,22,25,31,39]. A commonality among them is that the output feature
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map of these methods can be considered as the node representations, and thus
these methods can be also naturally generalized to other node-level problems,
such as link prediction, node clustering and visualization. Another application
is the graph classification. One straightforward way is to aggregate the learned
node representations as the graph representations and then feed to some classi-
fiers (e.g., fully connected network). However, this may not be a quite promising
strategy since the simple aggregation of the isolated node representations may
not represent the graph in its entirety. [7,12,42] leverages the graph coarsening
and pooling operator to explore the hierarchical representations of graphs. In
particular, [42] recently designs a differential pooling operator that can gener-
ate the graph hierarchical representations. There are some other adapted graph
convolutional network models that aim to solve problems in specific domains.
For example, Li et al. [28] propose a diffusion convolutional recurrent neural
network for traffic forecasting by exploring spatial and temporal dependencies.
[16] introduces a special graph convolutional network architecture for protein
interface prediction.

Applications on Images and Manifolds. Image classification problems have been
studied for decades. Traditional CNN based methods directly consider the images
as a grid-like structure. The recent graph convolutional network models allow to
consider image classification as a classification on the non-Euclidean structures
(e.g., graphs that encode the relations among pixels). Briefly speaking, k-NN
similarity graphs with pixels of the images as the nodes need to be constructed
and the image classification problem is then converted to a graph classification
problem. Existing works on this problem include [7,12,31], etc. In addition,
another application of the graph convolutional network models in the computer
vision area is to learn the correspondence between the collections of 3D shapes
represented by the discrete manifolds. This problem is roughly cast as a labelling
problem, i.e., to label each node on a query shape with the index of the node on
the target shape [31].

Applications on Other Data. In addition to the applications on graphs and man-
ifolds, graph convolutional network models are also widely used for natural
language processing. For example, [30] deals with the semantic role labelling
by encoding sentences with the graph convolutional network. Marcheggiani et
al. attempt to use graph convolutional network models for machine translation
problems [29]. Besides, they can also be used for recommender systems. In par-
ticular, Monti et al. cast the recommender system problem as a matrix comple-
tion problem with two graphs as side information, then define a multiple graph
convolution operator of the convolution layer to adapt the graph convolutional
network model to solve the matrix completion problem [32]. Another notable
work [41] deploys a random-walk-based graph convolutional network model for
high-quality recommendations. Besides, the authors develop an on-the-fly con-
volution computation for efficient training process and a MapReduce pipeline
for efficient inferences.
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6 Concluding Remarks

Graph convolutional network models, as one category of the graph deep learning
(or geometric deep learning) models, have become a very hot topic in both machine
learning and data mining areas, and a substantial amount of models have been pro-
posed to solve different problems. In this survey, we conduct a comprehensive lit-
erature review on the emerging field of graph convolutional networks. Specifically,
we introduce two intuitive taxonomies to group the existing works. These are based
on the types of graph filtering operations, and based on the areas of applications.
For each taxomony, we highlight with some detailed examples from a unique stand-
point. In addition to our survey, another comprehensive tutorial on geometric deep
learning [6] may help readers step into this area Meanwhile, despite the advance-
ments made by the recent works, there still exist some potential issues in the cur-
rent graph convolutional network models. This way we discuss some challenges and
provide some potential future directions.

Multiple Graph Convolutional Networks. As already mentioned before, the major
drawback of the spectral graph convolutional networks is its inability of adapta-
tion from one graph to another graph if two graphs have different Fourier basis
(i.e., eigenfunctions of the Laplacian matrix). The existing work [32] alternatively
learns the filter parameters by generalizing the eigenfunctions of a single graph to
the eigenfunctions of the Kronecker product graph of multiple input graphs. As a
different track, the spatial graph convolutional network models attempt to learn
the a rule of how to combine neighboring nodes in the vertex domain which could
be used on different graphs. However, a drawback of these methods is the inability
of modeling the interactions (e.g., anchor links) or correlations (e.g., correlations
among multiple views) across multiple graphs. In fact, given multiple graphs, the
representation learning of a unique node should be able to benefit from more infor-
mation provided across graphs or views. However, to our best knowledge, there is
no existing model aiming at the problems in this setting.

Hybrid Spectral-Spatial Graph Convolutional Networks. Note that the graph con-
volutional network models reviewed in this survey start with either the spectral
filtering in the frequency domain or the spatial filtering in the vertex domain.
This raises the issue that the existing graph convolutional network models may
not fully exploit the insights simultaneously from both the spectral and spatial
perspectives of the graph. Recall that the anomaly detection on some classic
1-D signals requires the knowledge in both time domain and frequency domain.
In this way, a hybrid spectral-spatial graph convolution operator may provide
more comprehensive representations of nodes and hence help some tasks, such
as anomaly detection on graphs.

Deep Graph Convolutional Networks. Although the initial objective of graph
convolutional network models is to leverage the deep architecture for better
representation learning, most of the current models still suffer from their shallow
structure. For example, GCN [25] in practice only uses two layers. And as the
authors analyzed, more convolution layers may even hurt the performance [25].
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This is also intuitive due to its simple propagation procedure. As deeper the
architecture is, the representations of nodes may become smoother even for those
nodes that are distinct and far from each other. This issue violates the purpose of
using deep models. Consequently, how to build a deep architecture that exploits
the deeper structural patterns of graphs is another possible research direction.
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