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ABSTRACT

Networked prediction has attracted lots of research attention in
recent years. Compared with the traditional learning setting, net-
worked prediction is even harder to understand due to its cou-
pled, multi-level nature. The learning process propagates top-down
through the underlying network from the macro level (the entire
learning system), to meso level (learning tasks), and to micro level
(individual learning examples). In the meanwhile, the networked
prediction setting also offers rich context to explain the learning
process through the lens of multi-aspect, including training exam-
ples (e.g., what are the most influential examples), the learning tasks
(e.g., which tasks are most important) and the task network (e.g.,
which task connections are the keys). Thus, we propose a multi-
aspect, multi-level approach to explain networked prediction. The
key idea is to efficiently quantify the influence on different levels of
the learning system due to the perturbation of various aspects. The
proposed method offers two distinctive advantages: (1) multi-aspect,
multi-level: it is able to explain networked prediction from multiple
aspects (i.e., example-task-network) at multiple levels (i.e., macro-
meso-micro); (2) efficiency: it has a linear complexity by efficiently
evaluating the influences of changes to the networked prediction
without retraining.
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1 INTRODUCTION

Networked prediction has attracted lots of research attentions in
recent years. Networks, as a natural data model that captures the
relationship among different objects, domains and learning com-
ponents, provide powerful contextual information in modeling
networked systems, including network of networks [8, 9], network
of time series [2], network of learning models [4, 7]. Networked
prediction has been successfully applied in many application do-
mains, ranging from bioinformatics, environmental monitoring,
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infrastructure networks, to team science. By leveraging the intrin-
sic relationship among the networked learning components, it often
brings significant performance improvement to the mining tasks,
e.g., early prediction of long-term citation counts [7], network-
regularized multi-task learning [4], etc.

Despite its superior prediction power, networked prediction is
often hard to understand for end users, mainly due to its coupled,
multi-level nature. At macro level, multiple learning tasks are inter-
twined by the task similarity network, composing the entire learn-
ing system; at meso level, a specific learning task is impacted by not
only its own training examples but also other tasks; at micro level,
a specific training example would potentially shape its own task
and others (see Fig. 1). It is a daunting task to explain such a highly
complex, multi-level learning system, which we elaborate as follows.
At macro level, we want to
gain a global view of how
the system works, e.g., what
are the ingredients that are
essential to the system char-
acteristics (e.g., the parame-
ters of the entire system)? At
the meso level, we focus on
one specific learning task to
understand its own learning
behavior, e.g., how its own
training samples and those
from other learning tasks af-
fect its model parameters. At the micro level, we focus on one
specific test example and want to understand the reasons behind
the prediction of this test example given by the learned models.

On the other hand, we envision that the networked prediction set-
ting also offers rich context to explain the learning process through
the lens of various aspects as follows:

Figure 1: An illustration of net-
worked prediction system.

e Example aspect. Each training example could potentially impact
the learned model of the same task and that of other tasks via
the underlying network. We want to identify the most influen-
tial examples at the different levels to have a comprehensive
understanding of their roles in the learning process.

o Task aspect. A learning task, if viewed as the aggregation of

its training examples, would affect the learning process of the

whole system as well as each of the other learning tasks.

Network aspect. A task network is essential in the networked

learning system since it acts as a bridge to connect all the learn-

ing tasks together. Changing the task network would inevitably
influence the learning results of the whole system.

In this paper, we propose a multi-aspect, multi-level approach to
explain networked prediction. The key idea is to efficiently quan-
tify the influence on different levels of the learning system due to
the perturbation of various aspects. More concretely, the influence
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score is measured by the changes in the entire learning system’s pa-
rameters (macro), one task’s model parameters (meso), and the loss
function value at a test sample (micro) in response to the changes
made to the training examples, a learning task and the task network,
respectively. The key advantages are (1) multi-aspect, multi-level: we
are able to provide a comprehensive understanding to the workings
of networked prediction from the perspective of multiple aspects
at multiple levels, essentially through the influences of example-
task-network aspects with respect to macro-meso-micro levels; and
(2) efficiency: leveraging influence functions rooted in robust statis-
tics [3], we can efficiently evaluate the influences of changes to the
networked prediction without retraining.

2 PROBLEM DEFINITION

In this section, we present the notations used throughout the paper,
and formally define the ExPLAINABLE NETWORKED PREDICTION
problem. We use bold capital letters (e.g., A) for matrices and bold
lowercase letters (e.g., w) for vectors.

Let us consider a networked learning system with T supervised
learning tasks, for example, recognizing objects from images or
predicting the sentiment from texts. The training data we have
for each task is given as {(xg,yf)}?z‘l c RYXR, ¢ 1,...,T,
where n; is the number of available training examples for the ¢-
th task, and d is the dimensionality of the input space, which is
assumed to be the same across the tasks. In this work, we consider
a task relationship network described by a non-negative matrix A
is available. In this network, each node represents a learning task
and the edges represent the relatedness between the connected
tasks, i.e., Aj; has a higher numerical value if the i-th and j-th tasks
are closely related. The goal of networked prediction is to learn
a prediction function parameterized by 0; as ft(xf; 0;) for each
task jointly in order to minimize the regularized empirical loss as
follows:

T ny
1
min — Y L(fi(x%:0,),yh) +
01,...,0T;nt; frxi360).yi

where L(-, -) is the loss function, e.g., squared loss for regression
task or cross entropy loss for classification task, and the last term
is to regularize the model parameters through the task relationship
network A, i.e., similar tasks share similar model parameters.

Our goal is to explain the networked learning system by quan-
tifying the influence on different levels due to the perturbation of
various aspects. More concretely, the influence score is measured by
the changes in the whole learning system’s parameters, one task’s
model parameters, and the loss function value at a test sample in
response to the changes made to the training examples, a learning
task and the task network.

With the above notations, the problem of explainable networked
prediction can be formally defined as follows:

T T
1Y Aylloi -0l (1)
i=1

i=1j=1

PROBLEM 1. EXPLAINABLE NETWORKED PREDICTION

Given: the training data of all the tasks {(xf, ylt)}l":’1 the learned
models through joint training fi(-,0;), a query test sample
from the t-th task xttest;

Compute: the influence scores of the training samples, the learning
tasks and the task network on the learning system’s parameters,

each task’s parameters and on the prediction w.r.t. xfest.
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3 PROPOSED MODEL

In this section, we present our model NEPAL to help explain net-
worked prediction by measuring the influence of the various aspects
(i.e., example, task, network) at multiple levels (i.e., macro/system,
meso/task, micro/example). We start with a brief review of influence
functions, and then present our multi-aspect, multi-level approach
to explainable networked prediction, followed by analysis.

3.1 Preliminaries: Influence Function

Influence function has been used in a single learning task to effi-
ciently evaluate the change in model parameters due to the removal
of a training sample without retraining the model [5]. The key idea
is to compute the parameter change should a training sample is
upweighted by some small € using influence function. In a nutshell,
they form a quadratic approximation to the empirical loss around
the model parameters and then take a single Newton step.

3.2 NEPAL - Building Blocks

In this paper, we generalize influence functions to the setting of a
networked learning system, in order to evaluate the influences of
multiple aspects at different levels.

A - The influence of training samples on learning system’s
parameters. Removing a training example from one task would not
only change the parameters of the task itself, but also the parameters
of other tasks through the task network. We upweight a training ex-
ample x? from the t-th task and compute the changes in all the tasks’
model parameters. Define the new parameters of the entire learning

system after such upweighting as 0} def (0] - --»07 ) and that
0 = argmin 1, L 7 L(f(x:00).yD+A ST, BT, Ayl;-

19j||2 + eL(f3(x";0¢), y*). The influence of the upweighting on all
the tasks’ model parameters can be computed as

def dO}
T de

€=0

To(x')

()

where Hy- is the Hessian of the objective function defined in Eq. (1).
Since removing the training example x’ from the ¢-th task is the
same as upweighting it by e = we can approximate the change

Hy. VoL(fi(x*:0:).y")

ng’
of the parameters in the whole learning system (*_, — 0%) by
—%%@W

B - The influence of task network on learning system’s pa-
rameters. To measure the influence of task network on model
parameters, we upweight the task connection between task i and
J»ie., Ajj, and use the influence function to compute the changes
of the model parameters. The influence of the upweighting can be
computed as

def dO
= de

©)

Since removing the connection between task i and j is equivalent
to upweighting A;; by e = —A, we can approximate the parameter
changes (6*_, — 0%) by —AZp(Ajj).

3.3 NEPAL - Proposed Approach

Based on the different aspects (i.e., training example, learning task,
and task network) in the learning system, we can answer questions
regarding the influences at different levels. For example, what are
the most influential training samples in the whole learning system?

To(Aij)

=-H,, VoA;;[|6:-6;.

€=0
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What are the most influential learning tasks w.r.t. a test sample?
See Table 1 for a summary.

Table 1: Multi-Aspect, Multi-Level Explanation in Net-
worked Prediction

Level

Macro/System Meso/Task Micro/Test example

Aspect

Training exam- || globally influential | task specific influ- | test specific influen-

ple x* training  sample | ential training sam- | tial training sample
Is(x") ple (Z(x")) s (x1)
Learning task || globally influential | task specific influ- | test specific influen-
fr task (Zg(f1)) ential task (Z5(f;)) | tial task (I (ﬁ)
Task network A || globally influential | task specific influ- | test spe(:1ﬁc influ-

ential task connec- | ential task connec-
tions (Zs(Aj5)) tions (I"fe ‘(A,-j))

task  connections
(Aij)

A - Macro-level influences of training examples, tasks, and
task network. We propose to use l;-norm of the change in the
whole learning system’s parameters as the measure of the macro-
level influence should a training sample, training samples from a
task, or a task connection is removed, which can be computed as
To(x)=7 1 Zo(x") 2, Io(fo)=—7 i 126 (x|l and Zo(Asp)=AlZo(As)) |2y
respectively. Note that we utse the average of the training samples’
influence from a task as the influence of this learning task.

B - Meso-level influences of training examples, tasks, and
task network. We propose to use the l;-norm of the change in
the parameters corresponding to one learning task as the mea-
sure of the meso-level influence should a training sample, train-
ing samples from a task, or a task connection is removed, which
can be computed as 7;(x*)=-1 1705 () ll2, s (== - St 1Ty (x4l and

I(Aij)=All Zos (Aij) |2, respectively. Note that ——ng(x‘) denotes the
change corresponding to the parameters only in the s-th task.

C - Micro-level influences of training examples, tasks, and
task network. We propose to employ the change in the loss at
a particular test sample x{.
of micro-level influence. We can apply chain rule to measure the
influence of upweighting a training sample as

def dL(fS(xtest’G: 5) ytest)
Ig(x Xteqt) - de
€=0

= —VoL(fs (Xt 03 Yiest) Hy! VOL(fr(x"501),y")

The change in loss at the test sample due to the removal of the train-
ing sample is used as the micro-level influence of x to x3_ . and can

from the s-th task as the measure

test
be approximated as Zys (xt) = ——Ig(x Xpoor)- We present the

algorithm for computmg the micro- level influences of the training
samples from all the tasks in Algorithm 1. The micro-level influ-
ences of a learning task and task network are computed as I, s )=

2 M To(xtxs) and T, s (Ai)==ATp(AijX0)s respectlvely Note

that fs(Au,xmst)——Vel(fs(Xtcstﬁ ) Yiost) THgh VoA 116: 65117

3.4 Proofs and Analysis

In this subsection, we analyze the proposed NEPAL algorithm by
giving the complexity analysis, the derivation of the key equations.
We omit the proofs for brevity.

THEOREM 3.1. (Time complexity of NEPAL). Algorithm 1 takes
O(nT?d?) with logistic regression model for each task, where n =
Zthl n; is the total number of training samples in all tasks and T
is the number of tasks.
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Algorithm 1 NEPAL - Networked Prediction Explanation

Input: (1) the training data of all the tasks {(x y; Hym ity
(2) the learned models through joint trammg fi (- 07),
(3) a query test sample from the s-th task x7,;.
Output: the micro-level influences of the training samples of all
the tasks on the prediction w.r.t. X
1: Compute gradient of the loss at the test sample w.r.t. model

parameters: v «— —6L(f5(xfes‘59; ):Yiest)

2: Compute x = H;lv by solving ming %XTHQX - vT'x using

conjugate gradient method, where the Hessian-vector product
can be exactly computed using the Ry{-} operator [10]
3: for each task ¢ in all tasks do
4: fori=1,...,n; do
5 Compute the gradient of the objective function at train-
'JL(ft(x 9*) Y; hH

.

LEmMA 3.2. (Correctness of Eq (2)). Denote J(6) = Zt 177 Zl 1

L(ft(x 0:), yf)+/12 Z Al]”91 0 ||2 where@ (91, ..., 07).
Assuming J () to be twice dlfferentlable and strictly convex, the
influence of upweighting training sample x? on the parameters 0

can be computed by Zp(x").
Remarks: we have a similar correctness lemma for Eq (3), which

is omitted here for space. In practice, the objective function does
not have to be convex. For non-convex cases, we can form a convex
quadratic approximation of the loss function around the learned
parameters, based on which the influence function can be computed.
4 EMPIRICAL EVALUATIONS

A - Datasets. The real world datasets used are as follows:

MNIST. MNIST [6] is a commonly used handwritten digit dataset,
containing images of handwritten numerals (0-9) represented by
28 X 28 pixels in grayscale. We construct the networked prediction
system using logistic regression for three tasks, where task 1 distin-
guishes digit 1 from 7, task 2 differentiates digit 2 from 7 and task
3 classifies digit 6 from 9. In the task network, we connect task 1
with 2 via Aj2 = 1 and connect task 2 with 3 via Agz = 0.1.

Sentiment !. This sentiment dataset contains product reviews
from Amazon.com for many product types [1]. We build networked
prediction models for reviews from music, video, DVD, book and
magazine and a review is labeled as positive if its rating is greater
than 3 and negative if below 3. We extract both unigram and bigram
features from the review text. The task network is constructed based
on the relevance between different product domains.

B - Results on MNIST. There are 9 experimental scenarios cor-
responding to the 9 cells in Table 1. Due to space limit, we only
present some sampled results.

Macro-level Influences. We compute macro-level influences 7g(x?)
for training examples of all three learning tasks.Our observation is
that in all the tasks, vast majority of the examples have no or negli-
gible influences on the entire learning system and only a few can
exert significant influence. The top-10 globally influential training
examples measured by Z5(x!) is shown in Fig. 2 with 7 of them
from second task. The top-2 examples are the same images of digit
7 from task 2 and 1, respectively. To see how the globally influential

ing sample x} w.r.t. model parameters: u—

6: Compute the influence score of x} as Zys

http://www.cs.jhu.edu/ mdredze/datasets/sentiment/
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examples affect the learning system’s prediction performance, we
flip labels of the most influential examples at macro-level, retrain
the model and compute the classification accuracy on the test set.
We also test the random picking strategy with 30 repetitions. Fig. 3
shows that flipping the labels of the most influential examples exert
larger interruption to the learning system as demonstrated by the
significant drop in the test accuracy for all the three tasks.

From Task 2 From Task 1 From Task 2 From Task 2 From Task 2

Zo(x') = 0.0693 Tg(x') = 0.0880 Zg(x') = 0.0630 Ze(x') = 0.0802 Zo(x") = 0.0587

From Task 2 From Task 3 From Task 2 From Task 2 From Task 3

EEREA

Tg(x') = 0.0583 Tg(x') = 0.0566 Tg(x') = 0.0526 Ig(x') = 00525 Ig(x') = 0.0471

Figure 2: The top-10 globally influential training samples.

Task 1

Task 2 Task 3

—— Macro-level Influence
—— Random

—— Macro-evel Influence
—+— Random

os
000 005 010 o015 0m o025 0m
Fraction of training labels fiipped

000 005 010 015 020 025 030
Fraction of training labels flipped

Figure 3: Fraction of training labels ﬂiplped vs. test accuracy.
Meso-level Influences. We compute meso-level influences of each

learning task and observe that generally the most influential task
for one specific task is the task itself, except that for the first task,
task 2 has about the same influence on it as the task itself possibly
due to same negative training examples of digit 7 they share. For
task 2, the first task has about half influence as the task itself.
Micro-level Influences. We randomly select one test example
from each of the three learning tasks and compute the micro-level
influences of training samples using Algorithm 1. Fig. 4 shows
the running time of Algorithm 1 with varying size of the total
number of training examples n. We can see that the proposed
algorithm scales linearly, which is consistent with Theorem 3.1.
In addition, we also compute
micro-level influences of the
task network specific to each
test example. For the test
example from the first task,
Ajz has a much larger neg-
ative impact than Ags pos-
sibly because connecting to
task 2 does not help with the
prediction of digit 1. For the
test example of digit 7 from task 2, A has a larger positive impact
than A3 since connecting to task 1 can help with this prediction.
C - Case Studies on Sentiment Dataset. We use the test exam-
ple from music category and show the most influential training
examples from other domains in Table 2. Comparing the test exam-
ple and the helpful training examples (i.e., those with large positive
influence scores) from all the domains, it seems they are overall
towards the positive sentiment despite some negative descriptions
about the products, e.g., the book “seems really dull" to average
readers in the book domain. The harmful example (i.e., those with

00 005 010 o5 0m 025 030
Fraction of training labels flipped

Running Time (sec)
8 8 83 8 8 3

10000 40000
Total number of training samples: n

50000

Figure 4: Running time vs. total
number of training examples n.
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Table 2: Case study on Sentiment.

Review Text (positive sentiment is highlighted in bold | Label
font and negative sentiment is highlighted with un-
derline). [...] is used to omit some sentences without
altering the main meaning of the text.
Test Iwas instantly drawn into her music. What Ilove about her songs is that they +
exam- are so real. "You Give Me Love" is so real and so strong. "The Secret of Life"
ple has taken some getting used to. It is not my absolute favorite on the CD. "Me"
from is the song that means the most to me since I have experienced trying to
music change for someone else in a relationship. [...] She has a big voice, and she nails
each song on this CD. Give it a try.
Harmful 1liked this when it first came out b/c I was 16.[...] This is their best work since -
exam- the weirdness does get lame after a while. Favorite song is Mongoloid...totally
ple strange but rocking song. "Uncontrollable Urge" rocks (in a weird way). Sat-
from isfaction is completely unique but its not a good song. [...] I saw them live (they
music were horrible) during their hey day. [..]Anybody that gives this novelty
group 5 stars is cheapening what true excellent music is.
Helpful Here’s a good litmus test to show how good a book like "Breathing Lessons” +
exam- is-nothing extraordinary happens and yet I did not want to put the book down.
ple [...]To the average reader this book probably would seem really dull. Heck, if
from someone told me the plot of this book I'd think it was really dull too, but I
book didn’t want to put it down. [...] It’s hard for me to find any real faults with
this book, except for the lengthy flashback near the end that perhaps goes on
too long. Some people may call this boring or dull, but I would call it purely
exceptional. 1 LOVED this book and highly recommend it

large negative influence scores) from music is labeled as negative
sentiment but the descriptions still sound largely positive.

5 CONCLUSION

In this paper, we propose a multi-aspect, multi-level approach NEPAL
to explain networked prediction by characterizing how the learning
process is diffused at different levels from different aspects. The
key idea is to efficiently quantify the influence on different levels
(i.e., macro/system, meso/task, micro/example) of the learning sys-
tem due to the perturbation of the various aspects (i.e., example,
task, network). The empirical evaluations on real-world datasets

demonstrate the efficacy of the proposed NEPAL algorithm.
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