
Towards Explainable Networked Prediction

Liangyue Li
Arizona State University

liangyue@asu.edu

Hanghang Tong
Arizona State University

hanghang.tong@asu.edu

Huan Liu
Arizona State University

huanliu@asu.edu

ABSTRACT

Networked prediction has attracted lots of research attention in

recent years. Compared with the traditional learning setting, net-

worked prediction is even harder to understand due to its cou-

pled, multi-level nature. The learning process propagates top-down

through the underlying network from the macro level (the entire

learning system), to meso level (learning tasks), and to micro level

(individual learning examples). In the meanwhile, the networked

prediction setting also o�ers rich context to explain the learning

process through the lens of multi-aspect, including training exam-

ples (e.g., what are the most in�uential examples), the learning tasks

(e.g., which tasks are most important) and the task network (e.g.,

which task connections are the keys). Thus, we propose a multi-

aspect, multi-level approach to explain networked prediction. The

key idea is to e�ciently quantify the in�uence on di�erent levels of

the learning system due to the perturbation of various aspects. The

proposed method o�ers two distinctive advantages: (1)multi-aspect,

multi-level: it is able to explain networked prediction from multiple

aspects (i.e., example-task-network) at multiple levels (i.e., macro-

meso-micro); (2) e�ciency: it has a linear complexity by e�ciently

evaluating the in�uences of changes to the networked prediction

without retraining.
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1 INTRODUCTION

Networked prediction has attracted lots of research attentions in

recent years. Networks, as a natural data model that captures the

relationship among di�erent objects, domains and learning com-

ponents, provide powerful contextual information in modeling

networked systems, including network of networks [8, 9], network

of time series [2], network of learning models [4, 7]. Networked

prediction has been successfully applied in many application do-

mains, ranging from bioinformatics, environmental monitoring,
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infrastructure networks, to team science. By leveraging the intrin-

sic relationship among the networked learning components, it often

brings signi�cant performance improvement to the mining tasks,

e.g., early prediction of long-term citation counts [7], network-

regularized multi-task learning [4], etc.

Despite its superior prediction power, networked prediction is

often hard to understand for end users, mainly due to its coupled,

multi-level nature. At macro level, multiple learning tasks are inter-

twined by the task similarity network, composing the entire learn-

ing system; at meso level, a speci�c learning task is impacted by not

only its own training examples but also other tasks; at micro level,

a speci�c training example would potentially shape its own task

and others (see Fig. 1). It is a daunting task to explain such a highly

complex, multi-level learning system, whichwe elaborate as follows.

Task 1

Task 2 Task 3

Task 4

Macro

Meso

Micro

Figure 1: An illustration of net-

worked prediction system.

At macro level, we want to

gain a global view of how

the system works, e.g., what

are the ingredients that are

essential to the system char-

acteristics (e.g., the parame-

ters of the entire system)? At

the meso level, we focus on

one speci�c learning task to

understand its own learning

behavior, e.g., how its own

training samples and those

from other learning tasks af-

fect its model parameters. At the micro level, we focus on one

speci�c test example and want to understand the reasons behind

the prediction of this test example given by the learned models.

On the other hand, we envision that the networked prediction set-

ting also o�ers rich context to explain the learning process through

the lens of various aspects as follows:

• Example aspect. Each training example could potentially impact

the learned model of the same task and that of other tasks via

the underlying network. We want to identify the most in�uen-

tial examples at the di�erent levels to have a comprehensive

understanding of their roles in the learning process.

• Task aspect. A learning task, if viewed as the aggregation of

its training examples, would a�ect the learning process of the

whole system as well as each of the other learning tasks.

• Network aspect. A task network is essential in the networked

learning system since it acts as a bridge to connect all the learn-

ing tasks together. Changing the task network would inevitably

in�uence the learning results of the whole system.

In this paper, we propose a multi-aspect, multi-level approach to

explain networked prediction. The key idea is to e�ciently quan-

tify the in�uence on di�erent levels of the learning system due to

the perturbation of various aspects. More concretely, the in�uence
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score is measured by the changes in the entire learning system’s pa-

rameters (macro), one task’s model parameters (meso), and the loss

function value at a test sample (micro) in response to the changes

made to the training examples, a learning task and the task network,

respectively. The key advantages are (1)multi-aspect, multi-level:we

are able to provide a comprehensive understanding to the workings

of networked prediction from the perspective of multiple aspects

at multiple levels, essentially through the in�uences of example-

task-network aspects with respect to macro-meso-micro levels; and

(2) e�ciency: leveraging in�uence functions rooted in robust statis-

tics [3], we can e�ciently evaluate the in�uences of changes to the

networked prediction without retraining.

2 PROBLEM DEFINITION

In this section, we present the notations used throughout the paper,

and formally de�ne the Explainable Networked Prediction

problem. We use bold capital letters (e.g., A) for matrices and bold

lowercase letters (e.g., w) for vectors.

Let us consider a networked learning system with T supervised

learning tasks, for example, recognizing objects from images or

predicting the sentiment from texts. The training data we have

for each task is given as {(xti ,y
t
i )}

nt
i=1 ⊂ R

d × R, t = 1, . . . ,T ,

where nt is the number of available training examples for the t-

th task, and d is the dimensionality of the input space, which is

assumed to be the same across the tasks. In this work, we consider

a task relationship network described by a non-negative matrix A

is available. In this network, each node represents a learning task

and the edges represent the relatedness between the connected

tasks, i.e., Ai j has a higher numerical value if the i-th and j-th tasks

are closely related. The goal of networked prediction is to learn

a prediction function parameterized by θt as ft (x
t
i ;θt ) for each

task jointly in order to minimize the regularized empirical loss as

follows:

min
θ1, ...,θT

T
∑

t=1

1

nt

nt
∑

i=1

L(ft (x
t
i ;θt ),y

t
i ) + λ

T
∑

i=1

T
∑

j=1

Ai j ‖θi − θ j ‖
2 (1)

where L(·, ·) is the loss function, e.g., squared loss for regression

task or cross entropy loss for classi�cation task, and the last term

is to regularize the model parameters through the task relationship

network A, i.e., similar tasks share similar model parameters.

Our goal is to explain the networked learning system by quan-

tifying the in�uence on di�erent levels due to the perturbation of

various aspects. More concretely, the in�uence score is measured by

the changes in the whole learning system’s parameters, one task’s

model parameters, and the loss function value at a test sample in

response to the changes made to the training examples, a learning

task and the task network.

With the above notations, the problem of explainable networked

prediction can be formally de�ned as follows:

Problem 1. Explainable Networked Prediction

Given: the training data of all the tasks {(xti ,y
t
i )}

nt
i=1, the learned

models through joint training ft (·,θ
∗
t ), a query test sample

from the t-th task xttest;

Compute: the in�uence scores of the training samples, the learning

tasks and the task network on the learning system’s parameters,

each task’s parameters and on the prediction w.r.t. xttest.

3 PROPOSED MODEL

In this section, we present our model NEPAL to help explain net-

worked prediction bymeasuring the in�uence of the various aspects

(i.e., example, task, network) at multiple levels (i.e., macro/system,

meso/task, micro/example). We start with a brief review of in�uence

functions, and then present our multi-aspect, multi-level approach

to explainable networked prediction, followed by analysis.

3.1 Preliminaries: In�uence Function

In�uence function has been used in a single learning task to e�-

ciently evaluate the change in model parameters due to the removal

of a training sample without retraining the model [5]. The key idea

is to compute the parameter change should a training sample is

upweighted by some small ϵ using in�uence function. In a nutshell,

they form a quadratic approximation to the empirical loss around

the model parameters and then take a single Newton step.

3.2 NEPAL – Building Blocks

In this paper, we generalize in�uence functions to the setting of a

networked learning system, in order to evaluate the in�uences of

multiple aspects at di�erent levels.

A - The in�uence of training samples on learning system’s

parameters.Removing a training example from one taskwould not

only change the parameters of the task itself, but also the parameters

of other tasks through the task network. We upweight a training ex-

ample xt from the t-th task and compute the changes in all the tasks’

model parameters. De�ne the new parameters of the entire learning

system after such upweighting as θ∗ϵ
def
= (θ∗1,ϵ , . . . ,θ

∗
T ,ϵ
) and that

θ∗ϵ = argmin
∑T
t=1

1
nt

∑nt
i=1 L(ft (x

t
i ;θt ),y

t
i )+λ

∑T
i=1

∑T
j=1 Ai j ‖θi−

θ j ‖
2
+ ϵL(ft (x

t ;θt ),y
t ). The in�uence of the upweighting on all

the tasks’ model parameters can be computed as

Iθ (x
t )

def
=

dθ ∗ϵ
dϵ

�

�

�

ϵ=0
=−H−1

θ ∗
∇θ L(ft (x

t ;θt ),y
t ) (2)

whereHθ ∗ is the Hessian of the objective function de�ned in Eq. (1).

Since removing the training example xt from the t-th task is the

same as upweighting it by ϵ = − 1
nt

, we can approximate the change

of the parameters in the whole learning system (θ∗
−xt
− θ∗) by

− 1
nt
Iθ (x

t ).

B - The in�uence of task network on learning system’s pa-

rameters. To measure the in�uence of task network on model

parameters, we upweight the task connection between task i and

j, i.e., Ai j , and use the in�uence function to compute the changes

of the model parameters. The in�uence of the upweighting can be

computed as

Iθ (Ai j )
def
=

dθ ∗ϵ
dϵ

�

�

�

ϵ=0
=−H−1

θ ∗
∇θAi j ‖θi−θ j ‖

2 . (3)

Since removing the connection between task i and j is equivalent

to upweighting Ai j by ϵ = −λ, we can approximate the parameter

changes (θ∗
−xt
− θ∗) by −λIθ (Ai j ).

3.3 NEPAL – Proposed Approach

Based on the di�erent aspects (i.e., training example, learning task,

and task network) in the learning system, we can answer questions

regarding the in�uences at di�erent levels. For example, what are

the most in�uential training samples in the whole learning system?
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What are the most in�uential learning tasks w.r.t. a test sample?

See Table 1 for a summary.

Table 1: Multi-Aspect, Multi-Level Explanation in Net-

worked Prediction
P

P
P

P
P

P
P

Aspect

Level
Macro/System Meso/Task Micro/Test example

Training exam-

ple xt
globally in�uential

training sample

(IG (x
t ))

task speci�c in�u-

ential training sam-

ple (Is (x
t ))

test speci�c in�uen-

tial training sample

(Ixstest (x
t ))

Learning task

ft

globally in�uential

task (IG (ft ))

task speci�c in�u-

ential task (Is (ft ))

test speci�c in�uen-

tial task (Ixstest (ft )

Task networkA globally in�uential

task connections

(IG (Ai j ))

task speci�c in�u-

ential task connec-

tions (Is (Ai j ))

test speci�c in�u-

ential task connec-

tions (Ixstest (Ai j ))

A - Macro-level in�uences of training examples, tasks, and

task network. We propose to use l2-norm of the change in the

whole learning system’s parameters as the measure of the macro-

level in�uence should a training sample, training samples from a

task, or a task connection is removed, which can be computed as

IG (x
t )= 1

nt
‖Iθ (x

t ) ‖2, IG (ft )= 1

n2t

∑nt
i=1 ‖Iθ (x

t
i ) ‖2, and IG (Ai j )=λ ‖Iθ (Ai j ) ‖2,

respectively. Note that we use the average of the training samples’

in�uence from a task as the in�uence of this learning task.

B - Meso-level in�uences of training examples, tasks, and

task network. We propose to use the l2-norm of the change in

the parameters corresponding to one learning task as the mea-

sure of the meso-level in�uence should a training sample, train-

ing samples from a task, or a task connection is removed, which

can be computed as Is (xt )= 1
nt
‖Iθs (x

t ) ‖2, Is (ft )= 1

n2t

∑nt
i=1 ‖Iθs (x

t
i ) ‖2 and

Is (Ai j )=λ ‖Iθs (Ai j ) ‖2, respectively. Note that −
1
nt
Iθs (x

t ) denotes the

change corresponding to the parameters only in the s-th task.

C - Micro-level in�uences of training examples, tasks, and

task network. We propose to employ the change in the loss at

a particular test sample x
s
test from the s-th task as the measure

of micro-level in�uence. We can apply chain rule to measure the

in�uence of upweighting a training sample as

Iθ (x
t ,xstest)

def
=

dL(fs (x
s
test;θ

∗
s,ϵ ),y

s
test)

dϵ

�

�

�

�

ϵ=0

= −∇θL(fs (x
s
test;θ

∗
s ),y

s
test)

T
H
−1
θ ∗
∇θL(ft (x

t ;θt ),y
t )

The change in loss at the test sample due to the removal of the train-

ing sample is used as the micro-level in�uence of xt to xstest and can

be approximated as Ixstest (x
t ) = − 1

nt
Iθ (x

t
, x

s
test). We present the

algorithm for computing the micro-level in�uences of the training

samples from all the tasks in Algorithm 1. The micro-level in�u-

ences of a learning task and task network are computed as Ixstest
(ft )=

− 1

n2t

∑nt
i=1 Iθ (x

t
i ,x

s
test) and Ixstest

(Ai j )=−λIθ (Ai j ,x
s
test), respectively. Note

that Iθ (Ai j ,xstest)=−∇θ L(fs (x
s
test;θ

∗
s ),y

s
test)

T
H
−1
θ ∗
∇θAi j ‖θi−θ j ‖

2.

3.4 Proofs and Analysis

In this subsection, we analyze the proposed NEPAL algorithm by

giving the complexity analysis, the derivation of the key equations.

We omit the proofs for brevity.

Theorem 3.1. (Time complexity of NEPAL). Algorithm 1 takes

O(nT 2d2) with logistic regression model for each task, where n =
∑T
t=1 nt is the total number of training samples in all tasks and T

is the number of tasks.

Algorithm 1 NEPAL - Networked Prediction Explanation

Input: (1) the training data of all the tasks {(xti ,y
t
i )}

nt
i=1,

(2) the learned models through joint training ft (·,θ
∗
t ),

(3) a query test sample from the s-th task x
s
test.

Output: the micro-level in�uences of the training samples of all

the tasks on the prediction w.r.t. xstest.

1: Compute gradient of the loss at the test sample w.r.t. model

parameters: v←
∂L(fs (x

s
test;θ

∗
s ),y

s
test)

∂θ

2: Compute x = H
−1
θ
v by solving minx

1
2x

T
Hθ x − v

T
x using

conjugate gradient method, where the Hessian-vector product

can be exactly computed using the Rv{·} operator [10]

3: for each task t in all tasks do

4: for i = 1, . . . ,nt do

5: Compute the gradient of the objective function at train-

ing sample xti w.r.t. model parameters: u←
∂L(ft (x

t
i
;θ ∗t ),y

t
i
)

∂θ

6: Compute the in�uence score of xti as Ixstest (x
t
i ) =

1
nt

u
T
x

Lemma 3.2. (Correctness of Eq (2)). DenoteJ(θ ) =
∑T
t=1

1
nt

∑nt
i=1

L(ft (x
t
i ;θt ),y

t
i )+λ

∑T
i=1

∑T
j=1Ai j ‖θi−θ j ‖

2, whereθ
def
= (θ1, . . . ,θT ).

Assuming J(θ ) to be twice-di�erentiable and strictly convex, the

in�uence of upweighting training sample xt on the parameters θ

can be computed by Iθ (x
t ).

Remarks: we have a similar correctness lemma for Eq (3), which

is omitted here for space. In practice, the objective function does

not have to be convex. For non-convex cases, we can form a convex

quadratic approximation of the loss function around the learned

parameters, based onwhich the in�uence function can be computed.

4 EMPIRICAL EVALUATIONS
A - Datasets. The real world datasets used are as follows:

MNIST.MNIST [6] is a commonly used handwritten digit dataset,

containing images of handwritten numerals (0-9) represented by

28 × 28 pixels in grayscale. We construct the networked prediction

system using logistic regression for three tasks, where task 1 distin-

guishes digit 1 from 7, task 2 di�erentiates digit 2 from 7 and task

3 classi�es digit 6 from 9. In the task network, we connect task 1

with 2 via A12 = 1 and connect task 2 with 3 via A23 = 0.1.

Sentiment 1. This sentiment dataset contains product reviews

from Amazon.com for many product types [1]. We build networked

prediction models for reviews from music, video, DVD, book and

magazine and a review is labeled as positive if its rating is greater

than 3 and negative if below 3. We extract both unigram and bigram

features from the review text. The task network is constructed based

on the relevance between di�erent product domains.

B - Results on MNIST. There are 9 experimental scenarios cor-

responding to the 9 cells in Table 1. Due to space limit, we only

present some sampled results.

Macro-level In�uences.We computemacro-level in�uencesIG (x
t )

for training examples of all three learning tasks.Our observation is

that in all the tasks, vast majority of the examples have no or negli-

gible in�uences on the entire learning system and only a few can

exert signi�cant in�uence. The top-10 globally in�uential training

examples measured by IG (x
t ) is shown in Fig. 2 with 7 of them

from second task. The top-2 examples are the same images of digit

7 from task 2 and 1, respectively. To see how the globally in�uential

1http://www.cs.jhu.edu/ mdredze/datasets/sentiment/
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