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Abstract: Modern embedded and cyber-physical systems are ubiquitous. A large number of1

critical cyber-physical systems have real-time requirements (e.g., avionics, automobiles, power2

grids, manufacturing systems, industrial control systems, etc.). Recent developments and new3

functionality requires real-time embedded devices to be connected to the Internet. This gives rise to4

the real-time Internet-of-things (RT-IoT) that promises a better user experience through stronger5

connectivity and efficient use of next-generation embedded devices. However RT-IoT are also6

increasingly becoming targets for cyber-attacks which is exacerbated by this increased connectivity.7

This paper gives an introduction to RT-IoT systems, an outlook of current approaches and possible8

research challenges towards secure RT-IoT frameworks.9

Keywords: Security, Real-time systems, Internet-of-things, Survey10

1. Introduction11

Nowadays smart embedded devices (e.g., surveillance cameras, home automation systems,12

smart TVs, in-vehicle infotainment systems, etc.) are connected to the Internet – this rise in the13

Internet-of-things (IoT) links together devices/applications that were previously isolated. On the14

other hand, embedded devices with real-time properties (e.g., strict timing and safety requirements)15

require interaction between cyber and physical worlds. These devices are used to monitor and control16

physical systems and processes in many domains, e.g., manned and unmanned vehicles including17

aircraft, spacecraft, unmanned aerial vehicles (UAVs), self-driving cars; critical infrastructures;18

process control systems in industrial plants; smart technologies (e.g., electric vehicles, medical19

devices, etc.) to name just a few. Given the drive towards remote monitoring and control, these20

devices are being increasingly interconnected, often via the Internet, giving rise to the Real-Time21

Internet-of-things (RT-IoT). Since many of these systems have to meet stringent safety and timing22

requirements, any problems that deter from the normal operation of such systems could result23

in damage to the system, the environment or pose a threat to human safety. The drive towards24

remote monitoring and control facilitated by the growth of the Internet, the rise in the use of25

commercial-off-the-shelf (COTS) components, standardized communication protocols and the high26

value of these systems to adversaries are making cyber-security a design priority for such systems.27

Security breaches are not uncommon in critical IoT applications, especially considering the recent28

spate of IoT-centric attacks ( e.g., the Marai botnet, attacks on the Dyn DNS provider, DoS attacks from29

IoT devices [1,2]) as well as others centered on safety-critical systems (e.g., Stuxnet [3], BlackEnergy30

[4], attack demonstrations by researchers on automobiles [5,6] and medical devices [7].) Successful31

cyber attacks against such systems could lead to problems more serious than just loss of data or32

availability because of their critical nature [6,8]. Attacks on one or more of these types of systems can33

have catastrophic results, leading to loss of life or injury to humans, negative impacts on the system34

and even the environment.35
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2.2. Heterogeneous Communication Traffic59

Many conventional RTS typically consist of several independently operating nodes with limited60

or no communication capabilities. However with the emergence of RT-IoT, cyber-physical nodes61

not only communicate over closed industrial communication networks but are also often connected62

via the Internet. Since most real-time applications would need to trigger events based on specific63

data conditions, a real-time communication channel with guaranteed QoS (e.g., throughput and data64

processing requirements, delay guarantees, etc.) would also be necessary to support such applications65

[17,18].66

Another property of RT-IoT is that they often include traffic flows with mixed criticality, i.e.,67

those with varying degrees of timing (and perhaps even bandwidth and availability) requirements:68

(a) high priority/criticality traffic that is essential for the correct and safe operation of the system;69

examples could include sensors for closed loop control and actual control commands in avionics,70

automotive or power grid systems; security systems in home automation (b) medium criticality71

traffic that is critical to the correct operation of the system, but with some tolerances in delays,72

packet drops, etc.; for instance, navigation systems in aircraft, system monitoring traffic in power73

substations, communication messages exchanged between electric vehicles and power grid or home74

charging station, traffic related to home automation equipment such as water sprinklers, heating,75

air conditioning, lighting devices, food preparation appliances etc.; (c) low priority traffic – essentially76

all other traffic in the system that does not really need guarantees on delays or bandwidth such as77

engineering traffic in power substations, multimedia flows in aircraft, notification messages from78

smart home equipment, etc. Typically, in many safety-critical RT-IoT, the properties of all high-priority79

flows are well known, while the number and properties of other flows could be more dynamic (e.g.,80

consider the on-demand video situation where new flows could arise and old ones stop based on the81

viewing patterns of passengers in a commercial aircraft).82

2.3. Real-Time Scheduling Model83

Many such systems are implemented using a set of periodic (e.g., fixed temporal septation84

between consecutive instances) or sporadic (e.g., the tasks that can make an execution request at85

any time, but with a minimum inter-invocation interval) tasks [19, Ch. 1][20]. For instance, a sensor86

management task that monitors the conveyor belt in a manufacturing system needs to be periodic87

but the tasks that monitor the arrival of automated cars at traffic intersections are sporadic. Another88

example is an engine control unit (ECU) in a modern vehicle in which the task that controls the89

valve in the electronic throttle body (ETB) is periodic while the task that handles commands from90

the in-vehicle computer is sporadic. Application tasks in the RT-IoT nodes are often designed based91

on the Liu and Layland model [21,22] that contains a set of tasks, Γ where each task τi ∈ Γ has92

the parameters: (Ci, Ti, Di), where Ci is the worst-case execution time (WCET), Ti is the period or93

minimum inter-arrival time, and Di is the deadline, with Di ≤ Ti.94

In the multicore context real-time task scheduling can be viewed as solving an allocation problem95

(e.g., on which processor a task should execute) depending on design criteria [23]– e.g., (i) No96

migration: tasks are allocated to a processor and no migration is permitted; (b) Task-level migration:97

the jobs of a task may execute on different core; however, each job can only execute on a single core.98

(c) Job-level migration: The jobs of a task migrate to and execute on different cores; however, parallel99

execution of a job is not permitted.100

Schedulability tests [23–26] are used to determine if all tasks in the system meet their respective101

deadlines. If they do, then the task set is deemed to be ‘schedulable’ and the system, safe.102

2.4. CPU Architectures and System Development Model103

Despite the fact that most RT-IoT applications are designed using platforms equipped with a104

single-core CPU, the trend towards multicore systems can be seen as many COTS devices nowadays105
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are built on top of a multicore environment [23]. For some specific applications (e.g., avionics106

systems), there exist regulations that restrict the use of additional cores. In such cases, the additional107

cores that do not execute real-time or safety critical tasks can be utilized to provide layers of security to108

the system. We have leveraged the use of multicore platforms in the real-time domain and developed109

security solutions [27–32] as discussed in Section 4.1.110

It is also common that multiple vendors are involved in the development of RT-IoT systems.111

Such a system is said to be developed under the multi-vendor development model [33]. In this model,112

each vendor designs/controls several separate tasks. Figure 2 demonstrates an electronic control113

unit (ECU) for an avionics system (on an unmanned aerial vehicle) that uses the multi-vendor114

development model. While this demonstrative example focuses on the avionics domain other RT-IoT115

systems (e.g., automotive, home automation, etc.) could also be created using a similar model (albeit116

loosely defined).

Figure 2. A high-level design of a UAV that exemplifies the multi-vendor development model. In this

demonstrative system, three vendors are involved in building the ECU system – Vendor 1 comprises

tasks that process image data from a surveillance camera attached to the ECU; Vendor 2 is in charge of

flight control tasks interacting with the UAV; Integrator handles communication between the system

and a base station.

117

3. Security Threats for RT-IoT118

RT-IoT systems face threats in various forms depending on the system and the goals of an119

adversary. In a system developed using vendor-based model, one of the involved vendors can120

act maliciously. This (potentially unverified/untrusted) vendor could embed malicious functions121

in its tasks. Bad coding practices could also leave vulnerabilities even if the involved vendors122

are not malicious. leveraging such system vulnerabilities adversaries can execute malicious codes123

(Section 3.1.1), infer critical system information (Section 3.1.2) and/or perform denial of service124

attacks (Section 3.1.4). In a system that has network connectivity, the adversary could target the125

communication interfaces (Section 3.1.3). Due to a lack of authentication in many of these systems,126

the communication channels could easily be intercepted and forged.127

3.1. Attacks on RT-IoT128

We classify the attack methodologies on RTS based on the control over computational processes129

and the functional objective of the attack. One way to acquire control over a target system could be the130

injection of malicious code (e.g., malware) or by reusing legitimate code for malicious purposes (e.g.,131

code-injection attacks). Besides, since RT-IoT nodes can communicate over unreliable mediums such as132

Internet, the system is also vulnerable to network-level attacks. Other than trying to aggressively crash133

the system (e.g., using DoS attacks) the adversary may silently lodge itself in the system and extract134

sensitive information (e.g., side-channel attacks). The side-channel attacks are based on observing135
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properties (e.g., execution time, memory usage patterns, task schedule, power consumption, etc.) of136

the system. This information may later be used by the attacker to launch further attacks. In the rest137

of this section, we summarize the common attack surfaces for RT-IoT systems.138

3.1.1. Integrity Violation with Malicious Code Injection139

An intelligent adversary can get a foothold in the system. For example, an adversary may insert140

a malicious task that respects the real-time guarantees of the system to avoid immediate detection141

and/or compromise one or more existing real-time tasks. The attacker may use such a task to142

manipulate sensor inputs and actuator commands (for instance) and/or modify system behavior in143

undesirable ways. Integrity violation through code injection attacks conceptually consists of two144

steps [34]. First, the attacker sends instruction snippets (e.g., a valid machine code program) to145

the device that is then stored somewhere in memory by the software application receiving it. Such146

instruction snippets are referred to as gadgets. In the second step, the attacker triggers a vulnerability147

in the application software, i.e., real-time OS (RTOS) or task codes to divert the control flow. Since the148

instruction snippets represents a valid machine code program, when the program execution jumps149

to the start address of the data, the malicious code is executed. As we illustrate in Section 4 our150

recent solutions [27–32,35–37] can be used to detect integrity violations through a combination of151

hardware/software mechanisms.152

3.1.2. Side-Channel Attacks153

The adversary may learn important information by side or covert-channel attacks [38] by154

simply lodging themselves in the system and extracting sensitive information. A side-channel155

attack manipulates previously unknown channels to acquire useful information from the victim.156

Memory/cache access time [39], power consumption traces [40], schedule preemptions [41],157

electromagnetic (EM) emanations [42] and temperature [43] etc. are examples of some typical158

side-channels used by attackers. These attack surfaces are particularly applicable to attacking159

RT-IoT nodes that execute real-time tasks due to the deterministic behaviors in such systems.160

A demonstrative cache-timing attack is presented in Section 3.2.2 and Section 4.2.1 illustrates161

our recent approaches [33,44] to mitigate information leakage that used timing-based attacks on162

storage-channels.163

3.1.3. Attacks on Communication Channels164

RT-IoT elevates the Internet as the main communication medium between the physical165

entities. However, Internet, as a insecure communication medium, introduces a variety of166

vulnerabilities that may put the security and privacy of RT-IoT systems under risk. Threats167

to communication includes eavesdropping or interception, man-in-the-middle attacks, falsifying,168

tampering or repudiation of control/information messages [45]. From the perspective of RT-IoT,169

defending against communication threats is not an easy task. This is because it is challenging170

to distinguish rogue traffic from the legitimate traffic (especially for the critical/high-priority171

flows) without degrading the QoS (e.g., bandwidth and end-to-end delay constraints). Threats172

to communications are usually dealt by integrating cryptographic protection mechanisms [46,47].173

However this increases the WCET of the real-time tasks and may require modification of existing174

schedulers. Many cryptographic operations are also computationally expensive to execute especially175

on limited resources available in embedded RT-IoT devices. Therefore existing cryptographic176

approaches may not be a preferable option for many RT-IoT systems. In Section 4.2.3 we illustrate177

a solution to integrate security mechanisms that can also be used for dealing with communication178

threats but does not require modification of existing real-time tasks.179
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3.2.2. Targeted Attacks211

It’s worth mentioning that the effectiveness of side-channel attacks is enhanced when combined212

with the reconnaissance step we just introduced. For example, in the demonstrative ECU system213

introduced in Section 2.4, let us assume code inserted into Vendor 2 would like to identify whether214

the surveillance camera controlled by the I/O Operation Task is enabled. The attacker can launch a215

ScheduLeak algorithm to infer exact start times of the IO Operation Task and carry out a cache-timing216

attack to gauge cache usage when an I/O Operation Task is scheduled. Figure 4 shows the result of217

such a cache-timing attack. By launching a ScheduLeak attack and knowing when the I/O Operation218

Task is scheduled to execute, the attacker probes the cache usage only when the task is active. The219

result indicates that the attacker is able to identify the instant when the camera is on (i.e., when a large220

amount of data is processed by I/O Operation Task).221
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Figure 4. A demonstration of a cache-timing attack [48]. The X-axis is sample points and Y-axis shows

both cache usage inference (round dots) and real memory usage amount (the solid line). It shows that

a successful cache-timing attack can precisely infer the memory usage of the victim task.

4. Securing RT-IoT: Host-based Approaches222

In what follows we summarize our initial attempts to provide security in RT-IoT nodes. We223

refer to these approaches as host-based solutions since they primarily focus on securing an individual224

RT-IoT node. These approaches can be classified into two major classes: (i) solutions that require225

custom hardware support to provide security and (ii) the solutions at the scheduler/software level226

that do not require any architectural modifications. Table 2 summarizes these security mechanisms227

for RT-IoT systems.228

4.1. Security with Hardware Support229

The key idea of providing security without compromising the safety of the physical system is built230

on the Simplex framework [51]. Simplex is a well-known real-time architecture that utilizes a minimal,231

verified controller (e.g., safety controller) as backup when the complex, high-performance controller232

(e.g., complex controller) is not available or malfunctioning. The goal of the Simplex method is to233

guarantee that even though a safety-critical system is controlled by a complex controller, the physical234

system would remain safe. We have used the idea of Simplex in the context of RT-IoT security [27–235

30,32]. The key concept of using Simplex-based architecture for security is to use a minimal simple236

subsystem (say a trusted core) to monitor the properties (i.e., timing behavior [27,28], memory access237

[29], system call trace [30], behavioral anomalies [32], etc.) of an untrusted entity (e.g., monitored238

core) that is designed for more complex tasks and/or exposed to less secure mediums (e.g., network,239

Internet, I/O channels, etc.).240

4.1.1. Secure System Simplex Architecture (S3A)241

As mentioned in Section 2, the worst-case, best-case and average-case behaviors for most RT-IoT242

nodes are calculated ahead of time to ensure that all resource and schedulability requirements will be243
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Table 2. Summary of Security Solutions for RT-IoT

Reference Approach Attack Surface Overhead/Costs

Simplex-based
security [27–
31]

Use verified/secure hardware
module to monitor system
behavior (e.g., timing [28] and
execution pattern [27], memory
access [29], system call usage
[30], control flow [31])

Code injection
attacks

Require custom
hardware or
monitoring unit

Security by
platform-level
reset [32,49]

Periodically and/or
asynchronously (e.g., upon
detection of a malicious
activity) restart the platform
and load an uncompromised
OS image

Code injection, side
channel and DoS
attacks

Extra hardware to
ensure safety during
periodic/asynchronous
restart events

Cache
flushing
[33,44]

Flush the shared medium (e.g.,
cache) between the consecutive
execution of high-priority
(security sensitive) and
low-priority (potentially
vulnerable) tasks

Side-channel (cache)
attacks

Overhead of cache
flushing reduces
task-set schedulability

Schedule
randomization
[50]

Randomize the task execution
order (i.e., schedule) to reduce
the predictability

Side-channel attacks Extra context switch

Security task
integration for
legacy RT-IoT
[35,37]

Execute monitoring/intrusion
detection tasks with a priority
lower than real-time task to
preserve the real-time task
parameters (e.g., period, WCET
and execution order)

Code injection,
side-channel,
DoS and/or
communication
attacks depending
on the what
monitoring tasks
are used

Running security task
with lower priority
may cause longer
detection time due
to high interference
(e.g., preemption) from
real-time tasks

Adaptive
security task
integration
[36]

Execute monitoring/intrusion
detection tasks with a lowest
priority most of the time
(e.g., during normal system
operation) – however change
the mode of operation execute
with a higher priority (for a
limited amount of time) if
any anomalous behavior is
suspected

Code injection,
side-channel,
DoS and/or
communication
attacks depending
on the what
monitoring tasks
are used

False positive detection
may cause unnecessary
mode switches

met during system operation. S3A [27] utilizes this knowledge of deterministic execution profile of244

the system and use to detect the violation of predicted (e.g., uncompromised) system behavior. S3A is245

one of our earliest efforts to use another (FPGA-based, in this case) trusted hardware component that246

monitors the behavior (e.g., execution time and the period) of a real-time control application running on247

a untrustworthy main system. The goal of this Simplex-based architecture is to detect an infection as248

quickly as possible and then ensure that the physical system components always remain safe. Using249

an FPGA-based implementation and considering inverted pendulum (IP) as the physical plant we250

demonstrated that S3A can detect intrusions in less than 6 µs without violating safety requirements251

of the actual plant.252
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4.1.2. SecureCore Framework253

Figure 5. An illustration of SecureCore framework. The trusted core is used to monitor the behavior of

the complex (and potentially vulnerable) core used for executing application/control tasks.

As illustrated in Fig. 5 the idea of SecureCore architecture is to utilize the redundancy in multicore254

chips to create a trusted entity (e.g., a ‘secure’ core) that can continuously monitor the system behavior255

(e.g., code execution pattern [28], memory usage [29], system call trace [30]) of a real-time application256

on an untrustworthy entity (e.g., monitored core). The SecureCore is protected by hypervisor-based257

approaches (e.g., by isolating memory regions and I/O device consolidation). The secure monitor258

(a software process) in the SecureCore uses the on-chip hardware monitoring unit to observe the259

states (e.g., I/O activities, memory usages, etc.) of monitored cores and checks the system behavior at260

runtime.261

The initial SecureCore architecture [28] uses a statistical learning-based mechanism for profiling262

the correct execution behavior of the target system and uses these profiles to detect malicious code263

execution. Given the probability distribution P(e) of a legitimate execution instance, the secure264

monitor compares P(e) with a predefined minimum required probability θ — if P(e) is below the265

threshold probability (e.g., P(e) < θ) the execution instance to is considered as malicious. The266

SecureCore framework is also extended [29] to profile memory behavior (referred to as memory267

heat map (MHM)) and then detect deviations from the normal memory behavior patterns. MHM268

represents how many times a particular memory region was accessed during a time interval. We269

proposed machine learning algorithms to characterize the information contained in the MHMs270

and then detect deviations from the normal memory behavior patterns. We have also extended271

SecureCore architecture to detect anomalous executions using a distribution of system call frequencies.272

Specifically we have proposed [30] to use clustering algorithms (e.g., global k-means clustering273

with the Mahalanobis distance) to learn the legitimate execution contexts (by means of distribution274

of system call frequencies) of real-time applications and then monitor them at run-time to detect275

intrusions.276

4.1.3. Control Flow Monitoring277

We then proposed hardware-based approach for checking the integrity of code flow of real-time278

tasks [31]. In particular, we add an on-chip control flow monitoring module (OCFMM) with a279

dedicated memory unit that directly hooks into the processor and tracks the control flow of the280

tasks. The control flow graph (CFG) of tasks is produced from the program binary and loaded into281

the OCFMM memory in advance (e.g., during system boot). The detection module inside OCFMM282

compares the control flow of the running program with the stored one (e.g., CFG profiles that are283

loaded into the dedicated memory at boot time) during program execution. At run-time (e.g., during284

execution of a given block) CFG profiles for the next-possible blocks are pre-fetched. The decision285

module continuously scans the current block and validates the execution flow by comparing the286

current address of the program counter (PC) against the possible, previously fetched destination287
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a simple case with two periodic tasks, a high priority task H and a low priority task L scheduled by a356

fixed-priority scheduling policy. Assume that sH ≺ sL; hence, information from H must not leak to L.357

These tasks must be scheduled on a single processor, P, so that both deadlines (DH , DL) are satisfied.358

If L (or any part thereof) executes immediately after (any part) or all of H, then L could “leak” data359

from resources recently used by H. The main intuition is that a penalty must be paid for each shared360

resource in the system every time tasks switch between security levels. In this case, the cache must be361

flushed before a new task is scheduled. Hence, we proposed the use of an independent task, called the362

Flush Task for this purpose.363

In subsequent work [33], we relaxed many of the restrictions (e.g., the requirement of total364

ordering of security levels) and proposed a new, more general model to capture security constraints365

between tasks in a real-time system. This includes the analysis for the schedulability conditions366

with both preemptive and non-preemptive tasks. We proposed a constraint named noleak to capture367

whether unintended information sharing between a pair of tasks must be forbidden. Using this constraint368

we can prevent the information leakage via implicitly shared resources. For any two tasks τi and τj:369

if noleak(τi, τj) = True, then information leakage from τi to τj must be prevented; if noleak(τi, τj) =370

False, no such constraints need to be enforced. We showed that the system remains schedulable (e.g.,371

all the tasks can meet their deadline) under the proposed constraints without significant performance372

impact.373

4.2.2. Schedule Randomization374

One way to protect a system from certain attacks (e.g., the schedule-based side-channel attack375

mentioned in Section 3.2.1), is to randomize the task schedule to reduce the deterministic observability376

of periodic RT-IoT applications. By randomizing the task schedules we can enforce non-determinism377

since every hyper-period1 will show different order (and timing) of execution for the tasks. Unlike378

traditional systems, randomizing task schedules in RT-IoT is not straightforward since it leads to379

priority inversions [54] that, in turn, may cause missed deadlines – hence, putting the safety of the380

system at risk.381

Hence, we proposed TaskShuffler [50], a randomization protocol for fixed-priority scheduling382

algorithm, to achieve such randomness in task schedule. For instance, by picking a random383

task instead of the one with the highest-priority at each scheduling point, subject to the deadline384

constraints. The degree of randomness is flexible in TaskShuffler. Based on the system’s needs,385

TaskShuffler implements the following randomization schemes:386

• Randomization (Task Only): This is the most basic form of randomization in contrast to other387

schemes introduced below. We randomly pick a task to execute whenever a task arrives or388

finishes its job, i.e., at the scheduling points. The effectiveness against the schedule-based389

side-channel attack is limited since the busy intervals in this scheme remains the same.390

• Randomization with Idle Time Scheduling: In addition to the randomness provided in the basic391

scheme, we include the idle task (e.g., the dummy task executed by an RTOS when other real-time392

tasks are not running) at each scheduling point. It eliminates the periodicity of busy intervals393

(from hyper-period’s point of view). This scheme makes it harder to produce effective results394

from the schedule-based side-channel attack.395

• Randomization with Idle Time Scheduling and Fine-grained Switching: To push the randomization396

to an extreme, one could choose to randomize the schedule every tick. That is, the scheduler397

will randomly pick a task to execute, subject to the deadline constraints, in every tick interrupt.398

This way, we gain the most randomness for the schedule. Figure 8 illustrates an instance of the399

1 Hyper-period is the smallest interval of time after which the periodic patterns of all the tasks repeats itself – typically
defined as the least common multiple of the periods of the tasks.
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platform comprised of M identical cores. One fundamental problem while integrating security464

mechanisms in multicore platforms is to determine which security tasks will be assigned to which core465

and executed when. Although security tasks can execute in any of the M available cores and any466

period Tdes
i ≤ Ti ≤ Tmax

i is acceptable, the actual task-to-core assignment and the periods of the467

security tasks are not known apriori. The goal of this scheme therefore is to jointly find the core-to-task468

assignment and suitable periods for the security tasks. However, finding such an assignment is NP-hard469

due to combinatorial nature of the problem. Therefore we developed a near-optimal low-complexity470

solution (called HYDRA) that jointly finds the security tasks’ period and core assignments. From our471

experiment we found that on average HYDRA (that distributes security tasks across all available472

cores) can provide 27.23% faster intrusion detection rate (on a quad core system) compared to the473

case when the security tasks are allocated a dedicated core for while the real-time tasks are assigned474

to the remaining cores.475

5. Discussion and Research Opportunities476

5.1. Securing Legacy RT-IoT Systems477

Since most RT-IoT nodes are resource-constrained embedded devices, resource-intensive478

processing and complex protocols (e.g., heavy cryptographic operations) for securing those systems479

is unrealistic and may threaten the safety of such systems – for instance a safety-critical task may480

miss deadline in order to run computation-heavy security tasks. In addition to execution frequency,481

another important consideration is to determine how quickly can intrusions be detected. Thus482

responsiveness vs. schedulability of critical tasks is another important trade-off. This in itself is a research483

challenge that needs to be investigated.484

So far we have assumed that we are given a set of security tasks and that each security task485

has a desired frequency of execution for better security coverage. Security tasks so far have been486

treated as being independent and preemptible. But in practice, as previously discussed some487

security monitoring may need atomicity or non-preemptive execution. Further, security tasks may have488

dependencies where one task depends on the output from one or more other tasks. For example, an anomaly489

detection task may depend on the outputs of multiple scanning tasks. Or, the scheduling framework490

may need to follow certain precedence constraints for security tasks. For example, in order to ensure491

integrity of monitoring security, the security application’s own binary may need to be examined first492

before checking the system binary files. In such cases we can not independently execute the security493

task and we need to consider the problem of integrating security tasks with dependencies between494

them. One approach could be use a directed acyclic graph (DAG) to capture the dependencies and495

constraints among security tasks. In this case, tightness of achievable periodic monitoring described496

in Section 4.2.3 may no longer be a reasonable metric. Constraints to ensure that the entire DAG is497

executed often enough should be included and the optimization problem reformulated and evaluated498

with different metrics.499

5.2. Security for Multicore based RT-IoT Platforms500

Most of the work [33,35,36,44,48] presented so far has been in the context of single core processors501

– they are the most common types of processors being used in RT-IoT systems. However, as502

mentioned earlier, due to increasing computational demands, multi-core processors are becoming503

increasingly relevant to real-time systems [23,58]. With the increased number of cores, more504

computation can be packed into a single chip – thus reducing power and weight requirements –505

both of which might be relevant to many RT-IoT systems. However multicore processors can increase506

attack vectors, especially for side-channel attacks. First, two or more tasks are running together and507

(most likely) sharing low-level resources (e.g., last level caches). Hence, a task running on one core can508

snoop on the other – and not just when tasks follow each other. In fact, it has been shown that leakage509

can occur with a much higher bandwidth in the case of shared resources in multi-core processors510
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[59]. Second, when tasks execute together, a malicious task can increase the “interference” faced511

by a critical task – for instance, the malicious task can flood the cache/bus with memory references512

just when an important task (say, one that computes the control loop) is running. This could cause513

the critical task to get delayed and even miss its deadline. To prevent such problems, designers of514

the systems need to enforce constraints that protected tasks do not execute simultaneously with515

unprotected ones on the multi-core chip.516

The problem of integrating security tasks into legacy RT-IoT systems is also interesting in the517

multicore context – perhaps the security tasks can always be running (say on one of the dedicated518

cores) instead of running opportunistically as is the case for single core systems. Also it may be519

possible to to take up more cores and execute fine-grained sanity checks (e.g., a complete system-wide520

scan) as it detects malicious activity. Analyzing the impact of integrating security tasks in a multicore521

legacy RT-IoT is an open problem worth investigating.522

5.3. Secure Communication with Timing Constraints523

With the rise of RT-IoT, the edge devices are more frequently exchanging control messages524

and data often with unreliable mediums like the Internet. Therefore, in addition to the host-based525

approaches [27–31,33,44,50] described earlier, there is a requirement for securing communication526

channels to ensure authenticity and integrity of control messages. While some of our previous work527

[32,35] can also be used to deal with network-level attacks, designing a unified framework to protect528

edge devices as well as communication messages (given the stringent end-to-end delay requirements529

for high-critical traffics) is still an open problem.530

Most safety-critical RT-IoT systems often have separate networks (hardware and software) for531

each of the different types of flows for safety (and security) reasons. This leads to significant532

overheads (equipment, management, weight, etc.) and also potential for errors/faults and even533

increased attack surface and vectors. Network-level nondeterminism, i.e., unpredictability in sensor534

reading, packet delivery/forwarding/processing further complicates the management of RT-IoT535

systems. Existing protocols, e.g., avionics full-duplex switched Ethernet (AFDX) [60], controller area536

network (CAN) [61], etc. that are in use in many of real-time domains are either proprietary, complex,537

expensive, require custom hardware or they are also exposed to known vulnerabilities [62].538

Given the limitations of existing protocols, leveraging the benefits of software-defined networking539

(SDN) can also be effective for RT-IoT systems. The advantage of using SDN is that it is compatible540

with COTS components (and thus suitable for legacy RT-IoT systems) and provides a centralized541

mechanism for developing and managing the system. The global view is useful to ensure QoS542

(e.g., bandwidth and delay) and enforce security mechanisms (such as remote attestations, secure543

key/message exchange, remote monitoring, etc.). While SDNs provide a global view of the network544

and high-level management capabilities (including resource allocation), current standards used in545

traditional SDN (e.g., OpenFlow [63]) do not consider inherent timing and safety-critical nature546

of the RT-IoT systems. In recent work [64] we tried to address this problem through static flow547

allocation and routing – we used static path allocation and over-provisioning hardware resources548

(e.g., dedicating one queue per real-time flow) for meeting the end-to-end delay requirements and549

providing isolation. This limited the number of flows that could be admitted and resulted in550

underutilized network resources. Retrofitting the capabilities of SDN in the RT-IoT domain requires551

further research. We also need mechanisms to prioritize between flows (say between the critical real-time552

flows or even across real-time and non real-time flows) and also schemes for multiplexing flows on the553

same queues in the SDN switches (to improve the efficiency of the network) while still meeting the554

real-time constraints.555

6. Related Work556

There exists work that has investigated security in real-time systems [46,47,65]. Many researchers557

have studied this research area from different aspects. Information leakage via side channels has558
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been discussed in many works. Kadloor et al. [66] and Gong et al. [67] introduced analysis and559

methodology for quantifying side-channel leakage. Kelsey et al. [39], Osvik et al. [68] and Page560

et al. [69] demonstrated the usability of cache-based side-channels. Son et al. [41] and Völp et al.561

[70] examined the exploitation of timing channels in real-time scheduling. Bao et al. [71] introduce a562

scheduling algorithm for soft real-time systems (where some tasks can miss deadlines) and provide563

a trade-off between thermal side-channel information leakage and the number of deadline misses.564

Their exists other work [56] that studies the robustness of AES secret keys against differential power565

analysis (DPA) [72] attacks.566

While the work above focuses on exploring vulnerabilities, there exist work that aims to provide567

security to real-time systems. Ghassami et al. [73] and Völp et al. [74] proposed techniques to address568

leakage via shared resources. An online job randomization scheme [75] is proposed by Krüger569

et al. for time-triggered real-time systems. Xie et al. [46] and Lin et al. [47] presented security in570

real-time systems by encrypting communication messages. Similar to the hardware-assisted security571

mechanisms like ours (e.g., S3A, SecureCore, ReSecure, etc.) researchers also propose architectural572

frameworks [57] that dynamically utilizes slack times (e.g., the time instance when no other real-time573

tasks is executing) for run-time monitoring. There exists recent work [76,77] where authors proposed574

schemes to secure systems from man-in-the-middle attacks, where an attacker can compromise575

communication between system sensors and controllers.576

Some recent work has raised security awareness in IoT applications [10,13,78–80]. Some577

researchers aim to add security properties to IoT. Pacheco et al. [81] introduced a security framework578

that offers security solutions with smart infrastructures. Kuusijärvi et al. [82] proposed to mitigate579

IoT security threats with using trusted networks. Those work primarily focuses on generic IoT580

applications, and do not consider the additional real-time constraints required for RT-IoT systems.581

7. Conclusion582

The sophistication of recent attacks on RT-IoT requires rethinking of security solutions for such583

systems. The goal of this paper is to raise the awareness of real-time security and bridge missing584

gaps in the current IoT context – securing the IoT systems with real-time constraints. The techniques585

and methodology presented here vary from different perspectives – from hardware-assisted security586

to scheduler-level as well as those for legacy systems. The designers of the systems and research587

community will now be able to integrate and develop upon these frameworks required to secure588

safety-critical RT-IoT systems. We believe that the real-time and IoT worlds are closely connected and589

will become inseparable in the near future.590
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