
Realtime Robustification of Interdependent Networks under Cascading Attacks

Zhen Chen
School of Electrical, Computer

and Energy Engineering
Arizona State University

Tempe, US
Email: zhen.chen.1@asu.edu

Hanghang Tong
School of Computing, Informatics,
and Decision Systems Engineering

Arizona State University
Tempe, US

Email: hanghang.tong@asu.edu

Lei Ying
School of Electrical, Computer

and Energy Engineering
Arizona State University

Tempe, US
Email: lei.ying.2@asu.edu

Abstract—This paper studies the problem of robustifying an
interdependent network by rewiring a small number of links in
realtime during a cascading attack. Interdependent networks
have been widely used to model interconnected complex sys-
tems such as a critical infrastructure network including both
the power grid and the Internet. Realtime robustification of
interdependent networks, therefore, has significant practical
importance. This paper formulates the problem using the
Markov decision process (MDP) framework. We first show
the problem is NP-hard and then develop an effective and
efficient greedy algorithm, named REALWIRE, to robustify the
network in realtime. REALWIRE scores each link (and each
node) based on the expected number of links failures resulted
from the failure of the link (or the node), and rewires the
links greedily according to the scores. Extensive experimental
results show that REALWIRE outperforms other algorithms
on multiple trobustness metrics.

Keywords-Interdependent networks; network robustness;
cascading failures; Markov decision processes

I. INTRODUCTION

Interdependent networks have been widely used to model
and analyze interconnected complex systems such as the
Internet, online social networks, transportation systems, bio-
chemical reactions, etc [1, 2]. For example, a two-layer in-
terdependent network that consists of a power-grid network
and a communication network has been used to explain the
large-scale electrical blackout in Italy in 2003 [3]. Over
the past decade, there have been a number of studies on
the structures, properties and features of interdependent
networks such as their robustness, stability and connectivity
(see, e.g. [4, 5, 3, 6, 2, 7, 8, 1, 9, 10, 11, 12, 13]). Among
these topics, network robustness is of particular practical
importance because some popular network topologies are
known to have low tolerance to structural damages (e.g.
the diameter doubled after only 5% of the most connected
nodes are removed on the scale-free network [8]), and
interdependent networks are even more fragile because of
the inter-network connections [3]. Research on robustness
can help guide the design of resilient network topologies and
the design of network control to mitigate cascading failures
caused by either cyber attacks or natural diasters.

However, despite recent progresses on understanding ro-
bustness of interdependent networks, existing results almost
exclusively focus on the design of robust network topologies
that are resilient to cascading attacks, instead of on control
and intervention mechanisms to mitigate cascading failures
in realtime. The later is critically important. As we will see
in this paper, even a small number of rewiring in realtime
based on the state of the cascading attack can dramatically
reduce the scale of the attack and minimize its damage.

In this paper, we consider the problem of robustifying
an interdependent network in realtime under a localized
attack [14], where attacked nodes attack their neighbors so
the attack spreads in the network hop-by-hop starting from
the source. We assume an interdependent network with two
layers (also called subnetworks). The functioning of a node
depends on a set of nodes from the other layer. By modeling
propagation of a cascading attack as a Markov chain, we
formulate the problem as a Markov decision process (MDP)
problem where the objective is to maximize the weighted
time-average of some network robustness metric by rewiring
a given number of links at each time. Due to the complex
interactions of different layers and the complex dynamics of
cascading failures, the MDP problem suffers from the curse
of dimensionality and is NP-hard. Therefore, we focus on
greedy algorithms to rewire links in real-time. The main
contributions of this paper are summarized below.

• Problem Formulation: We formulate the interdepen-
dent network link rewiring problem as a Markov de-
cision process (MDP) problem, and prove that the
problem is NP-hard by reducing the maximum coverage
problem to our MDP problem.

• Algorithm: We propose a greedy algorithm, named
REALWIRE to rewire the links during the attack. REAL
WIRE scores each link (and each node) based on the
expected number of links failures resulted from the
failure of the link (or the node), and rewires the links
greedily according to the scores.

• Analysis: We compare the performance of REALWIRE
with the exact solution of the MDP problem on a small
network. The results show that REALWIRE provides a

2018 IEEE International Conference on Big Data (Big Data)

978-1-5386-5035-6/18/$31.00 ©2018 IEEE 1347

nearly-optimal solution to the MDP problem.
• Empirical Evaluations: We evaluate the performance

of the algorithm on various interdependent networks
formed by the real networks including an air traffic net-
work, the Internet Autonomous Systems (IAS) network
and a power grid network under simulated localized
attacks. In most cases, when a large fraction of nodes
in the networks are attacked, our algorithm outperforms
other algorithms.

We would like to remark that we consider an abstract
interdependent network model where a few links can be
rewired at each time slot. This “rewiring” may have different
meanings on different networks. For a communication net-
work, “rewiring” means establishing a new communication
path. For a social network, “rewiring” means establishing
a new collaboration between two persons. For a power-
grid, “rewiring” may mean shutting down a transmission
line and activate a back-up transmission line. The practical
implementation of “rewiring” in real systems is beyond the
scope of this paper. The focus of this paper is to answer how
to rewire a small number of links to robustify the network
when rewiring is possible.

A. Related work

Network robustness has been studied in the literature. One
of the focuses is to define meaningful robustness metrics
and then optimize a network topology to maximize the
target robustness metric. For example, Schneider et al. [12]
proposed a robustness metric called node-robustness and
developed a greedy algorithm to switch links to improve
this node-robustness. Zeng and Liu [13] later defined a
related metric called link-robustness and proposed a similar
greedy algorithm to improve the link-robustness. Chan et al.
[15] used the natural connectivity as the robustness metric
and proposed algorithms to modify the network structure to
maximize the natural connectivity.

Another line of research is on minimizing or maximzing
information diffusion process in networks [16, 17]. Tong
et al. [16] proposed algorithms to modify the leading eigen-
value of the adjacency matrix by adding or removing edges
to limit or facilitate the information diffusion. Zhang et al.
[17] proposed to limit propagation by removing some nodes
or edges at a group scale. Chan et al. [18] studied the
problem of identifying a robust subgraph. There are also
papers focusing on the critical threshold of information
diffusion: a threshold such that when the number of nodes
removed exceeds the threshold, the network does not have
a giant component anymore [19, 9, 4, 14]. In particular,
Cohen et al. [19] used the percolation theory to calculate
the critical threshold of scale-free networks under a random
attack. Yuan et al. [4] used both theoretical analysis and
experimental studies to understand the relation between the
breadth of the degree distribution and the critical threshold.

The robustness of interdependent networks has also been
studied recently. Chen et al. [20] developed a near-optimal
algorithm to identify a subset of nodes at the control layer
whose failures can lead to the maximum damage to the
target layers. Buldyrev et al. [3] proposed a cascading
failure model for interdependent networks and developed
a framework for analyzing the critical threshold. However,
there are only a few work on preserving the robustness
of interdependent networks during the attack. From the
best of our knowledge, the only related work is Di Muro
et al. [2] which proposed a method to recover a fraction of
attacked nodes during a cascading attack to improve network
robustness. For many physical networks, failed nodes are not
recoverable or cannot be recovered in a short time period. In
this paper, we focus on rewiring edges instead of recovering
failed nodes.

This paper is organized as follows. Section II introduces
the network model, the attack model and the MDP formu-
lation of the interdependent network link rewiring problem.
Section III presents our algorithm, REALWIRE and Section
IV summarizes our experimental studies. Finally, Section V
concludes this paper.

II. MODEL AND PROBLEM FORMULATION

A. Interdependent Networks

We consider an interdependent network model inspired by
[3], which consists two networks, network A and network
B. Let Ga(Va, Ea) (Gb(Vb, Eb)) denote the graph structure
of network A (B), where Va (Vb) is the set of vertices
and Ea (Eb) is the set of links (edges) of graph Ga (Gb).
Furthermore, the two networks are connected by a set of
directed dependency links, denoted by D. Each dependency
link is a directed link which represents the dependency of
the head node on the tail node.

The interdependent network, therefore, is defined by the
tuple (Ga(Va, Ea), Gb(Vb, Eb),D). For each vertex v ∈
Vb (Va) we define its supporting node set to be Rv =
{u|∀(u, v) ∈ D}, i.e. the set of nodes on the other network,
on which the functioning of node v depends. We assume
node v fails if all nodes in its supporting node set Rv fail.

B. Localized Attack Model

We consider a localized attack model similar to that in [4].
The attack spreads in network A from the attack source. The
failures of nodes in network A then lead to the failures of
nodes in network B. Specifically, at the beginning of the
localized attack, a single node from network A is attacked
and fails. Then at each following time slot, each attacked
node at network A may attack their healthy neighbors in
node A. We assume the attack stops with probability p at
each time slot before time T and stops at time slot T with
probability one if it does not stop before that.

There are two types of failures under this cascading attack:

1348

A

B

(a) t = 0

A

B

(b) t = 1

A

B

(c) t = 2

A

B

(d) t > 2

Figure 1: An example of the localized attack with p = 0 and T = 2. The red diamond represents failures. At time t = 0, a
node in network A is attacked and fails. Then, the attack starts to propagate. At time t = 1, the neighbors of the previous
attacked nodes in network A get attacked and fail. The similar procedure goes on at time t = 2. Then, the attack stops and
there are 4 more node failures caused by the failures of their supporting nodes.

• Type-I Failures: the failures directly resulted from the
attack. A node stops functioning because it is attacked.
These failures only occur at network A.

• Type-II Failures: the failures caused by failures in
the interdependent network. A node stops functioning
because of all its supporting nodes fail. These failures
can occur at both network A and network B, and
cascades in the network even after the attack stops.

We assume type-I failures occur at a faster time scale than
tpye-II failures. In other words, the attack first propagates
on network A and then type-II failures occur after the attack
stops as shown in the example in Figure 1. Consider an inter-
dependent network where the communication network is the
first layer and the power grid is the second layer. In general,
the cyber attack on the communication network spreads very
fast, but it takes much longer time for generators and power
lines to fail. For example, in the sequence of events that led
to the cascading failures of the power grid in India in 2012,
the 2nd failure in the power grid occurred one hour and
twenty minutes after the first failure and the 3rd failure was
58 minutes after the 2nd [21]. This motivates our assumption
that failures due to the attack occur at a faster time scale than
failures due to the failures of the supporting nodes.

C. The Markov Decision Process (MDP) Formulation

Recall that the interdependent network is denoted by
the tuple (Ga(Va, Ea), Gb(Vb, Eb),D). We next define the
Markov process under the localized attack. Define Ct to be
the set of nodes that are attacked and failed at time slot t
on Ga, and Ft = ∪ti=0Ci, which is the set of nodes that
have been attacked and failed by time slot t. Furthermore,
we define Gta(Vta, Eta) to be the current graph of network
A before rewiring occurs at time slot t, which is obtained
by removing nodes from type-I failures and rewiring links
in the previous time slots. Furthermore, we have G0

a = Ga
and Gtb(Vtb, Etb) = G0

b for t < T under the assumption that
type-II failures occur after the attack stops.

Now define the state of the Markov process at time slot
t to be a tuple

st = (Gta(Vta, Eta), Gtb(Vtb, Etb), Ct,Ft,D).

At time slot 0, we have

s0 = (Ga(Va, Ea), Gb(Vb, Eb), {source}, {source},D),

where “source” is a single node attacked at time slot 0. The
action at given state st is link rewiring on graph Gta. We
assume that at each time slot, we can at most rewire z links
or r fraction of links that connect the current attacked nodes
and healthy nodes, whichever is smaller. Let nt denote the
number of links rewired at time slot t. We have

nt = min {br|Wt|c, z} , (1)

where

Wt = {(v, u) ∈ Eta|v ∈ Ft and u ∈ Vta \ Ft}

is the set of edges that connect the current attacked nodes
and healthy nodes in network A.

We remark under the assumption above, the attacked
nodes cannot be completely isolated from healthy nodes by
cutting all the edges between attacked nodes and healthy
nodes. If it is possible, then a trivial solution to protect the
network is to isolate the attacked nodes immediately.

Given state

st = (Gta(Vta, Eta), Gtb(Vtb, Etb), Ct,Ft,D) (t ≥ 0),

and action at, define Gt′a (Vt′a , Et′a) to be the graph at time t
after action at has been taken. Then, the state transitions of
the Markov process can be described as follows:

1) If Ct = ∅, then Ct+1 = ∅, Ft+1 = Ft, Gt+1
a = Gt′a

and Gt+1
b = Gtb.

2) If Ct 6= ∅, then Gt+1
a = Gt′a and Gt+1

b = Gtb. Since
the attack stops with probability p at each time slot
before T, we have

Ct+1 =

∅, with probability p,

{u|∀u ∈ Vt′a \ Ft, (v, u) ∈ Et′a , v ∈ Ft} ,
with probability 1− p,

and Ft+1 = Ft ∪ Ct+1.

Let S denote the state space and A denote the set of
actions. We define reward function f : S × A → R,

1349

which is defined to be the largest connected component by
considering both type-I and type-II attacks. In particular,

1) If Ct 6= ∅, we define

Pt = {u|∀u ∈ Vt′a \ Ft, (v, u) ∈ Et′a , v ∈ Ft},

which is the set of nodes that can be attacked in the
next time slot. Define Ota to be the set of failed nodes
caused by the failures of Ft ∪ Pt on network A and
Otb to be the set failed nodes caused by the failures of
Ft∪Pt on network B. Failures in Ota∪Otb are type-II
failures. Given Ft∪Pt, it may take multiple iterations
to identify Ota and Otb by emulating the cascading
failures.
Define f ta to be the robustness measure of network
A after removing the nodes Ft ∪ Pt ∪ Ota (e.g. size
of the largest connected component of Gt′a). Similarly,
define f tb to be robustness measure on network B after
removing nodes in Otb. The reward at time slot t is
defined to be ft = f ta + f tb .

2) Otherwise, we set ft = 0.

We define a reward function here for general robustness
measures, and will evaluate our algorithms under several
well-known robustness metrics in the numerical evaluations.
For example, we will consider the size of the largest con-
nected component as the robustness metric, which is also
used by multiple previous works [2, 4, 3].

Given the model defined above, the value function at time
t is defined to be

Vt(st) = max
at

(f(st, at) + γ
∑
st+1

P(st+1|st, at)Vt+1(st+1),

(2)
where γ is the discount factor. If we set γ = 1, we have

Vt(st) = max
at

(f(st, at) +
∑
st+1

P(st+1|st, at)Vt+1(st+1).

(3)
Calculating the value function V0(s0) is equivalent to solving
the following problem [22]:

Problem 1 (MDP problem).

max
π

E

[
T∑
t=0

f(st, at)

∣∣∣∣∣ s0
]
, (4)

where π is a policy that decides which the rewiring action
at each state.

III. A LOW-COMPLEXITY AND GREEDY ALGORITHM

A. NP-Hardness of the Problem

Similar to other MDP problems, the problem defined in
the previous section suffers from the curse of dimensionality.
In particular,

1) The cardinality of the state space and the action space
are both huge, which make it impossible to solve the
problem by using the dynamical programming.

2) There is no closed-form expression of function f.

Theorem 1. The MDP problem defined in Problem 1 is NP-
hard.

This theorem is proved by reducing the maximum cover-
age problem to Problem 1. The detailed proof can be found
in our technical report [23].

B. Proposed Algorithm - REALWIRE

Since the MDP problem is hard to solve, we propose a
heuristic algorithm, REALWIRE, by estimating the expected
number of link failures resulted from the failure of a given
node or link.

Under REALWIRE we first construct gta(Ṽta, Ẽta) a di-
rected subgraph from Gta at time t, where the node set
Ṽta = Vta \Ft−1 is the set of healthy nodes at the beginning
of time slot t, and the link set

Ẽta =
⋃

v∈Ct,u∈Vt
a\Ft

{
(x, y)| (x, y) ∈ Eta, and (x, y) is on

some shortest path on graph Gta
}

includes links on the shortest paths. The neighbors of the
current attacked nodes are defined to be level 0, and the
level of other nodes are defined to be their distance to the
corresponding node at level 0.

After constructing gta(Ṽta, Ẽta), for ∀v ∈ Ṽta, we define the
expected number of link failures contributed to node v at
time t, denoted by f tv, to be

f tv =
∑
u∈N t

v

f tu
dtin(u)

+

(1− p)l
t
v

(
dtout(v) + wtv +

dta(v)− dtin(v)− dtout(v)

2

)
.

(5)
In the equation above, p is the stopping probability of the
localized attack at each time slot, N t

v is the set of successors
of node v on the directed graph gta, d

t
in(v) is the in-degree

of node v on gta, d
t
out(v) is the out-degree of node v on gta,

dta(v) is the degree of node v on subgraph of gta with node
set Ṽta, and ltv is the level of node v on graph gta, where
ltv = minu∈Ct dist

t(u, v), and distt(u, v) is the distance
from node u to v on graph gta.
• dtout(v) represents the failures of out-links caused by

the attack from node v to its neighbors.
•

dta(v)−d
t
in(v)−d

t
out(v)

2 is the number of link failures
caused by the attack of node v on the edges with
endpoints at the same level ltv on graph Gta. Here we
divide it by two because we attribute half of each failure
to each endpoint for each failed link.

• wtv represents the links failures caused by type-II node
failures, which can be calculated according to Algo-
rithm 2.

1350

•
ftu

dtin(u)
istheexpectedlinkfailurescausedbynodeu,

atlevelltv+1,whoseshortestpathsfromthecurrent
attacknodespassthroughnodev.

• (1−p)l
t
v istheprobability,withwhichtheattack

continuesatlevelltv.

InREALWIRE,weusethetotalexpectednumberoflink
failures,

Ft+1(st,at)=
v∈Vta\Ft

(1−p)l
t
v(dtout(v)+w

t
v

+
dta(v)−d

t
in(v)−d

t
out(v)

2
)

(6)

toreplaceVt+1(St+1(St,at))inequation(3),andthenum-
beroflinkfailuresbroughtbythecurrentattack,

ft(st,at)=
v∈Ct

dtout(v)+w
t
v+
1

2
v∈Ct

(dta(v)−d
t
out(v)

(7)
toreplacef(st,at(nt)).Thus,equation(3)becomes

Ft(st)=min
at
ft(st,at)+Ft+1(st,at)

=min
at
v∈Vta\Ft 1

(1−p)l
t
v×

dtout(v)+w
t
v+
dta(v)−d

t
in(v)−d

t
out(v)

2
.

(8)

REALWIREcanbedividedintofoursteps:

1) Ateachtimeslott,webuildgraphgta(̃V
t
a,̃E

t
a).An

examplecanbefoundinFigure2.Figure2.ashows
thenetworkattime0withonlyoneattackednodein
networkA.Theresultofgta(̃V

t
a,̃E

t
a)canbefoundin

Figure2.b.Thepseudocodecanbefoundin[23].
2) Wecalculatetheexpectednumberoflinkfailuresfor
anynodev∈ṼtaaccordingtoEquation(5).Figure
2.cshowsthecalculationsoftheexpectednumberof
linkfailuresfortheexample.

3)Foreachedge(u,v)∈Ẽta,weassignascorewu,v=
ftv

dtin(v)
.Theresultoflinkscoresoftheexampleis

presentedinFigure2.d.
4)Pickthetopnlinkswiththehighestscores.Foreach
oneofthoselinks(u,v),reattachnodevtoanother
nodeongtaonthehighestlevelwithaprobability
proportionaltoitsdegree.Thepseudocodecanbe
foundin[23].Finally,thenetworkafterrewiringisin
Figure2.e.

ThepseudocodecanbefoundinAlgorithm1.Higherthe
scoreanedgehas,moreshortestpathswillbeaffectedby
removingtheedge.Thus,inAlgorithm1,bychoosingthe
linkwiththehighestscoretoremove,REALWIREaimsat
increasingthedistancesbetweenthecurrentattackednodes
andunattackednodes.Then,wereattachthenodetothe
highestlevelingtasothatthelevels,l

t
v,forthenodeswhose

shortestpathswillbeimpactedbytheedgecanbeincreased

themost.Thus,accordingtoequation(8),ouralgorithm
aimstominimizeFt(st)inagreedymanner.

C.ComplexityAnalysis

Lemma1.ThecomplexityofouralgorithmisO(T|Va||D|+
T|Ea|).

Proof:Ateachtimeslot,thecomputationalcomplexity
includesthreeparts:

1)Calculatingwtvforeachnodev,whichcontributesa
complexityO(|Va||D|).

2)Finding the network gta. The complexity is
O(|Va|+|Ea|).

3)Selectingthetopntlinkswithhighestscores.The
complexityisO(|Ea|lognt).

Sincentisupperboundedbyaconstant,thecomplexity
becomesO(|Va||D|+|Ea|).AssumeTisthedurationofthe
attack,thenthecomplexityofthealgorithmisO(T|Va||D|+
T|Ea|).
Figure3plotsthewall-clocktimeversusthenetworksize

fortheBA-BAnetworkswithattackdurationT=4.From
Figure3,wecanseethecomplexityisnearlylinear.

Algorithm1:REALWIRE

Input:GraphGta(V
t
a,E

t
a),G

t
b(V

t
b,E

t
b),currentattack

Ct,numberofrewiredlinksn,stopping
probabilityp.

Output:Gta(V
t
a,E

t
a).

1Constructgraphgta(̃V
t
a,̃E

t
a);

2Calculateftv∀v∈Ṽ
t
aaccordingtoEquation(5);

3wu,v←f
t
v/d

t
in(v)for∀(u,v)∈g

t
a;

4W ← thenedgeswithhighestwu,v,i←1;
5for1≤i≤ndo
6 Removeedge(u,v)onGtawith(u,v)=W[i];
7 Reattachnodevtoanothernodeongta[23];
8end

IV.EMPIRICALEVALUATIONS

A.RobustnessMetrics

Weusethefollowingperformancemetricstomeasurethe
networkrobustness.

1)Largestconnectedcomponentfraction:Thesizeofthe
largestconnectedcomponentofgraphGa(Gb)after
removingallfailednodesdividedbytheoriginalsize
ofthegraph.

2) Naturalconnectivity:Itisdefinedin[24]asλ̄=
ln(1N

N
i=1e

λi),whereλiisthei
thlargesteigenvalue

oftheadjacencymatrixofagraph.Itcanbeusedto
measurethenumberofclosedwalksonthegraph.
Sinceintheinterdependentnetworks,therearetwo
networksGaandGb,afterremovingthefailednodes,

1351

A

B

(a) In this example, assume at current
time slot, in each subnetwork, there is
only one attacked node, which is marked
by red diamond. The dash lines between
two layers are bidirectional dependency
links.

A

B

1

1

2

2
3

3 4

(b) In the first step, we run a breadth-first
search from the current attacked node in
subnetwork A. The number around each
healthy node in subnetwork A represents
the distance from current attack.

A

B

8.79

4.27

4.52

2.93
1.10

1.44 0.48
u

v

(c) Calculate the expected number of link
failures for each healthy node in subnet-
work A according to (5). For example,
with assumption of p = 0.3, for node v,
we have f t

v = 0.74×2 = 0.48. Then, we
have f t

u = f t
v/2 + 0.73 × 2.5 = 1.10.

A

B

8.79
4.27

4.521.47
1.10

0.72

0.24

u

v
1.47

0.72

0.24

(d) We assign the expected number of link failures of
each node equally to the incoming links of these nodes.

A

B

(e) Finally, we choose links with highest scores to cut
and reattach the endpoints to the nodes with the largest
level number.

Figure 2: An example of our algorithm.

4000 6000 8000 10000 12000 14000
Network size

0

5

10

15

20

25

W
a
ll-

cl
o
ck

 t
im

e

Figure 3: The wall-clock time vs network size for BA
networks when attack time duration is 4.

Algorithm 2: Calculate wtv
Input : Graph Gta(Vta, Eta), current attack Ct, attacked

nodes Ft, node v, the set V isitedEdges, the
score dictionary D

Output: A score

1 if v ∈ Vta then Dv ← dta(v);
2 else Dv ← db(v);
3 for (v, w) ∈ D do
4 if (v, w) 6∈ V isitedEdges and

(w, v) 6∈ V isitedEdges;
5 then
6 V isitedEdges.add((v, w));
7 if D does not contain Dw then
8 Calculate Dw using Algorithm 2 based

current V isitedEdges and D;
9 Dv ← Dv + Dw

||{(u,w)|∀(u,w)∈D}|| ;
10 end
11 Return Dv;

we calculate the natural connectivity for each network
and add them together.

3) Spectral radius: The spectral radius is defined as the
largest absolution value of the eigenvalues of the
adjacency matrix.

4) Spectral gap: The spectral gap of a graph is the
difference between the largest and the second largest
eigenvalues of the adjacency matrix. The spectral gap
is closely related to the expansion properties of the
graph. It has been used as a robustness metric in [25].

B. Optimality on Small Networks

For a small size network, we can calculate the optimal
solution for the MDP problem defined in Problem (1). In this
experiment, we used the Florentine families graph, which
only contains 15 nodes. Since there are two networks, A and
B, involved in the interdependent network model, we used
the Florentine families graph to represent both A and B and
randomly assign the name 0, 1, . . . , 14 to each node. Then,
the functioning of one node in B depends on the node with
the same name in A. Then, we let the attack start from each
node in the network A and propagate for two time slots.
The result is listed in Figure 4. The bars of the optimal
solution were generated based on the maximum objective
value defined in (4) over all possible rewiring traces. For
other algorithms, we repeated the evaluation 500 times for
each source and took the average. Based on Figure 4, we
can see that the value of the MDP objective generated by
our algorithm is close to the optimal solution.

To calculate the optimal solution of the MDP problem, we
need to consider every possible rewiring of the networks,
which means as the increase of the propagation time, T ,

1352

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Source

40

50

60

70

80

90

100

M
D

P
 o

b
je

ct
iv

e

Optimal

REALWIRE

Random

Figure 4: Florentine families network

the computation time grows exponentially, which makes
the calculation of the optimal solution for large networks
impossible. For example, the average number of possible
rewiring combinations over all possible attack sources is 312
for T = 1, 103, 342 for T = 2, and 13, 718, 030 for T = 3.

C. General Networks

We tested our algorithm on the following networks:
1) BA network: The network is generated according

to the Barabasi-Albert preferential attachment model.
Each new node brings three edges.

2) Air traffic network: The network has been built based
on one year (2016) of interval USA air traffic data1,
which includes 1,243 airports connected by 16,106
routes (links).

3) IAS network: The IAS network is based on the Inter-
net Autonomous Systems peering information inferred
from the Oregon route-views [26]. The network in-
cludes 6,474 nodes and 13,895 edges2.

4) Power grid network: This network is used to represent
the topology of the Western States Power Grid of the
United States, which includes 4,941 nodes and 6,594
edges [7].

From each of the network mentioned above, we built the
following interdependent networks.
• The BA-BA network: Both the first layer and second

layer are BA networks with 2,000 nodes generated
randomly. We generated a one-to-one mapping between
nodes from both layers as the dependency links.

• The IAS-PG network: For each node v in the IAS
network or the power grid network, we uniformly
picked an integer number d from 0 to 2 and randomly
chose d nodes from the other layer as the supporting
nodes of node v.

• The IAS-Air network: Since the communication net-
work can impact the air traffic network and not the
other way around, we generated a single direction
interdependent network in this case. For each node v
in the air traffic network, we randomly picked 0 ∼ 2
nodes from the other layer as the supporting node of
node v.

1https://www.transtats.bts.gov/TRAFFIC/
2http://snap.stanford.edu/data/as.htmls

We compared our algorithm with the following algo-
rithms:
• Single step rewiring: Instead of rewiring during the

attack, it rewires the links before the attack. This
algorithm aims to balance the degree of two endpoints
connected by each edge.

– For each link (u, v) on Ga, we define the degree
difference to be |da(u) − da(v)|. We rank all the
links according to their degree differences.

– We pick the top n links with largest degree differ-
ences and remove those links.

– For each removed link, we rewire the endpoint with
the smaller degree to another node in the network
with a small degree.

• Degree rewiring: This algorithm consists of the follow-
ing steps:

– At each time slot t, we only rank all the links
that connect attacked nodes and unattacked nodes
and rank them according to a score based on the
degree of their unattacked endpoints. For example,
assume there is an edge (u, v) ∈ Gta, while u ∈ Ft
and v ∈ Vta \ Ft. Then the score of edge (u, v) is
dta(v) +

∑
w∈Vb,

while v∈Rw

db(w)
|Rw| , where db(w) is the

degree of node w on Gb, and dta(v) is the degree
of node v on the subgraph of Gta with node set
Vta \ Ft−1.

– We pick nt links with highest scores to remove and
then reattach the unattacked endpoint of each link
to another unattacked with a higher score. Here nt
is defined in Equation (1).

• EDGEREWIRE: The algorithm is proposed in [27].
– For each rewiring, the algorithm picks an edge that

increases the robustness measure of network A the
most to add and then choose an edge between an
endpoint of the newly added edge and another node
that decreases the robustness metric of network A
the least to cut.

– At each time slot, the algorithm repeats the pre-
vious step for nt times. The robustness metrics
used here are spectral gap (SG) and spectral radius
(SR). Since the algorithm requires us to consider
each possible edge to add to the network, which
is proportional to |Va|2 for a sparse network, this
algorithm runs slow for large networks compared
to others. Thus, we only include the results of this
algorithm for the BA-BA network.

We evaluated our algorithm with a more general SI model
for cascading attacks, where at each time slot each attacked
node in network A can attack its unattacked neighbors with
certain probability pa. In the experiments, we set pa = 0.7.
The attack stops after a certain fraction of nodes have
been attacked. For the number of rewired links at each

1353

0.2 0.4 0.6 0.8 1.0
Attack fraction

0.0

0.2

0.4

0.6

0.8
La

rg
es

t c
om

po
ne

nt
 fr

ac
tio

n
No Rewiring
Single Step Rewiring
Degree Rewiring
REALWIRE
EDGEREWIRE-SG
EDGEREWIRE-SR

(a) Largest component
fraction of network A.

0.2 0.4 0.6 0.8
Attack fraction

0

1

2

3

4

5

Na
tu

ra
l C

on
ne

ct
iv

ity

(b) Natural connectivity of
network A.

0.2 0.4 0.6 0.8
Attack fraction

0

1

2

3

4

Sp
ec

tra
l G

ap

(c) Spectral gap of network
A.

0.2 0.4 0.6 0.8
Attack fraction

2
4
6
8

10
12
14

Sp
ec

tra
l R

ad
iu

s

(d) Spectral radius of
network A.

0.2 0.4 0.6 0.8
Attack fraction

0.5

0.6

0.7

0.8

0.9

La
rg

es
t c

om
po

ne
nt

 fr
ac

tio
n

(e) Largest component
fraction of network B.

0.2 0.4 0.6 0.8
Attack fraction

2

3

4

5

6

7

Na
tu

ra
l C

on
ne

ct
iv

ity

(f) Natural connectivity of
network B.

0.2 0.4 0.6 0.8
Attack fraction

1.5

2.0

2.5

3.0

3.5

4.0

Sp
ec

tra
l G

ap

(g) Spectral gap of network
B.

0.2 0.4 0.6 0.8
Attack fraction

8

10

12

14

Sp
ec

tra
l R

ad
iu

s

(h) Spectral radius of
network B.

Figure 5: The BA-BA network.

0.2 0.4 0.6 0.8 1.0
Attack fraction

0.0

0.1

0.2

0.3

La
rg

es
t c

om
po

ne
nt

 fr
ac

tio
n

No rewiring
Single step rewiring
Degree rewiring
REALWIRE

(a) Largest component
fraction of network A.

0.2 0.4 0.6 0.8 1.0
Attack fraction

0

2

4

6

8

10

Na
tu

ra
l C

on
ne

ct
iv

ity

(b) Natural connectivity of
network A.

0.2 0.4 0.6 0.8 1.0
Attack fraction

1

2

3

4

5
Sp

ec
tra

l G
ap

(c) Spectral gap of network
A.

0.2 0.4 0.6 0.8 1.0
Attack fraction

5

10

15

Sp
ec

tra
l R

ad
iu

s

(d) Spectral radius of
network A.

0.2 0.4 0.6 0.8 1.0
Attack fraction

0.4

0.6

0.8

La
rg

es
t c

om
po

ne
nt

 fr
ac

tio
n

(e) Largest component
fraction of network B.

0.2 0.4 0.6 0.8 1.0
Attack fraction

30
40
50
60
70
80
90

Na
tu

ra
l C

on
ne

ct
iv

ity

(f) Natural connectivity of
network B.

0.2 0.4 0.6 0.8 1.0
Attack fraction

20

30

40

50

60

Sp
ec

tra
l G

ap

(g) Spectral gap of network
B.

0.2 0.4 0.6 0.8 1.0
Attack fraction

40
50
60
70
80
90

100

Sp
ec

tra
l R

ad
iu

s

(h) Spectral radius of
network B.

Figure 6: The IAS-Air network.

REALWIRE Degree
rewiring

Single step
rewiring

IAS-PG 131.68 126.10 694.75
IAS-Air 134.78 119.63 694.74

Table I: The average number of rewired links for IAS-PG
and IAS-Air.

time slot, we set r = 0.5 and z = 20 in Equation (1).
For the single step rewiring algorithm, we chose to rewire
5% of the total number of links on network A. Table I
shows the average number rewired links under REALWIRE
and degree rewiring, the numbers were calculated when
the attack fraction is 0.9. From Table I, the number of
rewired links resulted by REALWIRE is close to the number
of rewired links from the degree rewiring, which is much

smaller than the number of links rewired by the single step
rewiring algorithm. From Figure 3, we can see that the
wall-clock time is almost linear to the size of the network.
From Figure 5-7, we can see that in terms of the largest
connected component fraction, our algorithm performs the
best. For example, in the IAS-Air network, when the attack
fraction is 0.3, the largest connected component fraction
under REALWIRE is 0.39, which is much higher than that
under the degree rewiring, which is 0.28. In the BA-BA
network, the degree rewiring heuristic is hard to beat when
the attack fraction is small. However, as the attack fraction
increases, our algorithm starts to outperform others in both
network A and network B. In the IAS-Air network, our
algorithm outperforms the others for most metrics. In the
IAS-PG network, the performance of our algorithm and the
degree heuristic is close. Under all of the experiments, REAL

1354

0.2 0.4 0.6 0.8 1.0
Attack fraction

0.0

0.1

0.2

0.3

La
rg

es
t c

om
po

ne
nt

 fr
ac

tio
n

No rewiring
Single step rewiring
Degree rewiring
REALWIRE

(a) Largest component
fraction of network A.

0.4 0.6 0.8
Attack fraction

0

2

4

6

8

10

Na
tu

ra
l C

on
ne

ct
iv

ity

(b) Natural connectivity of
network A.

0.2 0.4 0.6 0.8 1.0
Attack fraction

1

2

3

4

5

6

Sp
ec

tra
l G

ap

(c) Spectral gap of network
A.

0.2 0.4 0.6 0.8 1.0
Attack fraction

0

5

10

15

Sp
ec

tra
l R

ad
iu

s

(d) Spectral radius of
network A.

0.2 0.4 0.6 0.8 1.0
Attack fraction

0.0

0.2

0.4

0.6

La
rg

es
t c

om
po

ne
nt

 fr
ac

tio
n

(e) Largest component
fraction of network B.

0.2 0.4 0.6 0.8 1.0
Attack fraction

0.9

1.0

1.1

1.2

1.3

Na
tu

ra
l C

on
ne

ct
iv

ity

(f) Natural connectivity of
network B.

0.2 0.4 0.6 0.8 1.0
Attack fraction

0.2

0.3

0.4

0.5

0.6

0.7

Sp
ec

tra
l G

ap

(g) Spectral gap of network
B.

0.2 0.4 0.6 0.8 1.0
Attack fraction

3

4

5

6

Sp
ec

tra
l R

ad
iu

s

(h) Spectral radius of
network B.

Figure 7: The IAS-PG network.

0.2 0.4 0.6 0.8 1.0
Attack fraction

0.0

0.1

0.2

0.3

La
rg

es
t c

om
po

ne
nt

 fr
ac

tio
n

No rewiring
Degree rewiring
REALWIRE

(a) Largest component
fraction of network A.

0.2 0.4 0.6 0.8 1.0
Attack fraction

0

2

4

6

8

10

Na
tu

ra
l C

on
ne

ct
iv

ity

(b) Natural connectivity of
network A.

0.2 0.4 0.6 0.8 1.0
Attack fraction

1

2

3

4

5

6

Sp
ec

tra
l G

ap

(c) Spectral gap of network
A.

0.2 0.4 0.6 0.8 1.0
Attack fraction

5

10

15

Sp
ec

tra
l R

ad
iu

s

(d) Spectral radius of
network A.

0.2 0.4 0.6 0.8 1.0
Attack fraction

0.4

0.6

0.8

La
rg

es
t c

om
po

ne
nt

 fr
ac

tio
n

(e) Largest component
fraction of network B.

0.2 0.4 0.6 0.8 1.0
Attack fraction

30
40
50
60
70
80
90

Na
tu

ra
l C

on
ne

ct
iv

ity

(f) Natural connectivity of
network B.

0.2 0.4 0.6 0.8 1.0
Attack fraction

20

30

40

50

60

70

Sp
ec

tra
l G

ap

(g) Spectral gap of network
B.

0.2 0.4 0.6 0.8 1.0
Attack fraction

40
50
60
70
80
90

100

Sp
ec

tra
l R

ad
iu

s

(h) Spectral radius of
network B.

Figure 8: The IAS-Air network with backup links.

WIRE achieved the best performance in terms of the largest
component fraction for most of the attack fractions, which
makes sense since the largest connected component size is
directly related to the objective of our MDP problem.

In reality, there exist circumstances, in which we cannot
add a link between any two nodes in the network. This
means we may not be able to rewire the links according
to our algorithm. Thus, we considered another scenario, in
which we assume each node has some backup links we can
activate during the attack. In this experiment, for each node
we randomly generated a number of backup links equal to
20% multiplying by its degree. So during the attack, for
each link we cut, we can activate a backup link of one
of its endpoints. The other parameters are the same as the
rewiring case. From Figure 8, we can see our algorithm still
outperforms the others.

V. CONCLUSION

In this paper, we studied the problem of improving
robustness of interdependent networks against the localized
attack. We proposed a novel algorithm, named REALWIRE,
to improve the robustness of the interdependent networks
and to limit the impact of the attack by rewiring the links of
the networks in real-time. We formulated the problem as an
MDP problem, which has been proved to be NP-hard, and
then proposed a greedy algorithm. The simulation results
showed the performance of REALWIRE is close to the exact
solution of the MDP problem in a small network and REAL
WIRE outperforms the others in different networks when the
attack fraction is high.

1355

ACKNOWLEDGMENT

This work was supported in part by NSF (IIS-1715385
and IIS-1651203), and HDTRA1-16-0017.

REFERENCES

[1] R. Albert and A.-L. Barabási, “Statistical mechanics
of complex networks,” Rev. Mod. Phys., vol. 74, pp.
47–97, Jan 2002.

[2] M. Di Muro, C. La Rocca, H. Stanley, S. Havlin, and
L. Braunstein, “Recovery of interdependent networks,”
Scientific reports, vol. 6, 2016.

[3] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley,
and S. Havlin, “Catastrophic cascade of failures in
interdependent networks,” Nature, vol. 464, no. 7291,
pp. 1025–1028, 2010.

[4] X. Yuan, S. Shao, H. E. Stanley, and S. Havlin,
“How breadth of degree distribution influences network
robustness: Comparing localized and random attacks,”
Phys. Rev. E, vol. 92, no. 3, p. 032122, 2015.

[5] A. Vespignani, “Complex networks: The fragility of
interdependency,” Nature, vol. 464, no. 7291, pp. 984–
985, 2010.

[6] J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin,
“Networks formed from interdependent networks,” Na-
ture physics, vol. 8, no. 1, pp. 40–48, 2012.

[7] D. J. Watts and S. H. Strogatz, “Collective dynamics
of ‘small-world’ networks,” Nature, vol. 393, no. 6684,
pp. 440–442, 1998.

[8] R. Albert, H. Jeong, and A.-L. Barabasi, “Attack and
error tolerance of complex networks,” Nature, vol. 406,
pp. 378–382, 2000.

[9] D. S. Callaway, M. E. J. Newmann, S. H. Strogatz, and
D. J.Watts, “Network robustness and fragility: Perco-
lation on random graphs,” Phys. Rev. Lett., vol. 85, pp.
5468–5471, 2000.

[10] R. Albert, H. Jeong, and A.-L. Barabási, “Internet:
Diameter of the world-wide web,” Nature, vol. 401,
pp. 130–131, Sept 1999.

[11] M. Newman, Networks: An Introduction. Oxford
University Press, Inc., 2010.

[12] C. M. Schneider, A. A. Moreira, J. S. Andrade,
S. Havlin, and H. J. Herrmann, “Mitigation of ma-
licious attacks on networks,” Proc. the National
Academy of Sciences, vol. 108, no. 10, pp. 3838–3841,
2011.

[13] A. Zeng and W. Liu, “Enhancing network robustness
against malicious attacks,” Phys. Rev. E, vol. 85, no. 6,
p. 066130, 2012.

[14] S. Shao, X. Huang, H. E. Stanley, and S. Havlin,
“Percolation of localized attack on complex networks,”
New Journal of Phys., vol. 17, no. 2, p. 023049, 2015.

[15] H. Chan, L. Akoglu, and H. Tong, “Make it or break
it: Manipulating robustness in large networks,” in Pro-

ceedings of the 2014 SIAM International Conference
on Data Mining. SIAM, 2014, pp. 325–333.

[16] H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos,
and C. Faloutsos, “Gelling, and melting, large graphs
by edge manipulation,” in Proceedings of the 21st ACM
international conference on Information and knowl-
edge management. ACM, 2012, pp. 245–254.

[17] Y. Zhang, A. Adiga, S. Saha, A. Vullikanti, and
B. A. Prakash, “Near-optimal algorithms for control-
ling propagation at group scale on networks,” IEEE
Transactions on Knowledge and Data Engineering,
vol. 28, no. 12, pp. 3339–3352, 2016.

[18] H. Chan, S. Han, and L. Akoglu, “Where graph topol-
ogy matters: the robust subgraph problem,” in Proceed-
ings of the 2015 SIAM International Conference on
Data Mining. SIAM, 2015, pp. 10–18.

[19] R. Cohen, K. Erez, D. Ben-Avraham, and S. Havlin,
“Resilience of the internet to random breakdown,”
Phys. Rev. Lett., vol. 85, pp. 4626–4628, Nov. 2000.

[20] C. Chen, J. He, N. Bliss, and H. Tong, “Towards
optimal connectivity on multi-layered networks,” IEEE
Transactions on Knowledge and Data Engineering,
vol. 29, no. 10, pp. 2332–2346, 2017.

[21] A. Bakshi, A. Velayutham, S. Srivastava, K. Agrawal,
R. Nayak, S. Soonee, and B. Singh, “Report of the
enquiry committee on grid disturbance in northern
region on 30th july 2012 and in northern, eastern &
north-eastern region on 31st july 2012,” New Delhi,
India, 2012.

[22] W. B. Powell, Approximate Dynamic Programming:
Solving the curses of dimensionality. John Wiley &
Sons, 2007, vol. 703.

[23] Z. Chen, H. Tong, and L. Ying, “Realtime ro-
bustification of interdependent networks under cas-
cading attacks,” Arizona State University, Tech.
Rep., 2018, available at http://www.public.asu.edu/
∼zchen113/Publications/TechnicalReport.pdf.

[24] W. Jun, M. Barahona, T. Yue-Jin, and D. Hong-Zhong,
“Natural connectivity of complex networks,” Chinese
Phys. Lett., vol. 27, no. 7, p. 078902, 2010.

[25] F. D. Malliaros, V. Megalooikonomou, and C. Falout-
sos, “Fast robustness estimation in large social graphs:
Communities and anomaly detection,” in Proc. of the
2012 SIAM International Conference on Data Mining.
SIAM, 2012, pp. 942–953.

[26] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs
over time: densification laws, shrinking diameters and
possible explanations,” in Proc. of the 11th ACM
SIGKDD international conference on Knowledge dis-
covery in data mining. ACM, 2005, pp. 177–187.

[27] H. Chan and L. Akoglu, “Optimizing network robust-
ness by edge rewiring: a general framework,” Data
Mining and Knowledge Discovery, vol. 30, no. 5, pp.
1395–1425, 2016.

1356

