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Abstract—Local graph partitioning is a key graph mining
tool that allows researchers to identify small groups of inter-
related nodes (e.g., people) and their connective edges (e.g.,
interactions). As local graph partitioning focuses primarily
on the graph structure (vertices and edges), it often fails to
consider the additional information contained in the attributes.
We propose a scalable algorithm to improve local graph
partitioning by taking into account both the graph structure
and attributes. Experimental results show that our proposed
ATTRIPART algorithm finds up to 1.6× denser local partitions,
while running approximately 43× faster than traditional local
partitioning techniques (PageRank-Nibble).

Keywords-local partition, rich graph, attributes, conductance,
subgraph, pagerank

I. INTRODUCTION

Motivation. As network data is being generated at an
unprecedented rate across multiple disciplines, a critical
challenge before us is the translation of this large-scale
network data into meaningful information. A key task in
this translation is the identification of local communities
with respect to a given seed node (we interchangeably refer
to local community as a local partition). This community
identification has applications to many important areas,
including: recommender systems and ego-centric network
identification. In practical terms, the information discovered
in these local communities can be utilized in a wide range
of high-impact areas, from protein interaction networks [1]
[2] to social [3] [4] and transportation networks.

Problem Overview. How can we quickly determine the
local graph partition around a given seed node? This problem
is traditionally solved using an algorithm like Nibble [5],
which identifies a small cluster in time proportional to the
size of the cluster, or PageRank-Nibble, [6] which improves
the running time and approximation ratio of Nibble with
a smaller polylog time complexity. While both of these
methods provide powerful techniques in the analysis of
network structure, they fail to take into account the attribute
information contained in many real-world graphs. Other
techniques to find improved rank vectors, such as attributed
PageRank [7], lack a generalized conductance metric for
measuring cluster “goodness” containing attribute informa-

tion. In this paper, we propose a novel method that combines
the network structure and attribute information contained in
graphs—to better identify local partitions using a generalized
conductance metric.

Applications. Local graph partition plays a central role
in many application scenarios. For example, a common
problem in recommender systems is that of social media
networks and determining how a local community will
evolve over time. The proposed ATTRIPART algorithm can
be extended (utilizing link prediction) to determine the
evolution of local communities, which can then assist in user
recommendations. Another example, utilizing social media
networks, is ego-centric network identification—where the
goal is to identify the locally important neighbors relative
to a given person. To this end, we can use our ATTRIPART
algorithm to identify better ego-centric networks using the
graph’s network structure and attribute information.

Contributions. Our primary contributions are three-fold:

1) The formulation of a graph model and generalized
conductance metric that incorporates both attribute and
network structure edges.

2) The design and analysis of local clustering algorithm
ATTRIPART utilizing the proposed graph model, mod-
ified conductance metric and subgraph identification
technique.

3) The evaluation of the proposed algorithms on three real-
world datasets—demonstrating the ability to identify
1.6× denser local partitions, while running approxi-
mately 43× faster than traditional techniques.

Deployment. The local partitioning algorithm ATTRI-
PART is currently deployed to the PathFinder [8] web plat-
form (www.path-finder.io), with the goal of assisting users
in mining local network connectivity from large networks.

This paper is organized as follows—Section II defines
the problem of local partitioning in rich graphs; Section
III introduces our proposed model and algorithms; Section
IV presents our experimental results on multiple real-world
datasets; Section V reviews the related literature; and Section
VI concludes the paper.
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II. PROBLEM DEFINITION

In this paper we consider three graphs—(1) an undirected,
unweighted structure graph G = (V,E), (2) an undirected,
weighted attribute graph A = (V,E) and (3) a combined
graph consisting of both G and A that is undirected and
weighted B = (V,E). In each graph, V is the set of vertices,
E is the set of edges, n is the number of vertices and m
is the number of edges (i.e. G, A and B contain the same
number of vertices and edges by default). In order to denote
the degree centrality we say δ(v) is the degree of vertex v.
We use bold uppercase letters to denote matrices (e.g. G)
and bold lowercase letters to denote vectors (e.g. v).

For the ease of description, we define terms that are inter-
changeably used throughout the literature and this paper—
(a) we refer to network as a graph, (b) node is synonymous
with vertex, (c) local partition is referred to as a local cluster,
(d) seed node is equivalent to query and start vertex, (e)
topological edges of the graph refers to the network structure
of the graph, (f) a rich graph is a graph with attributes on
the nodes and or edges.

Having outlined the notation, we define the problem of
local partitioning in rich graphs as follows:

Problem 1. Local Partitioning in Rich Graphs
Given: (1) an undirected, unweighted graph G = (V,E), (2)
a seed node q ∈ V and (3) attribute information for each
node v ∈ V containing a k-dimensional attribute vector
xi—with an attribute matrix X = [x1, x2, ..., xn] ∈ Rk×n
representing the attribute vector for each node v.
Output: subset of vertices S ⊂ V such that S best represents
the local partition around seed node q in graph B.

Symbol Definition

G, A, B network, attribute & combined graphs
n, m number of nodes & edges in graphs G, A, B
p, mp number of nodes & edges in T

s, q, φo preference vector, seed node & target conductance
W lazy random walk transition matrix
S set of vertices representing local partition
ε, εt rank truncation and iteration thresholds
tm, ns rank vector iterations; number of vertices to sweep
αn, αr ATTRIPART & LOCALPROXIMITY teleport values
te edge addition threshold

ts, nw subgraph relevance threshold & number of walks
T ; D, L subgraph of B; walk count dictionary & list
µ(L), σ(L) mean and standard deviation of L

Table I: Symbols and Definition

III. METHODOLOGY

This section first describes the preliminaries for our
proposed algorithms, including the graph model and modi-
fied conductance metric. Next, we introduce each proposed

Figure 1: Example of the three graph models: (a) graph
G is the network structure with nodes {1, 2, 3, 4} and
corresponding attribute set {x1, x2, x3, x4} given as input.
(b) Graph A is the attribute network with the same set
of edges as G with each edge (u, v) assigned a positive
similarity weight suv . (c) Graph B is a linear combination
of the each respective edge (u, v) from G and A.

algorithm—(1) LOCALPROXIMITY and (2) ATTRIPART. Fi-
nally, we provide an analysis of the proposed algorithms in
terms of effectiveness and efficiency.

A. Preliminaries

Graph Model: Topological network G represents the
network structure of the graph and is formally defined in
Eq. (1). Attribute network A represents the attribute struc-
ture of the graph and is computed based on the similarity
for every edge (u, v) ∈ E in G. In order to determine the
similarity between the two nodes, we use Jaccard Similarity
J(u, v). A is formally defined in Eq. (2) where 0.05 is the
default attribute similarity between an edge (u, v) ∈ E in G
if J(xu, xv) = 0. In addition, te is the similarity threshold
for the addition of edges not in G where 0 < te ≤ 1.
Combined Network B represents the combined graph of G
and A and is formally defined in Eq. (3).

We define each of the three graph models G, A and B in
Eq. (1), Eq. (2) and Eq. (3). Figure 1 presents an illustrative
example.

G(u, v) =

{
1, if (u, v) ∈ E and u6=v
0, otherwise

(1)

A(u, v) =


J(u, v), if (u, v) ∈ E, u 6= v and J(u, v) > 0

0.05, if (u, v) ∈ E, u 6= v and J(u, v) = 0

J(u, v), if (u, v) 6∈ E, u 6= v and J(u, v) > te

0, otherwise
(2)

B(u, v) =


1 + A(u, v), if (u, v) ∈ E and (u, v) ∈ A

A(u, v), if (u, v) 6∈ E and (u, v) ∈ A

0, otherwise
(3)
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Conductance: Conductance is a standard metric for
determining how tight knit a set of vertices are in a graph
[9]. The traditional conductance metric is defined in Eq. (4),
where S is the set of vertices representing the local partition.
The lower the conductance value φ(S), where 0 ≤ φ(S) ≤
1, the more likely S represents a good partition of the graph.

φ(S) =
cut(S)

min(vol(S), vol(S̄))
(4)

Where the cut is Cut(S) = {(u, v) ∈ E|u ∈ S, v /∈ S}, and
the volume is vol(S) =

∑
v∈S

δ(v).

This definition of conductance will serve as the bench-
mark to compare the results of our parallel conductance
metric.

Parallel Conductance. We propose a parallel conductance
metric which takes into account both the attribute and
topological edges in the graph. Instead of simply adding the
cut of each vertex v ∈ S, we want to determine whether
v is more similar to the vertices in S or S̄. The new
cut and conductance metric is formally defined in Eq. (5)
and Eq. (6), respectively. The key idea behind the parallel
conductance metric is to determine whether each vertex in
S is more similar to S or S̄ using the additional information
provided by the attribute links.

parallel cut(S) =
∑
iεS

∑
j 6εS

[
A(i, j) + G(i, j)

]
∑
jεS

[
A(i, j) + G(i, j)

] (5)

By definition, B can be split into its representative
components, G and A. We also note a few key properties
of the parallel cut metric below:

1) Parallel cut = 1 means that the vertices in S have
connections of equal weighting between S and S̄.

2) Parallel cut < 1 means that the vertices in S have
only a few strong connections to S̄.

3) Parallel cut > 1 means that the vertices in S are
more strongly connected to S̄ than S.

Eq. (6) uses the cut as defined in Eq. (5) and the volume
as defined above with the modification that δ(v) is a sum of
it’s components in G and A.

φ(S) =
parallel cut(S)

vol(S)
(6)

We note that the parallel conductance metric has a differ-
ent scale compared to the traditional conductance metric. For
example, a conductance of 0.3 in the traditional conductance
doesn’t have the same meaning as a conductance of 0.3
in the parallel definition. We also bound the volume of
S to vol(S) < 1/2vol(B). This allows us to reduce the
min(vol(S), vol(S̄)) computation to vol(S). A toy example
of the parallel conductance can be seen in Figure 2.

Figure 2: A toy example calculating the parallel cut and
conductance with local partition S containing vertices
{1, 2, 3, 4}. Parallel cut(V1) = 1.05/2.1 = 0.5, parallel cut(V2)
= 0, parallel cut(V3) = 1.05/2.2 = 0.477, parallel cut(V4) =
0, parallel cut(Total) = 0.5 + 0.477 = 0.977. Volume(S) =
12. Parallel conductance(S) = 0.977/12 = 0.0814.

B. Algorithms

We propose two algorithms in this subsection—(1) LO-
CALPROXIMITY and (2) ATTRIPART. First, we introduce
the LOCALPROXIMITY algorithm as a key building block
for speeding-up the ATTRIPART algorithm by finding a
subgraph containing only the nodes and edges relevant to
the given seed node. We then introduce the ATTRIPART
algorithm to find a local partition around a seed node by
minimizing the parallel conductance metric. In addition, we
note that the algorithms are presented in matrix notation but
implemented using NetworkX.

LOCALPROXIMITY. The primary purpose of the LO-
CALPROXIMITY algorithm is to reduce the computations
required by ATTRIPART. We experimentally found that the
PageRank vector utilized in the ATTRIPART algorithm is
significantly faster to compute after running the proposed
LOCALPROXIMITY algorithm.

Algorithm Details. The goal is to find a subgraph T
around seed node q, such that T contains only nodes and
edges likely to be reached in nw trials of random walk
with restart. We base the importance of a vertex v ∈ V on
the theory that random walks can measure the importance
of nodes and edges in a graph [10][11]. This is done by
defining node relevance proportional to the frequency of
times a random walk with restart walks on a vertex in nw
trials (nodes walked on more than once in a walk will still
count as one). Instead of using a simple threshold parameter
to determine node/edge relevance as in [10], we utilize the
mean and standard deviation of the walk distribution in
order for the results to remain insensitive of nw given that
nw is sufficiently large. In conjunction with the mean and
standard deviation, we introduce ts as a relevance threshold
parameter to determine the size of the resulting subgraph T .
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See section III-C for more details.
Algorithm Description. The LOCALPROXIMITY algorithm

takes a graph B, a seed node q ∈ B, a teleport value αr, the
number of walks to simulate nw, a relevance threshold ts—
and returns a subgraph T containing the relevant vertices in
relation to q. This algorithm can be viewed in three major
steps:

1) Compute the walk distribution around seed node q
in graph B using random walk with restart (line 2).
We omit the Random Walk algorithm due to space
constraints, however, the technique is described above.

2) Determine the number of vertices to include in the
subgraph T based on the relevance threshold parameter
ts, mean of the walk distribution list µ(L) and the
standard deviation of the walk distribution list σ(L)
(lines 4-6).

3) Create a subgraph based on the included vertices (line
8).

Algorithm 1: Local Proximity
Input: Graph B, seed node q, teleport value αr,

number of walks to simulate nw, relevance
threshold ts

Result: Subgraph T
1 subgraph nodes = [];
2 D = RandomWalk(q, αr, nw, B);
3 L = D.values;
4 for vertex u in B do
5 if D[u] > µ(L) + σ(L) / ts then
6 subgraph nodes.append(u);
7 end
8 T = B.subgraph(subgraph nodes);
9 return T ;

ATTRIPART. Armed with the LOCALPROXIMITY algo-
rithm, we further propose an algorithm ATTRIPART, which
takes into account the network structure and attribute infor-
mation contained in the graph to find denser local partitions
than can be found using the network structure alone. The
foundation of this algorithm is based on [5][6][12] with
subtle modifications on lines 1, 4 and 9. These modifications
incorporate the addition of a combined graph model, approx-
imate PageRank computation using the LOCALPROXIMITY
algorithm, and the parallel cut and conductance metric. In
addition, ATTRIPART doesn’t depend on reaching a target
conductance in order to return a local partition—instead it
returns the best local partition found within sweeping ns
vertices of the sorted PageRank vector.

Algorithm Description. Given a graph B, seed node
q ∈ V , target conductance φo, rank truncation threshold ε,
the number of iterations to compute the rank vector tlast,
teleport value αn, rank iteration threshold εt and number of
nodes to sweep ns—ATTRIPART will find a local partition

S around q within ns iterations of sweeping. This algorithm
can be viewed in five steps:

1) Set values for ε and tlast as seen in Eq. (7) and Eq. (9)
respectively. We experimentally set b = 1+log(m)

2 and
εt to 0.01. For additional detail on parameters ε, tlast
and b see [5]. For all other parameter values see Section
IV.

2) Run LOCALPROXIMITY around seed node q in order
to reduce the run time of the PageRank computations
(line 1).

3) Compute the PageRank vector using a lazy random
transition with personalized restart—with preference
vector s containing all the probability on seed node q.
At each iteration truncate a vertex’s rank if it’s degree
normalized PageRank score is less than ε (lines 2-7).

4) Divide each vertex in the PageRank vector by its cor-
responding degree centrality and order the rank vector
in descending order (line 8).

5) Sweep over the PageRank vector for the first ns ver-
tices, returning the best local partition S found (lines
9-10). The sweep works by taking the re-organized rank
vector and creating a set of vertices S by iterating
through each vertex in the rank vector one at a time,
each time adding the next vertex in the rank vector to
S and computing φ(S).

ε = 1/(1800(l + 2)tlast2
b) (7)

l = dlog2(2m/2)e (8)

tlast = (l + 1)d 2

φ2
ln(c1(l + 2)

√
2m/2)e (9)

Algorithm 2: AttriPart
Input: Graph B, seed node q, target conductance φo,

truncation threshold ε, iterations tlast, teleport
value αn, iteration threshold εt, vertices to
sweep ns

Result: Local partition S
1 T = Local Proximity(B, q, αr, nw, ts);
2 Di,i = δ(vi);
3 W = 1

2 (I + D−1T );
4 for t = 1 to tlast and sum(qt) - sum(qt−1) ¡ εt do
5 qt = (1− α)qt−1W + αs;
6 rt(i) = qt(i) if qt(i)/d(i) > ε, else 0;
7 end
8 Order i from large to small based on rt(i)/d(i);
9 Sweep Parallel Conductance φ(S{i = 1..j}) while

i < ns;
10 Return S with min φ(Sj);
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C. Analysis

Effectiveness: LOCALPROXIMITY (Algorithm 1). The
objective is to ensure that all relevant nodes in proximity to
seed node q are included. We use the fact that many real-
world graphs follow a scale-free distribution [13] [14], with
many nodes containing only a few links while a handful
encompasses the majority. In Figure 3, we found that after
running nw trials of random walk with restart, a scale-free
like distribution formed—with a large majority of the nodes
containing a small number of ‘hits’, while a few nodes
constituted the bulk.

As the number of random walks nw is increased, the
scale-free like distribution is maintained since each node
is proportionally walked with the same distribution. We
therefore need only some minimum value for nw, which we
set to 10,000. We use this skewed scale-free like distribution
in combination with Eq. (10) below to ensure the extraction
of relevant nodes in relation to a query vertex.

D(v) > µ(L) + σ(L)/ts (10)

Mathematically we define node relevance based on
Eq. (10), where D is a dictionary containing the walk count
of each vertex and D(v) represents the number of times
vertex v is walked in nw trials of the random walk with
restart. L is a list of each node’s walk count in the graph,
µ(L) is the average number of times all of the nodes in the
graph are walked and σ(L) is the standard deviation of the
number of times all of the nodes in the graph are walked.
In section IV we discuss values of ts that have been shown
to be empirically effective.

Figure 3: Random walk w/
restart—distribution of node
walk counts. nw = 10,000, αr
= 0.15; dataset: wikipedia, start
vertex: ‘ewok’, y-axis: right;
dataset: Aminer, start vertex:
364298, y-axis: left. We omit
nodes walked zero times in the
graph, however, they’re used in
calculating µ(L), σ(L).

After determining the
relevant nodes we cre-
ate a subgraph T from
a portion of the long-
tail curve as defined
by threshold parame-
ter ts in conjunction
with µ(L) and σ(L).
We say that subgraph
T contains p � n
nodes—with p increas-
ing nearly independently
of the graph size (de-
pending on threshold
ts). As seen in Fig-
ure 3, the number of
nodes with r walks con-
verges independent of
graph size.

Efficiency: All al-
gorithms use the same
data structure for storing the graph information. If a com-
pressed sparse row (CSR) format is used, the space com-

plexity is O(2m + n + 1). Alternatively, we note that with
minor modification to the algorithms above we can use an
adjacency list format with O(n+m) space.

Overview. LOCALPROXIMITY has a time complexity of
O(n+mp + nw) while ATTRIPART has a time complexity
of O(p2 + pmp + n+ nw).

Analysis. LOCALPROXIMITY: There are three major
components to this algorithm: (1) nw random walks with
walk length l for a time complexity of O(nw) (line 2). (2)
Linear iteration through the number of nodes taking O(n)
(lines 4-7). (3) Subgraph T creation based on the number
of included vertices p with node set Vt—requiring iteration
through every edge of node v ∈ Vt for mp total edges.
Iterating through every edge is linear in the number of edges
for a time complexity of O(mp) (line 8). This leads to a total
time complexity of O(n+mp + nw)

ATTRIPART: There are six major steps to this algorithm:
(1) calling LOCALPROXIMITY which returns a subgraph T
containing p nodes and mp edges for a time complexity
of O(n + mp + nw) (line 1). (2) Creating a diagonal
degree matrix by iterating through each node in T with
time complexity O(p) (line 2). (3) Creating the lazy random
walk transition matrix W , which requires O(mp) from
multiplying the corresponding matrix entries (line 3). (4) In
lines 4-7 we iterate for tlast iterations, with each iteration (i)
updating the rank vector by multiplying the corresponding
edges in the transition matrix W , with the rank vector q
for a time complexity of O(mp) and (ii) truncating every
vertex with rank qt(i)/d(i) ≤ ε for a time complexity linear
in the number of nodes in the rank vector O(p). (5) Sort
the rank vector which will be upper bounded by O(plogp)
(line 8). (6) Compute the parallel conductance, which takes
O(p2 + pmp) time (lines 9-10). Combining each step leads
to a total time complexity of O(p2 + pmp + n+ nw).

While ATTRIPART scales quadratically with respect to p,
we note that in practice these algorithms are very fast since
p � n and p scales nearly independent of graph size as
shown in section III-C.

IV. EXPERIMENTS

In this section, we demonstrate the effectiveness and
efficiency of the proposed algorithms on three real-world
network datasets of varying scale.

A. Experiment setup

Datasets. We evaluate the performance of the proposed
algorithms on three datasets—(1) the Aminer co-authorship
network [15], (2) a Musician network mined from DBpedia
and (3) a subset of Wikipedia entries in DBpedia containing
both abstracts and links. All three networks are undirected
with detailed information on each below:
• Aminer. Nodes represents an author, with each author

containing a set of topic keywords, and an edge repre-
senting a co-authorship. To form the attribute network,
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we compute attribute edges based on the similarity
between two authors for every network edge, using
Jaccard Similarity on the corresponding authors’s topic
set.

• Musician. Nodes represent a Musician, with each
Musician containing a set of music genres, and an
edge representing two Musicians who have played in
the same band. To form the attribute network, we
compute attribute edges based on the similarity between
two Musicians for every network edge, using Jaccard
Similarity on the corresponding artist’s music genre set.

• Wikipedia. Nodes represent an entity, place or concept
from Wikipedia which we will jointly refer to as an
item. Each item contains a set of defining key words;
with edges representing a link between the two items.
The dataset originates from DBpedia as a directed graph
with links between Wikipedia entries. We modify the
graph to be undirected for use with our algorithms—
which we believe to be a reasonable as each edge
denotes a relationship between two items. In addition,
this dataset uses only a portion of the Wikipedia entries
containing both abstracts and links to other Wikipedia
pages found in DBpedia. To form the attribute network,
we compute attribute edges based on the similarity be-
tween two items for every network edge using Jaccard
Similarity on the corresponding item’s key word set.

Category Network Nodes Edges

Aminer Co-Author 1,560,640 4,258,946
Musician Co-Musician 6,006 8,690
Wikipedia Link 237,588 1,130,846

Table II: Network Statistics

Metrics. (1) To benchmark the LOCALPROXIMITY al-
gorithm’s effectiveness and efficiency, we compare (i) the
difference between local partition created with and without
the LOCALPROXIMITY algorithm on ATTRIPART and (ii)
the run time and difference between the top 20 PageRank
vector entries with and without the LOCALPROXIMITY
algorithm. (2) To benchmark the ATTRIPART algorithm’s
effectiveness and efficiency we compare the triangle count,
node count, local partition density and run time to a relaxed
variation of PageRank-Nibble. Normally, PageRank-Nibble
does not return a local partition if the target conductance
is not met, however, we modify it to return the best local
partition found—even if the target conductance is not met.
This modification allows for more comparable results to
ATTRIPART. In addition, we utilize a variation of PageRank-
Nibble with loosened volume constraints on the returned
partition.

Repeatability. All data and source code used in this
research will be made publicly available. The Aminer co-

authorship network can be found on the Aminer website 1;
the Musician and Wikipedia datasets used in the experiments
will be released on the author’s website. All algorithms and
experiments were implemented using Python and NetworkX.
In addition, we recommend the following parameter values
for most applications: αn = 0.2, αr = 0.15, φo = 0.05, ts =
2, nw = 10,000, ns = 200.

B. Effectiveness

LOCALPROXIMITY. In Figure 4 parts (a)-(c), we can see
that the proposed LOCALPROXIMITY algorithm significantly
reduces the computational run time, while maintaining high
levels of accuracy across both metrics. Parts (a)-(b) demon-
strate to what extent the accuracy of the results are dependent
upon the parameter values. In particular, a low value of
αr (random walk alpha) and a high value of ts (relevance
threshold) are critical to providing high accuracy results.

In Figure 4 part (a), we measure accuracy as the number
of vertices that differ between the local partitions w/ and w/o
the LOCALPROXIMITY algorithm on ATTRIPART. A small
partition difference indicates that the LOCALPROXIMITY
algorithm finds a relevant subgraph around the given seed
node and that the full graph is unnecessary for accurate
results. In part (b), we define the accuracy of the results
to be the difference between the set of top 20 entries in
the PageRank vectors for the full graph and subgraph using
the LOCALPROXIMITY algorithm. Overall, the results from
part (b) correlate well to (a)—showing that for low values
of αr (random walk alpha) and high values of ts (relevance
threshold), their is negligible difference between the results
computed on the full graph and the subgraph found using
the LOCALPROXIMITY algorithm.

ATTRIPART. In Figure 5, we see that ATTRIPART finds
significantly denser local partitions than PageRank-Nibble—
with local partition densities approximately 1.6×, 1.3×
and 1.1× higher in ATTRIPART than PageRank-Nibble in
the Aminer, Wikipedia and Musician datasets respectively.
Density is measured as 2m

n(n−1) where m is the number of
edges and n is the number of nodes.

In Figure 5, we observe that the triangle count of the
ATTRIPART algorithm is lower than PageRank-Nibble in
the Musician and Aminer datasets. We attribute this to
the fact that ATTRIPART is finding smaller partitions (as
measured by node count) and, therefore, there are less
possible triangles. We also note that each triangle is counted
three times, once for each node in the triangle. While no
sweeps across algorithm parameters were performed, we
believe that the gathered results provide an effective baseline
for parameter selection.

C. Efficiency

For both the proposed and baseline algorithms, the ef-
ficiency results represent only the time taken to run the

1https://Aminer.org/data
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(a) Y-axis represents the difference in vertices between the local
partition calculated w/ and w/o the LOCALPROXIMITY algorithm.

(b) Y-axis represents the # of vertices differing between the top 20
rank vector entries w/ and w/o the LOCALPROXIMITY algorithm.

(c) Y-axis represents the difference in run time between the PageR-
ank calculation w/ and w/o the LOCALPROXIMITY algorithm.

Figure 4: X-axis represents multiple parameter values. Each
data point averages 10 randomly sampled vertices in both the
Aminer and Musician datasets. Default parameters (unless
sweeped across): αn = 0.2, αr = 0.15, φo = 0.2, ts = 2,
nw = 10,000, ns = 200. Parameter ranges: αr, αn and φo
[0.1-0.7] in 0.1 intervals; ts [1-5] in 0.5 intervals.

algorithm (e.g. not including loading data). LOCALPROX-
IMITY. Across a majority of the parameters the run time for
the full graph PageRank computation is approximately 450
seconds longer compared to computing the PageRank vector
based on the LOCALPROXIMITY sugraph. ATTRIPART. In
Figure 5, we see that the ATTRIPART algorithm finds local
partitions 43× faster than PageRank-Nibble.

V. RELATED WORK

We provide a high level review of local community
detection methods, with a focus on the research that pertains
to the algorithms we propose in this paper.
Local Community Detection. Given an undirected graph,
start vertex and a target conductance—the goal of Nibble is

(a) Scalability: Each data point represents the Aminer dataset in
1/10th intervals, with each point averaged over 3 randomly sampled
vertices. Parameters: αn = 0.2, αr = 0.15, φo = 0.2, ts = 2, nw =
10,000, ns = 200.

(b)

Figure 5: Effectiveness: results are averaged over 20 and
100 randomly sampled vertices in the Aminer/Wikipedia and
Musician datasets, respectively. Parameters: αn = 0.2, αr =
0.15, φo = 0.05, ts = 2, nw = 10,000, ns = 200.

to find a subset of vertices that has conductance less than the
target conductance [5]. This algorithm has strong theoretical
properties with a run time of O(2b(log6m)/φ4), where b is
a user defined constant, φ is the target conductance and m is
the number of edges. PageRank-Nibble builds on the work
of Nibble by introducing the use of personalized PageRank
[16], [17], in addition to a method for computing approx-
imate PageRank vectors [6]. Since PageRank-Nibble and
Nibble run on undirected graphs, they use truncated random
walks in order to prevent the stationary distribution from
becoming proportional to the degree centrality of each node
[18]. There are also many alternative techniques for local
community detection. To name a few, the paper by Bagrow
and Bollt [19] introduces a method of local community
identification that utilizes an l-shell spreading outward from
a start vertex. However, their algorithm requires knowledge
of the entire graph and is therefore not truly local. The
research by J. Chen et. al. [4] proposes a method for
local community identification in social networks that avoids
the use of hard to obtain parameters and improves the
accuracy of identified communities by introducing a new
metric. In addition, the work by [20] and [21] introduces
two methods of local community identification that take
into account high-order network structure information. In
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[20], the authors provide mathematical guarantees of the
optimality and scalability of their algorithms, in addition to
the generalization of it to various network types.

VI. CONCLUSION

This paper proposes a new algorithm for attributed graphs,
with the goal of discovering denser local graph partitions.
We believe that the proposed algorithm will be of particular
interest to data mining researchers given the computational
speed-up and enhanced dense local partition identification.
The proposed local partitioning algorithm ATTRIPART is de-
ployed to the web platform PathFinder (www.path-finder.io)
and allows users to interactively explore the data presented
in the paper.
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